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Background: Hypernasality, a hallmark of velopharyngeal insufficiency (VPI), is a
speech disorder with significant psychosocial and functional implications.
Conventional diagnostic methods rely heavily on specialized expertise and
equipment, posing challenges in resource-limited settings. This study explores
the application of OpenAI’s Whisper model for automated hypernasality
detection, offering a scalable and efficient alternative to traditional approaches.
Methods: The Whisper model was adapted for binary classification by replacing
its sequence-to-sequence decoder with a custom classification head. A dataset
of 184 audio recordings, including 96 hypernasal (cases) and 88 non-hypernasal
samples (controls), was used for training and evaluation. The Whisper model’s
performance was compared to traditional machine learning approaches,
including support vector machines (SVM) and random forest (RF) classifiers.
Results: The Whisper-based model effectively detected hypernasality in speech,
achieving a test accuracy of 97% and an F1-score of 0.97. It significantly
outperformed SVM and RF classifiers, which achieved accuracies of 88.1% and
85.7%, respectively. Whisper demonstrated robust performance across diverse
recording conditions and required minimal training data, showcasing its
scalability and efficiency for hypernasality detection.
Conclusion: This study demonstrates the effectiveness of the Whisper-based
model for hypernasality detection. By providing a reliable pretest probability, the
Whisper model can serve as a triaging mechanism to prioritize patients for
further evaluation, reducing diagnostic delays and optimizing resource allocation.
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1 Introduction

Cleft palate affects approximately 1 in 700 live births worldwide and requires surgical

intervention during infancy to prevent adverse feeding, speech, and developmental

outcomes (1–3). Despite corrective surgery, up to 30% of patients develop velopharyngeal

dysfunction (VPD), a speech disorder marked by hypernasality and reduced
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intelligibility (4–6). VPD significantly impairs communication and

has profound psychosocial consequences (7–9). An accurate

diagnosis of VPD relies on a perceptual speech analysis by

specialized speech-language pathologists (SLPs), often with

adjunctive testing with videonasoendoscopy, nasometry and

different types of imaging (10, 11). As such, the diagnosis of VPD

is highly dependent on specialized expertise and costly testing

equipment. Both factors make VPD care nearly inaccessible in

low- and middle-income countries (LMICs). As a result, there is

an unknown number of patients who remain undiagnosed and

untreated, further perpetuating disparities in care for orofacial cleft

patients in LMICs (12–15).

Efforts to increase capacity in the diagnosis and treatment of

VPD have harnessed the power of artificial intelligence (AI) and

machine learning (ML). These models autonomously

conceptualize non-linear relationships in data, making them

particularly well-suited for nuanced tasks such as VPD detection.

Multiple teams have explored traditional ML approaches using

support vector machines (SVMs) and random forest (RF)

classifiers, utilizing engineered features like Mel Frequency

Cepstral Coefficients (MFCCs) to identify patterns in audio data

(16–18). While these methods have demonstrated some

effectiveness, their reliance on extensive preprocessing and

feature engineering limits their practicality, especially in real-

world settings (16–18). Similarly, deep learning models such as

convolutional neural networks (CNNs) have shown promise but

typically require large, annotated datasets, often amounting to

thousands of hours of audio, to achieve clinically meaningful

performance (19, 20). Furthermore, many of these models are

restricted to analyzing specific phonetic sounds or operate within

narrow linguistic contexts, which can hinder their generalizability

across heterogenous populations and languages (16–20).

Recent advancements in Large Language Models (LLMs),

particularly OpenAI’s Whisper model, offer a promising approach

to VPD detection by leveraging pre-trained audio processing

capabilities (21). Unlike conventional models that require extensive

preprocessing and manual feature engineering, Whisper

autonomously extracts acoustic data directly from raw audio files,

enhancing efficiency and real-world applicability. By utilizing a

transformer-based architecture trained on multilingual datasets,

Whisper excels at capturing subtle acoustic variations, making it

well-suited for detecting hypernasality and other speech

irregularities associated with VPD. Its architecture is inherently

designed to accommodate diverse linguistic contexts, allowing for

seamless integration across varied speech patterns and dialects

(21, 22). This versatility is particularly valuable in low- and

middle-income countries (LMICs), where linguistic diversity and

resource limitations pose significant diagnostic challenges (23).

With targeted refinements, Whisper can further enhance existing

diagnostic methods, improving accessibility and broadening its

clinical utility. Despite this potential, Whisper’s utilization in VPD

detection remains largely unexplored, presenting an opportunity to

advance global healthcare equity through AI-driven speech analysis.

