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Background: 12-lead electrocardiograms (ECGs) are a cornerstone for
diagnosing and monitoring cardiovascular diseases (CVDs). They play a key
role in detecting abnormalities such as arrhythmias and myocardial infarction,
enabling early intervention and risk stratification. However, traditional analysis
relies heavily on manual interpretation, which is time-consuming and
expertise-dependent. Moreover, existing machine learning models often lack
personalization, as they fail to integrate subject-specific anatomical and
demographic information. Advances in deep generative models offer an
opportunity to overcome these challenges by synthesizing personalized ECGs
and extracting clinically relevant features for improved risk assessment.
Methods: We propose a conditional Variational Autoencoder (cVAE) framework to
generate realistic, subject-specific 12-lead ECGs by incorporating demographic
metadata, anatomical heart features, and ECG electrodes’ positions as
conditioning factors. This allows for physiologically consistent and personalized
ECG synthesis. Furthermore, we introduce a revised Cox proportional-hazards
regression model that utilizes the latent embeddings learned by the cVAE to
predict future CVD risk. This approach not only enhances the interpretability of
ECG-derived risk factors but also demonstrates the potential of deep generative
models in personalized cardiac assessment.
Results: Our model is trained and validated on the UK Biobank dataset and
in silico simulation data. By incorporating heart position and electrodes’
positions, the generated ECGs demonstrate strong consistency with in silico
simulations, providing insights into the relationship between cardiac anatomy
and ECG morphology. Furthermore, our CVD risk prediction model achieves a
C-index of 0.65, indicating that ECG signals, together with demographic and
anatomical information, contain valuable prognostic information for stratifying
subjects based on future cardiovascular risk.
Conclusion: This work marks a significant advancement in ECG analysis by
providing a conditional VAE framework that not only improves ECG generation
but also enriches our understanding of the relationship between ECG patterns
and subject-specific information. Importantly, our approach enables clinically
significant information to be extracted from 12-lead ECGs, providing valuable
insights for predicting future CVD risks.
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1 Introduction

The electrocardiogram (ECG) is a well established, non-

invasive diagnostic tool that records the electrical activity of

the heart over time (1). However, the manual analysis of ECG

data can be a time-consuming and labor-intensive process,

requiring significant expertise in interpreting complex patterns

and abnormalities in the heart’s electrical activity. With the

increasing use of wearable devices and other monitoring

technologies, large volumes of ECG data can be generated on

a daily basis (2), further exacerbating the challenge of manual

analysis. As a result, there is a need for automatic techniques

to facilitate the efficient diagnosis of heart diseases using

the ECG.

Machine learning has emerged as a powerful tool for enabling

automated analysis in a wide range of ECG-based tasks (3–9).

While machine learning techniques have shown great promise,

many of these methods require large amounts of labeled data to

effectively train the model. This poses a significant challenge as

obtaining and annotating large datasets can be time-consuming,

expensive, and resource-intensive. Also, class imbalance is

another common issue in ECG datasets, as certain cardiac

abnormalities may be relatively rare compared to normal ECG

patterns, which can lead to biased model performance (10).

Furthermore, preserving patient privacy is another critical aspect

of medical data sharing and usage, especially in the context of

ECG data, which may contain personally identifiable and

sensitive health information (11).

Researchers have tried to solve these problems through data

augmentation. Classic data augmentation methods such as

performing translation and adding noise can only obtain limited

new additional information, which may lead to overfitting during

the training process. In order to truly augment the dataset, deep

generative models have attracted attention in recent years for the

generation of high-quality synthetic medical data, and been

applied successfully in ECG research. Previous deep generative

models (12–14) have mainly focused on only single-lead ECG

generation and lack the introduction of subject characteristics.

12-lead ECGs are the clinical gold standard, providing

comprehensive spatial information about cardiac conduction, and

incorporation of demographic and physiological features is

crucial for understanding the relationship between ECG

morphology and subject information. The inability to generate

physiologically consistent multi-lead signals significantly restricts

the applicability of these models in personalized cardiac

assessments, as key inter-lead relationships and subject-specific

variations are not considered.

Traditional simulation methods, such as the Extracellular-

Membrane-Intracellular (EMI) model or the work of Mincholé

et al. (15), which utilized computer simulation with torso-

ventricular anatomical models to investigate the impacts of

ventricular and torso anatomy on 12-lead ECGs, hypothesize that

geometrical factors, including ventricular anatomy, heart

orientation, location, and torso anatomy, differentially influence

QRS complexes in 12-lead ECGs. Although these traditional

biophysically-based models can be very precise, they are
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computationally intensive, with simulations requiring up to

several hours (16), whereas generative models can synthesize

ECG signals in milliseconds per sample.

