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Data stored within electronic health records (EHRs) offer a valuable source of

information for real-world evidence (RWE) studies in oncology. However,

many key clinical features are only available within unstructured notes. We

present ArcTEX, a novel data enrichment pipeline developed to extract

oncological features from NHS unstructured clinical notes with high accuracy,

even in resource-constrained environments where availability of GPUs might

be limited. By design, the predicted outcomes of ArcTEX are free of patient-

identifiable information, making this pipeline ideally suited for use in Trust

environments. We compare our pipeline to existing discriminative and

generative models, demonstrating its superiority over approaches such as

Llama3/3.1/3.2 and other BERT based models, with a mean accuracy of

98.67% for several essential clinical features in endometrial and breast cancer.

Additionally, we show that as few as 50 annotated training examples are

needed to adapt the model to a different oncology area, such as lung cancer,

with a different set of priority clinical features, achieving a comparable mean

accuracy of 95% on average.

KEYWORDS
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1 Introduction

Electronic health records (EHR) represent a vast and increasingly utilized source of

information for real-world evidence (RWE) generation. Examples of such applications

include retrospective cohort studies, comparative effectiveness studies, and the creation

of external control arms (1). In oncology, molecular profiling is increasingly being used

to guide patient management, enabling more personalised treatment approaches. For

example, molecular profiling of endometrial cancer has revealed at least four distinct

subtypes of disease, each requiring different approaches to optimal clinical management

(2). However, many of these key biomarkers are often recorded in unstructured clinical

reports rather than structured data, making it challenging to incorporate them into real-

world evidence studies. In general, it is estimated that at least half of all information is

stored in unstructured form (3). Further automatic processing of this text remains

challenging because of the unique language and idioms used by clinicians (4). This

poses significant challenges for evidence generation as key insights into symptom

profiles, clinical markers, response to treatments, or other clinically relevant areas are

not directly accessible.
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The manual extraction of this information is time consuming,

binds capacity of clinical experts and often not practically possible

to do at scale (4). Various natural language processing (NLP)

methods have been developed to tackle this problem ranging

from simple rule-based methods, N-grams to more complex

machine learning approaches such as support vector machines,

recurrent neural networks or pretrained text embeddings like

Glove or word2vec (5). In 2019, the field was massively impacted

by the development of transformer-based machine learning

methods such as BERT (6) and its domain specific adaptations

such as BioBERT (7). These models can be considered as

discriminative models (DM) as they only consist of an encoder

structure and are not able to generate new text. Recently these

techniques have been further developed and resulted in the

development of large language models (LLMs) such as Llama by

Meta (8) which have shown promising results. LLMs are often

defined as models with over 1 billion parameters and are often

generative models (GMs), as they consist of an encoder-decoder

or decoder only architecture, which can be used to generate new

text, for instance to answer questions or summarize text.

Beside these technical advancements, the problem of extraction

of clinical terms, also referred to as name entity recognition (NER),

is still not solved as demonstrated by Abdul et al. (9). The authors

released a leaderboard consisting of 4 publicly available clinical

NER datasets which contain clinical conditions, procedures,

medications and laboratory test names. They benchmarked various

state of the art models such as Llama, Open AI GPT4o or Mixtral.

The best performing model achieved an average F1-score of only

77.1%, indicating that it is still challenging for a single model to

extract a wide range of clinical terminologies accurately.

A second finding is that, even though the generative capabilities

of LLMs are impressive (e.g., text summarization, question-

answering systems), LLMs are not always superior compared to

alternative DMs such as BERT based models. Chen et al. showed

that BERT models have a higher accuracy compared to GPT3.5

and GPT4 on tasks like clinical NER and relation extraction (RE)

(10). A similar conclusion was reported by Zhu et al. in their

paper “Is larger always better?” (11) and Chen et al. (12).

From an application point of view, multiple technical and legal

aspects need to be considered when NLP algorithms are used to

extract information from clinical notes. First, free-text clinical

reports often contain both sensitive medical information as well

as personally identifiable information (PII). In the case of a data

breach, this could pose a major risk to both the individuals

whose data has been leaked, as well as to the healthcare

providers who held the data. As an example, many NHS Trusts

(The organizational units that encompass regional/local NHS

services such as hospitals within the UK) don’t allow external

partners direct access to the free text reports. In some cases,

deidentification protocols can be used to redact PII from free-

text reports to give external users access to the reports. These

methods, however, are often overzealous to ensure total PII

redaction, and can result in data loss through misidentification of

text for redaction. An alternative approach would be to send

only the NLP algorithm to the data instead of providing direct

access to the data. In this “blind case” scenario, it needs to be

guaranteed that the outcome of the NLP algorithm can be

trusted and is free of any PII.

Second, many UK Trust environments have only limited

hardware resources available. Trust environments are often

resource constrained due to lack of requirement for GPU based

computer resources. Additionally, the usage of web-based APIs

to use LLMs is challenging due to risk of PII leaks as discussed

previously. Additionally, some Trusts keep their EHR data in an

environment without any, or only limited, internet access to

increase data security, which eliminates the possibility of using of

web-API based LLMs. The general availability of on-site GPUs

required to execute some of the larger LLMs, therefore cannot be

assumed. Smaller models, such as BERT based models, with less

than 100–300 million parameters can still be executed in a

resource constrained environment with only CPUs.

In this paper, we present a novel data enrichment model ArcTEX,

which stands for Arcturis Text Enrichement and eXtraction. The

approach was developed to extract oncology specific clinical features

such as specific biomarkers relevant for endometrial or breast

cancer with high accuracy to support RWE studies using UK based

clinical notes. Further, the model is designed to operate within a

resource constrained clinical environment, such as in hospitals or

other clinical settings. The model output is free of PII by design,

and it provides confidence scores which can be used to increase

accuracy of downstream analysis.

