
TYPE Systematic Review
PUBLISHED 27 March 2025
DOI 10.3389/fdgth.2025.1557467
EDITED BY

Adnan Haider,

Dongguk University Seoul, Republic of Korea

REVIEWED BY

Simão Paredes,

Polytechnical Institute of Coimbra, Portugal

Hiskias Dingeto,

Dongguk University Seoul, Republic of Korea

*CORRESPONDENCE

Mahreen Kiran

mehreen.kiran89@gmail.com

RECEIVED 08 January 2025

ACCEPTED 10 March 2025

PUBLISHED 27 March 2025

CITATION

Kiran M, Xie Y, Anjum N, Ball G, Pierscionek B

and Russell D (2025) Machine learning and

artificial intelligence in type 2 diabetes

prediction: a comprehensive 33-year

bibliometric and literature analysis.

Front. Digit. Health 7:1557467.

doi: 10.3389/fdgth.2025.1557467

COPYRIGHT

© 2025 Kiran, Xie, Anjum, Ball, Pierscionek and
Russell. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Digital Health
Machine learning and artificial
intelligence in type 2 diabetes
prediction: a comprehensive
33-year bibliometric and
literature analysis
Mahreen Kiran1*, Ying Xie2, Nasreen Anjum3, Graham Ball1,
Barbara Pierscionek4 and Duncan Russell5

1Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, United Kingdom,
2Faculty of Business and Management, Cranfield University School of Management, Cranfield,
United Kingdom, 3School of Computing, University of Portsmouth, Portsmouth, United Kingdom,
4Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom,
5Ocado Technology, Hatfield, United Kingdom
Background: Type 2 Diabetes Mellitus (T2DM) remains a critical global health
challenge, necessitating robust predictive models to enable early detection
and personalized interventions. This study presents a comprehensive
bibliometric and systematic review of 33 years (1991-2024) of research on
machine learning (ML) and artificial intelligence (AI) applications in T2DM
prediction. It highlights the growing complexity of the field and identifies key
trends, methodologies, and research gaps.
Methods: A systematic methodology guided the literature selection process,
starting with keyword identification using Term Frequency-Inverse Document
Frequency (TF-IDF) and expert input. Based on these refined keywords,
literature was systematically selected using PRISMA guidelines, resulting in a
dataset of 2,351 articles from Web of Science and Scopus databases.
Bibliometric analysis was performed on the entire selected dataset using tools
such as VOSviewer and Bibliometrix, enabling thematic clustering, co-citation
analysis, and network visualization. To assess the most impactful literature, a
dual-criteria methodology combining relevance and impact scores was
applied. Articles were qualitatively assessed on their alignment with T2DM
prediction using a four-point relevance scale and quantitatively evaluated
based on citation metrics normalized within subject, journal, and publication
year. Articles scoring above a predefined threshold were selected for detailed
review. The selected literature spans four time periods: 1991–2000, 2001–
2010, 2011–2020, and 2021–2024.
Results: The bibliometric findings reveal exponential growth in publications
since 2010, with the USA and UK leading contributions, followed by emerging
players like Singapore and India. Key thematic clusters include foundational ML
techniques, epidemiological forecasting, predictive modelling, and clinical
applications. Ensemble methods (e.g., Random Forest, Gradient Boosting) and
deep learning models (e.g., Convolutional Neural Networks) dominate recent
advancements. Literature analysis reveals that, early studies primarily used
demographic and clinical variables, while recent efforts integrate genetic,
lifestyle, and environmental predictors. Additionally, literature analysis
highlights advances in integrating real-world datasets, emerging trends like
federated learning, and explainability tools such as SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-agnostic Explanations).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2025.1557467&domain=pdf&date_stamp=2020-03-12
mailto:mehreen.kiran89@gmail.com
https://doi.org/10.3389/fdgth.2025.1557467
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1557467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1557467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1557467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1557467/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1557467/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2025.1557467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Kiran et al. 10.3389/fdgth.2025.1557467

Frontiers in Digital Health
Conclusion: Future work should address gaps in generalizability, interdisciplinary
T2DM prediction research, and psychosocial integration, while also focusing on
clinically actionable solutions and real-world applicability to combat the growing
diabetes epidemic effectively.

KEYWORDS

type 2 diabetes mellitus (T2DM), machine learning (ML), artificial intelligence (AI),
bibliometric analysis, predictive models
1 Introduction

Diabetes Mellitus is a chronic disease that has potentially fatal

consequences if left undetected. It has the potential to lead to

serious illness, such as kidney failure, sight loss and limb

amputations and even fatal consequences if not detected and

treated effectively (1). The disease has affected millions of people

worldwide, and its prevalence is expected to surge in the future

given that ageing and obesity are major risk factors and both

are rising.

Diabetes can be broadly classified into two main types, namely

Type 1 Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM).

T1DM is caused by the autoimmune destruction of insulin-

producing pancreatic cells, leading to insulin deficiency and chronic

hyperglycemia, usually affecting children or teenagers. T2DM is a

chronic metabolic disorder with a number of causal factors,

including genetic predisposition and lifestyle factors, such as poor

diet, a lack of physical activity, high blood pressure, and obesity.

While both T1DM and T2DM are serious conditions requiring

ongoing management, T2DM is more common and is largely

preventable with early detection and lifestyle interventions (2).

According to the latest estimates from the International Diabetes

Federation (3), 537 million people worldwide had diabetes in 2021,

and this number is projected to rise to 643 million by 2030 and 783

million by 2045. The same report predicts that 541 million adults

worldwide are at increased risk of developing T2DM. The

increasing prevalence of diabetes is a major public health concern

and emphasizes the need for effective and smart prediction,

prevention, and management strategies.

Machine learning (ML) models and artificial intelligence (AI)

have great potential in developing personalized prediction

systems for diabetes. Scientists have leveraged ML and data

mining techniques in several research areas related to diabetes,

including identifying diagnostic and predictive factors in diabetes

development, predicting diabetes, analyzing diabetic complications,

developing drugs and therapies for diabetes, and studying the

impact of genetic and environmental factors on the onset and

progression of diabetes (4). By analyzing vast amounts of diabetes-

related data, ML models can transform raw information into

invaluable knowledge, unlocking new avenues for more effective

prognosis, diagnosis, and treatment of diabetes (5, 6).

In recent years, several survey articles have explored the use of

ML models and AI in diabetes research. Some of these reviews have

examined the application of ML tools across various diabetes-

related domains (4). Others have taken a more targeted

approach, focusing on specific areas such as diabetes detection
02
(7, 8), diabetes management (9, 10), or diabetes prediction

(11, 12). These reviews offer valuable insights into the

application of ML and AI in diabetes management and prognosis.

However, with the recent surge in publications related to ML

and AI in diabetes research, conducting a bibliometric analysis of

the literature can provide several valuable insights, including

publication trends, research hotspots, geographical distribution,

collaboration networks, journal analysis, methodological trends,

funding and support, thematic clusters, and gaps and

opportunities. Therefore, several bibliometric studies have also

been conducted in the diabetes field, focusing on various aspects

and research domains. For instance, (13) conducted a

bibliometric analysis of diabetes prediction (in general) using ML

algorithms. This study focused on a 12-year period (2009–2020),

provided a snapshot of recent trends, and emphasized

publication trends while identifying the leading countries and

journals. Another bibliometric study (14) examined the growth

of literature in the field of diabetes (in general) by utilizing data

from the MEDLINE database for the period 1995–2004. The

study aimed to identify the core journals in this field during that

time. The authors in (15) conducted a bibliometric analysis to

identify, visualize, and characterize meta-analyses on diabetic foot

ulcer research, focusing on treatment approaches, risk factor

analysis, and economic evaluations. This study covered

publications from 1999 to 2022, with data retrieved from the

Web of Science (WoS) core collection database. The authors in

(16) performed a bibliometric analysis of research papers

published in the field of ML and deep learning (DL) techniques

applied to diabetes research (in general) from 2000 to 2022

(22 years). The articles were categorized into detection,

prediction, and management. This involved the statistical analysis

of published literature to identify global research trends and

networks, highlighting key countries, institutions, journals,

articles, citations, and research topics.

Despite the valuable insights provided by these studies, several

limitations highlight the need for further investigation.

• Firstly, many existing studies (13, 14, 16) tend to focus on

diabetes as a whole, without distinguishing between T1DM

and T2DM. These are distinct research areas with unique

pathophysiologies, management strategies, and challenges, and

a broad approach often overlooks the nuanced priorities

specific to each type.

• Secondly, the variability in the time periods covered by these

studies, with some focusing on relatively short durations,

limits the ability to derive comprehensive longitudinal insights

into the evolution of research trends.
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• Thirdly, while robust bibliometric techniques are applied, these

studies often lack detailed analysis of thematic clusters and the

methodological advancements that have occurred over time,

which are critical for understanding shifts in

research paradigms.

• Lastly, there is a notable gap in the literature regarding targeted

analyses of machine learning prediction models for T2DM, as

much of the focus has been on complications or broader

applications of machine learning in diabetes research. These

gaps highlight the need for a more focused and nuanced

approach in future bibliometric analyses.

To address these gaps, this research conducted a

comprehensive bibliometric and literature analysis of the T2DM

prediction research using ML and AI over a 33-year period

(1991–2024). To the best of our knowledge, this is the first

bibliometric and literature analysis focused on the prediction of

T2DM using ML and AI techniques. We offer a historical

perspective and trace the evolution of research methodologies,

utilizing more advanced bibliometric tools such as Bibliometrics.

Specifically, the study seeks to map the intellectual structure

through co-citation network analysis, identify and analyze

distinct thematic clusters, assess the contributions and centrality

of different ML methodologies, and highlight the foundational

and applied research in the field. Our analysis delves deeper into

methodological evolution, datasets utilized, most influential key

features to train the ML models, and future research directions,

with a particular emphasis on interdisciplinary approaches and

emerging technologies.

The objectives of this study are as follows:

1. Publication trends, citation analysis, and global

collaboration patterns: To analyze publication and citation

trends over time, and explore international collaboration

patterns and key countries’ roles.

2. Thematic clusters: To identify thematic clusters in T2DM

research using ML. Summarize each cluster’s focus and

centrality, assess the impact of ML models on

prediction accuracy.

3. Foundational methods, datasets, and key predictors: To

evaluate the foundational methods, datasets and predominant

predictors used in T2DM prediction research, particularly

focusing on ML algorithms and their effectiveness.

4. Research gaps, emerging trends, and future directions: To

identify research gaps and analyze emerging trends in

methodologies for predicting T2DM over decades. Highlight

challenges and suggest future research directions.
1.1 Research questions

This study aims to evaluate the current research landscape,

assess the evolution and impact of ML models in T2DM

research, and identify key trends and gaps in the literature.