The aim of this study is to leverage Whisper’s pre-trained audio

processing capabilities to develop a model that can automatically

detect the presence of VPD by voice sample alone. We
Frontiers in Digital Health 02
hypothesize that Whisper’s key encoded features can be

repurposed to identify patterns of VPD within voice samples,

with a primary endpoint of model accuracy.
2 Methods

This study was approved by the Institutional Review Board at

Vanderbilt University Medical Center/Monroe Carell Jr.

Children’s Hospital (IRB#212135). Audio samples of patients

with a diagnosis of VPD, as well as unaffected voice samples,

were sources from publicly available online repositories and

institutional datasets to ensure a diverse representation of speech

patterns. Unaffected audio samples were sourced from the

Centers for Disease Control and Prevention and the Eastern

Ontario Health Unit (21, 22). VPD voice samples were obtained

from multiple publicly available sources (23–29).

All recordings were preprocessed into WAV format and

resampled to 16 kHz to ensure compatibility with the Whisper

model. To standardize inputs, each recording was processed to fit

Whisper’s fixed 30 s input window by zero-padding shorter

samples and truncating longer ones. Metadata, including recording

conditions and file duration, was cataloged for each sample.

Patient-level variables, including age, sex, and severity of

hypernasality, were not included in the analysis due to the lack

of this information in the publicly accessible datasets.
2.1 Study design

This study involved data preprocessing, adapting the multi-

lingual Whisper model for binary classification tasks, and

comparing its performance against traditional machine learning

models. The models evaluated included Whisper-base, Whisper-

medium, and Whisper-large-v2, each paired with a custom

classification head. Baseline comparisons were conducted using

Support Vector Machine (SVM) and Random Forest (RF) classifiers.
2.2 Whisper model variants

All three variants—Whisper-base, Whisper-medium, and

Whisper-large-v2—share the same transformer-based architecture

but differ in parameter size, which influences their computational

efficiency and ability to capture complex speech features. Whisper-

base, the smallest model, prioritizes speed but has lower precision.

Whisper-medium offers a balance between performance and

computational demand, while Whisper-large-v2, the most complex

variant, has the highest number of parameters and was trained for

additional epochs to improve accuracy (24).
2.3 MFCC extraction for baseline models

For the baseline models, MFCCs were extracted using the

LibROSA library in Python (Python Software Foundation,
frontiersin.org
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Wilmington, DE) (25). To ensure consistency across varying

recording lengths, the extracted MFCC sequences were mean-

aggregated over time, generating a fixed-length feature vector.

These processed representations were then used as inputs for the

SVM and RF classifiers.
2.4 Model architecture and training

The Whisper model, originally designed for robust speech-to-

text transcription, was adapted for binary classification of VPD.

This was achieved by replacing its sequence-to-sequence decoder

with a custom classification head. (Figure 1) Each encoder

processed the audio data, passing the extracted features to a

neural network classifier. The classification head is comprised of

five fully connected layers with progressively decreasing output

dimensions (4096, 2048, 1024, 512, and 2 nodes), employing

Rectified Linear Unit (ReLU) activations between layers.

(Table 1) A softmax activation function in the final layer

produced probabilistic outputs for classification.

To optimize computational efficiency, the pre-trained

parameters of the Whisper encoder were frozen, allowing the

classification head to focus on learning task-specific features. The

model was trained for 10 epochs using the AdamW optimizer,

with a learning rate of 0.00002 and weight decay of 0.0005.

(Table 2) Cross-entropy loss was used as the objective function,

and early stopping with validation monitoring was implemented

to prevent overfitting. All training and evaluation were conducted

on an NVIDIA DGX A100 GPU.
2.5 Baseline comparisons

Baseline models, including SVM and RF classifiers, were

implemented for comparative analysis. These models utilized

MFCCs as input features, requiring extensive feature engineering

and preprocessing. Identical data splits were used to benchmark

the performance of the Whisper-based model against these

traditional approaches.
2.6 Performance evaluation

The dataset was randomly divided into training (70%),

validation (15%), and test (15%) subsets, maintaining a balanced

distribution of VPD and non-VPD samples. Model performance

was assessed using metrics such as accuracy, F1-score, and

computational efficiency. Validation metrics were monitored

during training to identify the best-performing model for final

evaluation on the test dataset.
2.7 Software and reproducibility

All experiments were implemented using Python, with

PyTorch for model training and the Hugging Face library for
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accessing Whisper encoders. The codebase, including

preprocessing scripts and training pipelines, is available in a

publicly accessible GitHub repository to ensure reproducibility.
3 Results

3.1 Dataset characteristics

The dataset included 184 audio samples, with 96 VPD (cases)

and 88 non-VPD (controls) recordings. Audio sample durations

ranged from 0.44 to 9.35 s. To ensure balanced evaluation across

VPD and non-VPD samples, the data was split into training

(70%, n = 129), validation (15%, n = 28), and test (15%, n = 27)

subsets, maintaining the original 96:88 case-to-control ratio. The

final distribution across subsets is shown in Table 3.
3.2 Whisper-Based model performance