The contributions of the paper are threefold:

• Model architecture: Detailed presentation of the model

architecture of ArcTEX and its subcomponents,

• Comparison: Evaluation of ArcTEX and baseline NLP models

(both discriminative and generative) on 18 oncology related

clinical features with respect to accuracy and computation

time (experiment 1), and

• Adaptability: Investigation on amount of training samples

required to achieve a high accuracy for new unseen clinical

features for ArcTEX and selected baseline models

(experiment 2).

2 Materials and methods

2.1 Dataset and annotation

This study took 3,903 individual reports from a wider dataset

of 77,693 fully-anonymised free-text pathology reports provided

by Oxford University Hospital via the Thames Valley and Surrey

Secure Data Environment (min-max number of words per

report: 7-3213 words; mean number of words per report: 339.9).

This dataset consists of a population of oncology patients, with

at least one diagnosis of lung, pancreatic, renal, breast, ovarian,

liver, or endometrial cancer. The dataset was generated by

applying a PII reduction algorithm on the original reports.

Potential PII was replaced in the report with “[redacted]”.

Annotations were performed with a focus on endometrial and

breast cancer related clinical features. Additionally, a clinical feature

from a different oncology area than what the focus of the dataset

was, namely hematological malignancies, was annotated. This
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feature was chosen based on low relative frequency and data type (i.e.,

quantitative vs. qualitative) to provide awider range of types of features

to test the models against. In total 18 clinical features were annotated:

• Endometrial cancer: FIGO stage, grade, p53, MMR, MLH1,

MSH2, MSH6, PMS2, myometrial invasion, and

lymphovascular invasion

• Breast cancer: HER2, ER, and PR

• TNM staging: T, N, and M stages and edition used

• Blast Cell Percentage

In total, 6,514 manual annotations were created. The annotations

could be split into two main groups. Firstly, those where presence of a

given feature can be positively identified (e.g., HER2: positive/negative/

not mentioned; FIGO stage: 2a/2b/3a…), otherwise known as a

positively identifiable answer. The second group consisted of

annotation where there was an absence of positively identifiable

clinical feature (e.g., “…p53 has been requested…”, or reports

missing the feature entirely) otherwise known as an “impossible

answer”. In reports where a feature was mentioned multiple times,

for example directly quoting a previous report and amending the

result with more up to date results, the most clinically severe result

was annotated. The manually annotated reports were then

partitioned into a test set consisting of 100 reports, and the

remaining reports made up the training set, containing 4,714 reports.

Two annotators performed annotations over the dataset, with

Annotator 1 annotating the entire dataset and Annotator 2

annotating 10% of the dataset to validate the ground truth.

Annotator 1 has a background in Medical Visualisation and Human

Anatomy, and has worked previously with histopathological

methods in both academic and teaching settings. Annotator 2 has a

background in medicine, health data science and cancer biology. She

practiced as a junior doctor for 5 years, with experience in

interpreting pathology reports.

The annotations described above were used for both experiments

explored in this manuscript. Experiment 1 focused on the

comparison of each of the interrogated models ability to extract the

statuses of each of the 18 clinical features mentioned above. For

experiment 2, the adaptability of the LLMs was to be tested by

exploring unseen clinical features in a different disease area, in this

case lung cancer. Reports featuring an additional 5 clinical features

associated with lung cancer were therefore annotated; namely

anaplastic lymphoma kinase (ALK), chromogranin (CgA),

epidermal growth factor receptor (EGFR), synaptophysin, and

thyroid transcription factor 1 (TTF1). A total of 200 reports with

identifiable features (e.g., positive, negative) and 100 with absence

of clinical features [e.g not mentioned, (redacted)] were annotated.

2.2 ArcTEX model

The ArcTEX pipeline is made up of two main stages: a question

and answering (QA) stage and a postprocessing stage (Figure 1) In

the QA stage (stage 1), a free-text clinical report (context) is fed

into a question-answering model along with a targeted clinical

question, e.g., “What is the p53 status?”. The model then outputs

the predicted answer along with a confidence score, e.g., [“wild-

type”, 0.985]. The base model utilised in this stage is a BioBERT

(7) QA model, available from HuggingFace1. This BioBERT

model is a BERT based model pre-trained on a large corpus of

biomedical text and the Stanford Question Answering Dataset

[SQuAD (13)]. In contrast to generative models, this model only

predicts the start and end token, which is most likely to answer

the question, ensuring that no hallucinations will be generated.

The model can handle text where the question is unable to be

answered based on available data (impossible answers), and will

return an empty string if it does not believe the answer is

contained within the context. During initial testing, the BioBERT

model was found to be the most accurate model compared to

other common BERT based QA models [RoBERTa (14) and

PubMedBERT (15)]. The BioBERT model was further finetuned

on 4,714 annotated free-text reports obtained from Oxford

University Hospital covering descriptions of 18 distinct clinical

features, resulting in the “ArcTEX” model.

In the postprocessing stage (stage 2), the predicted answers from

the QA model are classified into predefined, clinically relevant

categories specific to a given biomarker, e.g., p53: positive/negative.

Note that these classes will differ between biomarkers depending on

the values the biomarker can take, but every biomarker will have an

additional class “not present” that indicates there is no mention of

the biomarker value present in the report. See Table 1 for a full list

of biomarker classes. As an initial step, blank answers and low-

confidence answers (<10%) from the QA stage are automatically set

to the “not present” class. The remaining answers are fed into a

SetFit (16) classifier, a prompt-free framework for few-shot fine-

tuning of sentence transformers capable of achieving high accuracy

from a small number of labelled training examples. This was done

as an improvement upon the best performing model in initial tests

which used a cosine similarity approach. For each biomarker, this

required training a sentence transformer on 5–10 annotated

examples per class to capture the variance in how biomarker values

were written in different reports. Mpnet-v22 was used as a sentence

transformer. For each report, the ArcTEX pipeline then outputs a

predicted clinical category along with the confidence scores of the

QA stage and the SetFit classifier (see Figure 1). This ensures that no

PII can be leaked from the outputs and allows the user to tweak the

outputs by applying their own custom thresholds to the model

confidence scores.