Specifically, this study will explore the following

research questions.
Frontiers in Digital Health 03
1. How has the research landscape on T2DM prediction evolved

in terms of publication frequency, citation metrics, and

international collaborations from 1991 to 2024?

2. How do different ML methodologies and applications

contribute to the various thematic clusters within the field of

T2DM prediction research, and what are the intellectual

connections and centralities among these clusters as revealed

by co-citation network analysis?

3. How have ML models evolved in the prediction of T2DM, and

what trends and methodologies have emerged over the different

decades from 1991 to 2024 in terms of data sources, algorithms,

and predictors?

4. What are the future areas of research and associated challenges?
1.2 Organization of the study

Our research study is organized as follows: Section 2 details

the comprehensive approach employed to select and analyze the

keywords used in this study. The detailed bibliometric analysis

by analyzing author affiliations, citation counts, publication

trends, and international collaboration patterns has been

presented in Section 3. The discussion on the network

analysis is presented in Section 4. Section 5 analyses ML

applications in predicting T2DM from 1991 to 2024, divided

into four eras: 1991–2000, 2001–2010, 2011–2020, and 2021–

2024. Section 6 presents future directions and Section 7

concludes our study.
2 Methodology for the selection of
keywords and literature

This section begins by outlining the comprehensive approach

used to select and analyze the keywords relevant to this study,

specifically addressing research question 1. Following this,

research methodology employed to select the research articles

based on the identified keywords is discussed.
2.1 Keyword selection and refinement

The keyword selection process began with an initial gathering of

keywords, guided by input from domain experts. This input was

then combined with Term Frequency-Inverse Document

Frequency (TF-IDF) (17) to identify keywords that are both

relevant and comprehensive for the bibliometric research. Word

clouds were used to visually represent the selected keywords.

Finally, a curated set of keywords was finalised for dataset extraction.
2.1.1 Preliminary keyword screening
Table 1a shows the initial set of keywords that were generated

through the solicitation of domain expertise, encompassing both

broad and specific terms relevant to T2DM and predictive
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TABLE 1b Selected articles for initial analysis.

Primary keyword Secondary keyword
(OR)

WoS Scopus

Machine learning 440 150

Data mining 80 93

Neural network 55 68

Digital twins 3 4

1. Diabet* Predict* Deep learning 115 70

2. Type 2 Diabet* Predict* Random forest 105 95

3. Diabetes Mellitus
Predict*

Logistic regression 201 189

Ensemble learning 4 30

Boosting algorithm 5 25

Decision Tree 11 65

Total no. of documents 1019 789

TABLE 1c Finally selected set of keywords based on TF/IDF score.

Primary keyword Secondary keyword
(OR)

No. of
articles

Machine learning 580

Risk factors 145

Data mining 153

Risk score 67

Logistic regression 150

1. Diabet* Predict* Deep learning 125

2. Type 2 Diabet*
Predict*

Risk assessment 42

3. Diabet Mellitus
Predict*

Decision tree 203

4. Diabetes risk predict* Random forest 177

Learning algorithm 145

Neural network 93

Artificial intelligence 15

Gradient boosting 25

Predict* model 431

Total no. of documents 2351

TABLE 1a Initial data search.

Primary keyword Secondary keyword
(OR)

WoS Scopus

Machine learning 543 180

Data mining 219 252

Neural network 184 265

Digital twins 7 8

1. Diabet* Predict* Deep learning 223 207

2. Type 2 Diabet* Predict* Random forest 262 289

3. Diabetes Mellitus
Predict*

Logistic regression 535 475

Ensemble learning 4 76

Boosting algorithm 10 60

Decision tree 22 217

Total no. of documents 2,009 2,029
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modelling. The keywords were divided into primary and secondary

categories based on their relevance and importance to the study.

Each primary keyword was systematically combined with every

secondary keyword using logical “AND” and “OR” operators to

ensure comprehensive coverage and relevancy in search queries.

The terms included fundamental descriptors like Diabetes

mellitus and Type 2 diabetes, as well as methodological keywords

such as Machine learning, Logistic Regression (LR), and Deep

learning, to name a few. Furthermore, to capture various

permutations of crucial terms such as “prediction” and

“predicting,” the “*” operator for truncation alongside root

keywords has been employed.

Table 1b presents the refined set of articles specifically focusing

on T2DM prediction using ML algorithms. This refinement

process involved a careful review of the titles and abstracts of the

initially identified articles. The criteria for selection were strictly

based on the relevance to T2DM prediction and the application

of machine learning techniques. Consequently, we identified

1,808 articles as our initial dataset of T2DM literature. By

narrowing down the dataset through this rigorous screening

process, we ensured that the articles included in this study were

directly pertinent to our research objectives.

After establishing a foundational set of keywords, further

refinement was performed using the TF-IDF algorithm on the
Frontiers in Digital Health 04
preliminary keyword screening dataset. For more details, please

refer to Appendix.

2.1.2 Final keyword selection
During this phase, we curated a set of keywords for the ultimate

extraction of articles from multiple In review databases. The chosen

keywords, as presented in Table 1c, were selected with the

overarching objectives of the literature review in mind, as

outlined in the Section “Aims and Objectives of Study.”

A threshold of 0.70 was set to guide the selection process,

ensuring that only the most relevant and impactful keywords

were included. For instance, foundational keywords such as

Diabetes mellitus’ and Type2 diabetes’ were chosen to delineate

the research domain, ensuring that the corpus reflected the

specific disease focus. Acknowledging the diverse landscape of

predictive analytics, we adopted an interdisciplinary strategy by

integrating “Data mining” and “Logistic regression,” showcasing

the fusion of statistical and computational domains. Introducing

“learning algorithm” and “neural network” allowed us to

encompass a wide range of algorithmic methodologies, spanning

from traditional statistical techniques to innovative AI methods.

The predictive emphasis of the analysis was enhanced with

terms like “Risk factor,” “Risk score,” “Risk assessment,” and

“Predictive Model,” directing attention to literature focusing on

prognostic evaluation. Interestingly, clinical terms like “Risk

factor” and “Risk score” carry considerable importance,

surpassing the anticipated prominence of algorithm-related terms

such as “Machine learning” and “Neural network.” This indicates

that while advanced algorithms are vital, the core of diabetes

prediction research lies in their integration with traditional

clinical assessments. “Risk assessment” bridges these algorithmic

and clinical aspects, underscoring the importance of evaluation

in utilizing predictive analytics effectively. Notably, we combined

“Predictive model” and “Prediction model,” both of which had

significant TF-IDF scores, into a single keyword “Predict* model”

to streamline our search and ensure comprehensive coverage of
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FIGURE 1

PRISMA flowchart for literature selection.
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predictive modeling research. Additionally, although terms like

“Diabetes dataset” and “Diabetes patient” met the threshold

criteria, they were considered too generic and therefore excluded

from the final keyword set. Instead, we opted for more specific

terms to ensure the precision of the literature retrieved. However,

“Risk prediction” given its relevance and specificity, was included

as a primary keyword to capture studies focused on risk

prediction and assessment in diabetes.
2.2 Literature selection and data collection

The process of literature selection and data collection was

conducted systematically, following the PRISMA guidelines, and

is detailed in the PRISMA flow diagram (Figure 1). Each step

taken to refine the dataset is described below:
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1. Identification: Articles were sourced from two

comprehensive databases, Web of Science (WoS) and

Scopus, to maximize coverage and minimize the exclusion

of relevant studies. This broad scope reduced the risk of

missing key literature due to database limitations.

A finalized set of primary and secondary keywords,

informed by expert input and refined through the TF-IDF

method, guided the search. The refined results for the

keyword sets are presented in Table 1c. The search

targeted articles published between 1991 and 2024, relevant

to T2DM prediction using ML techniques. This process

initially identified 3,245 research articles. These articles

were distributed equally among the five authors for review.

Each author independently assessed their assigned articles

using predefined relevance criteria to ensure consistency.

Any discrepancies between reviewers were resolved through
frontiersin.org
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TABLE 2 Main information.

Main information about data Results
Time Span 1991:2024

Sources (Journals, Books, etc) 1,115

Average citations per article 12.09

References 67,363

Document contents

Keywords plus (ID) 4,289

Author’s keywords (DE) 67,363

Average citations per doc 12.09

References 67,363

Document types

Article 1,728

Conference paper 321

Proceedings paper 186

Review 116

Kiran et al. 10.3389/fdgth.2025.1557467
group discussions, ensuring objectivity and minimizing bias.

Automation tools, including the Bibliometrix package in

RStudio, were employed during the eligibility phase to

identify and remove duplicate records. This automation

streamlined the dataset, reducing it to 2,351 full-text

articles for further analysis. The last search was conducted

in August 2024. Bibliometric methods, including thematic

clustering and co-citation network analysis, were applied to

the refined dataset. Trends were assessed across four time

periods: 1991–2000, 2001–2010, 2011–2020, and 2021–

2024. Predictive models, datasets, and key variables were

systematically evaluated during this process.

2. Screening: During the screening phase, irrelevant records were

removed, reducing the dataset by 2,795 articles. Non-English

articles, conference papers, and those unrelated to T2DM

prediction were excluded. Further refinement removed

records focusing on diagnosis, prevention, treatment, or

complications of Type1 and gestational diabetes. 450 articles

focusing on diagnosis, prevention, treatment or

complications, Type1 and gestational diabetes were not

included in the review.

3. Eligibility: After the initial screening, 444 duplicate records

were identified and removed using the Bibliometrix tool in

RStudio (18). This refinement left 2,351 full-text articles,

which were assessed for eligibility.

4. Inclusion: Following the assessment, all 2,351 articles were

deemed eligible and included in the research for further

analysis. No articles were excluded at this stage.
3 Bibliometric analysis

To address research question 2 and to meet the objective of

examining key attributes of diabetes prediction literature, this

section presents a detailed bibliometric analysis. To visualize

and map the literature database, we employed the Bibliometric

package (18). Furthermore, the co-citation network, co-

occurrence network, and collaboration network were

graphically represented using the VOSViewer software (19).

VOSViewer is a software tool used for constructing and

visualizing bibliometric networks. These networks can include

journals, researchers, or individual publications, and can be

created based on citation, bibliographic coupling, co-citation,

or co-authorship relations.

Analyzing citation counts, publication trends, and international

collaborations provides insights into the evolution and impact of

research in this field. As summarized in Table 2, the study spans

1991–2024, includes 1,115 sources, and reports an average of

12.09 citations per article. The authors in (20) highlighted the

early 1990s as pivotal for advancements in AI and ML in

healthcare, with researchers exploring these techniques for

processing medical data, particularly for Type 1 and Type 2

diabetes. This study captures the evolution of AI and ML in

diabetes management, from these early breakthroughs to recent

advancements in 2024.
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3.1 Analysis of research articles published
annually w.r.t citations

Our bibliometric analysis offers an in-depth view of how

scholarly publication volume and citation metrics have evolved

over time. As illustrated in Figure 2, we focused on two

principal elements: the trends in citations across publication

years (Figure 2a), and the temporal relationships among

variables—including the number of articles published

(No_of_Articles), the number of citable years (CitableYears),

mean total citations per article (MeanTCperArt), and mean

total citations per year (MeanTCperYear)—using a correlation

matrix heatmap (Figure 2b).

