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Lung cancer survival rates have greatly benefited from recent advances in

therapies and screening. New digital health technologies offer clinicians

another way to personalize and enhance care for these patients. For example,

emerging technologies support continuous assessment of patients’ functional

capacity and provide real-time health feedback, improving management of

chronic symptoms and monitoring of health trajectory. This review explores

these advancements and their potential applications across the lung

cancer continuum.
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Introduction

Survival rates in lung cancer have dramatically improved in recent decades following

advances in therapeutics and screening technologies. The care of patients across the lung

cancer continuum is further elevated by personalized treatment informed by patients’

performance status, a strong, independent prognostic factor. Performance status, or

functional capacity, describes a patient’s capacity to complete activities associated with

daily living. The gold standard index of performance status is cardiorespiratory fitness,

historically impractical to measure in a clinical setting due to extensive resource

requirements. However, recent expansions in personal digital health technologies offer

an accessible way for clinicians to assess these factors. With wide-spread access to these

data from personal health devices, clinicians are able to continuously monitor their

patients, which can be crucial in the management of chronic disease. Additionally, the

emergence of artificial intelligence (AI) and machine learning (ML) models has led to

real-time health feedback, alerting patients and their providers to potential health

complications. This review focuses on these recent advancements in personal device

biometric data collection and offers potential applications of these technologies in the

treatment of lung cancer. We also present ways in which emerging technologies can

supersede the gold-standard prognostic factors via continuous data monitoring and

AI-integrated digital health.
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Background

Lung cancer is the most common cancer worldwide with over

2.1 million new cases reported and 1.8 million cancer-related

deaths in 2018 (1). The two primary subtypes of lung cancer,

non-small cell lung cancer (NSCLC) and small-cell lung cancer

(SCLC), represent 76% and 13% of all lung cancers in the United

States, respectively (2). Overall mortality from lung cancer is

declining, driven by a decreased incidence and improving

survival with the introduction of new targeted therapies and

immunotherapies (2). Improved lung cancer screening and

advanced imaging has also led to an increase in early stage

diagnosis and disease amenable to surgical resection, which also

likely contribute to improvements in overall survival (3). As lung

cancer survival increases and new therapies become available, it

is important to identify prognostic factors and phenotypes that

can be used to inform treatment planning and chronic disease

management across the lung cancer continuum.

Performance status is a strong, independent prognostic factor

of overall survival in lung cancer (4). Performance status, also

referred to as functional capacity, is a measure of the ability to

participate in activities of daily living and is an important

determinant of overall health and well-being (5). Historically,

performance status was initially defined by Karnofsky in the

context of patient responses to lung cancer chemotherapy with

nitrogen mustard, but it is now discussed in nearly all chronic

medical conditions as an independent predictor of response to

therapy and survival. The Karnofsky Performance Status (KPS)

scale ranks performance on a scale from 0 to 100, with 0

indicating death and 100 indicating health with no symptoms or

evidence of disease. KPS and the closely related Eastern

Cooperative Oncology Group (ECOG) score continue to be

widely used today for prognostication and risk stratification,

although both scales have been criticized because of their

subjectivity and low interobserver agreement (6). The gold

standard index of performance status—cardiorespiratory fitness

(CRF), is an objective and reproducible measure of the ability

of the cardiovascular and respiratory systems to supply

oxygen during sustained physical activity. Unfortunately, the

sophisticated metabolic and physiological monitoring equipment

needed for CRF evaluation makes it impractical for most clinical

applications, which has prompted clinicians and researchers to

search for alternative strategies for performance status assessment

and prognostication.

Advancing digital health technologies, including multimodal

wearables and consumer health devices, offer an objective,

continuous and widely accessible alternative to patient-reported

outcomes and formal laboratory assessments of performance

status. While early wearable fitness trackers integrated simple

triaxial accelerometers to gauge step counts and total activity

levels, these devices lacked the resolution and sensors necessary

to accurately classify and quantify patient activity. Current

consumer wearable devices, such as Fitbit and Apple Watch,

integrate advanced analytics with high-performance MEMS

triaxial accelerometers, gyroscopes and altimeters for improved

tracking of patient activity and estimated energy expenditure (7).