2.3 Baseline models

To evaluate the ArcTEX model, the two stage ArcTEX pipeline

was used to test a selection of DMs: RoBERTa and BioBERT, as

well as larger GMs: Llama3-8B-Instruct, Llama3.1-8B-Instruct,

Llama3.2-3B-Instruct and Llama3.2-1B-Instruct against the ArcTEX

model itself. Llama models with a higher number of parameters

1https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad

2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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were excluded from the evaluation as they could not be executed in a

resource constrained environment (an environment ideally without a

GPU). To allow for a fairer comparison, all models were finetuned

using the same dataset that ArcTEX was trained on. The finetuned

models were abbreviated as model_name (ft). For the DMs, the

finetuning was performed identically given the shared training

schema used between them. The GMs were also trained in a

supervised manner, however, due to the significant size of these

models they were trained using Quantized Low-Rank Adaptation

(QLoRA) (17, 18) on a GPU machine. A description of each model

evaluated can be found in Table 2.

As the GMs require prompting, a role-based instructional

approach was adopted. The prompt format that returned the

reported results used both a “system prompt” and an

“instructional prompt”. This method was demonstrated to be an

effective prompting method previously (19). An example of the

prompts used can be seen in Figures 2, 3. The bracketed

question, context, and biomarker fields were filled with specific

data relevant to each clinical feature and on a report-by-report

basis. Additional special tokens were also added to the prompts

as described by their model cards (20, 21).

To test the initial baseline models, the postprocessing stage was

simplified to handle the variation in GM output. Firstly, regex was

applied to extract the text following the biomarker string as per the

prompt template in Figure 2. The extracted text was then classified

into categories by computing the cosine similarities between the

text embeddings and the embeddings of the same annotated

training data used to train the SetFit classifiers. These

embeddings were also generated using the Mpnet-v22 sentence

transformer. The baseline models were then finetuned and

evaluated again in the same manner using cosine similarity.

Additionally, RoBERTa was run with the SetFit classifier to

compare it to ArcTEX. The GMs were not run with the SetFit

classifier due to the way that the GMs generate their response.

GMs possess the ability to generate text to respond to a question,

and therefore do not rely on the actual text content to generate

their response. Because of this, the additional time and resources

associated with running and using a SetFit classifier over an

approach like cosine similarity are unjustified. In comparison,

because DMs directly lift text snippets from the queried text,

they are sensitive to variability in spelling (including errors) or in

reporting styles.

FIGURE 1

Schematic illustration of the ArcTEX pipeline which uses a 2-stage question-answering approach, illustrated on the example extraction of p53 clinical

feature.

TABLE 1 List of possible classes for each clinical feature.

Clinical feature Classes

ALK Positive, Negative, Equivocal

Blast cell Percentage [0–100%], No Excess, An Excess

CgA Positive, Negative

EGFR Positive, Negative

ER Positive, Negative, [0–8]

FIGO 1,1a,1b,1c,2,2a,2b,3,3a,3b,3c,4,4a,4b

Grade 1,2,3,4

Her2 Positive, Equivocal, Negative, 1, 2, 3

Lymphovascular Invasion Present, Absent

Myometrial Invasion Present, Absent

MMR Intact, Deficient

MLH1 Present, Absent

MSH2 Present, Absent

MSH6 Present, Absent

PMS2 Present, Absent

PR Positive, Negative, [0–8]

P53 Positive, Negative

TNM staging T 0,1,1a,1b,1c,2,3,3a,3b,4,4a,4b

TNM staging N X,0,1,1a,1b,2,2a,2b,2c,3,3a,3b

TNM staging M X,0,1,1a,1b,1c

TNM staging Edition 5,7,8

Synaptophysin Positive, Negative

Where numerical features are present, a larger range is represented in square brackets.
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2.4 Experimental setup

2.4.1 Experiment 1: model comparison
The objective of the first experiment is to evaluate the

performance of the ArcTEX model compared to both types of

baseline models—DMs and GMs. All models were evaluated in a

base version (without finetuning) and finetuned versions using

the two stage ArcTEX pipeline. The test set consisted of 100

reports for each of 18 clinical features and was excluded from

any finetuning data used to train the finetuned models to ensure

TABLE 2 Description of models evaluated.

Model name Description

ArcTEX Huggingface BioBERT finetuned on 4,714 free-text pathology reports, using a SetFit classifier

BioBERT Huggingface BioBERT model, using a cosine similarity classifier

BioBERT (ft) Huggingface BioBERT finetuned on 4,714 free-text pathology reports, using a cosine similarity classifier

RoBERTa Huggingface RoBERTa model, using a cosine similarity classifier

RoBERTa (ft) Huggingface RoBERTa finetuned on 4,714 free-text pathology reports, using a cosine similarity classifier

RoBERTa (ft) + SetFit Huggingface RoBERTa finetuned on 4,714 free-text pathology reports, using a SetFit classifier

Llama-3 8B Huggingface Llama-3 8 billion parameter model with cosine similarity classifier

Llama-3 8B (ft) Huggingface Llama-3 8 billion parameter model finetuned on 4,714 free-text pathology reports, with cosine similarity classifier

Llama-3.1 8B Huggingface Llama-3 8 billion parameter model with cosine similarity classifier

Llama-3.1 8B (ft) Huggingface Llama-3 8 billion parameter model finetuned on 4,714 free-text pathology reports, with cosine similarity classifier

Llama-3.2 1B Huggingface Llama-3 8 billion parameter model with cosine similarity classifier

Llama-3.2 1B (ft) Huggingface Llama-3 8 billion parameter model finetuned on 4,714 free-text pathology reports, with cosine similarity classifier

Llama-3.2 3B Huggingface Llama-3 8 billion parameter model with cosine similarity classifier

Llama-3.2 3B (ft) Huggingface Llama-3 8 billion parameter model finetuned on 4,714 free-text pathology reports, with cosine similarity classifier

FIGURE 2

Prompt template used for question answering pipeline.