1. Exponential growth in research output and its consequences:

Post-2015, annual publication output surged from fewer than

50 articles in 2010 to over 450 by 2022 (Figure 2a). This

surge aligns with growing interdisciplinary interest, increased

funding, and AI advancements in healthcare. However, a

negative correlation (r � �0:41) between publication volume

and mean citations per article (Figure 2b) suggests that as

quantity increases, individual impact diminishes. Similar

trends in AI-driven healthcare research indicate a focus on

novelty over meaningful innovation, often resulting in

redundant studies with incremental improvements (21–23).

In T2DM prediction, frequent reuse of datasets like the UCI

Pima Indians Diabetes Dataset has led to limited

generalizability and reduced clinical relevance (4, 24). This

lack of diverse population data restricts generalizability,

clinical value, and translational impact, limiting the broader

applicability of these predictive models (25). Without greater

emphasis on real-world validation, and interdisciplinary

collaboration, research risks stagnating in theoretical

improvements rather than delivering meaningful

advancements in healthcare.

2. Citation trends: Research saturation and diminishing

impact: Despite the rapid rise in publications, the red line in

Figure 2a (mean citations per article) fluctuates without
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FIGURE 2

Analysis of research articles published annually w.r.t citations. (a)
Citation trend. (b) Correlation matrix.
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sustained growth, while the green line (mean citations per year)

remains relatively flat. This suggests inefficiencies in knowledge

dissemination, where an expanding body of research does not

necessarily translate into broader scientific progress. This

suggests inefficient knowledge dissemination and “research

saturation,” where publication proliferation does not equate

to innovation (22). AI-driven T2DM prediction models often

emphasize technical novelty over interpretability and

validation, limiting clinical applicability (26). High-impact

studies tend to integrate diverse data, explainable AI, and

real-world implementation (27, 28). Addressing these gaps

requires shifting research priorities from sheer publication

volume to rigorously validated, clinically relevant work.
Frontiers in Digital Health 07
3. Correlation matrix insights: The unequal distribution of

research impact: The correlation matrix (Figure 2b) reveals

an uneven distribution of research influence, with a strong

positive correlation (r � 0:7) between mean citations per year

and mean citations per article. This indicates that a small

subset of highly cited studies disproportionately impacts the

field, while most publications contribute minimally. To

address this imbalance, targeted investments should focus on

high-quality, interdisciplinary research that integrates

longitudinal datasets, diverse patient populations, explainable

AI, and clinical validation to ensure real-world relevance (26).

Without such efforts, the current trend risks further widening

the gap between research volume and meaningful

scientific advancements.

4. Implications for researchers, journals, & policymakers: These

trends have significant implications for researchers, journals,

and policymakers. Researchers often face mounting pressure

to maintain high publication counts potentially reducing the

time and resources devoted to deeper, more impactful

investigations (29). It is also evidenced by the negative

correlation between publication volume and mean citations

per article. Journals, witnessing a marked influx of

submissions, must strengthen peer-review standards and

encourage practices such as data sharing, reproducibility,

replication studies, and open-data initiatives (30).

Policymakers and funding agencies should promote

interdisciplinary collaborations and translational research to

enhance the real-world impact of AI in healthcare.

Encouraging global research partnerships and knowledge-

sharing can facilitate the development of interoperable AI-

driven health innovations. Recent bibliometric analyses

highlight the growing prominence of AI in health

informatics, underscoring the need for strategic investment in

high-impact research that addresses emerging healthcare

challenges (31). While numerous articles continue to

appear each year, only a fraction yield novel insights, such

as integrating real-world electronic health records (EHRs)

or leveraging advanced deep learning architectures for

precision risk stratification. Correspondingly, highly cited

works in this space are often those that bridge multiple

domains (e.g., endocrinology, computer science,

bioinformatics) or that focus on interpretable AI to aid

clinicians in practical decision-making. This underscores

the broader theme that breakthrough research—

encompassing originality, methodological rigour, and real-

world utility—tends to have a more profound citation

footprint and lasting impact on healthcare practice.

In summary, while AI-driven healthcare research continues to

expand, bibliometric trends highlight the need to prioritize

impactful studies over sheer publication volume. Addressing

dataset limitations, ensuring clinical applicability, and fostering

interdisciplinary collaboration are essential for meaningful

progress. Insights from Figure 2 underscore the imperative to

recalibrate research priorities. While the increasing volume of

publications reflects strong engagement, citation data reveal gaps
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FIGURE 3

Network visualization of collaborative countries.

TABLE 3 Summary of collaborative network analysis.

Node Cluster Bridging Closeness PageRank
Saudi Arabia 1 69.17871495 0.013157895 0.040544105

Egypt 1 9.36403046 0.011494253 0.013054708

Pakistan 1 1.557900522 0.011764706 0.017074653

Jordan 1 0.193981938 0.010989011 0.006885467
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in quality and innovation. A collective effort among researchers,

journals, and funding agencies is necessary to realign incentives

toward interdisciplinary, impactful, and reproducible work. By

doing so, the rapidly growing body of literature can drive

tangible advancements in healthcare, particularly in T2DM

prevention and management.

Ethiopia 1 0.07269145 0.010526316 0.007911609

Italy 2 24.86787083 0.014925373 0.03789288

Singapore 2 23.87286495 0.013513514 0.024286976

Netherlands 2 8.96448097 0.01369863 0.029513399

France 2 7.742682939 0.013333333 0.022753563

Sweden 2 6.581808632 0.013157895 0.025261636

United Kingdom 3 226.996643 0.018181818 0.094932694

USA 3 225.9362586 0.017241379 0.116435363

China 3 83.62188851 0.015151515 0.057392505

India 3 55.15719477 0.014084507 0.043440715

Australia 3 53.29505222 0.015384615 0.045629771
3.2 Analysis of literature w.r.t countries
collaboration

In this study, we employ a network analysis to explore the

patterns of association between various countries. Figure 3 shows

the visual representation of the network created using

VOSviewer, which facilitates the comprehensive examination and

interpretation of complex datasets. This visualization allows us to

discern clusters and relationships among countries, providing a

foundation for deeper analysis. Table 3 complements the visual

insights gained from the network analysis by presenting

quantitative metrics for the top five nodes within each cluster.

These metrics include bridging centrality, closeness, and

PageRank, which offer valuable insights into the roles and

influence of individual countries within the collaboration network.

Bridging centrality measures a node’s role as a bridge between

different parts of the network. A higher bridging centrality

indicates that a country acts as a key connector or conduit

through which interactions between other countries occur.

Closeness centrality reflects the average distance of a node to all

other nodes in the network. A country with high closeness

centrality can be interpreted as having direct and short paths to

other nodes, indicating a potential for swift and efficient

interactions. PageRank is a measure of node importance, which

considers not only the quantity of connections but also the
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quality, as connections from more significant nodes carry more

weight. In this context, a country with a high PageRank is seen

as influential within the network, likely contributing to or

benefiting from robust interactions.

It can be observed from Figure 3 and Table 3 that Cluster-1

comprised of countries such as Saudi Arabia, Egypt, Pakistan,

and others, demonstrating moderate levels of bridging centrality.

These countries appear to act as mediators, facilitating

connections between other countries in the network. However,

their closeness and PageRank values were relatively lower,

suggesting a more peripheral role in the broader collaboration

landscape. Cluster-2 encompassed countries like Spain, Italy,

Netherlands, and Singapore, among others. Italy emerged as a

notable influencer within this cluster, boasting the highest

PageRank score. Meanwhile, Singapore and the Netherlands
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exhibited significant bridging centrality, indicating their pivotal

roles in linking various countries within the collaboration

network. The cohesive nature of this cluster suggests a tight-knit

group of countries with strong collaborative ties, potentially

focusing on prediction.

Cluster-3 included leading nations such as the USA, China,

India, and others, each wielding considerable influence and

connectivity within the collaboration network. The USA and the

UK stood out with the highest PageRank values, underscoring

their dominant positions in global collaboration networks. These

countries play crucial roles in shaping research agendas, driving

innovation, and fostering international partnerships across

diverse fields. Overall, the analysis of international collaborations

highlights the roles of key countries and regions, indicating a

robust and interconnected global research network. Countries

such as the USA and the UK continue to lead in terms of

influence and collaboration, while emerging contributors like

India and Singapore show the expanding geographical scope of

impactful research.
4 Network analysis

Bibliometric methods for network analysis have proven to be

effective tools for revealing both well-established and novel

research topics. In this section, we utilized co-citation network

analysis, a bibliometric method, to establish intellectual

connections between significant research papers and map the

intellectual structure of diabetes prediction research. This method

focuses on the relationship or interaction between two

publications and provides an overview of publications that have

been cited together in other research articles. When two or more

articles are cited together more frequently in other research
FIGURE 4

Co-citation network analysis.
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articles, the probability of similarity between them is higher (32).

As illustrated in our co-citation network analysis (Figure 4),

there are four distinct clusters, each representing a unique aspect

of the intersection between ML and diabetes studies: the blue,

red, pink, and green clusters. These clusters were analyzed based

on their thematic focus, as well as their bridging and closeness

centrality measures within the co-citation network, providing

insights into their roles and interconnections within the broader

research landscape. A detailed summary of each cluster,

including their thematic focus and centrality measures within the

co-citation network, is provided in Table 4.
• Foundational ML & statistical methodologies (Blue cluster):

In the context of our co-citation analysis, the blue cluster

represents foundational ML and statistical methodologies that

are fundamental to the advancement of diabetes research. This

cluster incorporates seminal works that have contributed to

the development and refinement of algorithms, particularly

addressing prevalent issues in data science such as imbalanced

datasets, exemplified by the work of (33) on the Synthetic

Minority Over-sampling Technique (SMOTE). Furthermore, it

includes references to widely-used tools such as sci-kit-learn,

which have democratized the application of ML through their

ease of access and versatility (34). It can be observed that

there is a moderate closeness centrality observed in the blue

cluster. It suggests that the methodologies it encompasses are

broadly relevant to a wide array of studies within diabetes

research. This relevance is attributed to the universal nature of

foundational ML techniques, which are applicable across

various subdomains, from basic biological research to clinical

applications. Such techniques are often necessary prerequisites

for more advanced, specialized research and provide a

common language for scientists across disciplines. However,
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TABLE 4 Summary of network analysis.