Our study aims to bridge these gaps by introducing a

conditional Variational Autoencoder (cVAE) framework that

generates 12-lead ECGs conditioned on anatomical features. In

our previous work (17), we included subject metadata and

anatomical characteristics, such as heart positions and

orientations, from cardiac Magnetic Resonance Imaging (MRI) to

develop a cVAE model that can generate realistic 12-lead ECGs

with ability to capture useful features from different conditions.

However, the generated conditional ECGs only partially align

with the in silico data, likely due to the absence of torso

structural information in the model.

To address this limitation, in this study, we incorporate ECG

electrode locations as additional input features. A widely used

configuration for ECG measurement involves 10 electrodes: 4

electrodes placed on the limbs [left arm (LA), right arm (RA),

left leg (LL), and right leg (RL)] and 6 electrodes positioned on

the chest (V1 to V6). These chest electrodes provide detailed

spatial information about the heart’s electrical activity, enabling

the formation of 12 leads and establishing a strong connection

between the torso structure and ECG signals. With the recent

development of automated 3D torso reconstruction (18, 19), we

are able to obtain the precise electrodes’ positions from each

subject’s clinical MRI. This additional information provides

valuable constraints to the model, allowing it to generate ECGs

that are not only realistic but also anatomically and

physiologically consistent.

In order to demonstrate the efficacy of the latent representation

achieved from the VAE architecture, we extend the model to

perform future cardiovascular disease (CVD) risk prediction. The

majority of contemporary algorithms focusing on CVD risk

prediction are based on a limited set of subject attributes, e.g.,

age, smoking history, and blood pressure. Recently, efforts have

been made to investigate a broader range of risk predictors,

encompassing interaction terms and employing more

sophisticated machine learning techniques to model CVD risk

(20). However, these studies have only considered tabular data,

neglecting other potential information sources such as ECG or

MRI. Recent studies (21–23) have increasingly shown that ECG

abnormalities are a promising predictor of CVD risk, making the

direct use of ECG signals an attractive direction for risk

stratification. However, most previous approaches have relied

solely on ECG data without incorporating the underlying

anatomical context. Specifically, variations in heart position and

orientation can substantially alter ECG morphology by shifting

the electrical axis and modifying the amplitude and duration of

key waveforms (15, 19). If these anatomical effects are not

accounted for, normal variations in heart position may be

misinterpreted as pathological changes or, conversely, true

abnormalities might be obscured. By incorporating heart position

and orientation, our model can disentangle these anatomical

influences from disease-related signals. Therefore, our work

explores the novel integration of heart data with ECG signals,

aiming not only to generate more realistic ECGs but also to
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enhance the accuracy of CVD risk prediction by incorporating

critical anatomical context.

Our study makes the following key contributions:

1. We develop a novel cVAE framework capable of generating

12-lead ECGs and incorporate patient-specific conditions.

2. We demonstrate that incorporating heart position and

electrodes placement significantly improves the fidelity of

synthetic ECG signals, capturing inter-lead dependencies and

individual variability.

3. We introduce a revised Cox proportional-hazards model,

leveraging ECG-derived latent embeddings to enhance CVD

risk prediction.

4. ECG signals, combined with anatomical context, can stratify

subjects based on their future cardiovascular risk (C-index ¼
0.65), providing valuable insights for personalized

cardiac assessments.

2 Materials and methods

2.1 ECG dataset

Our research has been conducted using the UK Biobank

Resource under Application Number “40161” (24). In total, we

have ECG files from 37,508 volunteers, together with their

personal information including age, sex, BMI, and their clinical

imaging information.

Each ECG file in the UK Biobank dataset contains a 10-s

sample recorded at 500 Hz with 5,000 data points per lead.

Additionally, UK Biobank provides a median beat waveform,

which is computed by extracting individual heartbeats from the

10-s segment, aligning them, and calculating the median

waveform across all beats. This median beat contains

approximately 600 data points and serves as a representative

single heartbeat, The majority of our experiments are performed

on the shorter median data, since the averaging process can help

to reduce noise and artifacts in the signal, providing a cleaner

and accurate representation of the cardiac activity. It not only

allows us to focus on specific features of the ECG, such as the

QRS complex, without the confounding effects of beats

variability in the longer recording, but requires less

computational power and time as well. The ECG data require

some additional pre-processing to remove artifacts like baseline

drift, which was removed using a finite impulse response band-

pass filter between 3–45 Hz, inspired by an entry to the

Computing in Cardiology (CinC) 2017 challenge (25).

The age and sex information of the subjects are included in the

UK Biobank ECG files. The BMI can be located within the “Body

Size Measures” category in the UK Biobank, accessible through

each subject’s unique identification number.

The UK Biobank dataset we use includes 21,083 cardiac MRI

cases in total, and they were acquired at the same date as the

ECG acquisitions (26). These cardiac MRI are used to calculate

subject-specific information, including heart positions,

orientations and electrode positions.
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2.2 CVD risk prediction dataset

In this project, we define CVD as a composite of any of the

following ICD-10 diagnosis codes: I20 (angina pectoris), I21

(acute myocardial infarction), I22 (subsequent myocardial

infarction), I23 (certain current complications following acute

myocardial infarction), I24 (other acute ischaemic heart diseases),

I25 (chronic ischaemic heart disease), and I50 (heart failure).

