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Introduction: Active patient participation is crucial for effective robot-assisted
rehabilitation. Quantifying the user’s Active Level of Participation (ALP) during
therapy and developing human-robot interaction strategies that promote
engagement can improve rehabilitation outcomes. However, existing methods
for estimating participation are often unimodal and do not provide continuous
participation assessment.
Methods: This study proposes a novel approach for estimating ALP during
upper-limb robot-aided rehabilitation by leveraging machine learning within a
multimodal framework. The system integrates pressure sensing at the human-
robot interface and muscle activity monitoring to provide a more
comprehensive assessment of user participation. The estimated ALP is used to
dynamically adapt task execution time, enabling an adaptive ALP-driven
impedance control strategy. The proposed approach was tested in a laboratory
setting using a collaborative robot equipped with the sensorized interface. A
comparative analysis was conducted against a conventional impedance
controller, commonly used in robot-aided rehabilitation scenarios.
Results: The results demonstrated that participants using the ALP-driven
impedance control exhibited significantly higher positive mechanical work and
greater muscle activation compared to the control group. Additionally,
subjective feedback indicated increased engagement and confidence when
interacting with the adaptive system.
Discussion: Closing the robot’s control loop by adapting to ALP effectively
enhanced human-robot interaction and motivated participants to engage
more actively in their therapy. These findings suggest that ALP-driven control
strategies may improve user involvement in robot-assisted rehabilitation,
warranting further investigation in clinically relevant settings.
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1 Introduction

Robotic rehabilitation platforms may play a paramount role in

increasing patient active participation during therapy since they

can speed up motor recovery (1). Indeed, a robotic system can

include different features that aim at engaging the patient in

interacting with the machine (2).

Assist-as-needed controllers are designed to provide minimal

assistive forces to the patient in such a way that the robot should

intervene only if the patient is not capable of performing the

task autonomously (3). Furthermore, the inclusion of the

patient’s intention in the control loop, i.e. to trigger the initiation

of movement, results in successful clinical outcomes (4).

Although all these works stress the importance of involving and

engaging patients undergoing robot-aided treatments, a

methodology to continually estimate to what extent the patient is

actively participating in performing the motor exercise and

leveraging such metrics inside the robot control loop has not

been addressed in the scientific literature. Active participation

not only fosters patient engagement but also plays a pivotal role

in promoting motor recovery. By actively engaging in motor

exercise, patients can enhance their motor skills and improve

their overall recovery outcomes (5, 6).

The Active Level of Participation (ALP) encompasses both

physical and cognitive aspects (7). It includes physical workload,

intention, performance, and engagement. Physical workload

measures the effort exerted during rehabilitation tasks, while

intention assesses the patient’s willingness to perform tasks

independently, often monitored through electromyography

(EMG) signals. Performance is linked to successful task

completion, often gauged by tracking accuracy. Engagement and

how participants perceive the interaction also influence ALP.

While modeling ALP is challenging due to its complexity, these

metrics show strong correlations with individuals’ ALP.

In the literature, few studies were conducted to assess the

changes in the physiological response of the patient depending on

his/her level of active participation. The works in (8, 9) evidenced

that some distinctive features of the electroencephalogram (EEG)

significantly change between active and passive walking with a

lower-limb exoskeleton and in performing upper limb repetitive

motions. The experiment carried out in (10) found that EEG

signals can be used to extract the intention level of the subjects

in response to task difficulty. Moreover, the authors evidenced

that some correlations between cortical and muscle activity

exist when the participants exert different levels of participation.

The instrumentation used in these works is wearable, but it

requires extensive calibration procedures and can be considered

obtrusive, and wearing an EEG helmet is not feasible for daily

rehabilitation therapy (11).

Unobtrusive wearable sensors, particularly surface EMG, have

shown promise in monitoring user physiological signals. EMG

sensors were used to develop a binary classifier for distinguishing

between active and passive movement during a haptic device task

(12). While EMG proved to be a reliable estimator of patient

participation, the model was limited to predicting discrete classes
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and only considered EMG signals. Moreover, the literature

explores various methods to estimate patients’ ALP during robot-

aided rehabilitation. One approach involves analyzing the forces

exchanged between humans and robots as an indicator of

participation. Machine learning algorithms are utilized to deduce

the perceived difficulty level, reflecting the required physical

engagement (13). In (14), robot-assisted rehabilitation is

conceptualized as a cooperative game, gradually reducing robot

intervention as the patient’s exerted forces increase. However,

relying solely on the exchanged forces may not provide an

optimal estimation of participation. The analysis of interaction

dynamics introduces the concept of modeling participation based

on the stiffness of the targeted body area (15).

Some efforts have been made on robot control to close the loop

on the patients in the so-called biocooperative systems (16).

Metrics can be computed during the rehabilitation session to

tune the control gains in real-time. For instance, kinematics

performance as well as patient physiological parameters can be

used in gait (17) and in upper limb robot-aided rehabilitation

(18, 19). Recent approaches, such as the Voluntary Assist-As-

Needed controller (20), adapt the assistance level provided to the

user based on an EMG-driven musculoskeletal model to promote

active participation. However, all these controllers aim at

increasing the active involvement of the patient without explicitly

quantifying the patient’s level of participation.