Cluster Thematic focus Key contributions Closeness
centrality

Bridging
centrality

Blue Foundational ML and statistical
methods

– Development of algorithms for imbalanced datasets & tools for enhancing
ML access such as SMOTE & sci-kit-learn

Moderate Low

Pink Epidemiological forecasts, lifestyle
interventions

– Risk assessments, global burden of diabetes, integration of digital health
technologies in management

High Medium

Green Application of ML in predictive
modeling

– Effective use of ML algorithms such as DT, RF, NN, and gradient boosting
machines for diabetes prediction

High Moderate

Red Application of ML in clinical
diabetes research

– Use of algorithms for clinical data analysis, enhancing patient care and
outcomes

Moderate High
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the cluster’s lower bridging centrality reveals a nuanced role.

This could suggest that, although these foundational methods

are widely used within individual research domains, they are

less often at the forefront of interdisciplinary integrations that

link disparate strands of diabetes research.

• Epidemiological forecasts & lifestyle interventions (Pink

cluster): Encompassing a wide range of studies, the pink

cluster explores epidemiological forecasts, lifestyle interventions,

and the integration of digital health technologies in

managing diabetes. It reflects a broader clinical and public

health perspective, focusing on risk assessments [e.g., (35,

36)] and the global burden of diabetes (37), all of which are

essential for a comprehensive understanding of diabetes

management and prevention. The high closeness centrality

associated with the pink cluster’s themes within the

bibliometric network underlines the integral role these

studies play in the broader scope of diabetes research. The

research contained within this cluster lays the groundwork

for various other domains within diabetes research, making

it foundational. It offers essential insights into public health

strategies, the development of clinical practices, and the

formulation of healthcare policies.

• Application of ML in predictive modeling (Green cluster): In

the green cluster of the co-citation network analysis, the central

theme encapsulates the application of ML techniques to enhance

the predictive modelling and analysis in diabetes research [e.g.,

(38, 39)]. Key findings within this cluster reveal that decision

trees (DT), random forests (RF), neural networks (NN), and

Gradient Boosting Machines (GBM) are particularly effective

in predicting the onset of diabetes mellitus using a range of

clinical and demographic data [e.g., (40, 41)]. Comparative

studies within the cluster suggest that the more sophisticated

ML models do not always yield clinically relevant

enhancements over traditional regression models (42). This is

critical as it underscores the need for carefully considering the

choice of a prediction model in practical settings. Moreover, it

can be observed that the green cluster demonstrates a high

closeness centrality, which indicates their significant linkage

within the research network. This closeness centrality is due

to the cluster’s contribution to predictive health informatics,

an area of heightened importance that harnesses ML

techniques to foresee diabetes onset and progression. Such

predictions are crucial for planning public health interventions

and managing resources in healthcare systems. Moreover, the
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moderate bridging centrality of this cluster reveals its role in

blending methodological advancements from machine learning

with practical, actionable insights for clinical and

epidemiological purposes.

• Application of ML in clinical diabetes research (Red cluster):

The red cluster specifically targets the application of ML

techniques for diagnosing, predicting, and managing diabetes.

It includes innovative uses of algorithms for clinical data

analysis aiming to enhance patient care and outcomes [e.g.,

(43, 44)]. A notable feature of the red cluster is its high

centrality from the methodological (blue), public health-

oriented (pink), and epidemiological (green) research clusters.

The divergence is partly due to the unique data and

specialized patient information required for clinical studies,

which contrasts with the population-level data prevalent in

public health and epidemiology studies. Moreover, the red

cluster embodies the intersection of ML with clinical

medicine, a path that is often separate from the public health

and foundational research trajectories due to differing

methodologies, publication cultures, and terminologies. The

regulatory and ethical landscape governing clinical research

further contributes to this separation, as these considerations

demand stringent adherence to privacy and safety standards,

which may not align with the broader ML research cited by

the other clusters. Additionally, clinical application research is

often driven by the immediacy of patient-centred outcomes

and the rapid development and deployment cycle of medical

technologies, creating a focused body of literature that

prioritizes efficacy and safety. This patient-centric approach is

less likely to interlace with the exploratory or predictive nature

of the research found in the remaining clusters. Consequently,

the red cluster’s progression forms a distinct branch within

the research landscape, signalling a need for more concerted

interdisciplinary efforts to bridge the gap and foster a more

cohesive dialogue between these crucial areas of

diabetes research.

Overall summary: Our bibliometric analysis highlights the

multi-faceted nature of ML research in diabetes, spanning

foundational algorithm development, clinical studies, public

health analyses, and predictive modeling. The thematic clusters

underscore interconnected efforts to leverage ML for better

understanding, predicting, and managing diabetes. Foundational

methodologies (blue cluster) offer adaptable tools, public health
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FIGURE 5

Content analysis and discussion of ML models for T2DM prediction (1991–2024).
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insights (pink cluster) inform large-scale prevention strategies,

predictive modeling advancements (green cluster) enable robust

applications, and clinical applications (red cluster) translate

advancements into patient-centered outcomes. Future research

should prioritize interdisciplinary collaboration to bridge gaps

between clusters, integrating methodologies, clinical insights, and

public health strategies. Addressing regulatory and ethical

challenges will be key to real-world implementation. The

continued evolution of these clusters promises advancements in

diabetes prediction research, improving prevention, diagnosis,

and management globally.
5 Analysis of ML and AI models for
T2DM prediction: a literature review
(1991–2024)

This section addresses research question 3 of how ML models

have evolved in the prediction of T2DM and complies with the

objectives of evaluating foundational methodologies and

statistical techniques, identifying gaps, and analyzing emerging

trends from 1991 to 2024. It thoroughly reviews the models and

techniques used over different decades, evaluates predominant

predictors, assesses the impact of datasets on model accuracy,

and highlights challenges and future research directions.

This content analysis focuses specifically on the application of

ML in predicting T2DMs. For the reader’s convenience, we

analyzed the content for each decade, starting from 1991 to
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2024, divided into the following eras: 1991–2000, 2001–2010,

2011–2020, and 2021–2024. For each era, we provide literature

and discussion on (i) the ML models used for T2DM prediction,

(ii) the datasets utilized to train the ML models, (iii) the

predictors used, and (iv) emerging trends or topics in that era.

Figure 5 provides a visual summary of these key elements for

each era.
5.1 Methodology for the selection of
literature

We follow the strategy outlined by Marcus et al. (45) for

conducting a literature analysis on our curated dataset of 2,351

publications, utilizing a systematic and structured approach of

TF-IDF (Section 2). To ensure a comprehensive analysis, we

developed a systematic four-point scale for both qualitative

assessment (relevancy score) and quantitative assessment

(impact score). Two reviewers were selected to implement this

methodology. Each reviewer independently assessed articles

based on predefined relevance criteria. Any discrepancies in

their ratings were resolved through discussion until a consensus

was reached. This process helped maintain objectivity and

minimize bias in our relevance scoring. The relevance score

assesses how closely an article aligns with the specific focus of

the study.

This has been determined based on the following criteria,

scored on a four-point scale.
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1. Score 4 (Highly relevant): Articles focused exclusively on ML

algorithms for T2DM prediction, providing detailed analyses,

results, and discussions.

2. Score 3 (Moderately relevant): Articles discussing ML for

health outcomes, including T2DM, but not exclusively

focused on T2DM prediction.

3. Score 2 (Slightly relevant): Articles addressing ML broadly or

T2DM without specifically using ML for prediction.

4. Score 1 (Not relevant): Articles mentioning ML or T2DM only

tangentially, with minimal relevance to the core topic.
After the qualitative assessment, articles that were deemed

relevant underwent a quantitative assessment through impact

score. The impact score evaluates the quantitative influence of an

article, typically based on citation metrics and the article’s reach

within the scientific community. We first obtained the total

number of citations for each article from databases such as

Google Scholar, Scopus, and Web of Science. Then to ensure a

fair comparison, we normalized the citation counts. This

involved calculating the average number of citations for similar

articles (considering subject, journal, and publication year).1 Each

article was assigned an impact score based on its citation count

compared to the normalized average, using a quartile-based

system to quantitatively assess its relative impact.
1. Score 4 (Highly influential): This score is assigned to articles

in the top 25% (Q1 quartile) of citation counts, indicating

they have the highest influence.

2. Score 3 (Influential): Articles in the second quartile (25%–

50%) of citation counts receive this score. These articles have

a high influence but fall below the top 25%.

3. Score 2 (Average influence): Assigned to articles in the third

quartile (50%-75%) of citation counts, representing an

average level of influence.

4. Score 1 (Below average influence): This score is given to

articles in the bottom 25% (Q4 quartile) of citation counts,

indicating they have the lowest influence among the set.
The overall score for each article was determined by summing

its relevance and impact scores. To prioritize articles for detailed

review, we averaged the combined relevance and impact scores

from each rater. Articles with an average score exceeding a

predetermined threshold of 3.5 were included in the in-depth

analysis phase. This dual-criteria approach, integrating qualitative

relevance assessment with quantitative impact analysis, ensures

that the selected articles are both highly relevant and impactful

in the field of T2DM prediction using ML. This methodology

provides a comprehensive and systematic approach to identifying

and analyzing the most significant research articles in this domain.
1More details on the methodology can be found in (45).
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5.2 Literature analysis for time period 1991–
2000

This era has been predominantly focused on the utilization of

ML algorithms and existing technologies for the management of

Type 1 diabetes, particularly in predicting and controlling blood

glucose levels. For instance, (46–49).

In contrast, little attention has been paid to the prediction of

T2DM, with only one study (50) employing ML algorithms to

predict this condition. The study (50) evaluates the efficacy of

Artificial Neural Networks (ANNs) in predicting diabetes and

compares its performance with LR and the ADAP (Adaptative

Perceptron) learning algorithm. Utilizing the Pima Indian

diabetes dataset (51), which includes 768 cases with eight

significant predictor variables (e.g., number of times pregnant,

plasma glucose concentration, etc), the study identifies plasma

glucose concentration, Body Mass Index (BMI), and age as the

best predictors through a backward-elimination, stepwise

approach. The NN model with one hidden node outperformed

LR and ADAP, achieving a training classification accuracy of

77.43% and a test classification accuracy of 81.25%, compared to

LR’s 77.60% and 79.17%, and ADAP’s 76% test accuracy.
5.3 Literature analysis for time period
(2001–2010)

In comparison to the initial era (1991–2000), several studies

conducted during 2001–2010, have focused on T2DM using

various ML algorithms, datasets, and predictive features. Based

on our developed systematic four-point scale for qualitative and

quantitative assessment, we selected 18 highly influential articles

published during this era.

ML algorithms utilized: During this period, several ML

models were explored for T2DM prediction. Prominent models

include Support Vector Machines (SVM), ANN, Hybrid Models,

Semi-supervised Learning Models, DT (C4.5 Algorithm), General

Regression Neural Networks (GRNN), K-means Clustering

(KNN), LR, Fuzzy Neural Networks (FNN), Rule-based Methods

such as Sequential Covering Approach (SQRex-SVM), and

Eclectic Method for Rule Extraction. These algorithms reflect a

variety of approaches, from classification and regression

techniques to clustering and rule-based methods, highlighting the

breadth of ML applications in T2DM prediction research during

this period.