This is similar to the research of Alaa et al. (20), but we exclude

I60–I69 (cerebrovascular diseases), as we assume that the link

between ECG and cerebrovascular disease is relatively weak. We

also exclude vascular dementia, since at the time of our study we

do not have access to its ICD-10 code. We apply our model only

on the cases whose CVD event date is posterior to the ECG

acquisition date, which we refer as incident cases. We identify all

subjects for which a CVD event was recorded before ECG

acquisition as prevalent CVD cases (27). The diagram of our

dataset preparation is shown in Figure 1.

In total, we have 37,508 subjects with successful ECG recordings.

As detailed in Section 2.1, a finite impulse response band-pass filter

is applied to correct baseline drift in the signals. However, this

method does not address short peak artifacts, which can

significantly affect our model training. To mitigate this issue, we

remove all signals with absolute amplitudes exceeding 800 mV/100

in any lead, resulting in the exclusion of 853 subjects. A further

25 subjects are excluded due to missing CVD diagnoses. Next, we

exclude 2,917 subjects with prevalent CVD diagnosis from our

dataset leaving 33,713 subjects. Among them, we separately have

925 cases with incident CVD diagnosis and 32,788 healthy

subjects with no CVD records at the time of this study.

We allocate 80% of each healthy and CVD group into the

training set and the remaining 20% into the test set for CVD

risk prediction. This stratification was applied separately to each

of the 7 CVD subtypes, ensuring that their proportions remained

consistent across both sets. By maintaining balanced

representation, we reduce the potential for certain diseases to be

over- or under-represented, thereby improving model accuracy

and generalizability.
2.3 Heart position and orientation

The heart position and orientation data are calculated using

information from the cardiac MRI. In general, a standard cardiac

MRI acquisition includes a stack of 2D short-axis (SAX) slices,

which cover the left and right ventricles from apex to base, as

well as a 2-chamber long axis (LAX) slice and a 4-chamber LAX

slice (28). As shown in Figure 2A, we define the heart position

as the intersection between three planes: 2-chamber LAX plane,

4-chamber LAX plane, and the middle plane of the SAX view

stack. The definition of a plane is 3D space is given by Equation 1:

n � (X � P) ¼ 0 (1)

where:
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FIGURE 1

CVD risk prediction dataset preparation diagram.
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• n [ R3 is the normal vector of the plane;

• X ¼ (x, y, z) [ R3 is an arbitrary point on the plane; and

• P ¼ (Px , Py , Pz) is a known point on the plane, extracted from

the DICOM metadata.

The specific plane equations for the three anatomical planes are

shown in Equations 2–4:

nSAX � (X � PSAX) ¼ 0 (2)

n2CH � (X � P2CH) ¼ 0 (3)

n4CH � (X � P4CH) ¼ 0 (4)

where nSAX, n2CH, n4CH are the normal vectors of the SAX,

2-chamber LAX, and 4-chamber LAX planes, respectively.

PSAX, P2CH, P4CH are the image position points for each

plane. By solving this system of three linear equations, we obtain

the heart’s center position, as shown in Equation 5:

Pheart ¼ (xh, yh, zh) ¼ Intersection(SAX, 2CH, 4CH) (5)

The heart orientation is defined relative to the standard anatomical

coordinate system using a new heart-specific coordinate system

based on the SAX and 4-chamber LAX planes. This coordinate

system is denoted as (eX , eZ , eY ). The new X-axis is computed as

the normalized intersection vector between the SAX and
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4-chamber LAX planes:

eX ¼ LSAX-4CH
kLSAX-4CHk (6)

where LSAX-4CH ¼ nSAX � n4CH is the direction vector of the

line formed by the intersection of the SAX and 4-chamber LAX

planes. kLSAX-4CHk is the vector norm, ensuring eX is a

unit vector.

The new Z-axis is chosen to be perpendicular to the 4-chamber

LAX plane, while ensuring it remains orthogonal to eX :

eZ ¼ n4CH � (n4CH � eX)eX (7)

where n4CH is the normal vector of the 4-chamber LAX plane.

The term (n4CH � eX)eX removes the component of n4CH that

is parallel to eX , ensuring orthogonality.