Therefore, current methodologies presented to estimate ALP

exhibit several limitations. A significant drawback is the

unimodal nature of estimation methods, where either surface

EMG or interaction forces are used independently to monitor

whether the subject is actively participating. While methodologies

range from mathematical model-based approaches to supervised

machine learning techniques aimed at binary classification of

participation, these approaches fail to provide a continuous

estimation of participation level. This limitation restricts the

ability to capture the variability in patient ALP during therapy.

However, machine learning appears to be a promising solution to

conduct multimodal data integration to map user actions in

discrete states. Through calibration steps, machine learning can

provide a continuous estimation of ALP, enabling continuous

estimation of patient involvement and facilitating the

development of adaptive robotic strategies for personalized

rehabilitation. Moreover, existing studies rarely propose adaptive

robotic strategies that respond dynamically to the estimated state

of participation. In cases where binary classification is used, the

robot’s possible actions are inherently limited, reducing the scope

for personalization and adaptability.

To address the limitations identified in the literature, this paper

proposes a novel approach for estimating a patient’s ALP during

upper-limb robot-aided rehabilitation, leveraging machine

learning methodologies within a multimodal framework. Unlike

previous studies that rely on unimodal signals or discrete

classification, our method enables a continuous estimation of

ALP, providing a more comprehensive assessment of patient

engagement. To achieve this, we integrate an unobtrusive

multimodal monitoring interface integrated into an end-effector

rehabilitation cobot, capable of simultaneously capturing surface
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EMG and pressure data exchanged between the user and the robot.

This approach ensures that ALP estimation does not require

additional wearable sensors on the patient. Moreover, the

computed ALP is used in a closed-loop adaptive impedance

control strategy, namely the ALP-driven impedance control,

dynamically adjusting the robot task execution time based on

user engagement. As the patient’s ALP increases, the control

system reduces the execution time of the task, encouraging active

participation. To assess the effectiveness of the proposed

approach, we conduct a comparative analysis with a conventional

impedance controller, demonstrating its impact on the

enrolled volunteers.

The paper is structured as follows: Section 2 provides the

details of the proposed method and describes the experimental

validation carried out with an end-effector robot. Section 3

presents the results obtained during the designed experiment.

Lastly, Section 4 deals with the main conclusions of this work

and proposes future developments.
2 Materials and methods

2.1 The proposed approach: ALP-based
interaction control

Figure 1 presents the block scheme of the proposed approach.

During an upper-limb robot-aided rehabilitation session, a

multimodal monitoring system can be exploited to measure

biomechanical and physiological information of the human-robot

interaction. In particular, the EMG reflects the user’s motion

intention, providing a direct measure of muscle activation and

effort. Complementarily, the pressure distribution sensed at the

human-robot interface offers insight into the physical interaction

between the user and the robot, capturing the forces exerted

during task execution. Using both modalities ensures a more
FIGURE 1

Block diagram of the proposed framework for estimating patient Active Level
interaction control, a multimodal monitoring interface (capturing EMG and
which includes training, calibration, and real-time prediction. The estimate
closed-loop control strategy to encourage active patient participation.
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comprehensive assessment of the user’s participation, as EMG

focuses on internal physiological signals while pressure sensing

reflects external interaction dynamics, enabling a holistic

understanding of the patient-robot interaction (21). Features can

be extracted from the processes monitored by the human-robot

interface to extract a meaningful observation of the interaction.

These quantities can be used to train Machine Learning (ML)

supervised algorithms to classify whether the patient is

participating or not in accomplishing the motor task. Moreover,

reliable continuous estimation of the active level of participation

(ALP) can be provided via ML model calibration. Thus, an

experiment is needed to build up a structured dataset to model

ALP by capturing the behavior of healthy participants during

their interaction. The computed ALP can be used to adapt the

robot’s behavior. In particular, the proposed approach adapts the

task execution time according to the ALP. Indeed, the execution

time directly reflects the user’s contribution to accomplishing the

task. If the patient starts slacking, the robot stops in order to let

the user provide enough effort to make the robot continue

the movement.
2.1.1 Multimodal monitoring and feature
extraction

To facilitate safe and comfortable interactions, a physical

interface is established between the human and the end-effector

rehabilitation cobot. This interface incorporates an upper-arm

orthosis equipped with built-in pressure sensors and EMG

electrodes. Its purpose is to ensure accurate positioning of the

robot relative to the user’s body and effective transmission of

forces and torques. Recognizing the significant influence of

interface dynamics, special attention is given to optimizing the

robot’s capacity to offer support and comfort during the

rehabilitation process (21, 22).