Datasets utilised: Several key datasets were utilized during this

period, each contributing to the robustness of the research findings.

Pima Indians Diabetes Dataset was extensively utilized for its

detailed clinical features relevant to diabetes prediction. It was

referenced in studies like (52–62) etc., highlighting its importance

in ML research for diabetes. UCI Irvin ML Repository (63) was

another frequently used dataset, supporting various studies such

as (56, 64–66). This repository’s diverse datasets facilitated a

broad range of ML applications. National Health and Nutrition

Examination Survey (NHANES) provided a comprehensive set of
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health-related data, which was leveraged in the (67) for the

prediction of T2DM study, illustrating its utility in large-scale

health data analysis.

Predominant predictors used for training ML models:

During this era, the predominant predictors used for training ML

models in T2DM prediction research were primarily clinical and

demographic variables. Clinical predictors such as BMI, plasma

glucose concentration, diastolic blood pressure, triceps skin fold

thickness, 2-hour serum insulin levels, diabetes pedigree function,

and cholesterol levels were frequently employed due to their

strong association with diabetes risk. Demographic predictors,

particularly age and sex, were also commonly used, reflecting

their significant impact on the likelihood of developing T2DM.

These predictors were integral to many studies, including those

leveraging datasets from the UCI Machine Learning Repository

and the Pima Indians Diabetes Dataset.

In contrast, less emphasis was placed on lifestyle predictors

such as physical activity, diet, smoking status, alcohol

consumption, and exercise habits. Although these factors are

recognized as influential in diabetes development, they were not

as prominently featured in the predictive models of this period.

Only a few studies, such as (67) integrated these lifestyle factors

into their analysis. Additionally, genetic predictors like Single

Nucleotide Polymorphisms (SNPs) were used in only one study

(68), likely due to the limited availability of comprehensive

genetic data during this timeframe. The focus on traditional

clinical and demographic predictors reflects the research

priorities and data availability of the era, while the relative

underuse of lifestyle and genetic factors indicates areas for future

exploration and integration in predictive modelling.

Emerging trends: This era saw innovative trends in T2DM

prediction, including hybrid models, semi-supervised learning,

and rule-based systems to enhance interoperability.

Hybrid models combine multiple algorithms to leverage the

strengths of each and improve predictive performance. This

approach helps in addressing the limitations of individual

algorithms and enhances the robustness of the predictive models.

For instance, the authors in (69) used the Simple KNN

Algorithm for initial data validation and the C4.5 Algorithm for

building the final classifier contributed to the robustness and

high performance of the HPM, making it a reliable tool for

predicting the incidence of T2DM in newly diagnosed patients.

The study (70) applied SVM with rule extraction techniques to

improve model interoperability and validate the model using a

real-life dataset to ensure high prediction accuracy, sensitivity,

and specificity. The paper (56) developed a hybrid neural

network system that combines ANNs and FNN for the

classification and prediction of T2DM. The primary objective is

to increase the classification accuracy of medical data by

integrating both fuzzy and crisp data and to evaluate the

performance of this proposed hybrid system. The study (71)

focuses on enhancing prediction accuracy by integrating fuzzy

logic and NN techniques to model the complex relationships in

diabetes data. The objectives are to demonstrate the effectiveness

of this hybrid approach and to compare its performance with

traditional ML methods.
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Semi-supervised learning methods incorporate both labelled

and unlabeled data into the model training process. This

approach is particularly useful when labelled data is scarce or

expensive to obtain, as it allows the model to learn from a larger

dataset that includes unlabeled data. The author in (57) employs

a semi-supervised learning method known as Laplacian SVM

(LapSVM), that integrates labelled data with a significant amount

of unlabeled data, leveraging the latter to improve the learning

process. The model achieved higher accuracy and better

generalization by utilizing the additional information from

unlabeled data. Another study (57), applied General Regression

Neural Networks (GRNN) for diabetes prediction and also

incorporated semi-supervised learning algorithms. The use of

GRNN, combined with semi-supervised learning, allowed the

model to leverage the additional information provided by the

unlabeled data, resulting in enhanced performance.
5.4 Literature analysis for time period
(2011–2020)

Based on our developed systematic four-point scale, we selected

and reviewed 55 highly influential articles published to predict

T2DM using various ML models. In comparison to the 2001–

2010 time period, the period from 2011 to 2020 has been

transformative for T2DM prediction. The adoption of advanced

ML algorithms, the expansion of feature sets, and the emphasis

on real-world applicability represent the key emerging trends.

ML algorithms utilized: The most commonly utilized ML

algorithms across these studies are LR, RF, SVM, Naïve Bayes

(NB), kNN, GBM, Classification and Regression Trees (CART),

and Gaussian Naïve Bayes. LR has been widely used across

multiple studies due to its simplicity, effectiveness, and

performance in binary classification problems (72–76). In

comparative studies, RF has often outperformed other algorithms

such as LR, KNN, and Gaussian Naïve Bayes (42, 73, 75, 76). It

has been successfully applied across various datasets, including

electronic medical records (EMR) and large-scale cohort studies

(73, 76). SVM has been utilized in studies dealing with high-

dimensional data spaces (77–80). While SVMs have shown

competitive results, ensemble methods such as RF and GBM

have often surpassed SVM in predictive accuracy (75, 76, 78, 79,

81, 82). Naïve Bayes is frequently utilized due to its simplicity

and efficiency in handling large datasets [e.g., (75)]. KNN has

been employed in studies emphasizing interpretability and

simplicity (77, 80). However, KNN typically yields lower

performance compared to more complex algorithms. GBM has

gained popularity due to its high accuracy. Studies have utilized

GBM and achieved high AUCs, with boosting techniques

significantly improving model accuracy (76, 79). Classification

and Regression Trees were often used in conjunction with other

algorithms or as part of ensemble methods like RF (73, 76).

While providing solid baseline performance, CART’s results were

generally enhanced when used within ensemble methods.

Gaussian Naïve Bayes has been employed in scenarios requiring

probabilistic interpretation of predictions (73).
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1557467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Kiran et al. 10.3389/fdgth.2025.1557467
Datasets utilized: Similar to 2001–2010 era, among the most

commonly used datasets is the Pima Indians Diabetes Dataset

(75, 83–87). Additionally, the Henan Rural Cohort Study is used

[e.g., (76)], providing valuable data from a large population

sample in rural China. Furthermore, many studies leverage

routinely collected EHR data from multiple health centres,

offering rich, real-world insights into patient health metrics and

outcomes (77, 80, 88).

Predominant predictors used for training ML models:

Numerous studies in this era have focused on identifying

demographic information such as age and gender, alongside

medical conditions like hypertension and dyslipidemia, and

lifestyle factors including physical activity and diet.

Anthropometric measures like BMI and waist circumference, along

with blood parameters such as glycated haemoglobin (A1c),

fasting plasma glucose, triglycerides, and cholesterol levels, are

commonly used to assess T2DM risk. Studies [e.g., (73, 89–91)]

highlight that older age, high BMI, increased waist circumference,

and a family history of diabetes are strong T2DM indicators.

Incorporating HbA1c into predictive models has demonstrated

high accuracy in identifying at-risk individuals (74, 92, 93).

Additionally, lipid profiles, particularly elevated triglycerides and

low HDL cholesterol levels, are significant predictors commonly

associated with insulin resistance, a precursor to T2DM (90, 94).

Despite substantial advancements in research, there remain

notable deficiencies, particularly in the integration of detailed

dietary habits and nutritional patterns. Incorporating these variables

could yield valuable insights into their impact on diabetes risk.

Additionally, investigating genetic predispositions and their

interactions with lifestyle and environmental factors could enhance

the comprehensiveness of risk assessments. Furthermore, examining

psychosocial factors, such as stress and mental health, could provide

a more holistic understanding of diabetes development and

management. Addressing these underrepresented areas in future

studies will refine predictive models and contribute to a more

thorough understanding of diabetes risk factors, ultimately

improving prevention and management strategies.

Emerging trends: This period witnessed a notable transition in

diabetes prediction research. Especially 2011–2016 was marked by

a shift towards the utilization of ML tools and the exploration of

diverse predictive variables. We observed three different research

groups during this time period. The first group includes studies

that utilize traditional clinical diabetes risk prediction techniques,

which focus on large cohorts, but employ limited feature sets,

such as (73, 95). The second group focuses on comparing ML

models by utilizing classical diabetes risk factors as features, as

demonstrated in (96, 97). The third group of related work

considers a broader set of features that can be utilized to predict

various diseases, such as (74). Additionally, during this time

period, there was a trend of comparing different ML algorithms

[e.g., (98, 99)] and identifying risk scores for variables associated

with diabetes prediction [e.g., (5, 90)]. However, very few studies

belonged to group 3. Furthermore, most studies were not

generalizable to other populations, and handling missing values

in large datasets was not frequently addressed. It is worth noting

that the use of EMR for diabetes prediction dates back to 2012 (73).
Frontiers in Digital Health 14
From 2017 to 2020, researchers increasingly turned to more

sophisticated algorithms and larger datasets to enhance the

accuracy of diabetes prediction. For example, in (81), hidden

patterns were extracted from data to anticipate outcomes for

diabetes classification. In (100) and (101), fuzzy rules were

generated using different methods for diabetes prediction.

Additionally, researchers [e.g., (76, 101)] are working to identify

novel optimal features such as urine and sweet taste that can aid

in diabetes prediction, beyond basic features like age, gender, and

BMI. We also observed a growing trend in utilizing socio-

demographic and clinical/laboratory attributes (39, 76) and

addressing issues such as missing data in predictive modelling, as

evidenced in studies such as (102) and (103). While many

authors have reported accuracy rates exceeding 85%, the majority

of these studies have not been validated on populations with

different race/ethnicity, and most of them have only used a

limited number of features. Therefore, it is uncertain whether

these models can be generalized to a larger population and how

they will perform when more features are incorporated.

A critical trend observed is the diversity in the datasets utilized

for developing these predictive models. The scope expanded to

include a broader range of features, including biochemical

markers, lifestyle factors, and even genetic data. This

comprehensive approach has allowed for more accurate and

personalized risk assessments. For instance, some studies

incorporated electronic medical records and claims data, which

provided a richer context and improved the models’ ability to

predict diabetes onset at a population level.

The emphasis on feature engineering and the extraction of

detailed features has been another notable trend. Researchers have

extensively identified and validated a variety of predictive features.

