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Investigating the accuracy of
Garmin PPG sensors on differing
skin types based on the
Fitzpatrick scale: cross-sectional
comparison study
Annie Icenhower1†, Claire Murphy1†, Amber K. Brooks2,
Megan Irby1, Kindia N’dah1, Justin Robison1 and Jason Fanning1*
1Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States,
2Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem,
NC, United States
Background: Commercial wearable devices, which are often capable of estimating
heart rate via photoplethysmography (PPG), are increasingly used in health
promotion. In recent years, researchers have investigated whether the accuracy
of PPG-measured heart rate varies based on skin pigmentation, focusing
particularly on the accuracy of such devices among users with darker skin tones.
As such, manufacturers of wearable devices have implemented strategies to
improve accuracy. Given the ever-changing nature of the wearable device
industry and the important health implications of providing accurate heart rate
estimates for all individuals no matter their skin color, studies exploring the
impact of pigmentation on PPG accuracy must be regularly replicated.
Objective: We aimed to contrast heart rate readings collected via PPG using the
Garmin Forerunner 45 in comparison with an electrocardiogram (ECG) during
various levels of physical activity across a diverse group of participants
representing a range of skin tones.
Methods: Heart rate data were collected from adult participants (18–64 years of
age) at a single study session using the Garmin Forerunner 45 PPG-equipped
smartwatch and the Polar H10 ECG chest strap. Skin tone was self-reported via
the Fitzpatrick scale. Each participant completed two 10 min bouts of moderate-
intensity walking or jogging separated by a 10 min bout of light walking.
Results: A series of mixed ANOVAs indicated no significant interaction between
Fitzpatrick score and phase of the activity bout (i.e., rest at the start, first intensity
ramp-up phase, first steady-state phase, active rest, second ramp-up phase, and
second steady-state phase). Similarly, there was no significant main effect for the
Fitzpatrick score, although there was a significant main effect for phase, which
was driven by greater ECG-recorded heart rate relative to PPG during the first
ramp-up phase.
Conclusion: Our findings support prior research demonstrating no significant
impact of skin tone on PPG-measured heart rate, with significant differences
between PPG- and ECG-measured heart rate emerging during dynamic
changes in activity intensity. As commercial heart rate monitoring technology
and software continue to evolve, it will be vital to replicate studies
investigating the impact of skin tone due to the rapidity with which widely
used wearable technologies advance.
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1 Introduction

Regular physical activity promotes overall health and well-

being across the lifespan and accompanies improvements in

cognition, learning and judgment skills, and symptoms of

depression and anxiety (1, 2). According to a 2022 report from

the World Health Organization, more than 80% of the world’s

adolescent population is insufficiently physically active, and

people who do not engage in sufficient physical activity are at

20%–30% greater risk of death compared to sufficiently active

people (3). Wearable activity monitors have risen in popularity

both for consumers and researchers given their ability to

objectively monitor key health behaviors including physical

activity, sleep, and stress, which are each facilitated based on

heart rate monitoring (4, 5). These are useful technologies for

those interested in activity promotion, as a core component of

successful activity behavior change is self-regulation, which is

characterized by the motivation, control, and modification of

behavior to achieve a desired goal (6). Successfully changing

behavior through self-regulation depends on one’s ability to

accurately and consistently self-monitor their behaviors, as

developing an accurate awareness of one’s behaviors is a pre-

requisite for supporting behavior change.

Consumer physical activity self-monitoring technologies

represent an important and growing industry (7–9) and are

increasingly common in clinical physical activity trials (10–12).

Contemporary monitoring devices integrate various sensing

technologies such as accelerometry, global positioning, and

optical sensing to measure the intensity and duration of activity.

These data are of immense value to those interested in

developing novel and highly tailored activity programs. However,

concern over whether sensors work similarly across individuals—

and the potential to introduce a systematic bias when using

monitoring technologies—has risen in popular consciousness in

recent years. Wrist-worn consumer devices leverage light

(photoplethysmography; PPG) to monitor peripheral blood flow,

and there is concern that darker skin tones may affect the

accuracy of PPG sensors (13, 14). A systematic review by

Koerber and colleagues indicated that heart rate-sensing

smartwatches were significantly less accurate when used on

darker skin tones in comparison to lighter skin tones (13). In

contrast, Bent and colleagues failed to identify significant

differences in accuracy resulting from differing skin tones,

though they did find that accuracy varied by device manufacturer

and type of activity, regardless of skin tone (14).