FIGURE 3

System prompt used for directing model to perform task in a particular way.
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no overlap between test and training sets. For each of the test sets,

50 reports that contained a positively identifiable reference to the

clinical feature (e.g., “positive”, “negative”, “wild-type”, “3/8”, “+”)

and 50 that contained either no reference or a non-positively

identifiable reference to the feature [e.g., “[redacted]”, “…{feature}

is requested…”]. The 18 features annotated for were: FIGO stage,

grade, p53, MMR, MLH1, MSH2, MSH6, PMS2, myometrial

invasion, and lymphovascular invasion, HER2, ER, and PR,

TNM stage (T, N, and M stages as separate features), TNM

staging edition, and blast cell percentage. The accuracy was

calculated as the percent of correctly identified and classified

outputs as compared to the human annotated ground truth. The

average accuracy across the above features was calculated per

model, with the standard deviation around the average calculated

based off the variation in results per feature. 95% Confidence

Intervals (95% CI) were also calculated and are enclosed in

square brackets beside the average scores. In addition to

accuracy, F1-scores were also calculated with 95% CI and

standard deviations, along with the average precision and recall

as well as required runtime on the same hardware system.

2.4.2 Experiment 2: adaptability
The objective of this experiment is to investigate how adaptable

ArcTEX is compared to finetuned RoBERTa, BioBERT, and Llama

3.1-8B models for extracting new oncological features from a

different oncological area. Therefore, the models were tested to

extract lung cancer specific features namely: anaplastic

lymphoma kinase (ALK), chromogranin (CgA), epidermal

growth factor receptor (EGFR), synaptophysin, and thyroid

transcription factor 1 (TTF1). For each of these five features, a

test set of 50 examples with positively identified clinical markers,

and 50 examples with negatively identified clinical markers was

generated from the pool of ground truth annotations (200

annotated reports for each clinical feature). These remained

consistent in the testing of the model. The remaining 100

samples were set aside to form the training sets. For the analysis,

the experiment was repeated 5 times over a set of 5 permutations

of the afore mentioned test/training set split. For each

permutation, the training set was further subdivided into varying

sizes of 5, 10, 20, 50, and 100 reports using random sampling.

The average accuracy across all five features were computed

depending on the size of the training set to investigate the

amount of training data required to reach an accuracy plateau.

2.5 Technical setup

The computations were performed on AWS cloud platform

using a g6.2xlarge instance3, with 32 GiB memory, a single

NVIDIA L4 GPU and 8 vCPUs.

3 Results

3.1 Interrater variability

A subset of 10% of the groundtruth was annotated by a

secondary annotator to evaluate interrater variability. Agreement

was measured with Cohen’s Kappa coefficient, and was found to

be 0.962 on average, with a 95% CI of 0.026 indicating high

agreement between raters.

3.2 Experiment 1: model comparison

The overall results can be found in Table 3, with plots of the

accuracies displayed in Figure 4 and the F1-scores in Figure 5. The

results show clear competition between the base models regardless

of type. Generally, the larger base GMs outperform the base DMs,

with an average accuracy of 79.83% for Llama 3 and 78.94% for

Llama 3.1, compared to ∼64% for RoBERTa and BioBERT. Llama

3.2 (3B) is more comparable to the base DMs with an accuracy of

57.39%, with Llama 3.2 (1B) only managing to achieve 37.56%.

Comparatively, the finetuned models follow a different trend. The

finetuned DMs in this case perform better than the finetuned

GMs, with BioBERT (ft) and RoBERTa (ft) scoring 96.61% and

89.78% accuracy respectively. With the SetFit classifier, a moderate

increase in accuracy of 1.16% to 90.94% was observed for

RoBERTa (ft). The Llama 3.1 model showed a moderate

improvement in accuracy with fine tuning, increasing from 78.94%

to 83.33% accuracy and a moderate narrowing in the 95% CI,

reflecting greater stability across markers compared to the base

model. Llama 3 saw a minor decrease in accuracy, going from

79.83% to 79.22% accurate. This was, however, accompanied by a

decrease in the 95% CI width which indicates greater consistency

across different clinical features. Both Llama 3.2 models saw an

increase in accuracy and a decrease in 95% CI, with Llama 3.2

(1B) scoring higher than Llama 3.2 (3B) with a 95% CI. ArcTEX

(a finetuned BioBERT models with SetFit classifier) performed best

overall (98.67% accuracy with the lowest 95% CI).

The F1-scores follow a different pattern to the accuracies, with

the base versions of Llama 3.2 (3B), 3, and 3.1 all outperforming

RoBERTa and BioBERT, but with Llama 3.2 (1B) still performing

relatively poorly in comparison to the other base models. For the

DMs, the F1-score for BioBERT base is higher than that of

RoBERTa, with a much smaller 95% CI. Finetuning of the

models yields higher average F1-score for the DMs than the

GMs, with both RoBERTa (ft) and BioBERT (ft) outperforming

Llama 3 and 3.1. The addition of the SetFit classifier for

RoBERTa only showed a minor improvement to F1-score and

95% CI range. The F1-scores for the larger GMs are seen to drop

compared to the non-finetuned versions. Comparatively, the two

Llama 3.2 models increased their F1-scores, reducing the 95% CI

in both cases. The ArcTEX model, however, remained the top

performer with the highest F1-scores and narrowest 95% CI. As

with the accuracy, the ArcTEX model outperformed all others.