The new Y-axis is computed as the cross-product of eX and eZ :

eY ¼ eX � eZ (8)

Equations 6–8 ensure that (eX , eY , eZ) forms a right-handed

orthonormal coordinate system. The Euler angles describe the

rotation between the heart coordinate system (eX , eY , eZ) and the

standard anatomical coordinate system (x, y, z), as described in
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FIGURE 2

Overall pipeline for utilizing heart and torso information in conditional ECG generation and CVD risk prediction. (A) Heart position is calculated by the
intersection of 2-chamber view, 4-chamber view, and middle short-axis view. (B) Heart orientation is represented by Euler angles between heart
coordinate system and anatomical coordinate system. (C) Electrodes’ positions are achieved from cardiac MRI (18) and transformed to heart
coordinate system. (D) The conditional VAE architecture with the heart and torso information as additional condition inputs added to the first
fully-connected layer of encoder and latent space. (E) The CVD risk prediction model. An additional predictor is concatenated to the latent
embedding, which provides the risk score to realize the revised Cox proportional hazard regression model. (F) The conditional ECG generation is
performed by trained decoder, which takes random sampling from normal distribution and condition inputs.
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Equations 9–11:

a ¼ cos�1 eX � x
keXk � kxk

� �
(9)

b ¼ � cos�1 eZ � z
keZk � kzk

� �
(10)

g ¼ � cos�1 eX �N
keXk � kNk

� �
(11)

where N is the normal vector of the anatomical XOY plane.
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2.4 Electrode positions

We use the work of Smith et al. (19) for estimating

the electrodes’ positions for each subject. The method

applies a U-net deep learning network for automated

torso segmentation and contour extraction from the

localizer and scout cardiac MRI from the UK Biobank dataset

(18). The undesired section including head, neck, and arms

and potential artifacts such as shadow regions are removed

using a preprocessing algorithm. Finally, a statistical shape

model is used over sparse 3D contours to generate 3D torso
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meshes, with the electrodes’ positions estimated on the 3D

torso meshes.

Due to the relative slow speed of this algorithm, which usually

takes 30–60 min for one case, we reconstruct a total of 1,834 3D

torso meshes, and measure the ten electrodes’ positions for

standard 12-lead ECGs, which include four limb electrodes

including left arm, right arm, left leg, and right leg, and six

precordial electrodes corresponding to six precordial leads.

Figure 2C presents electrodes’ locations of ten sample cases from

our training set.

The electrodes generated from torso meshes are 3D variables

located in the anatomical coordinate system presented in

Figure 2B. In order for each subject’s location information to be

more accurately comparable and representative of the anatomical

characteristics of the heart, we utilize the heart position and

orientation calculated before, to transfer the locations from

anatomical coordinate system to heart coordinate system. In this

way we capture the corresponding relationship between the

electrode coordinates and the heart coordinates while treating the

heart coordinates as the origin. Therefore, the electrodes’

positions information is able to contain both torso and

heart features.
2.5 Conditional VAE architecture

Assuming that the original data set is x, the encoder produces a

hidden variable z and the decoder produces the reconstructed

dataset x̂. The VAE aims to learn the marginal likelihood of the

input through this generative process, as defined in Equation 12:

max
f,u

Eqf(zjx)[ log pu(xjz)] (12)

where f, u parameterize the distributions of the VAE encoder and

decoder respectively. Here, qf(zjx) is the approximate posterior

distribution of the latent variable z given the input x, and pu(xjz)
represents the likelihood of the input given the latent variable,

modeled by the decoder. Based on the evidence lower bound

(ELBO), the training process of VAE uses the loss function as

Equation 13:

L ¼ �E[ log pu(xjz)]þ DKL(qf(zjx)kp(z)) (13)

where �E[ log pu(xjz)] in our experiment is chosen as the mean-

squared error between the original x and the reconstructed x̂,

denoted as Lrecons. DKL(qf(zjx)kp(z)) represents the Kullback-

Leibler (KL) divergence between predefined posterior

p(z) � N (m, s) and the latent space distribution

qf(zjx) � N (mz , sz) produced by our network, denoted as LKL.

The posterior p(z) is set as a standard normal distribution for

easy computation.

The structure of the cVAE is similar to VAE, except that

category information y is added as part of the input data, which

is used to control sample generation for specified categories. The
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modified objective function of cVAE is presented in Equation 14:

L ¼ �E[ log pu(xjz, y)]þ DKL(qf(zjx, y)kp(z)) (14)

Figure 2D shows the revised cVAE network architecture. In the

encoder part, the ECG data, with the dimension of 1� 12� 400,

is treated as the input, followed by two convolutional blocks,

each of which includes a 2-dimensional convolution layer, a

batch normalization layer, and an Exponential Linear Unit (ELU)

activation function. Next, we have an Average Pooling layer and

the output is flattened. We use two fully-connected layers to

produce two 64-dimensional vectors: one is interpreted as the

mean, while the other one is considered as the logarithms of the

variance of 64 normal distributions. In the final stage, a sampling

layer is used to get a 64-dimensional latent space sampled from

the distributions mentioned above. The decoder part is

symmetrical to the encoder part, which uses upsampling layers

and 2-dimensional deconvolution layers, to reconstruct the 12

lead ECGs.