This granular approach has significantly enhanced the predictive

power of the models. Moreover, the use of ensemble methods and

hybrid models has become prevalent, combining multiple

algorithms to leverage their strengths and mitigate individual

weaknesses. The decade also saw a growing interest in real-world

applications of these predictive models. Several studies (73, 104,

105) aimed to develop tools that could be integrated into clinical

practice, enabling healthcare providers to identify high-risk

individuals early and tailor preventive strategies accordingly.

In summary, these developments promise to enhance the

accuracy and utility of predictive models, ultimately improving

outcomes for individuals at risk of T2DM. Moreover, ensemble

methods like RF and GBM were commonly the top performers

across various studies, highlighting their robustness and high

accuracy. LR continues to be a reliable benchmark model due to

its simplicity and interpretability. Many studies emphasized the

importance of feature selection and engineering, significantly

impacting the performance of the models.
5.5 Literature analysis for time period
(2021–2024)

Based on our developed systematic four-point scale strategy, we

reviewed 65 highly influential papers published during this era.
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TABLE 5 Shows the demographic predictors used by the authors.

Demographic data & lifestyle

Predictors References
Age (123, 137, 148)y (149–151)y (146, 152)y (153–155)y (147)y (122,

156)y (157)y (158)y (159)y (160)y (161)y (162)y (163)y (164, 165)y

(166, 167)y (168)y (169)y (170, 171)y (172)y (173)y (126)y (174)y

(175)y (140)y (176)y (177)y (178, 179)y (180–184)y (185)y (186)y

(187)y (188)y (189)y (190–192)y (117)y (193)y (125, 194)y (195)y

(196)y (197)y

Gender (148–152, 188)y (146)y (155, 156)y (122)y (164, 165)y (140, 170)y

(173)y (126)y (174, 175, 177–179)y (190)y (117, 125, 137, 180–182,
184, 186, 187, 189, 192–194)

Education (146)y (187)y (140)y (192)

Marital status (140, 146)y

Smoking (123, 140, 148, 189)y (198)y (117, 192, 193)y

Alcohol (123, 140, 148, 189, 198)y (117, 192, 193)y

Exercise (123, 148)y (140, 188, 189)y (198)y (117, 192)

yHighlights the factor that the authors believe to have the most notable influence.

TABLE 6 Shows the hereditary & psychological related predictors used by
the authors.

Hereditary & psychological

Predictors References
Pedigree
function

(151, 154, 155)y (157, 158, 160)y (161, 162)y (163)y (166, 167)y

(168, 169)y (171)y (172)y (174, 176) (181)y (159, 183)y (193)y

(191, 195)y (196)y (197)

Family history (123)y (148)y (151)y (122)y (161, 164, 188)y (173)y (126)y (175)y

(177, 184, 186, 189)y (117)y (193)y (125)

Ethnicity (151)y (117, 125, 140)

yHighlights the factor that the authors believe to have the most notable influence.
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Researchers have increasingly combined advanced technologies

such as medical devices, wearable and sensor technologies with

ML, deep learning, and AI approaches to forecast T2DM

(106–109). Additionally, similar to the 2011-2020 era, there is

continued emphasis on identifying novel and effective non-

invasive features that can assist in predicting T2DM (109–114).

ML Algorithms utilized: Analysis from 2021–2024 reveals that

RF, SVM, XGBoost, and KNN remain popular (115–125). In

contrast to 2001–2020, researchers focused on deep learning

models, particularly NN (e.g., (126, 127), Convolutional Neural

Networks (CNNs) [e.g., (128, 129)], and Long Short-Term

Memory (LSTM) networks [e.g., (129, 130)], have become more

prevalent due to their superior performance in handling large

and complex datasets. Federated learning has emerged as a

promising approach for collaborative research, allowing

models to be trained on decentralized data sources without

compromising patient privacy (131, 132). This technique

facilitates large-scale, multi-centre studies and enhances the

robustness of predictive models. Moreover, there is an increasing

emphasis on the interpretability and explainability of ML models.

Techniques such as SHAP (SHapley Additive exPlanations) (133)

and LIME (Local Interpretable Model-agnostic Explanations)

(134) are being used to help clinicians understand and trust the

predictions made by these complex models (135, 136). The use

of hybrid models and transfer learning is also on the rise.

Dataset utilized: Pima Indian Diabetes Dataset and EHR are

still often cited due to their comprehensive features relevant to

diabetes prediction (122, 126, 137). Additionally, EHR are widely

used, providing real-world data essential for developing and

validating predictive models (122, 126, 137). Other significant

datasets include UK Biobank (117, 138, 139) extensive health-

related data that supports robust predictive analysis. Although

minimal studies found to be using NHANES and Korean

National Health and Nutrition Examination Survey (KNHANES)

dataset (126, 140, 141). A notable pattern in the use of these

datasets is their application in cohort studies, highlighting their

value in longitudinal research that tracks health outcomes over

time (142–144). Additionally, many studies leverage real-world

data and databases, indicating a trend towards using diverse and

large-scale data sources to enhance the accuracy and

generalizability of predictive models (138, 145).

Predominant predictors used for training ML models: From

2021 to 2024, numerous studies investigated various predictors

encompassing domains such as demographic, medical condition,

hereditary, anthropometric, and laboratory data. To provide

clarity, we categorised these predictors into five groups:

demographic, medical condition, lifestyle, hereditary &

psychological, anthropometric, and laboratory data. Some studies

[e.g., (146, 147)] integrated demographic, lifestyle, and clinical

data to predict diabetes. Tables 5–9 provide a comprehensive

summary of predictors used in T2DM prediction studies,

emphasizing their frequency and significance. Predictors marked

withy are identified as the most influential by the authors.

Figure 6 visualizes the distribution of these key predictors

through a pie chart, where each slice represents a significant

factor, proportional to its frequency across studies. Each slice’s
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size reflects how often different studies have identified it as a key

determinant of T2DM risk. While the tables present a broad

overview of all explored predictors, the pie chart highlights only

those deemed most impactful (y).
1. Demographic data & lifestyle: In predicting T2DM,

demographic and lifestyle predictors play a crucial role.

Table 5 shows the different features used by various studies.

Figure 6a highlights that age and gender are the most

influential predictors in the demographic domain,

emphasizing their critical role in the development and

progression of T2DM. Ageing correlates with the natural

decline in insulin sensitivity and beta-cell function, which are

critical determinants of T2DM development. Several studies,

including (137, 168, 194), emphasize age as a primary

determinant. Similarly, gender disparities in T2DM

prevalence and progression, influenced by hormonal changes

and lifestyle differences, are evident in studies such as

(148, 151). Lifestyle factors, including smoking, alcohol

consumption, and physical activity, are modifiable predictors

with a direct influence on metabolic health. Regular physical

activity is shown to significantly lower T2DM risk, while

sedentary lifestyles and high alcohol intake exacerbate insulin

resistance and hyperglycemia (117, 199). Smoking introduces

oxidative stress and inflammation, further increasing diabetes
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TABLE 7 Shows the medical realted predictors used by the authors.

Medical condition

Predictors References
Pregnancies (151, 154, 155)y (157)y (158, 160)y (161, 188)y (162, 163, 167)y

(166)y (168)y (169)y (171, 172)y (159, 174, 176, 181, 183, 191)y

(195)y (196, 197)y

Blood pressure (137, 151)y (146, 147)y (122)y (161, 163)y (166)y (169, 170)y

(174)y (176–178)y (181, 183, 184, 185, 187)y (140, 159, 189)y

(198)y (193)y (125)y (194)y (191, 195–197)

3 Poly’s Polyuria (161, 173)y (150)y (152)y (148)y (156)y (165)y (170,
179)y (180)y (193)

Polydypsia (150)y (152)y (156)y (165)y (170, 179)y (180)y

Polyphagia (150, 152, 156)y (165)y (170, 179, 180)y

Weakness (150, 152, 156)y (165)y (170, 179, 180)y

Muscle stiffness (150, 152, 156)y (165)y (170, 179, 180)

Delayed
healing

(150, 152, 156)y (165)y (148)y (170, 179, 180)

Itching (150, 152, 156)y (165)y (148, 170, 179, 180)

Irritability (150, 152, 156)y (165)y (170, 179, 180)

Fatigue (173)y (148, 193)y (193)y

Visual blurring (150–152, 156)y (165)y (148, 170, 179, 180)

Weight loss (150, 152, 156)y (122)y (165)y (170, 179)y (180)y (185)

Alopecia (150, 152, 156)y (165)y (170, 179, 180)

Genital thrush (150, 152, 156)y (165)y (170, 179, 180)

Partial parisis (150, 152, 156)y (165)y (170, 179)y (180)y

Disease Diabetes (150, 152, 156)y (165, 170)y (179, 180)

Cardiovascular (151)y (137, 153, 189),

Liver (177)

Kidney (177)

Frequent infection (148)

Psychlogical disorder (137, 148, 161)y (194)

Breath Breath-rate (147)

Hunger (148)y

Apnea (137, 161)

Medicine (137, 161, 175)

Sleep pattern (198)

yHighlights the factor that the authors believe to have the most notable influence.

TABLE 8 Shows the laboratory & clinical related predictors used by
the authors.

Laboratory/clinical

Predictors References
Blood glucose (151, 155)y (154)y (157)y (158)y (160)y (161)y (162)y (163, 167)y

(166)y (168)y (169)y (171)y (170)y (172)y (174)y (175)y (176)y

(117)y (177)y (181)y (183)y (188)y (159)y (190)y (193)y (196)y

(191)y (195)y (197)y

Urine glucose (137)y (147)y

FPG (137)y (148)y (123)y (149)y (153)y (146)y (147, 155)y (126)y (175)y

(177, 178, 181, 184)y (185)y (189)y (198)y (194)y

TG (123, 137)y (149)y (117)y (153) (146) (126, 147, 164)y (174, 175)y

(148, 177, 178, 184, 185)y (186, 187)y (189, 198) (192)y (194)y

DL-C HDL-C (137, 149)y (148)y (123)y (153)y (146, 147, 170)y (174,
177, 190, 198)y (178)y (185, 186)y (192, 198)y (117)y (194)y

Non-HDL-C (187)y (189)y ,

LDL-C (137, 149)y (153)y (146–148, 174, 177, 178, 184)y (189)y

(117)y (123, 185, 186, 198)y (192)y (194)y

VLDL (148)y

ALT (146, 164, 177, 178, 184, 187)y (137, 192)

AST (187) (146, 164, 177, 187)y (192)y

ALP (192)y

Scr (146, 147, 155, 174, 177, 178)y (181, 184, 186)y (148, 192)y

BUN (146, 147, 149, 174, 184, 192)

SUA (126, 146, 151)y (185)

TBIL (146)

HbA1c (188)y (123)y (137, 149)y (155, 164)y (126, 174, 177, 181, 185)y

(148)y (117)y (186, 187)y (198)y (185)y

Insulin (123)y (151, 154, 155, 157)y (158, 160–163)y (166, 167)y (168)y

(169)y (171, 172)y (174)y (176)y (181, 183)y (188)y (159)y (189)y

(191, 193, 195, 196)y (197)

cGTol (164)y

Genetic data (164)y (126)y (202)

Cholestrol (151)y (146, 147, 153, 164, 170)y (140, 174, 177, 184, 186, 187)y

(140)y (192, 198)y (194)y

Serum Sodium (125, 155, 181)y

Potassium (125, 155, 181)

Urate (117)y

TSH (185, 187)y

hsCRP (137, 164)

Cortisone (153)

eGFR (137)

GGT (117)y

yHighlights the factor that the authors believe to have the most notable influence. TG,
triglycerides; ALT, alanine aminotransferase test; AST, aspartate aminotransferase test;

ALP, alkaline phosphatase; BUN, blood urea nitrogen; TBIL, total bilirubin; cGToL,

current glucose tolerance status; TSH, thyroid stimulating hormone; eGFR, estimated

glomerular filtration rate; Hs-CRP, high-sensitivity C-reactive protein; GGT, Gamma-
Glutamyl transferase; TSH, thyroid stimulating hormone.
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risk. These insights are pivotal for designing public health

interventions targeting lifestyle modifications.

