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Background: Concise synopses of clinical evidence support treatment decision-

making but are time-consuming to curate. Large language models (LLMs) offer

potential but they may provide inaccurate information. We objectively assessed

the abilities of four commercially available LLMs to generate synopses for six

treatment regimens in multiple myeloma and amyloid light chain

(AL) amyloidosis.

Methods: We compared the performance of four LLMs: Claude 3.5, ChatGPT

4.0; Gemini 1.0 and Llama-3.1. Each LLM was prompted to write synopses for

six regimens. Two hematologists independently assessed accuracy,

completeness, relevance, clarity, coherence, and hallucinations using Likert

scales. Mean scores with 95% confidence intervals (CI) were calculated across

all domains and inter-rater reliability was evaluated using Cohen’s quadratic

weighted kappa.

Results: Claude demonstrated the highest performance in all domains,

outperforming the other LLMs in accuracy: mean Likert score 3.92 (95% CI

3.54–4.29); ChatGPT 3.25 (2.76–3.74); Gemini 3.17 (2.54–3.80); Llama 1.92

(1.41–2.43);completeness: mean Likert score 4.00 (3.66–4.34); GPT 2.58

(2.02–3.15); Gemini 2.58 (2.02–3.15); Llama 1.67 (1.39–1.95); and

extentofhallucinations: mean Likert score 4.00 (4.00–4.00); ChatGPT 2.75

(2.06-3.44); Gemini 3.25 (2.65–3.85); Llama 1.92 (1.26–2.57). Llama performed

considerably poorer across all the studied domains. ChatGPT and Gemini had

intermediate performance. Notably, none of the LLMs registered perfect

accuracy, completeness, or relevance.

Conclusion: Claude performed at a consistently higher level than other LLMs, all

tested LLMs required careful editing from a domain expert to become usable.

More time will be needed to determine the suitability of LLMsto independently

generate clinical synopses.
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Introduction

Summarizing clinical evidence is a critical task for guideline

developers and clinicians. These summaries can take many

forms: lengthy technical reports (e.g., systematic reviews and

guidelines), limited clinical briefs on physician-facing media and

websites, and concise point-of- care synopses. The latter are

increasingly desirable in busy clinical settings because they can

quickly inform clinical decision-making without forcing

physicians to manually distill an ever- growing base of medical

literature. Given the sheer volume of literature published each

year, manual curation of relevant data for synopses is time-

consuming and labor-intensive (1). Regularly monitoring new

developments to update the synopses and filtering through

studies to avoid repetition and contradictions to produce reliable

synopses takes significant time and effort, which is often not

feasible in clinical settings.

Large language models (LLMs) hold considerable potential in

this context. LLMs can process large amounts of data relatively

quickly using artificial intelligence, thereby reducing the time

needed to curate and summarize contemporary literature

manually (2, 3). Recent studies have evaluated the quality,

accuracy, and potential biases in summaries generated by LLMs

in biomedical domains. Interestingly, some findings suggest that

large language models can outperform medical experts when it

comes to summarizing clinical texts (4). One study specifically

examined how ChatGPT-4 performs in generating lay summaries

of scientific abstracts. Among 34 volunteers, 85.3% found the AI-

generated summaries were more accessible than the original

abstracts, and 73.5% considered them more transparent than the

original abstracts. Importantly, none of the summaries were

perceived as harmful (5). However, other assessments have

flagged ongoing issues. ChatGPT’s summaries were generally easy

to read, but concerns remain around factual accuracy and the

exclusion of key details (6).

The current generation of LLMs remains prone to errors and

hallucinations. Specifically, LLMs may generate coherent-

sounding information that in actuality may be factually incorrect,

fabricated, and/or irrelevant (7). Additionally, LLMs may not

always grasp the nuances and complexities of information in

clinical context, which might lead to oversimplified synopses.

These shortcomings not only undermine the overall reliability of

curated information but could also be harmful for patients if not

accurate or properly contextualized (8). As a hypothetical

example, an LLM-generated synopsis for transplant-ineligible

newly diagnosed multiple myeloma (MM) may identify

quadruplet induction as the standard of care based on recent

trials without adding that older and frailer patients (for whom

quadruplet induction may be inappropriate) were excluded from

these trials (9).