In a study of adult patients with cancer receiving systemic

therapy, Gupta et al. found that steps per day measured by a

wearable activity monitor (Fitbit Flex) accurately correlated with

clinician-assessed ECOG performance status (ECOG PS) (8).

Gresham et al. also evaluated wearable activity monitors (Fitbit

Charge HR) in 37 advanced cancer patients, and found that

average daily steps were correlated to ECOG PS and KPS and

each 1,000 steps/day increase was associated with reduced odds

for adverse events, hospitalizations and death (9). Although these

studies suggest that step counts and activity monitoring can add

objectivity to performance status estimates, pedometry alone

cannot distinguish between patient effort and exercise intolerance.

Many modern wearable fitness trackers also contain embedded

biometric sensors, such as optical sensors for continuous heart

rate monitoring and vibration sensors for sleep quality assessment.

Integration of accelerometry and biometric sensing in multimodal

wearables allows for concurrent assessment of physical activity and

physiological response, which creates enormous opportunity for

development of advanced models of energy expenditure and

performance status (10). For instance, Weyand et al. found that

foot-ground contact times and heart rate during ambulating

accurately predicted maximal aerobic power, as measured by

VO2max using a simple linear regression model (11). More

recently, Bonomi et al. used a triaxial accelerometer and chest-belt

heart rate monitor to estimate total energy expenditure and

VO2max in free-living young adults (12). Few studies have been

performed on the use of multimodal wearables for estimates of

performance status in cancer. However, a recent study of 41

patients with solid tumor undergoing chemotherapy found that

higher average metabolic equivalents (METs) calculated from

estimated energy expenditure in a heart rate and activity-tracking

wristband (Microsoft Band 2) was associated with lower risk of

unplanned healthcare encounters (13).

Beyond wearable fitness trackers, digital consumer devices

and smartphone apps have developed increasingly sophisticated

health monitoring capabilities with many devices achieving

equivalent accuracy and performance to research-grade systems.

Collectively termed “health tech,” these devices are capable of

producing vast amounts of individual health data on activity,

physiology, behavior and anthropometry for use in digital health

applications. While performance status remains an important

component of lung cancer care, new digital technologies capable

of continuously monitoring patients for toxicity, organ

dysfunction and disease progression will be important tools for

defining the next generation of prognostic biomarkers. In this

review, we provide an overview of digital health technologies that

could be used across the lung cancer continuum to improve

patient risk stratification, enhance operative planning and tailor

postoperative disease management.

Overview of digital health devices for
performance status assessment

Digital health wearables and mobile health applications are

increasingly used across medical specialties to complement
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traditional performance status assessments with objective

physiological and activity metrics, at variable levels of technology

maturity (Table 1). These devices offer continuous monitoring

and real-time data collection, providing a more comprehensive

and dynamic picture of a patient’s functional capacity, especially

in chronic illness. By integrating these technologies into

clinical practice, oncologists, surgeons and anesthesiologists can

gain valuable insights into patients’ physical activity, sleep

patterns, cardiovascular and pulmonary function, and overall

health status. AI and ML algorithms can analyze the continuous

stream of data from wearables, identifying patterns and

predicting potential complications, which allows for more

personalized and timely interventions, potentially improving

patient outcomes, particularly during preoperative planning and

postoperative recovery.

Digital health technologies for performance status assessment

include a wide range of consumer-grade wearable devices, such

as fitness trackers and heart rate monitors, to portable medical

devices, such as handheld ultrasound devices and digital

stethoscopes (Figure 1). Activity measurements from wearable

devices can track physical activity intensity, duration, and

patterns in at-home daily living. Unlike subjective exercise

tolerance surveys, wearable activity metrics help objectively assess

a patient’s overall activity levels, which are crucial for

understanding their functional capacity. Physiological metrics

obtained from wearable devices can provide detailed insights into

cardiovascular and pulmonary function, which are critical for

assessing a patient’s health status and response to treatment.