Physiologically, heart position, orientation, and electrode

locations define the spatial relationship between the heart’s

electrical activity and the recording leads, thereby affecting ECG

waveform morphology. To ensure that the generative model

learns these dependencies, in the encoder, the conditional

information is concatenated to the first fully connected layer,

ensuring that the learned latent representation z captures the

variability introduced by anatomical differences. In the decoder,

the same conditional inputs are incorporated alongside z to

modulate ECG generation, enforcing physiological consistency by

reconstructing ECG waveforms that align with the given heart

position, orientation, and electrode locations. Its dimension c

depends on the information category: for heart position and

orientation, these are three-dimensional coordinates and angles

respectively, and for electrodes’ positions are 10� 3

dimensional coordinates.

The model is implemeted in Python3 using PyTorch. Adam

optimizer (29) is used with a learning rate of 0.001. For each

VAE, we assigned 80% of the dataset as the training set and the

rest as test set. The batch size is set as 64, and the training

process is performed for 80 epochs. We run all experiments on

NVIDIA A100 Tensor Core GPU.
2.6 Risk prediction model architecture

The revised network presented in Figure 2E is the addition of

an extra predictor connected to the latent space so that we are

able to analyze the representations and features contained in

latent space and achieve a risk score output. For the predictor,

we perform all experiments on a single fully connected layer,

with 64 latent space dimension as input, and one dimensional

risk score as output, obtained using a sigmoid function.

The loss function of this predictor network consists of three

parts. The first two parts are the same as previous sections, i.e.,

LKL and Lrecons, as shown in Equations 13 and 14. We use the
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Cox proportional hazard regression model to realize the last

survival loss part. Typically in a linear Cox model, the hazard

function has the form defined in Equation 15:

h(t, x1, . . . , xm, b1, . . . , bm) ¼ h0(t) exp {b1x1 þ � � �
þ bmxm} (15)

where h0(t) is the baseline hazard function, which would

correspond to a hypothetical subject whose covariate values are

all zeros. The exp {b1x1 þ � � � þ bmxm} is called the relative risk

of a subject. Predictor covariate variables, xi , are weighted by bi,

to adjust this baseline hazard function for each subject. These

weights, b0, are estimated by maximising the Cox proportional

hazards partial likelihood function:

logL(b) ¼
Xn
i¼0

di b0xi � log
X
j[R(ti)

eb
0xj

0
@

1
A (16)

where xi is the vector of predictor covariate variables, di is a

boolean variable indicating event status, and R(ti) is the set of

subjects yet to have an event or be censored at time t for

subject i. Equation 16 can be adapted for a neural network by

replacing b0xi with the output of a network.

Therefore, in order to optimize our VAE network training for

survival analysis, we replace b0xi with the output of our predictor,

as shown in Equation 17, to form our survival loss function:

Lsurv ¼ 1
N

XN
i¼0

di ri � log
X
j[R(ti)

er j

0
@

1
A (17)

where N is our batch size and ri is the sigmoid of the output of the

model, i.e., the log-hazard ratio of subject i. Preliminary work with

the survival model showed that the exponent term in Lsurv can

cause the untrained predictor head to exponentiate large

numbers leading to numerical instability. To prevent this, we

apply a sigmoid function to the output of the model, both

ensuring that large exponents are not possible and keeping the

relative order of risk for subjects unchanged, since the sigmoid is

monotonically increasing.

Therefore, the loss for our overall model is written as:

Ltotal ¼ Lrecons þ LKL þ Lsurv: (18)

As this study represents an initial investigation, the three loss terms

in Equation 18 are assigned equal weights. In the future, techniques

such as grid search or other hyperparameter optimization methods

can be utilized to systematically determine the optimal

weight configuration.
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3 Results

3.1 ECG conditioned on heart position and
orientation

We used all 21,083 UK Biobank cases that include both ECG

and MRI data to train our model. After training, by modifying

the conditioning inputs (i.e., heart position and orientation), we

generated synthetic ECGs reflecting various cardiac poses, which

we then compared with the simulation trends reported by

Mincholé et al. The conditional ECG generation is performed by

the pre-trained decoder which takes random samples from a

normal distribution and conditional inputs, shown in Figure 2F.

Figures 3 and 4 show the results that reflect the learned effect of

heart rotation and translation, respectively. For rotation, we first

rotate the heart along the long axis, which is the Z axis of the

heart coordinate system, and then left-to-right ventricle axis,

which is the Y axis of the heart coordinate system. For

translation, we move the heart along the lateral and cranio-

caudal directions, which would be represented as the heart

position coordinate (x, y, z) changes, so that moving along the

lateral direction and cranio-caudal direction means changing the

value of x and z respectively.

We compare our generated ECGs with the work of Mincholé

et al. (15). As shown in Figure 3A(b), rotation along the long

axis influences R, S, and T waves in almost all the ECG leads.