2. Hereditary & psychological: Hereditary factors, including the

pedigree function and family history of diabetes, are robust

indicators of genetic predisposition, as shown in Table 6,

Figure 6b. These predictors capture the familial aggregation of

T2DM and are widely cited in studies such as (163, 166).

Psychological factors, including stress and psychiatric disorders,

are emerging as significant contributors to T2DM risk. Patients

with mental illnesses exhibit higher prevalence rates of T2D due

to lifestyle disruptions, medication side effects, and stress-

induced physiological changes (137). Machine learning models

incorporating these predictors provide enhanced accuracy in risk

stratification by capturing the intricate interplay between mental

health and metabolic function.

3. Medical condition: Medical conditions offer critical insights

into the biological and physiological precursors of T2DM, as

summarized in Table 7. Figure 6c highlights pregnancies and

blood pressure as key predictors in this domain. Pregnancies,

particularly those complicated by gestational diabetes,

significantly increase the risk of future T2DM, as
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demonstrated in studies like (122) and (167). Blood pressure,

another core component of metabolic syndrome, is strongly

associated with insulin resistance and T2DM. This

relationship is highlighted in studies by (148, 170). Classic

symptoms of diabetes, commonly referred to as the “3

Polys”—polyuria, polydipsia, and polyphagia—are commonly

acknowledged as cardinal signs of diabetes. Studies such as

(150, 180) emphasise their diagnostic importance. These

symptoms, combined with other medical conditions, enhance

the sensitivity and specificity of ML models in

diagnosing T2DM.
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TABLE 9 Shows the anthropometric measurements related predictors
used by the authors.

Anthropometric measurements

Predictors References
BMI (137, 149)y (153–155)y (147)y (157)y (148)y (123)y (158)y (171)y

(160)y (161)y (162)y (163)y (164, 167)y (166)y (168, 169)y (170,
172)y (126)y (174, 175)y (176)y (178, 181, 183)y (184)y (185)y

(117)y (186, 187)y (188)y (159)y (140)y (190, 198)y (192)y (193)y

(125)y (194)y (201)y (195)y (196)y (197)y

Body Roundness Index (201)

Body Adiposity Index (201)y

Body Shape Index (201)

Weight (123, 137, 148, 170, 173)y (185)y (153)y (189)y (192, 201)

Height (123, 153, 170, 173)y (137, 185, 201)

Body size Waist (146)y (122)y (148, 164)y (189)y (170)y (185, 187)y (198)y

(117)y (193)y (201)y

Hip (170, 187)

Waist-hip ratio (147)y (170)y (117)y (175)y (187)y (192, 193)y

(201)

Waist-to-Height ratio (201)

Sagittal abdominal diameter (122)y

Demispan (201)y

Mid-arm circumference (201)

SkinThickness (151, 154, 155, 157, 158, 160–163, 188)y (123, 166, 167)y (168)y

(169, 171, 172)y (174, 176, 181, 183, 186)y (159, 191, 193, 195,
196)y (197)y

Obesity (150, 151)y (152, 156)y (165, 170, 177)y (179, 180, 189)

yHighlights the factor that the authors believe to have the most notable influence.
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4. Laboratory/clinical: Laboratory and clinical markers offer

precise, quantifiable data for T2DM prediction. It can be

observed from Table 8, Figure 6d that blood glucose levels,

insuline and HbA1c are foundational metrics for diagnosing

and monitoring T2DM. Studies such as (168, 194)

consistently identify these as the most significant laboratory

predictors. Lipid profiles, including TG and HDL-C, provide

insights into metabolic health (117, 200). High TG levels and

low HDL-C are associated with insulin resistance, as

demonstrated by (137, 198). Additionally, renal function

markers such as Scr and BUN are critical for assessing

diabetes-associated kidney complications, as highlighted in

(177). Liver function tests, including ALT, AST, and GGT,

are increasingly recognised for their role in T2DM risk

prediction. Elevated levels of these enzymes often correlate

with non-alcoholic fatty liver disease (NAFLD), a

condition closely linked to insulin resistance, as reported by

(177, 185, 192).

5. Anthropometric measurements: Anthropometric

measurements are non-invasive, cost-effective predictors of

T2DM. Table 9 shows different anthropometric features used

by various studies. Anthropometric measurements are critical

in evaluating obesity and its role in T2D pathogenesis. It can

be observed from Figure 6e that among different features,

indicators like BMI, waist circumference, and waist-to-hip ratio

are widely regarded as reliable predictors (117, 148, 187, 201).

Advanced indices such as body adiposity index and body

shape index offer refined assessments of body composition and

its metabolic implications (201). These predictors are
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particularly valuable in population-based screening programs,

enabling early identification of at-risk individuals. These

findings confirm that diabetes is a multifaceted disease

influenced by various factors, necessitating a comprehensive

and interdisciplinary approach for its understanding

and management.

Emerging trends: Researchers are increasingly leveraging ML

and AI tools to enhance the accuracy and robustness of

predictive models for T2DM. The integration of omics data,

including genomics, proteomics, metabolomics, and

transcriptomics, is another significant trend (203). By

incorporating these comprehensive molecular datasets,

researchers aim to uncover the underlying biological mechanisms

of T2DM. The use of omics data facilitates the identification of

novel biomarkers and enhances the predictive power of models,

offering deeper insights into the disease’s aetiology and

progression. The use of real-time data from wearable

technologies (204, 205) is an emerging trend in diabetes research.

Devices such as activity trackers and continuous glucose

monitors provide real-time insights into patients’ physical

activity, dietary habits, and blood glucose levels. These data are

invaluable for developing dynamic prediction models that can

adapt to changing health behaviors and conditions, enabling

timely interventions. There is a noticeable trend towards

integrating data from multiple sources to enhance the robustness

of predictive models. For example, combining genetic data from

the UK Biobank with lifestyle information from NHANES or

EHRs provides a more comprehensive risk assessment (117, 141,

206). The application of ML and AI techniques to these datasets

is increasing, with researchers leveraging these advanced

analytical tools to develop more accurate and personalized

prediction models.

In conclusion, the frequent use of comprehensive datasets such

as the UK Biobank, EHRs, and national health surveys underscores

their critical role in advancing T2DM prediction research. The

integration of multiple data sources, the application of ML, and

the focus on personalized and preventive medicine are key trends

shaping the future of this field. These efforts aim to improve the

accuracy of predictions and the effectiveness of interventions,

ultimately contributing to better health outcomes for individuals

at risk of T2DM.
6 Future directions

Building on the insights from this comprehensive analysis,

several future directions are proposed to further advance the field

of T2DM prediction research:

1. Digital Twins (DT) and Real-Time monitoring for

personalized diabetes care: The integration of DTs and real-

time monitoring offers a transformative approach to T2DM

prediction and management. DTs create virtual replicas of

patients using real-time data from wearable devices, CGMs,

and EHRs to simulate personalized treatment strategies,
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FIGURE 6

Key predictors of T2DM categorized into demographic, hereditary, medical, laboratory, and anthropometric domains, highlighting their relative
significance. (a) Demographic variables. (b) Hereditary & psychological predictors. (c) Medical conditions. (d) Laboratory & Clinical predictors. (e)
Anthropometric measurements.
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predict complications, and optimize disease management

(208, 209). Meanwhile, advancements in wearable

technology (e.g., smartwatches, biosensors, insulin pumps)

enable continuous health monitoring, allowing AI models to

detect glucose fluctuations, automate insulin adjustments,

and provide lifestyle recommendations (209–211). Future

research should focus on enhancing DT models with multi-

omics data for greater predictive accuracy (212), ensuring

interoperability between real-time monitoring systems and

healthcare platforms, and developing ML algorithms capable

of processing high-frequency health data while maintaining

stability and accuracy (213, 214). Additionally, large-

scale clinical trials are necessary to validate the effectiveness

of these technologies in real-world diabetes

management (131, 215, 216).

2. Strengthening interdisciplinary collaboration: Collaboration

between data scientists, healthcare professionals, and

policymakers is essential to develop technically robust and

clinically relevant models for T2DM prediction and

management. Effective interdisciplinary partnerships can

bridge the gap between ML advancements and real-world

clinical application, ensuring that models are not only

accurate but also interpretable and actionable for healthcare

providers (217, 218). Large-scale, multi-center studies are

needed to diversify datasets, enhance model generalizability,

and improve applicability across different demographic and

geographic populations. Additionally, policymakers must

prioritize the development and enforcement of standardized

regulations, ethical guidelines, and governance frameworks to

address the challenges posed by AI in healthcare (219).

3. Development of explainable AI models: Our analysis shows

that traditional ML models such as SVM, RF, and deep

neural networks are widely used for T2DM prediction, but

their black-box nature limits transparency and interpretability

in clinical settings. Explainable AI (XAI) addresses this issue

by offering techniques to interpret model predictions, identify

key decision factors, and assess reliability, thereby enhancing

trust among healthcare professionals (220, 221). Future

research should focus on developing clinically interpretable

AI models using techniques like SHAP (Shapley Additive

Explanations), LIME (Local Interpretable Model-Agnostic

Explanations), and attention mechanisms to provide

meaningful insights into model behavior (133, 134). By

integrating transparency and interpretability into AI models,

XAI can enhance clinical decision-making and facilitate the

wider acceptance of AI-driven T2DM management strategies.