The Whisper-based model demonstrated strong performance

across configurations. (Table 4) The Whisper-base configuration,

paired with a custom classification head, achieved the highest test

accuracy of 97.0% and an F1-score of 0.97. Whisper-medium

and Whisper-large-v2 configurations achieved test accuracies of

94.9% and 89.2%, with corresponding F1 scores of 0.95 and 0.89.
3.3 Baseline model comparisons

Baseline models trained using MFCCs as input features showed

lower performance compared to the Whisper-based models. The

SVM model achieved a test accuracy of 88.1% and an F1 score of

0.86, while the RF classifier achieved a test accuracy of 85.7%

and an F1 score of 0.88. These traditional models required

significant preprocessing and manual feature engineering, which

increased computational overhead.
4 Discussion

This study demonstrates the effectiveness of OpenAI’s Whisper

model for automated VPD detection, achieving a test accuracy of

97% and an F1-score of 0.97. These results significantly

outperform baseline models, including SVM (88.1% accuracy)

and RF classifiers (85.7% accuracy), which relied on handcrafted

features such as MFCCs. Whisper’s ability to capture nuanced

speech characteristics directly from raw audio samples, coupled

with its holistic processing capabilities, underscores its value in

both technical performance and clinical utility. These findings

validate the feasibility of leveraging ML technology to bridge

gaps in diagnostic care, particularly in underserved and resource-

constrained settings.

Conventional methods for hypernasality detection rely heavily

on perceptual assessments conducted by SLPs and adjunctive tools

such as nasometry, videofluoroscopy, or imaging systems (10, 11).
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FIGURE 1

Workflow of the whisper-based model for hypernasality detection.
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TABLE 1 Neural network architecture for hypernasality detection.

Layer Operation Output shape
Linear Fully connected 4,096

ReLU Activation 4,096

Linear Fully connected 2,048

ReLU Activation 2,048

Linear Fully connected 1,024

ReLU Activation 1,024

Linear Fully connected 512

ReLU Activation 512

Linear Fully connected 2

Softmax Activation 2

TABLE 2 Training optimizer and hyperparameter configuration for
model training.

Training optimizer

Optimizer Hyperparameters
AdamW Learning Rate: 0.00002

β1: 0.95,

β2: 0.95,

λ: 0.0005

TABLE 3 Dataset distribution across training, validation, and test sets.

Dataset split Total samples VPD samples Non-VPD
samples

Training (70%) 129 67 62

Validation (15%) 28 14 14

Test (15%) 27 15 12

Total 184 96 88

TABLE 4 Comparison of hypernasality detection models.

Model performance

Model Test accuracy F-1 score
Whisper-base + Classifier 97.00% 0.97

Whisper-medium + Classifier 94.90% 0.95

Whisper-large-v2 + Classifier 89.20% 0.89

SVM 88.10% 0.86

RF 85.70% 0.88

Shirk et al. 10.3389/fdgth.2025.1552746
While effective, these methods pose substantial barriers due to

significant costs, reliance on specialized equipment, and the need

for highly trained personnel. These challenges are particularly

pronounced in LMICs, where healthcare infrastructure is limited,

and access to qualified professionals is often scarce (13, 15,

30, 31). As a result, many patients in these regions remain

undiagnosed and untreated, exacerbating the functional and

psychosocial burdens associated with VPD (12–15).

The Whisper-based model provides an innovative solution by

offering a high pretest probability of VPD, ensuring efficient

triage of patients most likely to benefit from specialized care. By

reducing unnecessary referrals and diagnostic procedures, the

model minimizes financial and operational waste for healthcare

providers and families (32, 33). These benefits are particularly
Frontiers in Digital Health 05
relevant in LMICs, where the cost of consultations, procedures,

and follow-up care can prohibit access to care (34–36).

The success of the Whisper-based model lies in its technical

architecture. Whisper’s pre-trained encoder autonomously extracts

high-dimensional acoustic features, such as pitch, tone, and

resonance, directly from raw audio data, providing a rich foundation

for downstream tasks and eliminating the need for extensive

preprocessing (21). Unlike traditional models that process

segmented audio, Whisper holistically analyzes entire audio samples,

enhancing its clinical applicability. By replacing its sequence-to-

sequence decoder with a classification head, Whisper’s encoded

features can be repurposed for binary classification of VPD

detection. This modular design not only minimizes computational

demands but also preserves the integrity of the learned

representations, enabling efficient and accurate classification of VPD.