Given these uncertainties, it is unclear whether the benefits of

using LLMs for formulation of synopses in oncology outweigh the

risks. The performance of LLMs to generate concise synopses of the

evidence supporting cancer treatment has not been previously

analyzed. Our evaluation is the first of its kind to assess the

capabilities of widely available LLMs. We aimed to objectively

assess and compare the abilities of four commercial LLMs to

generate reliable and clinically useful synopses for six treatment

regimens in MM and AL amyloidosis.

Methods

HemOnc.org is an online, freely accessible collaborative wiki of

cancer drug and blood disorder treatment information. Developed

since 11/2011, it provides fully referenced drug and regimen

information, including granular dosing and administration details

(10). Curated by domain experts, details presented on HemOnc.

org are highly technical and concise, with the aim of helping

healthcare professionals find the information they need, quickly.

As HemOnc.org has grown in scope and audience, lay

summaries for learners, patients, and caregivers have become

increasingly necessary. To address the need to better

contextualize individual cancer therapies, we began manually

developing synopses of different treatment regimens in 2021.

Page editors, usually experts in their specific disease, oversee

development of these, which takes considerable time and effort.

In 2023, with the widespread advancement and proliferation of

LLMs, we developed an LLM pilot program, utilizing LLMs to

generate human-readable synopses of some of the most relevant

anti- cancer treatment regimens on HemOnc.org, overseen by

the page editors. To better understand the performance of LLMs,

we prospectively evaluated LLM-generated synopses for several

widely used MM and AL amyloidosis treatment regimens. We

selected these two similar yet clinically distinct diseases as they

are among the most widely searched diseases on HemOnc.org.

We tested the performance of four commercially available

LLMs: Claude 3.5 (“Claude”), ChatGPT 4.0 (“ChatGPT”),

Gemini 1.0 (“Gemini”), and Llama 2 (“Llama”). Synopses were

created for the following MM and AL amyloidosis treatment

regimens:

1. Daratumumab, lenalidomide, bortezomib, and dexamethasone

(Dara-VRd) (11, 12)

2. Carfilzomib, lenalidomide, and dexamethasone (KRd) (13)

3. Bortezomib, thalidomide, dexamethasone, cisplatin,

doxorubicin (Adriamycin), cyclophosphamide, and etoposide

(VTD-PACE) (14)

4. Daratumumab, cyclophosphamide, bortezomib, and

dexamethasone (Dara-CyBorD) (15)

5. Elranatamab monotherapy (16)

6. Talquetamab monotherapy (17)

We formulated the prompts in plain language, similar to how a

clinician would ask a question, reflecting a zero shot prompting

strategy: “Write a synopsis for the development and evolution of

therapy with [Drug Regimen] for [Diagnosis—Multiple Myeloma

or Amyloidosis]. Use citations from the literature.” We used a

single prompt for each question, without deploying multiple

rephrasings or other variants. Models were accessed using the

user interface by AJC. No prompt tuning or iterative engineering

was performed and all the responses reflect the default model
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behavior. A full listing of the prompts and outputs from each LLM

is provided in the Supplementary Materials.

The generated synopses were then assessed by two board-

certified hematologists specializing in the treatment of MM and

AL amyloidosis (RB/SR). The evaluation process was completed

using a REDCap (Research Electronic Data Capture) survey at

University of Washington (Institute of Translational Health

Sciences) (18). Reviewers evaluated the synopses using a 5-point

Likert scale across five criteria: accuracy, completeness, relevance,

clarity, and coherence, while hallucinations were assessed on a

4-point ordinal scale. A traditional 5-point Likert scale was not

used, as a “neutral” midpoint held limited interpretive value in

this context. The scale was defined as follows:

1 =Many hallucinations,

2 = Some hallucinations,

3 = Few hallucinations,

4 = No hallucinations.

A separate question asked whether the synopsis would require only

minimal editing, and a section for narrative comments on the LLM

output was included. (Supplementary Materials).

Data analysis was performed using R version 4.4.1

(2024-06-14). Mean scores for each LLM across all regimens and

criteria to assess overall performance were calculated. Lower

scores corresponded to lower performance, while higher scores

corresponded to higher performance. Inter-rater reliability was

assessed using Cohen’s quadratic weighted kappa to evaluate

agreement between reviewers across criteria and regimens.