4. Integration of multi-omics data: The incorporation of multi-

omics data, including genomics, proteomics, metabolomics,

and microbiomics, provides deeper insights into the

biological mechanisms underlying T2DM (203, 222). By

integrating these diverse datasets, predictive models can

uncover novel biomarkers, disease pathways, and therapeutic

targets, leading to improved risk stratification and precision

medicine approaches (223). Multi-omics data facilitate the

identification of gene-environment interactions, which play a

crucial role in diabetes onset and progression. For instance,
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integrating various omics data has elucidated mechanisms

through which T2DM-associated genetic variations impact

disease risk (224). Future research should focus on

developing advanced machine learning frameworks capable of

efficiently integrating multi-omics data to enhance predictive

accuracy while maintaining interpretability and scalability.

Recent studies have highlighted the potential of DL based

approaches for multi-omics data integration in cancer,

suggesting similar methodologies could be beneficial in

diabetes research (225).

5. Cross-population validation in predictive modeling:

Generalizability is a major challenge in T2DM predictive

modeling, as most models are developed using data from

specific ethnic, genetic, and geographic cohorts, restricting their

broader applicability. To ensure fairness, equity, and clinical

relevance, models must be validated across diverse populations.

Variations in genetics, environmental exposures, socioeconomic

factors, and healthcare access play a crucial role in diabetes risk,

highlighting the necessity of rigorous external validation across

heterogeneous datasets. Without it, predictive models may

perpetuate healthcare disparities and limit their real-world

effectiveness. A study developed questionnaire-based prediction

models for T2DM prevalence and incidence, training them on a

white population and validating them across multiple ethnicities,

demonstrating the importance of such cross-population

validation (226). Future research should prioritize multi-center

studies that incorporate genetically and environmentally diverse

populations to improve model robustness and fairness (227,

228). Additionally, the integration of transfer learning and

domain adaptation techniques could help models learn

generalizable patterns and improve performance across

heterogeneous datasets (229, 230). Ensuring rigorous external

validation is crucial for equitable AI-driven diabetes care and

broader clinical adoption.

6. Policymaker guidelines and support: To facilitate the

integration of ML models into public health initiatives,

policymakers must play a central role in resource allocation,

regulatory oversight, and ethical governance (217, 219).

Supporting pilot programs that test and refine AI-driven

diabetes prediction models in real-world clinical and

community settings will be crucial to ensuring their clinical

utility and scalability (231). Policymakers should establish

standardized guidelines for AI adoption in healthcare,

focusing on data privacy, security, fairness, and algorithmic

bias mitigation to promote safe and equitable AI applications

(232, 233). Additionally, investment in publicly accessible

datasets and federated learning frameworks can enhance data

diversity and model generalizability while preserving patient

confidentiality (234). Regulatory frameworks must ensure that

AI-driven diabetes prediction models adhere to global health

standards (e.g., GDPR, HIPAA, FDA/EMA guidelines) and

are transparent, explainable, and ethically deployed (22).

Encouraging interdisciplinary collaboration among data

scientists, clinicians, regulatory bodies, and patient advocacy

groups will be key to developing trustworthy AI-driven

healthcare solutions that benefit all populations.
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1557467
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Kiran et al. 10.3389/fdgth.2025.1557467
7. Addressing patient privacy and security concerns in data

sharing: Patient data stored on cloud services is vulnerable to

breaches, causing privacy concerns that limit data sharing

and hinder research (235, 236). Privacy-preserving solutions,

such as blockchain and federated learning, should be

implemented to protect patient data and encourage

widespread adoption (234, 237, 238). Future research should

focus on frameworks integrating these technologies to

alleviate privacy concerns, encourage data sharing, and

improve the diversity and robustness of datasets, enhancing

diabetes prediction and management.

8. Exploring the role of generative AI: Generative AI, including

Large Language Models (LLMs) and Generative Adversarial

Networks (GANs), has emerged as a transformative

technology with significant potential in healthcare. In T2DM

research, generative AI can be leveraged to synthesize realistic

patient data, augmenting limited datasets and improving

model generalizability. For instance, GANs can generate

synthetic EHRs that preserve patient privacy while enhancing

the diversity and size of training datasets (239). LLMs like

GPT-4 can assist in clinical decision-making by providing

personalized recommendations based on patient history and

real-time data (240). Future research should explore the

integration of generative AI with predictive models to

improve their robustness, scalability, and applicability across

diverse populations. Additionally, multi-modal AI

approaches, integrating text, images, and structured health

records, could enhance prediction accuracy and provide a

more holistic understanding of diabetes progression (241).

However, ethical considerations, such as ensuring data

authenticity and mitigating bias in generated data, must be

addressed to fully realize the potential of generative AI in

T2DM management (242, 243).

9. Enhancing pointwise reliability: Beyond overall model

accuracy, an equally crucial aspect is pointwise reliability,

which refers to assessing the trustworthiness of each

individual prediction before it is used in clinical decision-

making. Ensuring pointwise reliability is essential for

integrating ML models into real-world healthcare settings,

where incorrect predictions can have significant consequences

(232, 244). To enhance pointwise reliability, uncertainty

quantification techniques should be employed. Bayesian

neural networks, for example, estimate uncertainty by treating

model parameters as probability distributions rather than

fixed values (245), while conformal prediction provides

mathematically rigorous confidence intervals for individual

predictions (246). Additionally, ML models often produce

probability estimates that may not align with real-world

likelihoods. Therefore, calibration techniques, such as Platt

scaling (247), isotonic regression (248), and temperature

scaling (249), should be explored to adjust model outputs

and improve their interpretability. Another approach to

enhancing reliability is the computation of trust scores, which

measure how similar a given patient’s data is to the training

distribution, helping clinicians gauge confidence in each

prediction (250). Future research should focus on enhancing
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AI-driven healthcare solutions by integrating out-of-

distribution (OOD) detection with a human-in-the-loop

approach and developing clinical decision support systems

(CDSS) that incorporate confidence scores and reliability

indicators. This will enable the identification of novel or

unexpected data, ensure expert intervention for uncertain

predictions, and provide clinically actionable insights with

measurable confidence.

7 Conclusion

This study provides a comprehensive bibliometric and

literature analysis of ML and AI applications in T2DM

prediction over a 33-year period (1991–2024). By analyzing

publication trends, thematic clusters, research methodologies, and

emerging technologies, we highlight the transformative impact of

AI-driven predictive modeling in diabetes research. Our findings

indicate a significant shift in research focus, from traditional

statistical models in the 1990s to sophisticated ensemble learning

and deep learning techniques in recent years. The exponential

growth in publications, particularly post-2010, underscores the

increasing interest and technological advancements in this

domain. However, despite these advancements, several challenges

persist. The reliance on a limited number of datasets, lack of

model generalizability across diverse populations, and insufficient

integration of psychosocial and lifestyle factors hinder the full

potential of AI in clinical applications. Moreover, while ML

models have shown promising accuracy in T2DM prediction,

their adoption in real-world clinical settings remains limited. The

increasing use of explainability tools, such as SHAP and LIME,

represents a step forward in bridging the gap between AI-driven

predictions and clinical decision-making. However, ensuring

model interpretability, ethical considerations, and patient-centric

outcomes will be crucial for widespread adoption. Future

research should prioritize interdisciplinary collaborations,

integrating insights from epidemiology, genetics, lifestyle sciences,

and computational intelligence. Additionally, efforts should be

directed towards developing clinically actionable AI models that

enhance early detection, personalized interventions, and

ultimately, improved patient outcomes. Addressing these gaps

will pave the way for a more effective and equitable application

of AI in diabetes prevention and management. By systematically

mapping the evolution of ML in T2DM prediction, this study

serves as a foundational resource for researchers, clinicians, and

policymakers. As AI continues to advance, a collaborative, data-

driven, and patient-centered approach will be essential in

mitigating the global burden of diabetes and improving

healthcare outcomes.
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Appendix

Refinement with TF-IDF algorithm

After establishing a foundational set of keywords, further

refinement was achieved by applying the TF-IDF algorithm to

the preliminary keyword screening dataset. TF-IDF assigns

weights to terms based on how frequently they appear in a

document and how rare they are across the entire corpus. It is

calculated by dividing the number of times a term (t) appears in

a document by the total number of terms in the document (d).

Mathematically, TF(t, d) and IDF(t, D) is calculated as follows:

TF(t, d) ¼ No. of times term t appears in doc d
Total no. of terms t in doc d

(A1)

As shown in Equation (A1) Term Frequency (TF) measures the

occurrence of a term within a document, whereas Inverse

Document Frequency (IDF) adjusts for how common or rare the

term is across the entire dataset [Equation (A2)].

IDF(t, D) ¼ log
Total no. of docs in corpus N

No. of doc containing term t þ 1

� �
(A2)
TABLE A1 Top TF-IDF score keyword.

Word TF IDF TF-IDF
Risk factor 385.00 2.71 1.00 Ne

Diabetes prediction 641.00 1.91 1.00 Di

Data mining 438.00 2.66 0.99 Di

Risk prediction 210.00 3.19 0.97 Pr

Risk score 100.00 4.37 0.97 Gr

Diabetes mellitus 1421.00 1.56 0.95 dia

Type 2 diabetes 1315.00 1.75 0.93 Ar

Machine learning 2301.00 1.36 0.93 De

Logistic regression 457.00 2.35 0.90 Le

Prediction model 276.00 3.06 0.87 Di

Deep learning 503.00 2.33 0.86 Ty

Risk assessment 357.00 3.07 0.84 Ne

Decision tree 122.00 3.52 0.83 Pr

Random forest 483.00 2.30 0.83 Le

Learning algorithm 481.00 2.26 0.81 Ma
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Where, t is the term, D is the corpus of documents and N is the

total number of documents in the corpus. Finally, the TF-IDF

score for a term in a document is calculated by multiplying its

TF by its Inverse IDF, as defined in Equation (A3).
TF-IDF(t, d, D) ¼ TF(t, d)� IDF(t, D) (A3)
The idea is that if a term appears multiple times in a document,

it is likely to be more important. Whereas, IDF measures how

unique or rare a term is across all documents in the corpus.

Terms that occur frequently in many documents are considered

less important compared to those that occur in only a few

documents. IDF is calculated by taking the logarithm of the ratio

of the total number of documents to the number of documents

containing the term and adding 1 to avoid division by zero

errors. In Table A1, the top thirty terms are presented, ranked by

their TF-IDF scores, which highlight those with the greatest

impact on specialized discussions within the field.
Word TF IDF TF-IDF
ural network 784.00 2.23 0.80

abetes risk 125.00 3.35 0.79

abetes patient 157.00 3.27 0.78

edictive model 180.00 3.19 0.72

adient boosting 125.00 3.56 0.72

betes dataset 156.00 3.03 0.71

tificial intelligence 108.00 3.99 0.70

ep neural 109.00 3.46 0.69

arning method 148.00 3.14 0.68

abetes disease 113.00 3.49 0.67

pe 2 diabetes mellitus 119.00 3.30 0.67

arest neighbor 200.00 3.08 0.63

ediction diabetes 218.00 2.70 0.63

arning model 275.00 2.77 0.63

chine learning approach 98.00 3.58 0.62
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