One potential cause of heterogeneity in findings in the

relationship between skin tone and PPG accuracy is the

continuous evolution of heart rate monitoring hardware and

software in the consumer market. This presents both challenges

(e.g., changing study endpoints) and benefits (e.g., enhanced

accuracy) in the research context. For instance, companies such

as Garmin and Apple have implemented technologies to increase
Abbreviations

PPG, photoplethysmography; ECG, electrocardiogram; HRR, heart rate reserve;
BPM, beats per minute.
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the intensity of the PPG light if a strong signal is not detected by

the device, such as for individuals with darker skin (15). Because

consumer technologies are continuously refined and improved

upon, replication studies are critical—a notion increasingly

recognized in mHealth research (16). To this end, the purpose of

this study was to revisit the investigation of differences in

electrocardiogram (ECG) and optical heart rate (PPG) data

collected by Garmin Forerunner 45 and Polar H10 devices,

respectively, across self-reported skin tone scores.
2 Methods

Participants with varying skin tones were recruited between

Spring 2022 and Spring 2023 to compare heart rate recordings

during rest, exercise, and recovery between wrist-worn PPG and

chest ECG. Participants were recruited via word of mouth, flyers,

and listserv emails within a college community in the southeast

United States. Participants were eligible if they were between 18

and 64 years of age with no forearm tattoos that would interfere

with the PPG sensors on both wrists. Participants were

intentionally recruited such that no more than half of the sample

self-identified as White. In addition, eligible participants had to be

fluent in English, capable of communicating with research staff

over the phone, willing to wear two Garmin wristwatches and a

chest strap for approximately 35 min, and able to engage in

aerobic exercise for at least 20 min. Eligible participants completed

a pre-screen interview including a physical activity readiness

questionnaire to confirm eligibility and subsequently were

scheduled for a single testing session. At the session, and prior to

all study procedures, research staff conducted the informed

consent process, obtained written consent from the participants,

and collected participant demographic characteristics and the

Fitzpatrick scale as a proxy for skin tone.

PPG data were collected via the Garmin Forerunner 45, which

leverages the same Garmin Elevate PPG technology used across all

modern Garmin devices (17). We selected this device as Garmin

devices are well-represented in both physical activity research (18)

and in the commercial sectors (19, 20). Additionally, because

Garmin devices all leverage the same PPG technology, selecting a

single device equipped with this sensor offers an efficient means of

investing in PPG accuracy in a large segment of the consumer

wearable market. We want to emphasize the importance of

expanding the work presented in this study to other widely used

consumer devices. Participants were fitted with one Garmin

Forerunner 45 on their left wrist and another on their right wrist.

One Garmin collected data via the PPG sensor, and the second was

connected to a Polar H10 ECG chest strap and therefore did not

collect data via PPG. Electrode gel or water was placed on the

sensors of the chest strap before being fastened to the participant.

Participants remained seated for 5 min to collect their resting heart

rate. Resting heart rate was then used to calculate heart rate reserve

(HRR), which was computed by subtracting resting heart rate from

the participant’s estimated maximum heart rate, which was

calculated using the formula: estimated maximum heart rate

(BPM) = 220-age (21). Participants were then instructed to walk or
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jog on an outdoor track at 60% of their estimated HRR for 10 min

during an “exercise bout.” Participants then walked at a self-selected

light intensity for 10 min (i.e., “rest”) and then initiated a second

“exercise bout” wherein participants again were instructed to walk

or jog at 60% of their estimated HRR for 10 min. We selected this

protocol to give insight into both steady state and changing

intensity given prior research demonstrating differential performance

of PPG vs. ECG during intensity changes (14). Upon completion of

the participant visit, data were downloaded from each Garmin

Forerunner 45 and extracted via a custom Python script (22).
3 Measures

3.1 Heart rate

As noted above, Garmin Forerunner 45 devices were used to

collect data during each session, with one paired to a Polar H10

ECG chest strap and the other using the on-device PPG sensor.

