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This work presents a framework for enhancing Gen3, an open-source data

commons platform, with temporal visualization capabilities for clinical trial

research. We describe the technical implementation of cloud-native architecture

and integrated visualization tools that enable standardized analytics for

longitudinal clinical trial data while adhering to FAIR principles. The enhancement

includes Kubernetes-based container orchestration, Kibana-based temporal

analytics, and automated ETL pipelines for data harmonization. Technical

validation demonstrates reliable handling of varied time-based data structures,

while maintaining temporal precision and measurement context. The framework’s

implementation in NIH HEAL Initiative networks studying chronic pain and

substance use disorders showcases its utility for real-time monitoring of

longitudinal outcomes across multiple trials. This adaptation provides a model for

research networks seeking to enhance their data commons capabilities while

ensuring findable, accessible, interoperable, and reusable clinical trial data.
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Introduction

Clinical trial networks require sophisticated data commons platforms that support

longitudinal analytics while following FAIR (Findable, Accessible, Interoperable, and

Reusable) data principles (1). While existing data commons solutions excel at managing

static datasets, they often lack native capabilities for tracking and visualizing the

progression of clinical outcomes over time (2, 3). This gap presents a significant

challenge for understanding treatment effectiveness in interventional studies.

Current data commons platforms face several technical limitations when applied to

longitudinal clinical research. These specific technical requirements include: the need

for temporal data modeling that preserves measurement timing and sequence,

standardized harmonization of patient-reported outcome measures across multiple

trials, real-time monitoring capabilities for trial management, and integration of diverse

data types with varying collection frequencies from daily patient reports to monthly
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clinical assessments. Existing platforms typically require specialized

informatics support and custom development for temporal

analyses, limiting accessibility for clinical researchers.

Gen3, an open-source platform widely adopted across NIH-

funded research networks, provides robust capabilities for

data storage, access control, and basic querying (4). However,

its implementation for clinical trial visualization has revealed

important capability gaps, particularly in temporal analysis

and standardized outcome measure harmonization (5). The

complexity increases with requirements for integrating diverse

data types from multiple concurrent trials, implementing

granular access controls for multi-site studies, and supporting

real-time monitoring of recruitment and outcomes (6, 7).

This paper addresses the following research questions: How

can Gen3’s architecture be enhanced to support temporal

visualization of clinical trial data while maintaining FAIR

principles? What technical implementations are required to

enable real-time monitoring of longitudinal outcomes across

multiple trials? How can standardized temporal analytics be

achieved without compromising data security and access controls?

Our implementation maintains FAIR data principles while

addressing the specific technical requirements of longitudinal

clinical research (8). We demonstrate this framework’s

effectiveness through its deployment in NIH HEAL Initiative

clinical trial networks studying chronic pain and substance use

disorders (3). though the approach is broadly applicable across

clinical domains (4, 9–11).

Methods

System architecture overview

The adaptation of Gen3 for clinical trial applications required

significant architectural enhancements to support temporal data

visualization and analysis. The core enhancement involved

developing a cloud-agnostic implementation that freed the

platform from vendor-specific constraints (5). This platform

independence proved crucial for research networks that operate

across multiple institutions with varying infrastructure

requirements. The successful transition between cloud providers

demonstrated the feasibility of cross-cloud deployment while

maintaining full functionality.

Cloud-native infrastructure implementation

The implementation leverages comprehensive container

orchestration through Kubernetes, with robust node pool

configurations enabling automated scaling based on resource

utilization metrics. The containerized environment is secured

through NeuVector’s zero-trust security model (12), providing

Layer 7 firewall capabilities and continuous vulnerability

scanning (13). This security framework integrates seamlessly with

OAuth2 authentication patterns (14), ensuring consistent access

controls across all microservices.

Temporal visualization framework

The integration of temporal visualization capabilities marked

another crucial advancement. By incorporating Kibana-based

analytics, the platform gained the ability to track longitudinal

outcomes effectively. The visualization framework supports

interactive filtering and temporal comparisons, enabling

researchers to examine treatment effects across multiple

timepoints and subgroups (15).

Our implementation integrates Kibana with ElasticSearch

indices (16), enabling researchers to examine longitudinal

patterns through both predefined and custom dashboard

configurations. This implementation includes automated ETL

pipelines that maintain data synchronization between PostgreSQL

databases (17) and ElasticSearch indices, ensuring near real-time

availability of temporal analytics (16, 18, 19).

Security architecture

Security enhancements formed a critical component of

the adaptation (5). The implementation of NeuVector provided

zero-trust container security, crucial for protecting sensitive

clinical trial data (20). The security architecture implements

comprehensive authentication and user management, specifically

OAuth2 for external service authentication and includes

comprehensive backup strategies across services, as illustrated in

Figure 1 (14). The security model maintains compliance with

regulatory requirements while enabling appropriate data sharing

and collaboration across research sites.