As depicted in Figure 2, four flexible polymer capacitive

pressure sensors are incorporated along the orthosis’s central axis
of Participation (ALP) in robot-aided rehabilitation. The system integrates
pressure signals), and a machine learning (ML) model for ALP estimation,
d ALP is used to dynamically adapt the task execution time, creating a

frontiersin.org
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FIGURE 2

Experimental setup: (A) The end-effector robot used for the study.
(B) Close-up view of the sensorized cuff integrating EMG
electrodes (positioned over the biceps) and pressure sensors
(positioned near the triceps) to monitor muscle activity and
interaction forces. (C) A participant performing shoulder flexion/
extension movements with robotic assistance.
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(23). The pressure sensors enable pressure readings at a rate of

10 Hz with a relative accuracy of 10%. This pressure sensor offers

a balance between cost-effectiveness, compactness for integration

within the robot’s end-effector, and performance aligned with the

requirements of our application. In rehabilitation, human-robot

interactions usually involve slow, controlled movements. As a

result, very high sampling frequencies and high accuracy are not

essential. The aim of the proposed multimodal interface is to

detect the user’s pressure distribution during the task execution,

rather than fine-grained pressure values. The sensors are

calibrated in relation to the robot force sensing at the start of

each trial.

EMG signals from the biceps brachii are recorded using a

Cometa Mini Wave Infinity system (Cometa Srl, Bareggio, Italy)

at a sampling rate of 2 kHz. The biceps brachii muscle was

selected for monitoring as it plays a prominent role in various

upper limb activities, producing distinctive EMG activation

patterns (24). Moreover, the EMG sensor electrodes were

seamlessly integrated into the straps of the end-effector orthosis.

This made it possible to develop an end-effector capable of

monitoring multimodal patient parameters who do not need to

wear additional sensors.

To extract meaningful information from the monitored data, a

fixed temporal window of 1 s is utilized. The data from the

multimodal interface, regardless of the varying sample numbers

due to different signal acquisition frequencies, is temporally

aligned according to their timestamps. Features are then

computed over this standardized 1 s time window in the time

domain. From the four channels of the measured pressures,

several statistical features can be computed. These features

include the mean, standard deviation, minimum, maximum, and

mean values of the first and second derivatives. These statistics

provide insights into the overall level and dynamics of the

pressure signals. From the raw EMG signal, both time and

frequency domain features are computed. Time-domain features

reflect properties of the signal over time and include the root

mean square, average amplitude change, variance, integrated
Frontiers in Digital Health 04
EMG, average energy, wavelength, mean absolute deviation, and

logarithmic difference of absolute mean values. Mean and

median frequencies, which indicate the central tendencies of the

signal’s frequency content, are also considered. A total of 10

features are extracted from the EMG signal, capturing its

temporal and spectral characteristics. From the pressure signals,

24 features are computed, encompassing statistical measures and

derivatives. Overall, a set of 34 features is derived from both the

EMG and pressure signals to capture relevant information for the

estimation of the ALP. As already demonstrated in previous

studies by (21), the integration of multimodal information led to

improvements in classification accuracy.

2.1.2 Active level of participation ML model
The ALP estimation model presented in this paper relies on the

training and calibration of a supervised ML model. At first, binary

classifiers have to be trained to accurately identify the two extreme

conditions, i.e., not participating and highly participating, and then

their outputs have to be calibrated to estimate in a continuous

manner the ALP (25).

Four different ML algorithms were compared in this study:

Linear Discriminant Analysis (LDA), Linear Support Vector

Machine (SVM), Logistic Regression (LR), and k-Nearest

Neighbors (kNN). LDA enhances class separability through

linear feature combinations and is particularly well-suited for

cases where data distributions for different classes are

approximately Gaussian (26, 27). Linear SVM uses hyperplanes

to classify data points by maximizing the margin between classes,

a technique grounded in Vapnik’s statistical learning theory,

which ensures good generalization properties (28, 29). Logistic

Regression is a probabilistic model rooted in generalized linear

models (30), estimating binary event probabilities based on input

variables through the sigmoid function. Lastly, kNN is a non-

parametric method inspired by instance-based learning,

classifying data points based on the majority vote of their k

nearest neighbors in feature space (31, 32).

The choice of these models was motivated by their

robustness, interpretability, and effectiveness with relatively

small datasets. More complex approaches, like boosted trees or

random forests, often demand larger datasets and may overfit

when data is limited.

To create the binary participation classification model,

participants are instructed to interact with the robot, exhibiting

both maximum participation and complete passivity during the

training phase, as outlined in (12). This approach allows for the

labeling of data collected from the multimodal interface.

To calibrate the outputs of the binary classifiers and estimate

the ALP, the isotonic regression calibration approach was

employed in this work (33). This calibration technique maps the

posterior probability of the supervised learning models to a

monotonically increasing function. More in detail, to minimize

the discrepancy between the predicted probabilities (fi) and the

true target probabilities (pi), a calibration function m(�) is

determined. The calibration process accounts for residuals (ei) to
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improve the alignment between predicted and observed

probabilities. Formally, the calibration problem is defined

in Equation (1)

m̂ ¼ argmin
z

X
i

ðpi � zð fiÞÞ2 (1)

where (fi, pi) represents the i-th sample in a calibration dataset.

The goal is to optimize the function z(�) such that the calibrated

predictions align as closely as possible with the observed

true probabilities.