The Polar H10 is among the most widely used chest ECG

devices with excellent validity (23). Heart rate data are provided

approximately every 5 s, and a custom Python script was utilized

to time-match data collected via both devices. Specifically,

datasets were merged based on closest matching timestamps,

which were allowed to differ by up to 5 s. These data were

subsequently plotted, and periods of rest, the first exercise bout,

the rest bout, and the second exercise bout were identified with a

timestamp and visual inspection of ECG data. As it has been

reported that PPG data may be delayed relative to ECG data

during changes in activity intensity (14), we investigated exercise

bouts as a whole as well as subdivided into a “ramp” and

“steady-state” period. Specifically, we visualized ECG-based heart

rate data and classified the rapid increase in heart rate during the

initial period of the exercise bout as the “ramp” period and the

plateau in heart rate as “steady state.” If a participant did not

have a clear delineation between these stages (e.g., a consistent

rise in heart rate across the bout), all activity was classified as

exercise. In sum, PPG and ECG differences in a total of eight

“phases” were investigated: rest, the first ramp, the first steady-

state exercise bout, the first full exercise bout (comprising both

the ramp and steady-state period), rest, the second ramp, the

second steady-state exercise bout, and the second full exercise

bout (comprising both the ramp and steady-state period).

Average readings and differences for the ECG and PPG data

were computed for each period. Differences were computed as

ECG minus PPG, such that positive values indicated higher

ECG-measured heart rate whereas negative values indicated

higher PPG-measured heart rate. Notably, the Association for the

Advancement of Medical Instrumentation recommends a

maximum error of ±5 BPM for heart rate monitoring (24).
3.2 Skin tone

The Fitzpatrick scale was originally designed to classify how

different skin types may react to ultraviolet light, though as Fine
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and colleagues note, the Fitzpatrick scale “is often used within

the biophotonics community due to the effect eumelanin has on

how light travels through skin. This is due to the high

absorbance of eumelanin with a peak in the ultraviolet

wavelength (220 nm) and a steady decay through the visible

wavelength region” (25). Participants responded to 10 items

related to physical traits (e.g., eye color and color of the skin in

unexposed areas), sensitivity to sun exposure, and how often one

typically engages in intentional sun exposure. Responses are

provided on a 0–4 scale, with final scores ranging from 0 to 40.

Six total categories are derived from these scores, ranging from

pale white skin to deeply pigmented dark brown skin to black

skin (26). In the present study, we investigated Fitzpatrick scores

continuously (14, 27) as well as in three categories containing

two Fitzpatrick types each (i.e., 0 = types I/II, corresponding to

scores of 0–13; 1 = types III/IV, corresponding to scores of 14–

27; 2 = types V/VI, corresponding to scores of 28–36). This scale

is commonly used in research and clinical settings to classify

one’s skin tone (28), largely due to its availability, historic use,

and ease of administration. However, while it is frequently used

by healthcare providers as a means of describing skin color (29),

it is notable that it was originally designed to measure the

propensity of the skin to burn during phototherapy (29).

Important limitations to this approach include that Fitzpatrick is

often conflated with a measure of race or ethnicity and that there

is a large degree of within-group variability in skin tone (29). We

deem it important to note early that the use of the Fitzpatrick

scale is a limitation driven by a lack of widely available tools and

will explore opportunities for future research within the discussion.

We leveraged a series of descriptive analyses to contrast heart rate

collected via chest ECG and wrist PPG among individuals with

varying skin tones assessed via the Fitzpatrick scale. First, we

present descriptive statistics, including mean (SD) for continuous

variables and count (%), for the whole sample. Similarly, we

computed descriptive statistics for the difference in heart rate

within each phase of the exercise bout (start, first ramp, first

steady-state exercise, first full exercise bout, rest, second ramp,

second steady-state exercise, second full exercise bout), with

descriptives presented for Fitzpatrick subgroups and the sample as

a whole. Note that we observed two extreme outliers in the

difference between ECG and PPG-recorded heart rate, and as such,

we also present median and interquartile range in supplemental

materials. Both individuals fell into the Fitzpatrick type V/VI

category. Bland–Altman plots were produced for each phase to

investigate differences in ECG and PPG heart rate by average heart

rate. To investigate whether heart rate varied by Fitzpatrick score,

phase of the exercise bout, or the interaction of the two, we next

conducted a mixed ANOVA including phase as a within-subject

factor and Fitzpatrick subgroup as a between-subject factor,

confirming the assumption of homogeneity of variances. Finally, to

investigate relationships between continuous Fitzpatrick scores and

differences in heart rate by device during each phase, we computed

a series of Pearson correlations that were interpreted as

recommended by Evens and colleagues such that 0–0.2 was

considered very weak, 0.2–0.4 was considered weak, 0.4–0.6

was considered moderate, 0.6–0.8 was considered strong, and 0.8+
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was considered very strong (30); significant associations were

