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Heartbeat detection and personal
authentication using a 60 GHz
Doppler sensor

Takuma Asano, Shintaro Izumi* and Hiroshi Kawaguchi

Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University,

Kobe, Japan

Background: Microwave Doppler sensors, capable of detecting minute

physiological movements, enable the measurement of biometric information,

such as walking patterns, heart rate, and respiration. Unlike fingerprint and

facial recognition systems, they offer authentication without physical contact

or privacy concerns. This study focuses on non-contact seismocardiography

using microwave Doppler sensors and aims to apply this technology for

biometric authentication.

Method: We proposed a method for authenticating and identifying heartbeat

signals through supervised learning using a conditional variational

autoencoder (CVAE). A 60 GHz microwave Doppler sensor was used to

capture heartbeat signals, which were processed using a conformer network

to detect peaks and segment individual beats. High signal-to-noise ratio

waveforms were selected, and time-frequency analysis extracted relevant

features. Spectrograms labeled with subject data were input into the CVAE,

which encoded subject-specific features into a latent space for authentication.

Results: The proposed heartbeat-based authentication method, validated on 13

subjects, achieved an average balanced accuracy of 97.3% for authentication and

an average accuracy of 94.7% for identification. Compared with conventional

methods, this approach demonstrated superior performance by effectively

encoding subject-specific features while mitigating noise-related challenges.

Conclusion: The proposed method enhanced the feasibility of non-contact

heartbeat-based authentication by achieving high accuracy while addressing

noise-related challenges. Its application could improve biometric security

without compromising user privacy. Further advancements in handling posture

variations and scalability are essential for real-world implementation.

KEYWORDS

biometric authentication, conditional variational autoencoder (CVAE), heartbeat,

microwave Doppler sensor, non-contact measurement

1 Introduction

Biometric authentication extracts unique features, such as facial structures and

fingerprints, from biometric data to identify individuals. Unlike traditional

authentication methods, it does not require users to memorize passwords, enter

information, or carry physical identification. Moreover, biometric authentication is

more secure because it is difficult to impersonate and less vulnerable to theft. Given

these advantages, there is growing demand for new biometric modalities that enhance

both usability and security, especially non-contact methods that reduce hygiene risks.

Among various modalities, heart-based biometric authentication has gained attention

because it reflects internal physiological characteristics that are difficult to forge and can be

measured noninvasively. Individual differences in cardiac muscle thickness, electrical
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conduction, and vascular elasticity contribute to unique heartbeat

patterns (1), and personal identification can be derived by analyzing

the amplitude and duration of the P, Q, R, S, and T waves in an

electrocardiogram (ECG). Typically, ECGs are recorded by

measuring electrical potential differences using electrodes attached

to the body surface. Various ECG-based biometric authentication

methods have also been proposed. Arteaga-Falconi et al. (2)

introduced an ECG-based algorithm that enables authentication by

lightly touching a mobile device, pioneering ECG authentication for

mobile applications. Choi et al. (3) developed preprocessing and

feature extraction techniques to improve authentication robustness

against noise in mobile ECG data. Gutta and Cheng (4) proposed a

method that simultaneously optimizes feature extraction and

classifier design, and Sun et al. (5) utilized individualized

autoencoders for personalized ECG authentication.

However, contact-based methods face practical challenges such as

the inconvenience of electrode attachment, hygiene concerns, and

user discomfort. To address these issues, non-contact techniques

have been proposed using microwaves or accelerometer sensors to

detect heartbeats or body surface vibrations. Lin et al. (6) proposed

a non-contact authentication system utilizing continuous wave radar

to sense cardiac motion. Rissacher and Galy (7) used a 2.4 GHz

radar system with continuous wavelet transform (CWT) feature

extraction, while Okano et al. (8) applied autoregressive (AR)