Additionally, the proportion of synopses requiring minimal

editing was analyzed. Visualizations, including bar plots and

heatmaps, were created using ggplot2 to illustrate the

comparative performance of LLMs across different criteria

and regimens.

Results

Overall performance

A summary of LLM performance by criterion is shown in

Table 1; Figure 1. Overall, none of the tested LLMs performed

consistently across domains. Of the LLMs, Claude performed

consistently better than GPT4, Gemini, and Llama in all domains

(Mean Scores: accuracy 3.9 [95% CI 3.54–4.29], completeness 4.0

[95% CI 3.66–4.34], relevance 4.5 [95% CI 4.2–4.8], clarity 4.4

[95% CI 3.91–4.93], hallucinations 4.0 [95% CI 4–4], and

coherence 3.8 [95% CI 3.83–4.84]). Llama consistently had the

lowest mean Likert scores, and GPT4 and Gemini largely

performed similarly between Claude and GPT4.

Only Claude performed routinely well in the domain of

hallucinations, with minimal to no hallucinations detected by the

reviewers. Regarding the need for corrective edits (Table 2),

Claude appeared to perform the best overall, with 66.7% of

synopses requiring minimal editing, while Gemini and Llama

performed poorly, with only 16.7% and 8.3% requiring minimal

editing, respectively.

Inter-rater reliability

Inter-rater reliability varied considerably across criteria and

regimens (Table 3). Overall agreement was moderate for accuracy

(κ = 0.649) and relevance (κ = 0.761), fair for completeness

(κ = 0.521), and poor-to-fair for hallucinations (κ = 0.362),

coherence (κ = 0.353), and clarity (κ = 0.135). Agreement was

generally strongest for the Dara-VRd and Dara-CyBorD

regimens, with perfect agreement on relevance (κ = 1.0) and

substantial agreement on accuracy (κ = 0.75) for both. In

contrast, agreement was weaker for newer agents like

talquetamab, where negative/zero kappa values were observed for

accuracy and relevance. The KRd regimen showed strong

agreement across most domains, particularly for completeness

(κ = 0.81) and accuracy (κ = 0.8).

Qualitative insights

Overall, several themes emerged from the narrative comments

provided by reviewers (Supplementary Material). Many comments

highlighted inaccuracies in LLM-generated synopses, particularly

clinical trial names, purpose, and results. The reviewers also

noted missing information and lack of detail on key aspects of

clinical trials. Safety information was also highlighted as a

deficiency in many comments across regimens and LLMs.

Citations were noted to be frequently incorrect, or references

were missing entirely. Occasionally, non-existent (i.e.,

hallucinated) studies were cited by LLMs.

Reviewers also indicated the presence of language patterns that

are characteristic of AI-generated text, such as flowery language or

generic statements. Specific factual inaccuracies further

underscored the limitations of the models. For instance, GPT-4

incorrectly cited the GEM-CESAR trial, which is neither an

TABLE 1 A summary of LLM performance by criterion (mean with 95% CI).

Criterion Claude GPT4 Gemini Llama

Accuracy 3.92 (3.54–4.29) 3.25 (2.76–3.74) 3.17 (2.54–3.80) 1.92 (1.41–2.43)

Completeness 4.00 (3.66–4.34) 2.58 (2.02–3.15) 2.58 (2.02–3.15) 1.67 (1.39–1.95)

Relevance 4.50 (4.20–4.80) 3.92 (3.75–4.08) 3.67 (3.23–4.11) 2.83 (2.30–3.36)

Clarity 4.42 (3.91–4.93) 3.83 (3.43–4.24) 3.92 (3.54–4.29) 3.67 (3.30–4.04)

Hallucinations 4.00 (4.00–4.00) 2.75 (2.06–3.44) 3.25 (2.65–3.85) 1.92 (1.26–2.58)

Coherence 4.33 (3.83–4.84) 3.83 (3.30–4.36) 3.92 (3.54–4.29) 3.33 (2.78–3.89)
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NDMM (newly diagnosed multiple myeloma) study nor one

evaluating the Dara-RVd regimen. Similarly, CASTOR, a trial

conducted in the relapsed/refractory setting was included by

Chatgpt despite its irrelevance to frontline therapy. Conversely,

PERSEUS, a key trial directly investigating Dara-RVd in NDMM

was omitted. Moreover, LLaMA inaccurately stated that KRd

demonstrated “similar efficacy but improved tolerability”

compared to VRd in the ENDURANCE trial. This interpretation

is misleading, as the trial did not show superiority of KRd in

efficacy or tolerability. These errors suggest a lack of specificity in

identifying appropriate evidence and reinforce the importance of

expert review.