visualized via scatterplot. Given the outlying values described

above, we also present Spearman rho correlations in the

supplemental materials. All analyses were completed in SPSS

version 29 (IBM Corp., Armonk, NY, USA).
TABLE 2 Mean and standard deviations for the difference of heart rate in
each task overall and by Fitzpatrick category.
4 Results

Participant characteristics are displayed in Table 1. A total of 33

participants agreed to participate in the study, and 29 completed the

study protocol and had complete data from both devices during the

1-year pilot period. Characteristics of these participants are displayed

in Table 1. Briefly, 8 identified as Black, 4 as Asian, 15 as White, and

2 self-identified as more than one race. With regard to sex, 15

participants (52%) were male, and 14 (48%) were female. The

average age of the participants was 22.24 ± 4.54 years, and the

average Fitzpatrick score from the research sample was 21.45 ± 6.48.

Table 2 depicts the descriptive statistics during each phase by

Fitzpatrick category. Supplementary Table S1 contains median

and interquartile range values during each phase by Fitzpatrick

category. Figure 1 depicts the Bland–Altman plots for each

phase. Note that there was a violation of the sphericity

assumption for the mixed ANOVA, and therefore we corrected

degrees of freedom using the Greenhouse-Geisser ε = 0.509. The

mixed ANOVA did not reveal a significant phase–Fitzpatrick

category interaction (P = 0.27), nor was there a significant main

effect for the Fitzpatrick category (P = 0.68). There was, however,

a significant main effect for phase [F(2.55,63.64) = 19.84, P < .001,

η2 = .44], and a series of post hoc contrasts revealed this was

driven by significantly higher ECG-recorded heart rate relative to

PPG during the first ramp phase, which was significantly larger

than differences during any other phase (P < .001). Differences in

ECG and PPG between other phases were not statistically

significant. A second model wherein ramp and steady-state

phases were not separated demonstrated similar results. Namely,

the interaction between the Fitzpatrick category and phase was

not significant (P = 0.21) nor was the main effect for the

Fitzpatrick category (P = 0.57). The main effect for phase was

significant [F(2.16,56.13) = 8.36, P < .001, η2 = .24], and this was

driven by significantly greater differences in the first exercise
TABLE 1 Participant demographics (N = 29).

Characteristic M (SD)
Age, M (SD) 22.24 (4.54)

Male, n (%) 15 (52)

Female, n (%) 14 (48)

Race, n (%)
White 15 (52)

Black 8 (28)

Asian 4 (14)

More than 1 2 (7)

Fitzpatrick score, M (SD) 21.45 (6.48)

BMI M (SD) 23.19 (3.60)

M, mean; SD, standard deviation; BMI, body mass index (kg/m2).
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phase (Ps≤ 0.006). Notably, several individuals had at least one

extreme outlying value during at least one phase. As sensitivity

analyses, we conducted the mixed ANOVAs without the outlying

values, and the interpretation did not differ.

Regarding Bland–Altman plots (depicted in Figure 1), limits of

agreement were >±5 BPM during all tasks. Table 3 depicts the

number of cases during each phase with differences that

exceeded ±5 BPM. The mean bias was 0.67 BPM during rest

(a positive number indicating higher heart rate recorded via ECG

relative to PPG), 10.82 BPM during the first ramp phase, 0.20

BPM during the first steady-state exercise phase, 3.49 BPM

during the first overall exercise phase, −1.15 BPM during rest,

0.34 BPM during the second ramp phase, −1.11 during the

second steady-state exercise phase, and −0.70 during the second

exercise bout on the whole. Table 4 displays the Pearson

correlation coefficients for the relationships between continuous

Fitzpatrick scores and differences in heart rate. There was a

significant, moderate negative correlation between Fitzpatrick

score and heart rate differences during the second ramp phase,

indicating those with darker skin tones demonstrated a relatively

higher PPG score during this period. A scatterplot depicting this

relationship can be observed in Figure 2. Spearman rho

correlations are depicted in Supplementary Table S2, and,

notably, interpretation does not meaningfully differ.
5 Discussion

This study aimed to examine the agreement between ECG and

wrist-based PPG-measured heart rate, and whether agreement was

affected by self-reported skin tone using the Fitzpatrick skin typing

scale. Our results generally indicate that ECG- and PPG-measured

heart rates did not differ by skin tone, except when individuals

were increasing the intensity of activity after an active rest period.