ETL pipeline development

Data harmonization capabilities represent another significant

enhancement. The platform now includes automated ETL

pipelines for standardizing data across different trials and sites.

To ensure consistent data processing and standardization,

we developed an automated ETL pipeline architecture with

specific adaptations for temporal clinical trial data (21). Our

implementation, shown in Figure 2, extends their approach by

incorporating clinical trial-specific data validation and temporal

relationship preservation. The pipeline includes automated

ETL processes that maintain data synchronization between

PostgreSQL databases (17) and ElasticSearch indices, ensuring

near real-time availability of temporal analytics (16, 18, 19). The

enhanced data dictionary management system enables flexible

adaptation to different clinical trial protocols while maintaining

standardized data structures.

The enhanced data dictionary management system enables

flexible adaptation to different clinical trial protocols while

maintaining standardized data structures. Validation focused on

ensuring accurate representation of clinical trial trajectories and

proper handling of temporal data harmonization across diverse

measurement types and collection schedules.
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FIGURE 1

Gen3 authentication and user synchronization architecture. Architectural diagram showing the integration between Gen3, Kibana, and authentication

services. The system utilizes NGINX modules for OAuth2 authentication and maintains user synchronization between Gen3 and Kibana to ensure

consistent access controls across services. Created using excalidraw, https://excalidraw.com/.

FIGURE 2

ETL pipeline architecture for Gen3 clinical trial data. Workflow diagram illustrating the ETL process from PostgreSQL to Elasticsearch. The pipeline

leverages Kubernetes for orchestration, with Gen3’s Tube service coordinating data extraction and Apache Spark handling transformation before

loading into Elasticsearch indices. Created using excalidraw, https://excalidraw.com/.

Adams et al. 10.3389/fdgth.2025.1570009

Frontiers in Digital Health 03 frontiersin.org

https://excalidraw.com/
https://excalidraw.com/
https://doi.org/10.3389/fdgth.2025.1570009
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Results

Temporal analytics validation

The enhanced Gen3 platform’s temporal analytics capabilities

required specific validation approaches to ensure reliability for

clinical trial time series analysis. The integration of Kibana-based

visualizations introduced new requirements for validating both

data accuracy and analytical functionality across longitudinal

datasets (16).

Validation of the temporal visualization framework demonstrated

precise handling of varied time-based data structures, from regular

visit schedules to irregular event-based capturing. Testing

encompassed multiple temporal granularities, from daily patient-

reported outcomes to monthly clinical assessments, while

maintaining proper temporal relationships between different

measurement types. The system successfully handled common

clinical trial challenges including missing timepoints, out-of-

window measurements, and protocol deviations.

ETL pipeline performance

The Elasticsearch ETL pipeline validation confirmed accurate

transformation of diverse time-based measurements into

standardized formats while preserving temporal precision and

measurement context. Testing verified proper data synchronization

between PostgreSQL databases and ElasticSearch indices, with

successful handling of the data volume and complexity typical of

multi-site clinical trials.

System performance and usability

Performance validation addressed the demands of temporal

queries and real-time filtering. The platform maintained responsive

performance when generating time-based visualizations across large

datasets, with successful testing of concurrent users performing

temporal analyses. Dashboard refresh rates remained within

acceptable limits even when applying complex temporal filters and

aggregations, ensuring practical utility for trial monitoring and

interim analyses.

The platform’s temporal visualization capabilities are

demonstrated through a patient-reported outcomes (PROMIS)

dashboard (Figure 3), which enables tracking of multiple outcome

measures over time. Real-time trial monitoring capabilities are

exemplified in the chronic pain clinical trial dashboard (Figure 4),

which presents both temporal trends and distribution patterns of

key outcome measures.

The platform’s automated testing framework incorporates

containerized test suites that validate both data integrity and

temporal visualization accuracy. Performance validation

demonstrated sustained responsiveness under concurrent user

loads, with dashboard refresh rates remaining under acceptable

thresholds even when applying complex temporal filters across

large datasets (22).

Discussion

The integration of temporal analytics capabilities into the Gen3

data commons platform addresses a fundamental need in clinical

research: the ability to understand and analyze treatment effects

over time while maintaining the security and standardization

benefits of a data commons architecture. Research teams can

now track critical outcome measures across multiple timepoints

without requiring specialized informatics support.

Technical contributions and enhancements

The integration of Kibana into the Gen3 stack significantly

enhanced visualization capabilities beyond native architecture

limitations. Our specific modifications to existing frameworks

include: adaptation of ElasticSearch indexing for clinical trial

temporal data structures, development of OAuth2 integration

patterns for multi-service authentication, and implementation of

automated ETL processes specifically designed for patient-

reported outcome measures.