Additionally, anthropometry measurements are validated

indicators of nutritional status, physical fitness, and frailty,

important considerations for surgical risk stratification and

disease prognosis (14).

Potential applications of digital health
devices across the lung cancer
continuum

Diagnosis and initial assessment

Digital wearable devices can play a central role in the diagnosis

and initial assessment phase of lung cancer care. Several of these

devices are capable of continuous monitoring of various

physiological parameters and real-time data collection, providing

valuable insights into a patient’s baseline functional capacity and

predict progression-free survival (15). Continuous monitoring of

activity levels, heart and respiratory rate, and sleep patterns can

identify early signs of functional decline, which is particularly

important for detecting subtle changes that may indicate disease

progression (16). Objective measurements of physical activity,

cardiovascular health, and pulmonary function from wearables

provide a comprehensive baseline assessment essential for future

comparisons and evaluating the effectiveness of interventions.

Additionally, data from wearable devices can aid in stratifying

patients based on their functional capacity, allowing clinicians to

tailor treatment plans to individual needs. A recent study by Ito

and colleagues, found that wearable-measured mean distance

walked accurately classified ECOG PS of 2 or higher, and was

associated with better 6-month survival status (17). Conversely,

patients with lower activity levels and poorer cardiovascular

metrics may require more intensive monitoring and support,

particularly in the perioperative period. Furthermore, wearable

devices can monitor vital signs and physiological parameters,

aiding in the assessment of surgical and treatment risks. Patients

with abnormal breathing patterns, irregular heart rate variability

or poor sleep quality, for instance, may be at higher risk for

TABLE 1 Digital and wearable alternative assessments of performance status.

Modality Measurements Example devices NASA TRL
scalea

Activity Exercise Monitors Physical Activity Intensity, Dose and Fragmentation,

Mean Distance Walked

Fitbit Charge HR, ActiGraph Link 8

Sleep Monitors Sleep Efficiency, Dose, Awakenings and Latency Fitbit Charge HR, ActiGraph Link 8

Physiology

(Cardiovascular)

Heart rate monitors Heart rate minimum, maximum, recovery, variability Polar H10, Fitbit Charge HR 9

Electro-cardiography RR interval, ST segment, ST/HR index, chronotropic

index, PVC burden

Apple Watch Series 4+,

KardiaMobile

9

Blood pressure SBP, DBP Omron HeartGuide, InBodyWatch 9

Echo-cardiography LVEF (rest and stress), LVESD, LVEDD Butterfly iQ, Philips Lumify 7

Phono-cardiography and phono-

pulmonography

Heart sounds, lung sounds, murmur classification Eko CORE 6

Physiology

(Pulmonary)

Photo-plethysmography SpO2, PVI Fitbit Sense, Wellue O2Ring, Apple

Watch Series 6

8

Respiratory rate Respiratory rate (rest and stress), Apnea hypopnea

index (sleep)

Fitbit Sense 8

Spirometry FEV1, FVC, PEFR GoSpiro, Aluna 7

Bioreactance and bioimpedance Z (impedance) Zoll uCor 6

Anthropometry Body composition analysis Lean body mass InBody BAND 8

Ultrasonography Muscle thickness Butterfly iQ, Philips Lumify 7

aThe NASA Technology Readiness Level (TRL) scale is a systematic metric that assesses the maturity level of a particular technology. It ranges from 1 to 9, with each level representing a stage in

the development process from basic research to deployment. In the context of digital health devices for performance status assessment in lung cancer patients, the TRL scale helps determine the

readiness of various wearable technologies for clinical use. Technologies at higher TRL levels (8–9) are typically more mature and ready for widespread clinical implementation, whereas those at

lower levels (5–7) may still be in the prototype or validation stages, requiring further development and testing before being fully integrated into clinical practice.
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respiratory complications, and this information is critical for

preoperative and treatment planning (18, 19).