Through a comparative analysis of the supervised ML models

mentioned above, the most effective approach in estimating the

ALP within the context of robot-aided rehabilitation was

identified. This comprehensive evaluation allowed us to select the

optimal model that provides an accurate and continuous

estimation of the ALP, facilitating personalized and adaptive

rehabilitation interventions.
2.1.3 Execution time adaptation
Once an estimation of the ALP is available (the ALP model

returns estimation every second), it is possible to take it into

account to adapt the robot behavior. The approach proposed in

this study aims at reducing the duration of the task according to

the ALP of the participants. Influencing the duration of task

execution, the movement speed resulted to be increased since the

robot has to go through the same number of points recorded in

the demonstration phase in a shorter time. Given a

demonstration trajectory xdemo composed of N samples, at each

iteration, the ALP is used to compute the number of samples Dn

to skip in the recorded trajectory xdemo in order to assign a

reference set-point to the robot as defined in Equation (2)

xd(nþ 1) ¼ xdemo(nþ Dn): (2)

where xd is the current desired pose and Dn is defined in Equation (3)

as follows:

Dn ¼
0 IF ALP , ALPb
1 IF ALPb � ALP , ALPb þ 1ð Þ=2
2 IF ALP � ALPb þ 1ð Þ=2

8<
: (3)

where ALPb is a subject-specific threshold computed in a baseline

recording phase. In this way, the lower the ALP, the lower the Dn,

and the higher the time needed to complete the replay of the

demonstrated trajectory. If the participant slacks, e.g., ALP � ALPb,

the robot will not move until the model estimates a user

ALP � ALPb. The choice of parameter values (0, 1, and 2) in

Equation 3 represents distinct action levels based on ALP, with

(ALPb þ 1)=2 evenly dividing ALP � ALPb. These values were not

empirically determined but selected for interpretable adaptation

control strategy.
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2.1.4 Interaction control
The interaction between the robot and the user is managed by a

Cartesian impedance controller around a set point. The robot

motion dynamics along with the implemented control law are

reported in Equation (4)

tc ¼ B(q)y þ C(q, _q) _qþ Fv _qþ Fssign( _q)þ g(q)
y ¼ Jy(q) � K � ~x ¼ Jy(q) � K � xd � xað Þ

�
(4)

where B(q) is the robot inertia matrix, C(q, _q) accounts for

Centrifugal and Coriolis effects, Fv is the viscous friction torque,

Fssign( _q) is the static friction torque, g(q) is the gravity

contribution, q, _q and €q are the robot joint position, angular

velocity and acceleration, respectively, tc is the torque supplied

by the actuators and y is the control law. In particular,

Jy ¼ JT (J � JT )�1 is the right pseudo-inverse of the robot

Jacobian, K is the diagonal stiffness matrix of the task space and
~x ¼ xd � xa represents the pose error between the desired pose

xd and the current pose xa.

In order to acquire the demonstration trajectory to be replayed

by the robot in a specific session, the robot was set transparent by

defining the current stiffness matrix as K ¼ diag{0, 0, 0, 0, 0, 0} N/

m. Once the recording starts, the users can freely move their arm

attached to the robot end-effector, and the Cartesian position

and orientation are saved in the reference demonstration xdemo.

The set-point xd introduced in the control law in Equation 4 will

be xd [ xdemo. As already explained, the desired position is taken

sequentially from the demonstrated trajectory according to the

participant’s estimated ALP, see Section 2.1.3.

Impedance control and trajectory recording with patient

involvement are crucial safety measures in robot-aided

rehabilitation. Impedance control adapts the robot’s response to

user-generated forces generating compliant physical interactions.

Recording trajectories with the patient connected to the robot

ensures that robot movements align with the patient’s abilities

and natural joint motions, enhancing safety during therapy.
2.2 Experimental validation

To validate the proposed approach, an experiment was

performed by enrolling 15 healthy participants (10 males and 5

females, 34:5+ 14:2 mean age). All of them signed a written

consent to participate in this study and the study was approved

by the Ethical Commission of the UZ Brussel (BUN:

1432022000180). Specifically, the validation of the proposed

approach was structured into two experimental sessions. The

former session focused on collecting data from human-robot

interactions to train and calibrate the machine-learning model

for ALP estimation. After the model was validated offline, the

latter session implemented the trained model in real-time.

During this phase, ALP predictions were timely performed by

processing data collected from the custom-developed multimodal

interface. The interface extracted features from EMG signals and

pressure data, which were provided as input to the trained model
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FIGURE 3

Schematic representation of the protocol for the second
experimental validation phase. Both the Control Group (CG) and
Experimental Group (EG) performed 15 repetitions during the
baseline recording phase. Following this, the CG completed 15
repetitions without robot adaptation, while the EG completed 15
repetitions with the adaptive ALP-driven impedance control.
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to infer the ALP. This enabled the adaptive ALP-driven impedance

controller to dynamically modify the task execution time based on

the participants’ estimated ALP, providing closed-loop feedback.

The second phase aimed to evaluate the differences in

performance and engagement achieved with the adaptive ALP-

driven controller compared to a conventional impedance

controller, highlighting the benefits of tailoring robot behavior to

user participation.