Discussion

The rapid development and accessibility of LLMs has the

promise to revolutionize knowledge curation across domains,

including medicine. The challenge of digesting and concatenating

a high volume of primary medical literature into interpretations

which are both usable by, and useful to, increasingly busy

clinicians is immense.

Before the LLM era, this process typically took place in

guideline committees led by experts or through review articles

commissioned by high-impact journals. Deploying LLMs to

supplement these processes has the potential to repurpose

experts’ time towards primary investigation and avoid conflicts of

interest (19, 20). At present, it is not clear whether these

potential advantages of using LLMs in medical knowledge

curation outweigh the disadvantages. Currently available LLMs

remain deficient at accurately identifying citations to support

their assertions and remain prone to hallucinations (21). As

medical knowledge curation is fundamentally used to support

clinical decisions, these shortcomings could be catastrophic to

FIGURE 1

Summary of performance of each LLM by criterion.

TABLE 2 Percentage of synopses requiring minimal editing (with 95% CI).

LLM Result

Claude 66.7% (38.8%–94.5%)

GPT4 33.3% (5.5%–61.2%)

Gemini 16.7% (0.0%–38.7%)

Llama 8.3% (0.0%–24.7%)
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patients. Before being widely deployed clinically, LLMs need to be

rigorously evaluated to minimize the potential for harm.

To our knowledge, this is the first evaluation of widely available

LLMs for the task of evidence summarization in oncology. The

limited literature pertaining to scientific literature summarization

suggests a potential beneficial role. In a recent publication,

investigators assessed the ability of ChatGPT to summarize 140

peer reviewed abstracts from 14 journals; the generated

summaries were found to be shorter than the abstracts and were

felt by reviewers to be of sufficient quality, accuracy, and without

bias (6). In a separate study, ChatGPT4 was used to generate lay

summaries of scientific abstracts which were assessed by

reviewers (5). The analysis found that the summaries rated high

for accuracy and relevance, and none were deemed to be

harmful. Another recent analysis showed that ChatGPT-4

demonstrates superior performance over LLaMA across three key

NLP tasks; text summarization, data analysis, and question

answering and achieved higher accuracy, coherence, and

relevance (22). In our study, we find wide variation across LLMs

in accuracy, completeness, relevance, clarity and coherence and

hallucinations. Interestingly, the performance of each LLM was

relatively consistent across all examined domains: Llama-2

performed worst, GPT4 and Gemini had middling performance,

while Claude consistently outperformed the other LLMs. Most

encouragingly, Claude was not observed to hallucinate by either

expert reviewer across all six synopses. A recent study also

highlighted that Claude generated the most human-like

summaries, but Gemini models stood out for their efficiency and

cost-effectiveness (23). Avoiding the dissemination of entirely

fabricated citations is a critical bar for LLMs to clear prior to

widespread deployment in medical knowledge curation.

Although Claude had the most encouraging performance, it

still fell short of meeting the necessary quality standard for

generating synopses usable in clinical medicine, performing worst

in the domain of accuracy. Arguably, the increased coherence

and relevance of Claude could present inaccurate information in

a maximally believable way to clinicians. Nearly perfect cross-

domain performance should be considered the standard for

LLMs intended for application to medical literature.

Furthermore, domain expert comments reveal that the synopses

generated by Claude often minimized or omitted evidence

concerning the toxicity associated with a given chemotherapy

regimen. For other models, common error themes included

incorrect or hallucinated citations, omission of critical safety data,

and superficial descriptions of clinical trials. Understanding these

error types can inform more targeted prompt engineering and

model selection. Given the importance of safety in making

treatment decisions, this minimizes the utility of these synopses to

clinicians treating cancer patients. At this point, none of the other

three LLMs evaluated could be recommended in place of Claude;

however, it is likely that ensemble approaches or agentic approaches

may overcome the limitations of a single LLM. Previously, a study

has introduced the SliSum strategy which enhances summarization

faithfulness in LLMs. It reduced hallucinations in models like

LLaMA-2, Claude-2, and GPT-3.5 for both short and long texts

without requiring additional resources (24). Fine-tuning and

implementation of retrieval-augmented generation (RAG)

architecture may also address some of the shortcomings yet require

specific expertise and are expensive to implement.