Treatment and monitoring

During treatment, wearable devices can be instrumental in

monitoring patient response and managing adverse effects,

providing continuous data to inform treatment adjustments and

enhance patient care. Regular tracking of physical activity, heart

rate, and respiratory parameters helps assess how well patients

are responding to treatments such as chemotherapy or radiation

therapy, with decreases in activity levels or changes in

physiological metrics potentially indicating adverse reactions or

disease progression. Wearable devices can also detect early signs

of treatment-related side effects, such as cardiotoxicity or

respiratory distress, allowing for timely interventions to mitigate

these side effects and improve patient safety and comfort. Ohri

and colleagues studied wearable-measured activity in 50 subjects

with NSCLS undergoing concurrent chemoradiation therapy, and

found that inactive subjects were more likely to be hospitalized

(HR 5.6) and less likely to complete radiation therapy without

delay (15). Additionally, monitoring devices can track patient

adherence to prescribed exercise regimens, prehabilitation, or

physical therapy, ensuring that patients follow recommended

activity levels and helping healthcare providers support patients

in maintaining their functional capacity during treatment (20).

Furthermore, wearable technology enables remote monitoring of

patients, reducing the need for frequent hospital visits and

providing continuous care, which is particularly beneficial for

patients with mobility issues or those living in remote areas.

Wearable data-driven physiological biomarkers enhance the

evaluation of health status and treatment progress, leading to

better patient outcomes and quality of life during treatment.

Surgical resection

Surgical resection remains the mainstay of treatment for all

patients with stage I–IIIA NSCLC, and an accepted treatment

modality in a minority of patients with advanced or metastatic

disease. Patients with early NSCLC commonly have favorable

prognosis following resection. However, as advanced surgical

techniques have improved immediate perioperative outcomes and

extended surgical resection to more complicated patients, there

are more patients facing risk of long-term disability, chronic

respiratory insufficiency or ventilator-dependence. Pulmonary

function testing with laboratory-measured spirometry and

diffusion capacity of carbon monoxide (DLCO) is the minimum

testing performed prior to substantial lung resection surgery,

with more advanced testing such as lung scintigraphy or CPET

reserved for patients with lower baseline forced expiratory

volumes or diffusing capacity. Combining these preoperative

measurements with the surgical resection plans has traditionally

FIGURE 1

Comprehensive overview for predicting performance outcomes using wearable technologies and AI techniques in lung cancer continuum. Data

Node: Heart rate, activity, cardiopulmonary, and body composition data from wearables worn by lung cancer patients. Feature Node: Extraction of

physiological and activity features from the wearable data. Data analytics: Application of machine learning algorithms to predict cardiopulmonary

fitness and personalized fitness explanation.
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been performed to predict postoperative (ppo-) pulmonary

function (ppo-FEV1 and ppo-DLCO), but this has been shown

to significantly underestimate actual postoperative measurements,

limiting their utility for surgical planning (21, 22).

Preoperative wearable data can be pivotal in guiding surgical and

anesthetic planning for lung cancer resections. For instance, in place

of formal cardiopulmonary exercise testing, estimated VO2max or

anaerobic threshold obtained from preoperative physical activity

monitoring can help determine the risk of postoperative

pulmonary complications and long-term sequelae. Additionally,

preoperative monitoring of pulse oximetry during sleep can

identify patients with undiagnosed obstructive sleep apnea (OSA),

allowing for adjusted narcotic dosing or multimodal analgesia to

minimize respiratory complications. Home spirometry, including

measurements of FEV1 and FVC, can be used to predict the

patient’s ability to tolerate intraoperative one-lung ventilation or

the likelihood of successful extubation. Integration of this digital

data into the surgical and anesthetic plan can enhance patient

safety by personalizing care with objective physiological data.

Survivorship

For lung cancer survivors, wearable medical technologies are

vital in ongoing health monitoring, particularly concerning

physical activity levels, respiratory rate, and heart rate variability.