Figure 2 presents the experimental setup used in this study. The

Kuka iiwa LBR Med, reported in Figure 2A (34), is the robotic

device used to deliver motor therapy along with the multimodal

monitoring (see Figure 2B). To record the reference trajectory

xdemo, the subjects are securely strapped into the human-robot

interface (see Figure 2C), and their arm’s motion is recorded

while the robot is attached. A demonstration is initiated by the

subject using a pedal, and the motion capture begins. The

participant moves its arm, and the Cartesian poses, including

position and orientation, of the end-effector, are recorded. These

recorded poses serve as the reference trajectory and are

subsequently replayed during the experimental sessions. The end-

effector follows the recorded trajectory, allowing the subject to

experience the previously demonstrated motion during the

rehabilitation exercises. A video providing an accessible overview

of the platform used for validating the proposed control strategy

can be found online.1

In the first experiment, five participants were asked to perform

shoulder flexion/extension (sFE) movements with the robot aid.

sFE involves lifting the arm forward and lowering it to the side

of the body. This motion was chosen due to its relevance in

rehabilitation exercises, particularly for training shoulder joint

mobility. Moreover, participants were instructed to maintain an

extended elbow to prevent multi-joint interactions. Participants

comfortably sat near the rehabilitation cobot and inserted their

right arm into the human-robot interface for the study. Initially,

robots recorded the sFE movement (xdemo) while they were

transparent to participants’ actions. The stiffness matrix of the

robot was set at K ¼ diag{500, 500, 500, 300, 300, 300} N/m for

position and N/rad for orientation, which are typical values for

upper limb rehabilitation platforms (35). The participants then

completed 30 repetitions of the recorded motion in two

experimental conditions: Passive Participation (PP), where they

relaxed while the robot guided their arm, and Active

Participation (AP), where they actively tried to follow the

trajectory and engage in the task.

During the second phase of experimental validation, real-time

ALP estimation was utilized to adapt the robot’s behavior. Two
1The proposed system was validated using the SAFER robotic platform. The

SAFER platform was first recognized as a finalist in the KUKA Innovation

Award 2022 “Robotics in Healthcare Challenge,” highlighting its potential

in rehabilitation robotics. Following this achievement, the system was

showcased for a week at the MEDICA Trade Fair 2022. https://www.

youtube.com/watch?v=7mKhciQYCus.
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groups, each consisting of five participants, were involved in this

study. All participants performed 30 repetitions of the sFE task,

and no additional information was provided to ensure unbiased

results. The experiment began with 15 repetitions to establish a

baseline for participant ALP, computed using a subject-specific

threshold, ALPb, as the average ALP during this phase. For the

remaining experiments, a double-blinded approach was adopted,

with both the participants and the researcher unaware of which

controller was used. The CG interacted with a non-adapting robot

with fixed Dn ¼ 2 samples, while the EG received rehabilitation

using the ALP-adapting robot. A schematic representation of the

second experimental session is provided in Figure 3.
2.3 Performance indicators

The first experimental phase assesses the ML models capability to

estimate the ALP. A k-fold cross-validation (k ¼ 5) is carried out on

the collected dataset to compute the performance of the implemented

classifiers in accurately predicting both the label and the score. In

particular, the training set, per each fold, is composed of the 80%

of the dataset, and the i-th fold (20%) is split up into a validation

set (10%), used to calibrate the classifiers, and a test set (10%), on

which are computed the accuracy and the Brier Score (BS).

Accuracy is defined as the proportion of the correct predictions

with respect to the total number of tested samples. BS measures the

accuracy of probabilistic predictions (36) and it can be computed as

reported in Equation (5)

BS ¼ 1
N

XN
i¼1

fi � oið Þ2 (5)

where N is the number of tested samples, fi is the predicted value and

oi is the observed one. The BS computes the mean squared error
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between the predicted probabilities and the observed values. The

lower the BS, the better the predictions are calibrated. The best-

performing model among the tested ones, e.g., LDA, SVM, LR, and

kNN, will be run in the second experimental phase as the ALP

model in real-time.

In the second experimental phase, the ALP-adapting robot is

compared with respect to the not-adapting condition by means

of a set of performance indicators assessing the biomechanics of

the human-robot interaction as well as the subjective perception

of the controllers.

• ALP: since the underlying hypothesis focuses on investigating

whether the real-time adaptation of the behavior of the robot

according to the participant’s ALP can indeed foster greater

participation, ALP has to be used as a performance indicator.

• Robot mechanical work (WR): it serves as an indicator of the

user’s contribution to the system. Equation (6) reports the

formula to compute the robot mechanical work.

WR ¼
XT
t¼1

F(t) � v(t) � Dtð Þ (6)

where T is the number of samples collected in the experiment,

and F and v are the interaction force and the end-effector speed

in Cartesian space computed at the time instant t, respectively.

The numerical integration of this dot product yields the work

done by the robot. Positive work indicates that the interaction

force is aligned with the desired motion, while negative work

suggests resistance to the robot’s movement. WR is specifically

computed during the shoulder flexion phase, where

participants actively compensate for the gravitational force.