models and spectrogram analysis to heartbeat signals captured by a

24 GHz Doppler sensor. Shi et al. (9) performed personal

identification with 24 GHz radar and support vector machines

(SVM). Cao et al. (10) extracted micro-Doppler signals using

short-time Fourier transform (STFT) and classified them with deep

convolutional neural networks (DCNN). Huang et al. (11) achieved

continuous authentication based on near-field heart rate signals

using an accelerometer sensor, employing a convolutional

autoencoder (CAE). Wu et al. (12) combined ultra-wideband

(UWB) radar and convolutional neural networks (CNN) for

heartbeat-based identification. Hinatsu et al. (13) proposed a

biometric authentication method based on measuring subtle

displacements of the chest wall using a very high frequency band

loop antenna, and Kobayashi et al. (14) introduced a personal

identification approach that combines respiratory and heartbeat-

derived features measured by a 79 GHz millimeter-wave radar.

In this study, we propose a biometric authentication framework

that combines a deep generative model, specifically a conditional

variational autoencoder (CVAE) (15, 16), with non-contact

heartbeat measurement using a 60 GHz microwave Doppler

sensor. By employing a CVAE, the latent feature space is

structured based on subject IDs, enabling robust classification

even under signal variability. The design concept of the proposed

authentication system is illustrated in Figure 1.

2 Materials and methods

2.1 Microwave Doppler sensor

The time intervals of small displacements on the body surface

due to heartbeats strongly correlate with the interbeat intervals in

FIGURE 1

Concept of the proposed authentication method.
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an ECG. Therefore, heartbeats can be detected by measuring these

body surface displacements without directly measuring the ECG. In

this study, a Doppler sensor utilizing microwaves in the 60 GHz

band was used to measure surface displacements.

When microwaves are emitted toward an object, the frequency

of the reflected waves shifts based on the object’s velocity due to the

Doppler effect. The microwave Doppler sensor receives the

reflected waves and outputs signals by mixing the transmitted

and received waves. If the transmission frequency is f0[Hz], the

velocity of the object irradiated by the microwaves is v[m=s], and

the speed of light is c[m=s]. The receiving frequency fr[Hz] can

be expressed using the Doppler effect, as shown in (Equation 1):

fr ¼
cþ v

c� v
f0 ¼ f0 þ

2v

c� v
f0 � f0 þ

2v

c
f0({c � v) (1)

where the frequency shift of the reflected wave relative to the

velocity of the object is proportional to the frequency of the

transmitted wave. Therefore, higher transmitted frequencies

provide higher resolutions. Vibrations on the body surface

induced by heartbeats have displacements of <1 mm. Radio

waves at 60 GHz are mostly reflected by the body surface;

however, this frequency is sufficient to capture the heartbeat

component from the body surface.

A Doppler sensor (BGT60LTR11AIP, Infineon Technologies)

was used for this experiment, with a sampling rate set to 250 Hz.

The measured data were wirelessly transmitted via Bluetooth low

energy (LE) and transferred to a personal computer (PC) in

real time.

2.2 Measured example of heartbeat

Figure 2 shows the measurement results obtained from the

human body (back) using a microwave Doppler sensor.

Reference data were measured using a patch-type ECG sensor

(SEN0213, Zhiwei Robotics Corp.) attached to both hands and

the left leg. The body surface oscillations corresponding to

systole and diastole were also measured (Figure 2). The

waveform obtained using the microwave Doppler sensor was

similar to that obtained using the seismocardiogram (SCG) (17),

supporting the hypothesis that a microwave Doppler sensor can

measure the SCG without physical contact.