The heart rotated more counterclockwise results in an increase in

the amplitude of these waves. After comparison, we find only

lead V4 completely agrees with the result of Mincholé et al. (15)

[Figure 3A(a)], while leads V1 to V3 have the same change on

R wave but the opposite on S wave. The rest of the leads show

different features, for in results of Mincholé et al. (15) long axis

rotation exerts a limited influence on leads I, V5, and V6.

Figure 3B(b) shows the amplitude of R and S waves increase in

lead II and V1–V3 when we rotate more counterclockwise along

the left-to-right ventricular axis. More clockwise rotation affects

the morphology of S wave in leads V2 and V3. Five leads I, II,

V2, V3, and V5 in our work share the same amplitude features

with results of Mincholé et al. (15). Our results also reflect the

influence on the morphology, but the degree of change is not as

prominent as Figure 3B(a).

In Figure 4A(b), when the heart moves more to the left-hand

direction, the R wave and T wave amplitudes increase in leads I,

II and V4-V6, while the S wave amplitude increases in all

precordial leads. After comparison, we find only leads V5 and

V6 agree with the findings of Mincholé et al. (15) [Figure 4A(a)],

while other leads reflect the opposite influence.

Finally, we analyze the translation along the cranio-caudal

direction. Figure 4B(b) shows that translation along this direction

mainly affects the amplitude of T wave of leads V2-V4. We also

notice an increase after translating the heart more to the inferior

direction in leads V4-V6. Compared to the work of Mincholé

et al. (15) [Figure 4B(a)], only lead II completely agrees. While

our V4 and V5 have similar response to this translation, the

degree of change in work of Mincholé et al. (15) are much greater.
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FIGURE 3

The comparison of ECG changes between previous work (15) and proposed cVAE model in leads I, II, and V1 to V6 when heart rotates around long axis
(A) and around left-to-right axis (B) in 40, 20, 0, �20, 40° separately.
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3.2 ECG conditioned by electrode positions

While the previous results demonstrate that our network

successfully extracts valuable and relevant features from the

ECGs, incorporating only heart position and orientation may

present certain limitations. For instance, only considering

absolute heart coordinates without accounting for their relative
Frontiers in Digital Health 08
positions in the torso structure may reduce comparability across

subjects, as the anatomical coordinate origin is determined by

the scanner. This highlights the potential benefits of

incorporating additional factors, such as torso structure, to

enhance the accuracy and generalizability of our approach. We

include the ten electrode positions to fix our torso structure

when we perform the heart position translation. Each electrode
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1558589
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

The comparison of ECG changes between previous work (15) and proposed cVAE model in leads I, II, and V1 to V6 when heart moves along the lateral
direction (A) and along the cranio-caudal direction (B) in 4, 2, 0, �2, �4 cm separately.
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position is transformed from anatomical coordinate system to heart

coordinate system using heart position and orientation Euler

angles. Therefore, when evaluating the influence of heart
Frontiers in Digital Health 09
information, the electrodes’ positions are the only condition

inputs to the model, which contain both heart position,

orientation, and torso information.
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For the analysis Figures 4A(c),B(c), we use a subset of 1,834

real cases that include electrode position information. By fixing

the electrode positions to control for torso influence and

modifying heart position inputs, we generate ECGs that are

compared with the morphological trends observed in Mincholé’s

work. From Figure 4A, in general, the generated ECGs using ten

electrodes have the same quality as the results using only heart

positions, except with more noise in the generated leads V1 and

V2 signals. This increased noise may result from the mismatch

between the 3D nature of electrode positions and the 1D latent

space used in our model, which introduces additional complexity

in the decoding process.

The overall impact of heart information on the generated

signals are more obvious than the one using electrodes, with

more clear difference when we move the heart. However, if we

treat the simulated signals in Figure 4A(a) as the standard, we

can discover more accurate features or trends presented in the

electrodes based model. When we look at leads I and II,

Figure 4A(b,c) reacts to the position change in a completely

opposite way. While R peak amplitude increases with the right to

left movement of the heart in Figure 4A(b), it decreases in

Figure 4A(c). When it comes to precordial leads, in leads V1 and

V4 our electrodes’ results of Figure 4A(c) also have more

consistency with the simulated results than ones with heart-

position only [Figure 4A(b)]. When the heart moves more to the

left, the S wave peak of lead V1 increases, while in lead V4, the

R wave peak increases and the S wave peak decreases. Those

characteristics are exhibited in the opposite direction in

Figure 4A(b).

In Figure 4B, more noise can be found in leads V1 and V2 in

the model with electrodes’ positions. Compared to Figure 4B(b),

the influence of Z direction change is revealed more clearly using

electrodes. Especially in leads I and II of the model with

electrodes’ positions [Figure 4B(c)], when the heart moves
FIGURE 5

(A) Kaplan–Meier plot of the full dataset before stratification, showing surviva
into low-risk (blue line) and high-risk (orange line) groups based on risk
confidence intervals (CIs).