The differences between the base and finetuned model

F1-scores can be attributed to an imbalance between classes in3https://aws.amazon.com/ec2/instance-types/g6/
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the test set. Tables 4, 5 demonstrate the difference in

misclassification rate between classes. This is caused by the 50:50

split of reports that contain positively identifiable text regarding

each marker [for example, “…{feature} stains positively…”, “… is

negative for {feature}…”], and reports that either contain no

information regarding the given feature or information that

cannot be used to determine feature presence [for example, “…

staining for (feature) has been requested…”]. Though this would

appear as a two-class problem, the positively identified category

contains multiple classes ranging from 2 to 21 separate classes

TABLE 3 Accuracies, 95% CI and standard deviations for each of the LLMs tested in experiment 1.

Model Average
Accuracy [%]
with 95% CI

[LL,UL]

Acc.
std
dev

Average F1
with 95% CI

[LL,UL]

F1
std
dev

Average
Precision

Average
Recall

Average
Time per
test set
[seconds]

Total Time
over all test

sets [seconds]

Discriminative

Models

ArcTEX 98.67 [98.13, 99.21] 1.08 0.97 [0.95, 0.99] 0.09 0.97 0.97 6.36 (122.1)* 114.46 (2,197.73)*

RoBERTa 64.56 [59.18, 69.94] 10.81 0.45 [0.35, 0.55] 0.21 0.55 0.45 6.01 108.11

RoBERTa (ft) 89.78 [83.86, 95.7] 11.9 0.79 [0.55, 0.91] 0.24 0.81 0.8 5.94 106.87

RoBERTa

(ft) + SetFit

90.94 [86.0, 95.88] 9.93 0.81 [0.70, 0.92] 0.22 0.84 0.80 5.23 94.09

BioBERT 64.5 [60.27, 68.73] 8.51 0.46 [0.3, 0.53] 0.16 0.49 0.48 6.65 119.62

BioBERT (ft) 96.61 [93.86, 99.36] 5.53 0.91 [0.76, 0.98] 0.15 0.92 0.92 6.39 114.93

Generative

Models

Llama-3 8B 79.83 [70.34, 89.32] 19 0.73 [0.61, 0.85] 0.24 0.75 0.74 143.4 2,581.23

Llama-3 8B (ft) 79.22 [73.37, 85.07] 11.77 0.69 [0.53, 0.79] 0.19 0.67 0.69 177.51 3,195.24

Llama-3.1 8B 78.94 [69.56, 88.32] 18.87 0.8 [0.64, 0.87] 0.21 0.78 0.81 142.15 2,558.75

Llama-3.1 8B (ft) 83.33 [77.84, 88.82] 11.04 0.75 [0.61, 0.79] 0.14 0.75 0.71 145.11 2,611.96

Llama-3.2 1B 37.56 [29.83, 45.29] 15.54 0.35 [0.21, 0.39] 0.09 0.35 0.35 54.91 988.35

Llama-3.2 1B (ft) 64.78 [60.17, 69.39] 9.28 0.47 [0.3, 0.56] 0.18 0.6 0.49 56.95 1,025.09

Llama-3.2 3B 57.39 [47.64, 67.14] 12.91 0.58 [0.4, 0.64] 0.22 0.59 0.58 82.24 1,480.32

Llama-3.2 3B (ft) 64.44 [58.31, 70.57] 12.32 0.53 [0.45, 0.61] 0.17 0.59 0.57 106.23 1,912.19

Note for the ArcTEX model, the average and total times reported are for time with pretrained SetFit models, and time including SetFit model training in brackets.

Bold text indicates best results (highest for accuracy, F1, precision, and recall metrics, lowest for time metrics).

*The time difference between running the pipeline with pre-trained setfit models, vs. the time taken to run the model without pre-training of the setit model (in brackets).

FIGURE 4

Average accuracies for each model across all test sets. Error bars show 95% CI. Finetuned models are marked by (ft). ArcTEX shows the highest

performance overall with the lowest confidence interval range. In general, the base GMs perform comparably to better than the baseline DMs,

however with finetuning the DMs outperform all GMs.
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depending on the clinical feature. This variability is demonstrated

in Table 1.

With the DMs, especially for the BioBERT model, the

introduction of the SetFit classifier saw an increase in accuracy

and F1-scores. Though the QA stage is the same for both

models, the ability of the SetFit approach to better classify the

outputs into a set of reproducible results outstrips the ability of

cosine similarity. This can be demonstrated by comparing two

identical QA models with and without the SetFit classifier, such

as BioBERT (ft) and ArcTEX. Figure 6 shows how cosine

similarity struggles with certain clinical features more than others

compared to the SetFit approach. While certain clinical features

such as P53 are expressed in clinical notes often similarly as

“negative” or “positive”. Other features are documented in a

FIGURE 5

Average F1 scores for each model across all test sets. Error bars show 95% CI. Finetuned models are marked by (ft). ArcTEX shows the highest

performance overall with the 95% CI. Generally, the base GMs perform comparably to better than the baseline DMs, however with finetuning the

DMs outperform all GMs. Finetuning negatively influences the Llama 3 and 3.1 models.

TABLE 4 Mean number of misclassified answers for each model.