Inter-rater reliability agreement between reviewers varied

considerably. The agreement was stronger for well-established

regimens like Dara-VRd and Dara-CyBorD, particularly for

accuracy and relevance, where negative or zero kappa values were

observed. This lack of consensus likely reflects the evolving

nature of evidence for newer therapies and availability of

standardized evidence for established regimens. LLMs may, thus,

currently be more useful for summarizing evidence related to

widely accepted therapies. It is also important to note that

domains like clarity and hallucinations exhibited consistently low

inter-rater reliability, irrespective of type of regimen, alluding to

the subjective nature of these criteria, nuance in understanding,

and familiarity of the reviewers with the existing literature.

LLMs currently face several limitations that limit their clinical

utility. Cost-efficiency and scalability remain major issues for many

institutions given the high computational demands and

maintenance requirements. Most LLMs are trained on static or

outdated data, so they often miss the latest clinical trial findings,

a serious limitation in fast-moving fields such as oncology.

Accuracy, trust, and interpretability issues are compounded by

the limited context awareness of LLMs, limiting their

applicability to nuanced clinical scenarios and potentially leading

to misleading or even unsafe recommendations. Moreover, LLMs

can generate plausible-sounding but factually incorrect

information (hallucinations), including inaccurate drug regimens,

trial results, or citations. This poses a significant patient safety

risk. Given the high stakes of medical decision-making, current

deployment of LLMs must be cautious and regulated. LLMs

should be restricted to augmentative roles within hybrid workflows.

TABLE 3 Cohen’s weighted kappa by regimen and criterion.

Criterion All regimens Dara-VRd Dara-CyBo rD Elranata mab KRd Talquet a mab VTD-PACE

Accuracy 0.649 0.75 0.75 0.7 0.8 −0.125 0.667

Completeness 0.521 0.667 0.667 0.111 0.81 0.417 0.444

Relevance 0.761 1 1 1 0.8 0 0.667

Clarity 0.135 0.2 0.556 −0.3 0.5 0 0.25

Hallucination 0.362 0.643

0.75 0.312 0 0.769 0.667 0

Coherence 0.353 0.667 −0.667 0 NA 0.5

Dara-VRd, daratumumab, lenalidomide, bortezomib, and dexamethasone; Dara-CyBorD, daratumumab, cyclophosphamide, bortezomib, and dexamethasone; KRd, carfilzomib, lenalidomide,

and dexamethasone; VTD-PACE, bortezomib, thalidomide, dexamethasone, cisplatin, doxorubicin, cyclophosphamide, and etoposide.
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Our analysis has some limitations. Although many synopses

generated for this study were not usable without any editing,

they may still save experts significant time in curating literature.

We did not compare the time spent by experts to summarize the

supporting literature of clinical regimens with and without LLMs.

Furthermore, it was not feasible to assess the performance of

different iterations of the same LLM (for example, GPT3

and GPT4).

Given the pace of advancements in LLM technology, advances

in their capabilities to summarize medical literature may improve

rapidly over time. Beyond summarization tasks, the integration of

LLMs into healthcare IT infrastructure, particularly electronic

health record (EHR) systems, presents a significant opportunity

to streamline clinical workflows. Future research should explore

the development of specialized, domain-adapted LLMs trained on

curated clinical corpora and real-world patient data, which would

enhance performance in nuanced tasks such as therapeutic

decision-making.

Conclusion

Despite encouraging individual aspects of LLM performances,

the tested LLMs remain incapable of generating usable synopses

supporting treatment regimens widely used to treat plasma cell

disorders without significant input from domain experts. Their

inability to incorporate real-time updates restricts the inclusion

of recently published trials and therefore issues such as

inaccurate citations and hallucination remain prevalent, which is

especially true for fields like oncology. Moreover, they lack the

nuanced clinical judgment which is required to account for

patient-specific variables. Fine-tuning and implementation of

retrieval-augmented generation (RAG) may also address some of

the shortcomings but it requires specific expertise.
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