Here, those with lighter skin as reported via the Fitzpatrick skin

typing scale demonstrated a similar response as to the first ramp

phase (i.e., ECG detected higher heart rate) whereas those with

darker skin reported relatively higher PPG-recorded heart rate.
Phase Fitzpatrick score Total
(N= 29)

0–13
(N = 5)

14–27
(N= 17)

28–36
(N= 7)

Start −1.51 (6.49) 1.58 (3) 0.04 (1.97) 0.67 (3.67)

First ramp 14.35 (7.00) 8.48 (9.06) 13.99 (12.66) 10.82 (9.82)

First steady-state exercise −0.08 (1.97) −1 (6.48) 3.32 (8.43) 0.2 (6.57)

First full exercise bout 5.01 (3.59) 1.84 (3.87) 6.42 (9.32) 3.49 (5.76)

Rest −1.00 (1.28) −1.25 (2.78) −1.01 (1.99) −1.15 (2.35)

Second ramp 2.51 (3.77) 0.89 (3.45)a −2.49 (4.62) 0.34 (4.07)a

Second steady-state
exercise

−0.23 (2.33) −1.56 (5.72) −0.64 (2.69) −1.11 (4.62)

Second full exercise bout 0.42 (2.35) −0.92 (3.97) −0.97 (2.89) −0.7 (3.44)

Differences were computed as ECG− PPG such that more positive scores indicate higher
ECG-recorded heart rate. Values are in average beats per minute.
aOne observation missing due to a lack of clear delineation between the ramp and steady-

state exercise and therefore time was all categorized as exercise.
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FIGURE 1

Bland–Altman plots contrasting differences in ECG vs. PPG by average across both devices. The lines are plotted for average difference and 95%
confidence limits around the mean difference.

Icenhower et al. 10.3389/fdgth.2025.1553565
Importantly, most of these differences were small in magnitude (i.e.,

71% had differences <5 BPM, which falls within an acceptable range

of accuracy). More generally, we observed a range of bias (1.15–10.82

BPM) between devices, with the greatest bias observed during the

initial increase in activity as individuals began their first bout of

exercise from complete rest. The tendency for PPG signals to lag

behind ECG during changes in heart rate is widely reported and

may be attributable to several physiological causes, including a
Frontiers in Digital Health 05
delay between changing heart rate and changes in blood volume at

the wrist (14). As others have reported, this suggests utility for

wrist PPG-based heart rate measurement for monitoring steady-

state activity above, and less so for activities like high-intensity

interval training where heart rate might rapidly accelerate and

decelerate. This may be especially true for those with darker skin,

as we observe a significant correlation between Fitzpatrick score

and differences between ECG and PPG only when individuals
frontiersin.org
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TABLE 3 Count of participants exhibiting differences between ECG- and
PPG-recorded heart rate exceeding 5 BPM.

Phase N (%)
Start 5 (17)

First ramp 21 (72)

First steady-state exercise 3 (10)

First full exercise bout 8 (28)

Rest 2 (7)

Second ramp 8 (28)

Second steady-state exercise 1 (3)

Second full exercise bout 2 (7)

TABLE 4 Pearson correlations between Fitzpatrick score and differences
in heart rate collected via chest and wrist monitor.

Stage Fitzpatrick score
Start 0.31

First ramp 0.10

First steady-state exercise 0.10

First full exercise bout 0.14

Rest −0.12
Second ramp −0.49a

Second steady-state exercise −0.16
Second full exercise bout −0.28

0–0.2, very weak; 0.2–0.4, weak; 0.4–0.6, moderate ; 0.6–0.8, strong; 0.8+, very strong.
aCorrelation is significant at the 0.05 level (two-tailed).