Model Mean number of misclassified
impossible answers

Mean number of misclassified
positively identifiable answers

Sum

ArcTEX 0.47 0.82 1.29

BioBERT 7 28.5 35.5

BioBERT (ft) 0.94 2.44 3.38

RoBERTa 1.17 33.28 34.45

RoBERTa (ft) 1.17 9.06 10.23

RoBERTa (ft) + SetFit 1.06 8.0 9.06

Llama-3 8B 12.22 7.94 20.16

Llama-3 8B (ft) 8.67 12.11 20.78

Llama-3.1 8B 13.89 7.17 21.06

Llama-3.1 8B (ft) 2.22 14.44 16.66

Llama-3.2 1B 30.44 32 62.44

Llama-3.2 1B (ft) 2.83 32.39 35.22

Llama-3.2 3B 27.67 14.94 42.61

Llama-3.2 3B (ft) 11.44 24.11 35.55

The number for each row describes how many of the 50 examples in that category were misclassified from the total 100 reports in each test set.

Bold text indicates lowest numbers of misclassified answers for each category.
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larger variety such as grade, which can be reported as words (i.e.,

“high”, “low”, “intermediate”) or in numeric values (i.e., “grade

3”, “the grade is 1”, “g3”).

Another feature considered during experiment 1 was the

computation time for each model to run inference on the test set.

Figure 7 shows the average runtime to compute the results for one

clinical feature, consisting of 100 reports. The total runtime for

each model can be found in Table 3. As expected, the smaller DMs

ran faster than the GMs. In the case of the ArcTEX model and

Llama 3.1, the results are presented both with and without a

pretrained SetFit model. In principle, a separate SetFit model is

trained for each specific clinical feature. If these models have not

been previously generated, the time to train each SetFit model will

add a significant amount of time to the processing (115.74 s on

average). It should be noted that the SetFit models need only be

trained once for a given clinical feature and can then be reused

regardless of the dataset. In comparison, the runtime of GM’s is

between 8.59 to 27.78 times higher than the slowest DM [BioBERT

(ft)], with a direct correlation between number of parameters and

presence of finetuning, and the time taken to run inference.

3.3 Experiment 2: adaptability

The results of experiment 2 can be found in Table 6.

Figure 8 shows the average accuracy of ArcTEX, RoBERTa

(ft), BioBERT (ft), and Llama 3.1-8B (ft) to extract new

oncological features which were not part of the finetuning

dataset. The results indicate that the average accuracy for all 4

models is similar [between 71.80% and 75.60% for RoBERTa

(ft) and BioBERT (ft) respectively] if no additional feature

specific training data is used.

However, when adding additional training data, the Llama 3.1

model did particularly poorly compared to the DMs it was

compared to Figure 8 shows the Llama 3.1 model only

marginally improving with increasing training set size. This is in

line with the results from experiment 1, showing that the

variation in the accuracy over all features was the main aspect

that was improved with finetuning compared to the base model.

Figure 9 shows the average accuracies and 95% CIs for the 5

clinical features tested for the Llama 3.1 8B (ft) model. Each

clinical feature shows either poor improvement or a reduction in

TABLE 5 Mean number of misclassified results assigned a class group.

Model Total number of results misclassified using
the impossible answer class

Mean number of results misclassified using
a positively identified class

ArcTEX 0.22 1.11

BioBERT 13.17 22.33

BioBERT (ft) 0.22 3.17

RoBERTa 24.22 11.22

RoBERTa (ft) 6.56 3.67

RoBERTa (ft) + SetFit 6.56 2.50

Llama-3 8B 1.22 18.94

Llama-3 8B (ft) 4.28 16.50

Llama-3.1 8B 0.83 20.22

Llama-3.1 8B (ft) 8.78 7.89

Llama-3.2 1B 13.22 49.22

Llama-3.2 1B (ft) 23.33 11.89

Llama-3.2 3B 2.28 40.33

Llama-3.2 3B (ft) 9.50 26.06

Note that for the finetuned DMs, both values decrease, but for the finetuned GMs the rate at which misclassified results are assigned an “impossible answer” class increases.

FIGURE 6

Comparison of ArcTEX and BioBERT finetuned (ft) showing a comparison for a selection of clinical features. Note for some features, BioBERT (ft)

struggled in comparison to ArcTEX where in others the results are comparable.
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accuracy with increasing training set size. This is consistent with

experiment one which showed only a minor improvement in

accuracy but an overall drop in F1-score.

In contrast, the DMs all showed very similar improvements in

accuracy with each increase in training set size regardless of model.

The increase in training set size not only correlates with an increase

in accuracy, but also with a narrowing of 95% CI, showing greater

ability of these DMs to adapt to small training set sizes than the

Llama 3.1 model. As with the results in experiment 1, the

BioBERT (ft) and ArcTEX share very similar results given that

ArcTEX’s base model is BioBERT. It was observed that the

difference in performance between adding 50 samples and 100

samples began to drop off in general. It is likely that around the

50–100 samples mark is the point at which the training plateaus,

depending on clinical feature being evaluated.

4 Discussion

Here we will discuss the differences between the performance

of ArcTEX compared to other comparable DMs and GMs for the

task of data extraction through question answering in the setting

of free text reports.

The differences in performance between the DMs and GMs

for extracting the values of a given clinical feature are shown in

Experiment 1: Model comparison. As demonstrated in Table 3,

and in Figures 4, 5, without finetuning, BioBERT and

RoBERTa, show moderate accuracy of ∼65% with relatively

narrow 95% CIs. The F1-scores are, on the other hand, lower,

with wider 95% CIs. These scores, both in terms of accuracy

and F1-score, are comparable to the smaller GMs (Llama 3.2 1B

and 3B). Despite the size differences between these sets of

models, both manage comparable results off the shelf with no

prior finetuning or in context prompting. In comparison, the

larger base Llama models (Llama 3 and 3.1 8B) show slightly

higher accuracies and F1-scores across the test set compared to

the smaller GMs and DMs. Unsurprisingly, without finetuning,

it is evident that the larger models can handle data extraction

from free text pathology reports more efficiently than smaller

models. This fits with the scaling laws proposed by Kaplan

et al., who suggested that model performance depends strongly

on its scale (22).