2.3 Measurement and dataset construction

Thirteen subjects (11 males and 2 females, aged 22–24 years)

were measured to evaluate the performance of the proposed

method under the conditions shown in Figure 3. The

measurement duration for each subject was 60 s. The heartbeat

was measured while the subjects sat and breathed normally. The

measured data were segmented using the method described later,

retaining only data with a high signal-to-noise ratio. The

frequency region containing the heartbeat component was

extracted using a time-frequency analysis. Furthermore, a five-

beat time-series moving average was then calculated, followed by

data augmentation. This study was approved by the Ethics

Committee of the Graduate School of System Informatics, Kobe

University (approval number: R03-02). All procedures adhered to

the ethical standards of the Institutional and National Research

Committee and the 1964 Helsinki Declaration, along with its

later amendments or comparable ethical standards.

2.4 Preprocessing

The measured time series of the Doppler waves was used to

create a dataset for machine learning.

The time-series waveform obtained by the microwave Doppler

sensor included various types of noise, such as environmental noise

(including ambient and body movement noise), internal noise from

the sensor circuit, external noise affecting the sensor. To reduce the

impact of noise and respiration, a bandpass filter was applied to

allow only specific frequency bands to pass. In this study, a

bandpass filter with a passband of 15–50 Hz was applied. This

frequency range was carefully selected because, when using a

60 GHz Doppler sensor, heartbeat-induced micro-vibrations are

primarily observed within the 15–50 Hz range, whereas

respiratory movements mainly appear at frequencies below

10 Hz. Setting the lower cutoff frequency at 15 Hz effectively

suppresses respiration components while preserving heartbeat

signals. Additionally, the upper cutoff frequency at 50 Hz helps

to eliminate high-frequency noise, including 60 Hz power-line

interference, thereby improving signal quality for

heartbeat detection.

The R-wave peaks of the heartbeats were then extracted from the

Doppler waves using a machine learning approach. In this study, we

utilized the conformer (18) model to estimate the R-wave peaks of

heartbeats. Specifically, Doppler waves measured separately from

those used for authentication were used as input features, and the

R-wave peaks of the ECG, processed with a 1 Hz high-pass filter,

served as the ground truth for training. The trained model was

then used to estimate the R-wave peaks from the Doppler waves

measured for authentication. Ground-truth data were prepared by

assigning a value of one to the R-wave peaks and a value of zero

to all the other points. The data were then converted into a

triangular waveform format. The conformer is a machine learning

model that combines CNN and transformer architectures,

primarily used in natural language processing. For the heartbeat

peak extraction task using the conformer, data from 13 subjects,

with 60 s of data per subject, were used for training. Overlapping

processing was applied to compensate for the limited data. The

machine-learning model consisted of five conformer blocks with

dimensions of 30. Each block included a multihead self-attention

module with three attention heads, a convolution module with a

kernel size of 31, and a feed-forward module with 512 dimensions.

The batch size was set to 512, the number of epochs to 300, the

loss function to mean squared error (MSE), the optimizer to

Adam, and the learning rate to 0.0001.

After downsampling the waveform of the extracted peak and

Doppler wave to 125 Hz, the Doppler wave was segmented based
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on the peak. The signal-to-noise ratio was then calculated for each

segmented Doppler waveform, selecting only those with high

signal-to-noise ratios. In this study, the signal-to-noise ratio was

calculated using the peak value as the signal and the average

value of the Doppler waveform as the noise. Doppler waveforms

with a signal-to-noise ratio of four or higher were used for

the training data, while those with a signal-to-noise ratio of six

or higher were used for the test data. The signal-to-noise ratio

was set slightly lower for the training data than for the test

data to enhance the data robustness by adding noise.

Subsequently, a time-frequency analysis was conducted using a

CWT (see Figure 4).

The challenge in non-contact measurements is the isolation of

body motion noise. Doppler waves contain noise from body

motion and the surrounding environment. However, Doppler

shifts due to breathing and body movement are smaller than those

caused by heartbeats and can be distinguished using frequency-

domain computation. Therefore, we extracted the heartbeat

component by using a spectrogram as an input to a neural network.