• Trajectory Error (TE): the error in following the reference

position is computed as reported in Equation (7)

TE ¼ 1
T

XT
t¼1

kpd(t)� pa(t)k (7)

where T is the number of samples collected in a session phase

and pd and pa represent the desired and current position in

Cartesian space at the t-th time stamp. The higher the user

performance, the lower the TE.

• Integrated EMG (iEMG): since the proposed ALP-adapting

robot wants to stimulate the participant to play the main role,

the movement intention of the participant was measured by

extracting the integral of EMG signal. In particular, the EMG

was preprocessed by means of a bandpass 4th order

Butterworth filter in the range [15–400] Hz. Moreover, the

signal was rectified and a zero-lag 100 ms moving average

filter was applied to compute the enveloped EMG (EnEMG).

The formula to compute the iEMG is reported in Equation (8)

iEMG ¼
XT
t¼1

EnEMG(t)ð Þ (8)
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where EnEMG is the enveloped EMG, T represents the total

number of samples collected in an experimental phase, and t

indexes the t-th sample. iEMG increase denotes a greater

muscular contribution in accomplishing the motor task.

In order to highlight the effect of the robot adaptation on the

participants, the aforementioned performance indicators

computed during the second 15 repetitions were normalized with

respect to the values observed in the baseline recording phase as

described in Equation (9)

DX ¼ X � Xb

jXbj � 100 (9)

where X is one among {ALP, WR, TE, iEMG} and Xb is the mean

value of the metrics computed in the baseline phase.

Moreover, the subjective perception of the controllers on the

participants is assessed by means of questionnaires. The

engagement in interacting with the robot was assessed by means

of the Self Assessment Mannequin (SAM) questionnaire. The

SAM allows the participants to declare their Valence of the

response, perceived Arousal, and perceived Dominance evoked

by rehabilitation cobot use. Moreover, the NASA-TLX was

administered to assess the perceived workload in interacting with

the robot in the two experimental conditions. In particular, the

participants were asked to rate from 0-10 their experience in

terms of Mental Demand (MD), Physical Demand (PD),

Temporal Demand (TD), Performance (PER), Effort (EF), and

Frustration (FR).
2.4 Statistical analysis

To assess the effect of the user ALP-adapting robot use with

respect to the simple impedance controller, a statistical analysis

has been carried out on the collected data. In particular, the

Wilcoxon rank-sum test is performed on the aforementioned

performance indicators for the two groups of participants: CG

and EG henceforth. This test assesses whether a significant

difference exists between the two investigated conditions. The

significance level is set at p-value � 0:05.
3 Results and discussions

In the training phase, a total of 1,500 samples were collected

from 5 subjects, with each subject contributing 300 samples,

corresponding to a 10 s duration for each of the 30 repetitions of

the sFE task.

Figure 4 reports the results of the first experimental phase. In

particular, the calibration plots, shown in Figures 4A–D, present

the mean predicted probabilities (MPP) vs. the fraction of

positives (FOP) returned by the four tested ML approaches. The

bisector line represents a perfectly calibrated model. Moreover,

the histograms of the occurrences of the MPP are reported

in Figures 4E–H.
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FIGURE 4

Calibration results of the tested ML approaches. The calibration plots, comparing the mean predicted probabilities (MPP) with the fraction of positives
(FOP), are shown for each model: LDA (A), SVM (B), LR (C), and kNN (D). The histograms in panels (E), (F), (G), and (H) depict the occurrences of the
MPP for each corresponding model. Among the models, LDA demonstrates a calibration closer to a uniform distribution, while the others exhibit a
more normally distributed pattern in their calibrated classifiers.

TABLE 1 Calibrated models performance.

Accuracy [%] Brier score
Linear discriminant analysis (LDA) 75:3+ 6:9 0:15+ 0:01

Support vector machine (SVM) 59:8+ 4:1 0:23+ 0:01

Logistic regression (LR) 70:6+ 5:7 0:17+ 0:01

k-nearest neighbors (kNN) 58:5+ 2:6 0:24+ 0:01

FIGURE 5

Raw data collected during the second experimental session,
including the ALP estimated in real-time for a representative EG
participant. The plots display the robot’s position along the z-axis
(pz

a), the EMG signals, the normalized pressure data (P), and the
estimated ALP. The timeline highlights key phases: demonstration
recording (t � tR), baseline calculation (tR , t � tB), and the
adaptive experimental phase (t . tB) where the robot dynamically
reacts to ALP. Notably, the participant exhibited an increasing ALP
during the adaptive phase compared to the baseline phase. This
increase is derived from changes in the EMG and pressure signals,
which reflect the participant’s heightened engagement as the
robot became responsive to the estimated ALP. This result
highlights the effectiveness of the adaptive control strategy in
fostering active participation.