Frontiers in Digital Health 10
towards the head direction, the R wave amplitude will get

increased, which is also reflected by the simulated results in

Figure 4B(a). As comparison, the heart movement in Z direction

has little influence on the final generated signals in our model

with heart information only [Figure 4B(b)]. Regarding the

precordial leads V1–V6, our two networks in Figures 4B(b),B(c)

do not reveal large differences about the reaction to the heart

position change. In leads V2–V6, the R and S wave amplitudes

get larger if we move the heart more towards the feet. In general,

the features in both Figures 4B(b),B(c) demonstrate more

consistent results with simulated results in Figure 4B(a), except

lead V6 which shows the opposite.
3.3 CVD risk prediction

We plot the Kaplan–Meier estimate curve of the full dataset

before any stratification, as shown in Figure 5A. During seven

years of follow-up observation, 5.5% of our total subjects have

been diagnosed with CVD.

We train our network and achieve the score for each subject’s

future CVD risk in our test set, and accordingly divide them into

two groups: low CVD risk and high CVD risk, using the median

risk as threshold. Figure 5B reveals the Kaplan–Meier estimate of

both groups of our test set. In Figure 5B, we can notice a clear

difference between low CVD risk and high CVD risk groups.

The CVD event occurs in 2% of subjects in the low risk group,

and 6% of subjects in the high risk group over a nearly 7-years

observation period.

Instead of considering the absolute survival times for each

occurrence, survival analysis frequently uses the relative risk of

an event (30, 31). To evaluate this, we use the concordance index

(C-index), a widely used metric in survival analysis. Unlike

classification metrics such as AUC-ROC, sensitivity, and
l probabilities for all subjects. (B) Kaplan–Meier plot of the test set, divided
scores predicted by our model. The shaded areas represent the 95%
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specificity, which require binary labels, the C-index assesses how

well the predicted risk scores preserve the correct ranking of

event times. This makes it particularly suitable for our task,

where the goal is quantifying relative CVD risk rather than

classifying individuals into discrete risk categories.

Our model achieves a C-index of 0.63, indicating that

ECG-derived risk scores successfully rank individuals based on

their future CVD risk with performance significantly above

random chance (C-index ¼ 0.5). While existing CVD risk

models often achieve higher C-index values by incorporating

comprehensive clinical and lifestyle factors (e.g., blood

pressure, cholesterol, and smoking history), our study focuses

specifically on evaluating the prognostic value of ECG

morphology alone.

We also explore whether the additional information can

improve the performance of the network. Therefore, we first

introduce the sex and age to the encoder and next the electrodes’

positions. The idea was that sex and age are directly predictive of

incident CVD, while the electrodes’ positions could be used by

the network to contextualize the shape of the ECG and refine the

prediction. For the prediction model including sex and age, we

use the same training set and test set as in the previous sections.

The first row of Table 1 shows the result of our baseline model

with C-index of 0.63. The inclusion of heart position information

resulted in an increase of 3% in the concordance index,

indicating an improvement in the model’s ability to correctly

rank individuals by CVD risk.

For the model including electrodes’ positions, due to the

limited size of our processed dataset as discussed in Section 2.4,

we include 1,600 healthy cases and 100 cases with CVD

diagnosed and maintain the same group proportion as in the

previous experiment. From the results presented in Table 2, we

find that the baseline model only achieves the C-index of 0.58.

The addition of sex and age information increases the baseline

model result to 0.61, with a 5% improvement. By incorporating

electrodes’ positions relative to heart coordinate system, the

revised model provides a 1.7% increase in C-index, from 0.58 to

0.59. However, including the electrodes’ position along with sex

and age information do not further improve the

predictive performance.
TABLE 1 C-index result for ECG baseline prediction model and model with
additional demographic information.

Model C-index
Baseline 0.63

Baseline þ sex þ age 0.65

TABLE 2 C-index result for ECG baseline model, model with demographic
information, and electrodes’ positions.

Model C-index
Baseline 0.58

Baseline þ electrode positions 0.59

Baseline þ sex þ age 0.61

Baseline þ sex þ age þ electrode positions 0.61
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4 Discussions

In this work, we have developed a conditional VAE model to

generate 12-lead ECGs, which takes heart position, orientation,

and electrodes’ positions as conditions. The results of our cVAE

model show that the heart position and orientation have a

significant impact on the generated ECGs, which is consistent

with previous research (15). However, the influence of heart

position and orientation on the generated ECGs is not as

prominent as the simulated results. One possible explanation is

that our position definition is not accurate enough because we

only calculate the intersection of three cardiac MRI planes. An

alternative explanation is in the work of Mincholé et al. (15) the

torso structure was fixed for simulation, while in our research the

torso of each subject can vary. Additionally, after comparison we

find that some rotation degree and translation distance in the

work of Mincholé et al. (15) are too large to the extent that they

do not occur in real subjects.

When we include electrodes’ positions as input, they should

also contain heart position and orientation information. During

training, electrode positions help capture the influence of torso

anatomy on ECG morphology. During generation, fixing

electrodes’ positions allows us to control for torso-related

variability, ensuring that observed ECG changes are primarily

driven by modifications in heart position and orientation.