The resolution of the time-frequency analysis should be

considered carefully. The STFT is a widely used method for

time-frequency analysis; however, it struggles to achieve both

frequency and time resolution owing to the uncertainty principle

of the Fourier transform (19). Therefore, time-frequency analysis

FIGURE 2

Measurement results of heartbeat.
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was conducted using the CWT, as shown in (Equation 2):

W(a, b) ¼ jaj(�1=2)

ð

1

�1

x(t)c
t � b

a

� �

dt (2)

where x(t) is the signal to be analyzed, c is the mother wavelet, a is

the scale parameter corresponding to the frequency to be extracted,

and b is the shift parameter corresponding to the time to be

analyzed. In this study, the Morlet wavelet with v0 ¼ 6 is used

as the mother wavelet (20), as shown in (Equation 3):

c(t) ¼ p�1
4eiv0te�

t2

2 (3)

Finally, data augmentation (21) was applied to the spectrograms.

This included time shifts, where data points on the time axis

were shifted forward and backward by ±2 points; time stretching,

where the length on the time axis was altered; mixup (22), which

linearly combined two spectrograms; the addition of white noise,

a random signal with equal intensity across all frequencies; and

the calculation of a moving average over every five beats.

2.5 CVAE model

In this study, we employed a CVAE (15, 16) as the machine

learning model for heartbeat-based biometric authentication. The

CVAE is a deep generative model proposed by Sohn et al., based

on the Variational Autoencoder (VAE) (23), which was originally

introduced by Kingma et al.

While the standard VAE learns an unsupervised latent

representation of input data, the CVAE extends this framework

to support supervised learning by conditioning the latent

space on class labels. The VAE encodes input data into

latent variables and decodes outputs from compressed

representations to reconstruct the original input. In contrast,

the CVAE controls the distribution over the latent space based

on the labels assigned during training, thereby enabling the

model to structure the latent space according to class-

specific information.

Let (X, Y) ¼ {(x1, y1), . . . , (xN , yN )} represent the measured

data and their corresponding class labels, where xi [ R
D denotes

the input data and yi [ 0, 1, 2, . . . , K � 1 denotes the subject

ID. Each data point xi is associated with a latent variable zi. The

decoder distribution pu(xjz) and the prior distribution pc(zjy) are

defined by (Equations 4 and 5):

pu(xjz) ¼ Bern(mu(z)) (4)

pc(zjy) ¼ N (mc(y), s
2
c(y)) (5)

u and c are hyperparameters of the neural network in (Equations 4

and 5). The posterior distribution is approximated as in

(Equation 6). f is a hyperparameter.

qf(zjx) ¼ N (mf(x), s
2
f(x)) (6)

The training objective is to maximize the conditional log-

likelihood logpu,c(xjy), which is intractable and instead

approximated by maximizing the variational lower bound. This

bound is given by the expected log-likelihood of the

reconstructed input minus the Kullback–Leibler (KL) divergence

FIGURE 3

Measurement conditions.

Asano et al. 10.3389/fdgth.2025.1570144

Frontiers in Digital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1570144
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


between the approximate posterior and prior distributions, as

shown in (Equation 7):

log pu,c(xjy) ¼
.

ð

qf(zjx) log
pu(x, zjy)

qf(zjx)
dz

¼

ð

qf(zjx) log
pu(xjz)pc(zjy)

qf(zjx)
dz

¼ Eqf(zjx)[ log pu(xjz)]� DKL[qf(zjx)jjpc(zjy)]

¼ �L0CVAE(x, y; u, f, c)

(7)

The CVAE model used in this study follows the structure

proposed by Sohn et al., with a key modification: the encoder

qf(zjx, y) is simplified to qf(zjx), excluding the label y from the

encoder input. This modification allows the encoder to

autonomously extract individual-specific features from the input

data without explicitly requiring label information during

encoding, while the prior remains label-dependent.

The overall model architecture is illustrated in Figure 5. The

encoder network predicts the mean and variance of the latent

distribution, from which the latent variable z is sampled using the

reparameterization trick (23), expressed as z ¼ mþ e� s2, where

e � N (0, I) follows a standard normal distribution.