Tamantini et al. 10.3389/fdgth.2025.1559796
The calibration process aims to refine probability estimations

made by ML classifiers. SVM and kNN display less effective

calibration, struggling to cover the entire probability range. In

contrast, LDA and LR provide more balanced and well-calibrated

probabilities. LDA’s unique behavior might arise from its

emphasis on class separability, while LR’s statistical nature

contributes to uniform distribution. A well-calibrated model

should offer balanced predictions for the same MPP. SVM, LR,

and kNN result in calibrated classifiers that resemble a normal

distribution for MPP, whereas LDA, with less bias toward

uniform values, appears closer to a uniform distribution. These

differences in performance are influenced by the inherent

characteristics of each classifier.

The performance of the tested models is summarized in

Table 1. The analysis of the models’ performance shows that

LDA achieved the highest accuracy with 75:3+ 6:9% and the

lowest Brier score of 0.15. The other models have a lower

performance. These results highlight the distinctive effectiveness

of LDA in the specific area of prediction model analysis.

In the second experimental session, real-time model accuracy

evaluation was hindered because participants were unaware of

the experiment’s purpose. They interacted naturally, making

binary labels unobtainable. Therefore, the real-time model used
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data from all training session participants (not subject-specific)

to estimate the ALP in the second session. Figure 5 shows the

actual position of the robot along the z-axis (pza), and the

normalized EMG and pressure (P) collected during the second
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FIGURE 6

Evolution of DALP over 15 experimental repetitions for the Control
Group (CG) and Experimental Group (EG). Solid lines represent the
mean DALP values for each group, with shaded areas indicating
95% confidence intervals. Dashed lines display individual
participant DALP trends. The CG group exhibited a constant DALP,
whereas the EG group demonstrated a steady increase, reflecting
enhanced active participation.

FIGURE 7

ormance indicators and questionnaire scores (SAM and NASA-TLX)
for the two experimental groups. Bars represent the mean values,
and solid black lines denote the 95% confidence intervals.
Significant differences are observed in DALP, DWR , DiEMG, and
SAM Arousal between the Control Group (CG) and Experimental
Group (EG), highlighting that the adaptive ALP-driven impedance
control effectively increased participation, physical workload, and
muscle activation in the EG. The NASA-TLX results showed
comparable perceived workload between groups, with a higher,
yet not statistically significant, effort reported by the EG.
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experimental session, along with the ALP estimated in real-time, of

a representative EG participant. It’s important to emphasize the

temporal sequence: for t � tR, the demonstration trajectory is

recorded, for tR , t � tB, the baseline is computed, and

subsequently (t � tB), the experimental phase commences where

the robot adapts based on the ALP. As soon as the adaptive

modality begins, the robot stops and waits for more participant

intervention before proceeding with trajectory generation.

The DALP estimated during the last 15 repetitions of the

experiment for the two groups is reported in Figure 6 over time.

In particular, the solid lines represent the mean value per each

group and the shaded areas stand for the 95% confidence

interval. It is worth evidencing that the CG did not exhibit any

modification of the ALP over time since the behavior of the

robot did not change. Moreover, in order to provide a detailed

view of the interaction of the various participants, the dashed

lines show the DALP estimation of each participant. Examining

the ALP estimates of individual participants, notable observations

emerge: all the CG participants experienced no significant change

in their ALP throughout the experiment. Conversely, EG

participants displayed a clear and consistent increasing trend in

their DALP over time, except for two subjects whose DALP

remained � 25% by the end of the session.

The DALP along with the other performance indicators,

introduced in Section 2.3, are reported in Figure 7. The bar plots

show the mean value of the indicator computed for the two

groups of participants and the solid black line stands for the 95%

confidence intervals. Moreover, the statistically significant

differences are highlighted by means of asterisks: {�} for 0:01 �
p-value � 0:05, {��} for 1� 10�3 � p-value � 0:01 and {����}
for p-value � 1� 10�3.

As already shown in Figure 6, the DALP significantly increased

in the second part of the experiment only for the participants who

interacted with the ALP-adapting robot (EG).
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The participants’ physical workload during the shoulder flexion

phase of the sFE exercise was assessed using WR to determine their

ability to counteract gravitational forces. The change in WR,

denoted as DWR, showed a notable increase in the experimental

phase. For the EG, it changed from �32:9+ 29:1 J during

calibration to 4:3+ 39:1 J in the experimental phase, indicating

increased participant effort. In contrast, the CG displayed a slight

decrease in DWR, with values of �43:5+ 32:3 J during

calibration and �53:0+ 42:8 J in the experimental phase. This

suggests that CG participants progressively slackened their arm

movements as the interaction forces during shoulder flexion

opposed the intended motion. Conversely, EG participants

exerted more effort, pushing in the same direction as

the movement.

The performance of the two experimental groups, in terms of

TE, was comparable. The errors in tracking the demonstrated

path were (7:3+ 6:8)� 10�3 m and (5:4+ 3:7)� 10�3 m for

the CG and EG respectively. The participants interacting with

the ALP-adapting robot exhibited a non-statistically significant
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improvement in their performance as soon as the robot started

reacting to them. In particular, during the flexion of the

participants’ shoulders, they were capable of reaching higher

positions on their own.