Therefore, in this experiment we are able to reduce the influence

of torso on our final generated results. From Figure 4, we can

notice with the addition of electrodes’ positions, the consistency

between our generated signals and simulated in silico signals of

Mincholé et al. (15) gets improved. This illustrates that our

model including the electrodes’ positions is capable of capturing

useful features that represent the individual characteristics well,

though there is more noise in the final generated signals.

A potential explanation for this issue lies in the difference

between the 3D nature of the electrodes’ positions (3� 10

coordinates) and the 1D latent space (64 dimensions) used in

our experiments. This mismatch introduces additional

complexity, which may challenge the decoder’s ability to

effectively interpret and reconstruct the information. To address

this, further parameter tuning or introduction of a separate

encoder for electrodes’ positions could help achieve better results.

While comparing our generated outcomes with the work of

Mincholé et al. (15), it is important to acknowledge that the

comparison is largely qualitative in nature, given that their work

does not provide actual values to enable a more comprehensive,

quantitative comparison. Thus, although this comparison provides

some initial insights into the relative performance of our model,

further quantitative analysis would be required to provide a more

definitive evaluation of the model’s performance. Additionally, the

work of Mincholé et al. (15) mainly focused on the QRS complex

of the ECG, while the other crucial components of the ECG

waveform, such as the P and T waves, have not been examined.

To address this limitation, our future work will focus on

integrating detailed biophysical parameters into our generative

model, enabling a more precise quantitative comparison between

our synthesized ECGs and simulation-based results.
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About the CVD risk prediction model, the results from

Figure 5 suggest that our cVAE with predictor successfully

learned to stratify subjects by CVD risk using features extracted

from 12-lead ECG signals. This indicates that there is useful

information related to their future CVD risk contained in ECG

recordings, and our model has the ability to capture it. The

baseline model in the current study attained a C-index of 0.63,

suggesting a moderate predictive performance that necessitates

further refinement. Although the C-index provides a useful

quantification of model performance, its standalone value might

not fully encapsulate the model’s clinical applicability. The future

works could further explore the ECG of the subjects defined as

high risk group by our network, and analyze their ECG

measurements in detail in order to find common characteristics

for certain diseases.

When we include additional demographic information to our

prediction network, as shown in Tables 1 and 2, it improves the

C-index by 3% and 5%. This is consistent with previous findings

of Alaa et al. (20), which highlighted the importance of age and

sex in CVD risk evaluation. While this suggests that sex and age

contribute to risk prediction, the relatively modest increase

reflects the fact that ECG waveforms already encode

physiological characteristics associated with these demographic

factors. Our future work will explore the inclusion of additional

subject information commonly used in traditional risk evaluation

methods, such as the Framingham Risk Score factors (e.g.,

smoking history, blood pressure), to assess whether incorporating

a broader range of clinical variables could further enhance

model performance.

In Table 2, we notice that the addition of electrodes’ positions

does not improve the C-index. One possible explanation is that the

relationship between electrodes’ positions and CVD risk is already

partially captured within the ECG waveforms themselves. Since

ECG morphology inherently encodes subject-specific anatomical

and physiological characteristics, some of the variability

introduced by differences in electrode positioning may have

already been learned by the model. Due to the high

dimensionality of the electrode position data (3� 10

coordinates), the single fully connected layer in our current

model may not be expressive enough to fully map these features

into the latent space for risk prediction. A more complex

network architecture could be explored in future to better

leverage electrode position information for improved

prediction performance.

While our study investigates general CVD risk prediction,

further work is needed to explore how changes in ECG

amplitude and duration, resulting from variations in heart

position and electrode placement, impact the prediction of

specific cardiovascular diseases. Certain ECG-derived biomarkers,

such as ST-segment deviations or QRS complex amplitudes, are

directly influenced by these factors and play a crucial role in

diagnosing conditions such as myocardial infarction or

hypertrophy. A future extension of our work could involve

evaluating how disease-specific classification models respond to

these anatomical influences, improving the interpretability and

robustness of ECG-based prediction methods.
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5 Conclusion

In this work, we have developed a cVAE-based ECG generation

model, incorporating the electrodes’ positions to include torso

information. This approach has markedly improved the

consistency between our generated signals and previous in silico

studies, surpassing the performance of models that relied solely

on heart position and orientation. Through the meaningful latent

space representation learned by our cVAE model, we highlight

the ability of ECG signals alone to predict future CVD risk.

Furthermore, by incorporating additional conditioning factors

such as age, sex, and electrodes’ positions, we demonstrate that

these structured inputs provide additional guidance, further

refining risk estimation. Our findings underscore the potential of

generative approaches to extract clinically relevant features from

12-lead ECG signals, supporting the development of more

personalized and data-driven CVD risk assessment models.
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