FIGURE 2

Scatter plot showing the relationship between participant Fitzpatrick scores
second ramp phase.

Icenhower et al. 10.3389/fdgth.2025.1553565
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increased intensity following an active recovery period. Indeed, we

observed two outlying individuals who had much greater

differences between ECG and PPG ratings during the ramp and/or

exercise phases, and both individuals fell into the highest

Fitzpatrick category.

In sum, our data, in combination with the wider body of

evidence (15, 31–36), give helpful guidance to clinicians and those

interested in promoting activity behavior from the perspective of

selecting a heart rate monitoring device. Specifically, the use of

PPG-based monitoring should be cautioned for those interested in

promoting or engaging in behaviors where rapid changes in

intensity are expected to be frequent. Moreover, we would note the

critical importance of additional validation testing. As raised in

recent reports, there remain a number of factors that could

interact with skin tone to produce bias, including factors such as

the presence of arm hair, ambient temperature and humidity, level

of motion, skin thickness, and body mass (31). As researchers gain

access to better tools to measure these factors in the field and as

consumer wearable devices continue to enter the market, it will be

critical to revisit this topic.
5.1 Strengths and limitations

There are several important strengths to the present study.

First, participants completed study procedures outdoors while
and the difference between ECG and PPG heart rate values during the
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walking overground, capturing the potential negative impact of

uneven motion and light on the accuracy of wrist data, which

may be missed in the laboratory. Additionally, our protocol

allowed for the investigation of both steady state and changes in

activity intensity. This provides the ability to challenge the

validity of these devices over varying conditions and various

phases of activity to properly capture every phase of activity that

the PPG sensor would record. Of course, there are several

important limitations to consider. As described earlier, there are

well-documented criticisms of the Fitzpatrick skin typing scale

related to how values are interpreted and variability in tone

within categories. Given the potential harm produced by biases

in widely used health technologies, it is promising that

researchers are actively working to create more representative

cost-efficient scales, such as the newly developed 10-shade Monk

skin tone scale, which became available for use following the

completion of data collection for the study presented herein (37),

and relatively cost-efficient and portable technologies such as the

Delfin Skin Color Catch that researchers have successfully used

to observe skin pigmentation (38–40). In combination, these

tools may facilitate still further replication work to address

several of the research gaps (31). These include investigating

interactions between skin tone, arm hair, perspiration, and body

mass among other potentially confounding variables. Second, as

our research occurred on the campus of a small liberal arts

campus, participants were college-aged adults, limiting age

diversity in our sample. Extending this work to older adults may

cause other discrepancies, as older adults tend to have stiffer

arteries, weaker blood flow, and thinner skin (41). Third, our

sample was relatively small, which may influence the stability of

our findings and the width of our limits of agreement. We

acknowledge that a larger, balanced sample size would yield

stronger conclusions and also better consider the individual

variability in PPG accuracy (25). However, we would note our

findings are in line with other recent studies on the topic and are

encouraged by the consistent results we observed within our

diverse sample (34, 42). Fourth, the discrepancy between PPG

and ECG may be subject to motion factors, although this is

outside the scope of our study (43). This minor limitation was

not assessed in the data processing because all our participants

did the same activities, and we are focusing on skin tone. Finally,

we did not quantify weather conditions during testing, and

evidence suggests that both temperature and humidity may affect

the quality of a PPG signal (44). It may be valuable for future

research to examine whether there are any interactions between

temperature, humidity, and skin pigmentation on PPG accuracy.
6 Conclusion

Wearable devices have become a mainstay in clinical trials

research and in the consumer sector, and as such, understanding

whether and to what extent important characteristics such as

skin tone may introduce a bias into heart rate measurement is

critical. Herein, we present further support that PPG and ECG-

measured heart rates generally exhibit low bias but wide limits of
Frontiers in Digital Health 07
agreement, with differences being exaggerated as activity intensity

changes, but generally not varying by the skin tones represented

in our sample. These findings are encouraging, supporting the

utility of accessible and inexpensive PPG heart rate measurement

in health research, especially when one is interested in heart rate

at rest or during steady-state activity. Given the rapidity with

which widely used wearable technologies advance, it will be

critical that researchers routinely replicate research meant to

capture any potential bases introduced by the use of these devices.
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