These devices deliver objective data that help assess survivors’

functional capacity and predict long-term outcomes. Continuous

monitoring of respiratory rate and heart rate variability provides

crucial information on cardiopulmonary function, aiding in the

management of long-term health. Wearables also enable

pulmonary rehabilitation to be performed at home and without

direct supervision. In a study of 64 patients with NSCLC, Ji et al.

found that a 12-week mobile health-based pulmonary

rehabilitation program significantly improved 6-minute walk

distance, dyspnea, and quality of life (23). Wearable technologies

thus support survivors in maintaining health and preventing

complications, enhancing overall quality of life.

The application of digital health technologies across the lung

cancer continuum, from diagnosis and initial assessment through

survivorship, is summarized in Figure 2.

Discussion and future directions

AI-integrated digital health technologies have progressed

far beyond the traditional performance status assessment and

have the potential to transform lung cancer management

and thoracic surgery. Wearables can provide objective data

on patients’ physical activity levels, pulmonary function, and

FIGURE 2

Potential application of digital health devices across the lung cancer continuum. Diagnosis and Initial Assessment: Heart rate, activity,

cardiopulmonary, and body composition data from wearables for early diagnostics and preoperative risk stratification. Treatment and Monitoring:

Real-time wearable data for monitoring patient response and disease progression. Surgical Resection: Alternative physiological monitoring for

assessing risk for intraoperative and postoperative cardiopulmonary complications. Survivorship: Long-term personalized predictive, and

preventative cardiopulmonary care.
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cardiopulmonary health, which can be used to assess disease

progression, predict outcomes, optimize surgical planning, and

identify complications early. Wearables can provide efficient and

user-friendly estimates of accepted gold-standard measures, like

FEV1 and VO2max; data streams like these would be comparable

to current ones, so existing clinical infrastructure, workflows, and

roles should be able to accommodate wearable-acquired data

without significant change. Novel or nonstandard measures

collected by wearables can provide new insights into physiology,

especially in the real world; with further clinical validation and

the help of ML algorithms to analyze these data streams,

digestible and actionable information can be provided directly to

clinicians. In the age of electronic health records and AI,

clinician decision support for wearables-acquired data should be

relatively straightforward to implement, as similar pathways

already exist for standard data like clinical notes, images, and

laboratory values. By integrating these existing technologies into

clinical practice, healthcare providers can readily enhance the

quality of care for lung cancer patients, likely improving both

short-term and long-term outcomes.

Increased consumer access to these novel personal wearable

health technologies has opened new frontiers in data collection

and model training (24, 25). Large-scale studies, like the Apple

Heart Study, are able to enroll an astounding number of

participants by taking advantage of increasing ubiquity of

wearables (26). A unique advantage of these technologies is the

ability for investigators to automate the enrollment of patients on

personal devices (27). Additionally, while concerns about

technological literacy and barriers to entry for wearables exist

(28, 29), traditionally underrepresented populations, including

those with rare disease and from minority health groups, may

have increased research visibility via ease of data collection as

digital health technologies become more accessible (25).

Next-generation digital health technologies promise to build on

these advances in thoracic oncology care by monitoring multiple

physiologic measures simultaneously and continuously with low-

profile extended-use devices. These include wearable patches to

detect metabolites, electrolytes, hormones, and nutrients (30–34);

wearable user-independent ultrasound that can record multi-

parameter echocardiography, cerebral and peripheral blood

dynamics, and various physiologic waveforms (35–37); and

motion-robust wearable neuroimaging integrated with EEG,

ECG, blood pressure, and more (38, 39). These experimental

(lower TRL, non-commercial) devices have the potential to

provide dynamic, holistic pictures of patients across their care

continuum without additional patient effort or discomfort. They

can also continuously integrate readouts across organ systems to

support even finer risk stratification for patient-centered

outcomes, like cognitive function or pain, and to facilitate real-

time and ongoing decision-making, such as for electrolyte

correction, nutritional optimization, or treatment efficacy. Rapid

maturation and validation of these novel technologies requires

prioritization by clinical partners. Overall, the application of

current and emerging digital health technologies can promote

precision lung cancer care and elevate health and longevity,

while empowering patients to participate in their care without

undue burden.
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