Importantly, the model demonstrated consistent accuracy across

diverse recording conditions, underscoring its resilience to variability

in data quality, linguistic diversity, and speaker characteristics, a

critical attribute for global healthcare applications in LMICs.

Interestingly, Whisper-base outperformed Whisper-large in

hypernasality detection, an unexpected finding given the typical

advantage of larger models in speech-related tasks. One likely

explanation is overfitting, as Whisper-large’s greater parameter

count may have captured irrelevant speaker variations, background

noise, or linguistic structures rather than the core acoustic features

of hypernasality. Additionally, because Whisper was originally

designed for speech-to-text transcription, larger models may allocate

more resources towards linguistic structure and phoneme

recognition, which are not directly relevant to hypernasality

classification. In contrast, Whisper-base’s streamlined architecture

may have retained the essential acoustic features necessary for

detecting hypernasality without over-prioritizing language modeling.

Furthermore, freezing the encoder may have disproportionately

affected Whisper-large, as its deeper architecture depends on layer-

wise refinements that could have been disrupted. In comparison,

Whisper-base may have been inherently better suited for direct

acoustic feature extraction, requiring fewer trainable parameters to

adapt effectively to the classification task. These findings underscore

the importance of model selection and adaptation in AI-driven

speech pathology applications.

The mobile integration of the Whisper-based model represents

a logical and impactful next step in improving access to VPD

detection and care. With the widespread availability of

smartphones, deploying this technology on mobile platforms

could democratize diagnostic access. A smartphone-based

application could record and analyze speech locally, providing

immediate feedback to users without requiring an SLP (37).

When combined with cloud computing, the model could support

large-scale data analysis, enabling personalized diagnostic insights

and more comprehensive population health monitoring (38).

This approach would facilitate earlier identification of VPD,

expediting referrals for surgical or therapeutic interventions. By

reducing diagnostic delays, this technology has the potential to

improve long-term psychosocial and developmental outcomes for

individuals with VPD (39, 40). Additionally, integrating the

Whisper-based model into telemedicine platforms could bridge
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gaps in care by connecting underserved populations to specialized

services (41). This capability empowers community healthcare

workers to perform screenings and identify high-risk patients,

amplifying the reach of existing healthcare resources.

Despite promising results, this study has several limitations. The

dataset was relatively small, consisting of only 184 audio samples,

with limited validation and test sets. While the model achieved

high accuracy, the small sample size may impact generalizability,

particularly across diverse populations, linguistic backgrounds, and

recording conditions. Additionally, the study relied exclusively on

publicly available data, which may not fully capture the complexity

of clinical settings or the variability of patient presentations

(42–46). Future research should incorporate proprietary datasets

with greater diversity in noise levels, patient demographics, and

linguistic contexts. Prospective validation in clinical environments

is also needed to assess real-world performance and usability.

Additionally, this study did not compare Whisper against a naive

neural network, which could provide further insight into the

benefits of pre-trained transformer-based models. Exploring this

comparison in future research would help contextualize Whisper’s

performance in hypernasality detection. Lastly, while Whisper’s

pre-trained encoder demonstrated strong results with English-

language samples, additional optimization is necessary to ensure

robust performance across non-English languages and dialects, a

critical requirement for global scalability.

The strengths of this study lie in its innovative application of

OpenAI’s Whisper model, which achieves high accuracy and

computational efficiency for VPD detection with minimal training

data. Additionally, the model’s robustness across varying audio

conditions makes it highly suitable for real-world deployment. By

combining technical innovation with clinical relevance, this study

lays the groundwork for deploying intelligent diagnostic tools

worldwide, improving care for individuals with cleft-related

speech disorders.
5 Conclusion

This study demonstrates the feasibility of adapting OpenAI’s

Whisper model for automated VPD detection by replacing its

sequence-to-sequence decoder with a custom classification head.

The adapted model achieved a test accuracy of 97% and an

F1-score of 0.97, significantly outperforming traditional models

such as support vector machines (accuracy of 88.1%) and

random forest classifiers (accuracy of 85.7%). These findings lay

the groundwork for future AI-driven tools that can expand

access to diagnostic and therapeutic care for cleft-related

velopharyngeal dysfunction. AI/ML approaches are particularly

suited for care delivery in LMICs, where resources are

constrained and clinical expertise is often unavailable.
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