Simultaneously, the prior network generates a label-conditioned

prior distribution. The KL divergence between the encoder’s output

and the label-conditioned prior is minimized to structure the latent

space, while the decoder reconstructs the input from the latent

variable. The overall loss function is the sum of the reconstruction

loss, computed using MSE, and the KL divergence term.

Figure 6 presents the detailed network structures of the

encoder, prior, and decoder. The encoder consists of a series of

two-dimensional convolutional layers followed by max pooling

and a feed-forward network (FFN) to predict the mean and

FIGURE 4

Dataset construction.
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FIGURE 5

Architecture of the proposed model.

FIGURE 6

Layer structure details.
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variance of the latent distribution. The prior network employs an

FFN that maps the label to the latent space parameters. The

decoder comprises an FFN followed by two-dimensional

transposed convolutional layers to reconstruct the original

spectrogram from the latent representation.

2.6 Authentication using CVAE

Biometric authentication was performed using the latent

representations generated by the CVAE model. During training,

heartbeat spectrograms measured from each subject were

encoded into a latent space, where data points with the same

subject ID gradually formed distinct clusters. Each cluster’s

center was calculated as the mean of the latent variables

corresponding to that subject’s training samples.

The authentication process is depicted in Figure 7. In the

inference phase, test spectrograms were encoded into the latent

space using the trained encoder. The distance between each

encoded representation and the center of each subject’s cluster

was then calculated (24). In this study, the Mahalanobis distance

was used. A test sample was authenticated as belonging to a

subject if its Mahalanobis distance to that subject’s cluster center

was smaller than a predefined threshold; otherwise, it was

rejected as an unregistered individual.

This distance-based authentication approach enabled robust and

interpretable decision-making in the latent space structured by the

CVAE model. The hyperparameters used for training the CVAE

model were: batch size of 64, 300 training epochs, Adam optimizer

with a learning rate of 0.00001, and a latent space dimension of 50.

3 Results

3.1 Evaluation and method

In this study, 48 s of the measured 60-s data were used for

training, and the remaining 12 s were used for performance

evaluation. However, the data used in these processes were not used

as training data for the conformer-based heartbeat peak extraction.

First, leave-one-out cross-validation (LOOCV) was conducted

to evaluate the authentication performance that proved the

identity of a specific individual. In this method, the model was

trained by excluding the data of one of the 13 subjects. This

approach prevented data bias and enabled the assessment of the

generalization performance. Of the data from the 12 subjects not

excluded by LOOCV, data from one subject were used as a single

label for training, whereas the data from the remaining 11 were

aggregated into a single label. To balance the data volume, 1/11

of each subject’s data was extracted from the remaining 11 to

create the training dataset. Finally, the performance in rejecting

unregistered subjects was evaluated using inference data from

those excluded from LOOCV.

Subsequently, the data of all 13 subjects were trained as

separate labels to evaluate the identification performance, which

determines which registered individual matched the data. As the

identification task involved selecting the subject most closely

matched among the registered total, LOOCV was not conducted.

For inference, 12 s of data not used in the training for all

registered subjects were used to evaluate the performance of

correctly identifying registered subjects.

During the inference process, a majority-voting method was

employed using multiple consecutive heartbeat waveforms,

specifically, majority voting on data from five heartbeats.

The results obtained were used to illustrate the correlation

between the false rejection rate (FRR) and false acceptance rate

(FAR) when the Mahalanobis distance threshold in the latent

space was varied, as shown in Figure 8. Given that these values

were correlated, they fluctuated based on the set threshold. The

equal error rate (EER) was achieved when the Mahalanobis

distance threshold was adjusted such that FRR and FAR were

equal. This evaluation was conducted for all the subjects.