Broader research implications

The standardized approach to temporal visualization enables

cross-trial comparisons and meta-analyses, fostering deeper

understanding of treatment trajectories across different patient

populations and interventions. In the NIH HEAL Initiative

networks, researchers can now visualize patterns of patient-

reported outcomes across multiple trials (Figures 3,4), leading to

insights about treatment effectiveness that were previously

difficult to obtain.

These enhancements align with evolving requirements for clinical

trial transparency while maintaining appropriate privacy protections.

The platform eliminates the need for specialized informatics support

through Jupyter notebooks (9), democratizing data access and

facilitating independent exploration of temporal patterns, evaluation

of potential secondary analyses, and development of new research

hypotheses (23).

The enhanced platform demonstrates particular utility in

multi-site clinical trials, where real-time monitoring of

longitudinal outcomes is essential for trial management. Research

coordinators can track enrollment progress and outcome measure

completion across sites, while investigators can examine temporal

trends in key endpoints as they emerge.

Future directions

Integration with emerging clinical trial standards and data

models presents a key opportunity for expanding interoperability.

Development of more sophisticated statistical analysis tools

integrated with temporal visualizations represents another
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promising direction, while maintaining the platform’s emphasis on

user-friendly interfaces.

The current implementation’s cloud-agnostic architecture

positions it well to incorporate emerging technologies for

improved performance and scalability. Expansion of temporal

visualization capabilities to support adaptive trial designs and

integration with real-time data streams from wearable devices

could extend the platform’s utility for modern clinical trial designs.

The growing emphasis on patient-centered research suggests a

need for developing interfaces that can effectively communicate

temporal patterns to trial participants while maintaining

appropriate data protections and scientific rigor.

Limitations

Several limitations should be acknowledged in this work.

The technical implementation requires specific infrastructure

and expertise that may not be readily available at all research

institutions. The platform’s dependency on the Kubernetes,

Elasticsearch, and Kibana technology stack creates potential vendor

lock-in despite efforts to maintain cloud-agnostic deployment.

From a clinical implementation perspective, the system

requires training for clinical staff and may introduce workflow

changes that could temporarily disrupt established data collection

processes. The data migration process from existing clinical

FIGURE 3

PROMIS patient-reported outcomes dashboard. Example of temporal visualization capabilities showing longitudinal patient-reported outcomes. Multiple

measures including sleep disturbance, social activity, pain interference, and pain intensity are tracked over time, demonstrating the platform’s ability to

handle diverse temporal data streams. (Reproduced with permission from Wake Forest University, https://impowrgen3.wakehealth.edu/login).
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trial management systems presents potential challenges for

ongoing studies.

The generalizability of this implementation may be limited

by its specific design for NIH HEAL Initiative requirements.

While the approach is broadly applicable, adaptation to other

clinical trial contexts may require significant customization. The

resource requirements for full implementation, including

technical expertise and infrastructure costs, may limit adoption

in resource-constrained research environments.

Finally, while the platform demonstrates improved temporal

visualization capabilities, long-term usability studies and

comprehensive user satisfaction assessments were not conducted

as part of this implementation project.

Conclusion

The enhancement of the Gen3 data commons platform to

support temporal analytics and dynamic data visualizations

represents a crucial advancement for clinical trial infrastructure.

Through the implementation of cloud-native architecture and

integrated visualization capabilities, Gen3 now provides a

framework that addresses fundamental needs in clinical trial data

sharing and analysis while adhering to FAIR principles.

The specific technical contributions include: successful

integration of temporal visualization tools with existing data

commons architecture, development of automated ETL pipelines

for clinical trial data harmonization, implementation of security

frameworks suitable for multi-site clinical research, and creation

of user-friendly interfaces that eliminate the dependency on

specialized informatics support. These enhancements demonstrate

measurable improvements in data accessibility and analytical

capabilities for clinical trial networks.

The success of this implementation provides important lessons for

the broader research community. It demonstrates that established data

commons platforms can be effectively adapted for specialized research

domains without compromising core data sharing capabilities. The

cloud-agnostic approach ensures platform sustainability and broad

applicability, while thoughtful integration of visualization tools

enhances the utility of shared research data.

As clinical trials become increasingly complex and data-

intensive, sophisticated yet accessible data commons platforms will

continue to be essential. The enhancements described here provide

a foundation for future developments in clinical trial data sharing

infrastructure. By enabling robust temporal analytics while

maintaining security and standardization, this approach advances

the goal of making clinical trial data more findable, accessible,

interoperable, and reusable for the broader research community.
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