FIGURE 7

Average time (in seconds) for each of the 18 test sets (100 reports per set) to run per model. Finetuned models are marked by (ft). Note that ArcTEX is

plotted twice to demonstrate the difference between run times with and without (denoted by a *) pretrained SetFit models. Note that variation in

average time was minimal so has been omitted from plot.

TABLE 6 Results for experiment 2, showing the average accuracy for each training set size over each clinical feature. 95% CI are in square brackets.

Model Average accuracy with 95% CI [LL, UL]

Number of
training
samples

0 5 10 20 50 100

RoBERTa (ft) 71.8 [62.45, 81.15] 74.96 [66.15, 83.77] 84.08 [77.36, 90.8] 89.84 [86.25, 93.43] 91.72 [88.5, 94.94] 91.84 [88.34, 95.34]

BioBERT (ft) 75.6 [66.67, 84.53] 81.56 [72.44, 90.68] 86 [79.02, 92.98] 89.84 [83.75, 95.93] 94.16 [92.39, 95.93] 94.96 [93.64, 96.28]

ArcTEX 74.2 [64.7, 83.7] 83.04 [75.5, 90.58] 85.76 [78.7, 92.82] 90.32 [86.07, 94.57] 92.08 [88.55, 95.61] 95 [93.29, 96.71]

Llama-3.1 8B (ft) 75.4 [69.2, 81.6] 74.68 [67.9, 81.46] 75.16 [68.58, 81.74] 75.08 [69.11, 81.05] 76.24 [70.47, 82.01] 77.44 [71.69, 83.19]
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With finetuning, RoBERTa, BioBERT and the ArcTEX model,

show a higher mean accuracy and F1-scores compared to finetuned

GMs. This agrees with other publications which have demonstrated

that simpler BERT based methods are often superior compared to

generative LLMs for classical NLP tasks such as NER or RE (10, 23,

24)). The Llama 3 and 3.1 models, in fact, showed decreased mean

F1-scores following finetuning. As demonstrated in Table 4, the

misclassification rate does not change equally for all models

between each type of class which therefore affects the F1-score

more dramatically for some models over others. For the DMs,

there is a decrease in misclassification rate following finetuning

for both positively identifiable answers and impossible answers,

leading to the rise in F1-scores seen in Figure 5. In comparison,

the GMs demonstrate a drop in misclassified impossible answers

FIGURE 8

Mean accuracy (and 95% confidence intervals) vs. training set size for finetuned RoBERTa (ft), BioBERT (ft), Llama 3.1 8B (ft) and ArcTEX based on 5

random repetitions with different training data.

FIGURE 9

Training set size vs. Accuracy for a finetuned Llama 3.1 8B (ft) showing how each clinical feature’s accuracy changed with increasing training set size.

95% CI shown in error bars.
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assigned a positively identified value, but an increase in reports

with positively identifiable answers assigned the impossible

answer class with a similar percentage change.

There are a few reasons that could be contributing to the

differences seen in the two model types. One reason for this

could be due to the way that the models are trained. Within the

training set, approximately 25% of the examples are attributed

the impossible answers class. Comparatively, the remaining 75%

of the training sets are composed of the positively identifiable

classes seen in Table 1. Of these, most (10/18) clinical features

have more than 3 positively identifiable classes, making it likely

that the impossible answers class become the majority class.

Previously, transformer based models have been shown to be

adept at handling class imbalance compared to other machine

learning methods (25). Despite this, finetuning of GMs has also

been demonstrated to increase the risk of overfitting in a

question answering setting (26). Because of the distribution in

the training data, this may have been a factor in the results we

see in experiment 2. This may have been avoided through a

highly curated training set but would require significant

experimentation to optimize given the variability in reporting

within a given class for each feature. An additional factor that

may have influenced the difference in F1-scores following

finetuning is a combination of the finetuning to handle

impossible answers and the way that they were prompted. As

shown in Figures 2, 3, the prompt template for the GMs

provided an instruction to produce a “NaN” where it was unable

to answer the question. Where previously the models may have

attempted to produce an answer, at times through hallucination,

following finetuning it may be the case that the GMs were more

likely to answer with “NaN” rather than a hallucination. As

shown in Table 5, following finetuning, the rate at which

misclassified answers are misclassified with an impossible answer

increases compared to those answered with a positive answer.

This preference to abstain from providing an answer following

finetuning has been previously demonstrated to negatively affect

model performance (27). Comparatively, over the five repetitions

used in experiment 2, the ability of both ArcTEX and BioBERT

to quickly adapted to extract new clinical features from a

different oncology area is shown. The accuracy plateaus around

100 training samples as shown in Figure 8. As half of the

training samples are without the specific clinical feature being

present, only 50 samples need to be manually annotated by a

clinical expert.

Overall, the results demonstrate a superior performance of the

proposed ArcTEX pipeline compared to a finetuned BioBERT

model. This shows that the choice of postprocessing method can

significantly enhance model performance for some of the clinical

features, which is also reflected in the strong decrease of the

standard deviation and CI of the accuracy (see Table 3,

Figure 6). The BioBERT pipeline uses cosine similarity to

compare the sentence embeddings of predicted answers to

annotated examples, which is a widely used method. In contrast,

the SetFit approach consists of a two-step approach: first a

sentence transformer is fine-tuned and then a classification head

is trained (16). The sentence transformer is finetuned using a

contrastive learning regime which is very efficient when only a

few examples per class are available (in our case between 2 and

22 examples per class). It must be noted that while the SetFit

approach increases accuracy, additional time and compute

resources are required to train and store the SetFit models,

depending on the selected sentence transformer model. In our

case, we used Mpnet-v2, which resulted in an additional training

time of 115.74s per biomarker and requires 0.5GB additional disc

space per model, which can add storage costs when running the

pipeline over all biomarkers.