3.2 Metrics

The accuracy of authentication was evaluated using balanced

accuracy (BAC), F1-score, and EER, whereas the accuracy of

identification was evaluated using ACC.

BAC is a measure used to evaluate classifier performance on

unbalanced datasets. It is the average of the true positive rate

(TPR) and true negative rate (TNR), which evaluates the

prediction accuracy for each class equally.

3.3 Experimental results

The results of calculating the average BAC, F1-score, and EER

for each subject during authentication are shown in Table 1.

Majority voting was performed using multiple consecutive

heartbeat waveforms. Majority voting with five heartbeat datasets

resulted in a BAC of 97.3%. For identification, the average ACC

for each subject was calculated, with the results presented in

Table 2. The majority of the votes using the five heartbeat datasets

resulted in an ACC of 94.7%. These results indicate that extending

the duration used for authentication and performing inferences

based on multiple heartbeat signals can improve the accuracy.

Additionally, Table 3 presents subject-wise evaluation

results, allowing for further analysis of individual differences

in performance.

To evaluate the impact of sensor position shifts and changes in

heartbeat waveforms over time, two subjects were re-measured at

the same location on different days. The results inferred from the

re-measured data are shown in Table 4. In this data, the BAC

and F1-score decreased by 4.0% and 7.2%, respectively, while the

EER increased by 4.8%.

4 Discussion

Table 5 compares the performance of previous heartbeat-based

contactless authentication methods. Prior studies using microwave
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FIGURE 7

Architecture of the proposed model.
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Doppler sensors (7) demonstrated that feature extraction through

time-frequency analysis and K-nearest neighbor search could be

applied for authentication. However, the accuracy of these

methods was insufficient. In our previous study (8), we used a

24 GHz microwave Doppler sensor for heartbeat extraction. This

method relied on AR model-based time–frequency analysis and

spectrogram correlation. The sensor was fixed to the front of the

chest using a belt; however, body motion noise could not be

completely eliminated. Machine learning-based methods such as

SVM (6, 9, 10, 13, 14), DCNN (10), and CAE (11) have also

been proposed. These methods, however, face limitations such as

experimental complexity (6, 14), low accuracy, small sample sizes

(9, 10, 13), and restricted applicability (11).

In contrast, the proposed method achieves high authentication

and identification performance while offering enhanced usability.

Unlike many previous systems, it does not require users to wear

sensors or maintain constrained postures. Our system enables

high-accuracy authentication without forcing users to fix a sensor

to the body with a belt or remain seated in a specific position.

Although our experiment was conducted in a seated posture, the

non-contact approach allows natural use without burdening the

user and is expected to be adaptable to other postures as well.

Compared with existing methods requiring controlled

experimental setups, our approach has the potential to expand

the range of applicable scenarios. This flexibility, combined with

high accuracy, is a key strength of the proposed system.

In terms of cost, the 60 GHz Doppler sensor used in this study

offers higher frequency and accuracy than lower-frequency

alternatives (e.g., 2.4 or 24 GHz), placing it in a mid-range price tier.

Some previous studies have employed high-precision but specialized

radar systems that may limit widespread adoption. In contrast, our

method uses a commercially available radar module that enables

non-contact authentication without requiring physical attachment,

offering advantages in accessibility, ease of setup, and user experience.

Although the proposed method exhibited high authentication

and identification accuracy, a potential limitation is the small

sample size. In this study, we proposed a method for non-

contact measurement of heartbeat signals using a microwave

Doppler sensor and a framework for personal authentication and

identification based on these signals. The method was validated

using spectrograms from 13 individuals. Results showed that the

proposed method achieved an average BAC of 97.3% for

authentication and an average ACC of 94.7% for identification.

By comparison, Huang et al. (11) reported a BAC of 96.5% and

an EER of 3.8%. Our method improved the EER to 2.7%, a

28.9% relative improvement, and increased BAC by 0.8% points.

ACC was comparable with the 94.6% reported by Shi et al. (9).