Muscle activity significantly increased in EG participants

during the experimental phase compared to the baseline, as

reflected by a remarkable approximately 130% rise in DiEMG

and a significant difference (p-value = 0.01) between the two

phases. This substantial increase suggests that the adaptive ALP-

driven impedance controller effectively encouraged active

participation among EG participants. In contrast, CG

participants experienced only a marginal rise in muscle activation

compared to their baseline measurements.

These results point out the beneficial effect of the ALP-

adapting robot to improve muscle engagement. In the context of

rehabilitation, in order to effectively training the targeted body

area, an increase in muscle activity is required to stimulate

strength recovery. Although it is essential that the patient

participates actively by providing mechanical work and muscular

effort, it would be important to monitor fatigue and avoid

overexertion. The proposed multimodal monitoring interface is a

modular platform that offers the potential to integrate

additional metrics, such as conduction velocity to better fatigue

phenomena (37) and/or add further physiological signals that

could enable the detection of inter-individual or gender-

related differences.

Lastly, the results regarding the level of engagement and

perceived workload are depicted in Figure 7. The Self-Assessment

Manikin (SAM) questionnaire revealed that both experimental

groups experienced positive feelings and felt confident while

interacting with the robot, as indicated by high values of Valence

and Dominance, respectively. However, there was a significant

difference in the Arousal ranking between the two groups

(p-value = 0.007). This indicates that interacting with the

adaptive ALP-driven impedance controller significantly enhances

the participants perceived excitement during the interaction.

The NASA Task Load Index (NASA-TLX) questionnaire

showed that the perceived workload was rated in a comparable

manner by the two participant groups. However, a not

statistically significant difference in the perception of effort can

be observed (p-value = 0.31). The CG rated the effort perception

as 2:8+ 1:5, while the EG rated it as 4:8+ 3:0. This may

suggest that the ALP-adapting robot was perceived more effort

from the participants to proceed with the therapy than the non-

adapting robot.

Comparative analysis with a conventional impedance

controller underscored the importance of adapting to the

individual user’s needs for optimizing robot-aided rehabilitation.

The experimental validation yielded promising results, with the

adaptive ALP-driven impedance control effectively modifying

task duration based on user ALP. While both CG and EG

achieved accurate trajectory tracking, EG participants displayed

performance improvement and increased muscle activation.

Subjective feedback reflected positive experiences and confidence

in robot interaction, with the adaptive controller significantly

heightening perceived excitement.
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While our study involved 10 participants (divided into control

and experimental groups), it aligns with the sample sizes reported

in most studies exploring innovative adaptive control strategies in

robotic rehabilitation, which primarily use healthy participants.

For instance, (13) tested their multi-sensor system with 12

healthy volunteers, (14) validated their cooperative control

strategy with 4 healthy participants, (38) conducted preliminary

tests with 3 healthy individuals, and (39) included 12 healthy

participants and preliminary tested their proposed approach with

2 post-stroke patients. This trend highlights that the majority of

studies focus on healthy participants in their initial evaluations,

as we did, to demonstrate the feasibility and technological

effectiveness of their methods.

Moreover, it is worth noticing that the proposed method has

the potential to be further enriched by incorporating data from

individuals exhibiting non-physiological motor behaviors, such as

those resulting from impairments or pathologies. Integrating

such behaviors into the training dataset would enhance the

model’s capacity to generalize, allowing it to accurately estimate

ALP for a wider range of users, including those with

motor dysfunctions.

Lastly, a limitation of this study that must be acknowledged is

that the ALP-based control strategy was solely validated in a

controlled laboratory setting against a conventional impedance

control approach. While the results underscore the potential of

the proposed methodology to enhance user active participation, it

is worth extending this validation to clinically relevant settings. It

is recommended that subsequent studies concentrate on

evaluating the clinical efficacy of the ALP-guided control strategy

by involving patients with motor disabilities and assessing its

impact on functional recovery and therapeutic outcomes in real-

world rehabilitation settings.
4 Conclusion

This paper introduced a novel methodology for objectively

estimating the ALP in upper-limb robot-aided rehabilitation

sessions and an adaptive ALP-driven impedance controller. The

estimation model exploits information coming from a

multimodal monitoring interface that captures electromyographic

activity and pressure at the human-robot interface.

A machine-learning model training and calibration procedures

were performed using data collected from five healthy participants,

with LDA identified as the most suitable classifier based on its

accuracy and calibration quality. The calibrated model was then

used to estimate real-time ALP in two groups of five participants

each: CG and EG, interacting with a rehabilitation cobot. The

EG participants, experiencing the proposed adaptive ALP-driven

impedance controller, exhibited significantly higher physical

workload, muscle activity, and perceived excitement compared to

the CG. These findings indicate that closing the robot control

loop effectively enhances interaction and stimulates participants

to increase their level of participation.

Future work will focus on clinically validating this approach

with a larger and more diverse participant population, including
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individuals with limited motor functions, to strengthen the

statistical significance of the promising results observed in this

study. Additionally, efforts will be devoted to integrating

additional sensors for enhanced monitoring of patient

parameters. Moreover, estimating ALP could assist in quantifying

patients’ participatory abilities at various stages of their motor

recovery by integrating ALP with conventional medical

assessment scales.
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