Due to the size of LLMs, there are discussions around the

environmental impact and economic costs of training and

running LLMs (28, 29). This resulted in the development of

small language models (SLMs) recently (30) such as Llama 3.2

1B and 3B. Even though these models are still significantly larger

compared to a standard BERT based model, these models have

better chances to be executed in a resource constrained

environment such as in a hospital setting. However, the results in

experiment 1 demonstrate, that finetuned DMs outperform

SLMs, such as Llama 3.2, both in terms of accuracy and

F1-scores, as well as run time. Though this experiment was

performed using a GPU based instance, an additional benefit to

the ArcTEX model, as well as the other DMs is their ability to be

run on a simpler CPU set up. DMs have been shown to be able

to be run and optimized on CPU only set ups (31) where GMs

such as the Llama models here have been demonstrated to

require GPUs to run (28). This makes DMs ideal for deployment

into systems used in healthcare settings such as the NHS where

availability of GPUs is unlikely and external access to cloud-

based systems is restricted.

Alongside the development of SLMs over increasingly large

LLMs, domain specific model development has appeared as a

growing frontier (32, 33). Examples such as BioGPT, BioMistral,

BioBERT, and ClinicalT5 have been developed in recent years for

the biomedical sphere and are pretrained on a corpus of

biomedical texts (8). Domain specific models have been shown to

outperform larger and more general models in various

biomedical tasks previously, especially in zero shot settings (34,

35). Compared to their larger counterparts, DMs such as BERT

based models show a greater ability to learn from small training

sets or “few-shot” methods, to perform specific information

retrieval tasks (36–38). This is further demonstrated by the

results shown in experiment 2, with the Llama 3.1 8B (ft) model

failing to improve at a rate comparable to the DMs it was

compared to.

DMs have been shown previously to be able to more quickly

adapt to information retrieval tasks than GMs, and have shown

excellent performance against benchmark datasets (39, 40). The

results presented here would support that DMs may be better

suited to the task of feature extraction than GMs, especially

where finetuning dataset size is limited. Because large variations

in how individual classes are described for a particular feature,

larger datasets are often required to adequately train GMs

compared to DMs. Because GMs are developed to provide

plausible responses to prompts, it can be difficult to determine

whether the generated response is factual or a hallucination (41).
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Compared with DMs that will return strings from the queried

text. Because of these inherent differences, categorisation of

outputs becomes much easier to standardise and trust when

using DMs over GMs. Various methods can be used to help

reduce the number of erroneously generated answers or

“hallucinations”, such as utilizing prompt engineering

techniques, however the risk of hallucinations can never be fully

mitigated (42). Where GMs may excel over DMs in this setting

is for complex scenarios where feature extraction is insufficient

to answer the question. GMs have been demonstrated to excel

in text summarization (43), and have shown promising results

when applied to more complex medical data extraction and

summarization, for example where a particular feature may be

described over multiple sentences or is inferred from multiple

statements. Concerns around their use in a clinical setting,

however, have been raised (44, 45).

Another technique that has recently been widely adopted

within the NLP field, particularly for knowledge-intensive

language tasks, is retrieval-augmented generation (RAG) (46).

While RAG has shown promise in scenarios requiring dynamic

access to external knowledge, we did not include it in our

evaluation due to the fact the annotation guidelines used in

this study were relatively straightforward and could be fully

supplied to the LLMs within their context windows. This

inclusion ensured the models had access to all necessary task-

specific instructions at inference time, eliminating the need for

document retrieval. Nonetheless, we acknowledge that RAG

would be a valuable avenue for future work, particularly in the

scenario where ArcTEX is extended to extract the values of a

more diverse array of biomarkers that would require access to

external clinical knowledge.

At present, our evaluation is limited to a single dataset from

one NHS trust. Despite the size of the dataset, there is a high

likelihood that there may be varying results when utilising the

currently evaluated LLMs against data from other trusts.

Pathology reports, as with other free text data, will vary

between authors which may influence a model’s ability to

handle them. In future, we plan to extend our analysis to

additional trusts, deploying the ArcTEX model on various

datasets within different clinical environments. This will entail

not only extending to additional clinical features, but to also

explore the use of ArcTEX where multiple biopsies/tumours are

reported within a single report. We also hope to explore

different report styles, such as imaging reports and clinical

notes and show the ability of ArcTEX to handle data from a

variety of sources and authors.

LLMs have been demonstrated to be potentially invaluable

tools in text extraction from free text reports and can be

finetuned to handle very specific domains. Though GMs do show

promise in this field, and indeed perform better when used “off

the shelf” compared to DMs, they do not exhibit the same ability

to adapt to new data as easily as the DMs can. Here we have

presented ArcTEX, a DM which has shown higher accuracy, and

F1-scores compared to the other evaluated models presented

here. In addition to its ability to accurately extract clinical

features, ArcTEX can also be run in resource constrained

environments. Given the lack of GPUs or access to cloud-based

GPU clusters within clinical settings such as in hospitals,

ArcTEX could provide a viable solution to extracting clinical

features from free-text data within a clinical setting. The addition

of the post-processing steps to completely remove the risk of PII

exposure or leaking also adds to the suitability of ArcTEX for

clinical feature extraction in a clinical setting.
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