The re-measurement experiment, which simulated temporal

variation in sensor conditions, showed a modest decline in

performance (BAC −4.0%, F1-score −7.2%, EER +4.8%). This

degradation appears acceptable for practical use, as the

FIGURE 8

Example of the correlation between FRR and FAR with varying

Mahalanobis distance thresholds in the latent space.

TABLE 1 Evaluation scores in authentication (macro average).

Method BAC [%] F1-score [%] EER [%]

Using single data 88.3 88.3 11.8

Majority voting using 5 data 97.3 97.3 2.7

The bold values indicate the highest score for each evaluation metric.

TABLE 2 Evaluation scores in identification (macro average).

Method ACC [%]

Using single data 93.3

Majority voting using 5 data 94.7

The bold values indicate the highest score for each evaluation metric.

TABLE 3 Evaluation scores for each subject.

Subject# BAC [%] F1-score [%] EER [%]

0 100.0 100.0 0.0

1 100.0 100.0 0.0

2 93.8 93.3 5.7

3 100.0 100.0 0.0

4 100.0 100.0 0.0

5 99.5 99.5 1.0

6 95.6 95.8 4.6

7 100.0 100.0 0.0

8 83.3 83.8 17.6

9 100.0 100.0 0.0

10 92.3 92.7 6.4

11 100.0 100.0 0.0

12 100.0 100.0 0.0

TABLE 4 Changes in evaluation scores over time.

Subject# Measured
Date

BAC [%] F1-score
[%]

EER [%]

1 2023.12.19 100.0 100.0 0.0

10 2023.12.22 92.3 92.7 6.4

Avg. 96.2 96.3 3.2

1 (2nd) 2023.12.30 91.7 86.5 9.9

10 (2nd) 2024.01.12 92.8 91.7 6.1

Avg. 92.2 89.1 8.0

The bold values represent the average results of two subjects.
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envisioned application scenario assumes a fixed device installation

(e.g., in a specific room or vehicle) without repositioning after

initial calibration. Under this assumption, the ability to

authenticate previously enrolled users after a time interval

remains sufficient for real-world deployment.

Regarding the number of subjects, we agree that evaluating

generalizability with a larger and more diverse population is

scientifically important. However, the intended use scenario for

this system assumes deployment in relatively small communities,

such as research groups, internal organizational teams, or

households. In such cases, optimizing the model for a limited

user base is both practical and effective. Therefore, we believe the

current sample size remains meaningful from a practical

perspective. Nonetheless, we plan to expand the subject pool in

future work to investigate scalability and robustness further.

Although remote authentication is not the primary focus of this

study, the proposed method assumes that the target user remains

relatively stationary. We recognize that achieving robust

authentication under light movement conditions would enhance

the system’s practicality. We consider this an important direction

for future research aimed at improving the robustness and

versatility of the approach.

Future work should not only examine the impact of increasing

the number of subjects on authentication accuracy, but also

develop methods that account for variations in biometric signals

due to changes in posture and physical condition. Improving

robustness to postural variation remains a key challenge, and

algorithms capable of adapting to such changes must be

established. For example, an authentication system should function

reliably even when the user is leaning forward or resting against a

chair. Furthermore, it is essential to maintain stable authentication

performance under conditions involving light body movement.

Achieving this will require advances in signal processing and

machine learning algorithms to extract consistent and invariant

heartbeat components across diverse measurement conditions.
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TABLE 5 Comparison with prior works.

Study Number of Subjects Algorithm Preprocessing Authentication Identification

Lin et al. (6) 78 SVM Fiducial points of time series wave BAC: 98.6% EER: 4.42% n/a

Rissacher and Galy (7) 26 KNN CWT Rank-1 ACC: 19% Rank-5 ACC: 42% n/a

Okano et al. (8) 11 RSS AR model ACC: 92.8% EER: 3.9% n/a

Shi et al. (9) 4 SVM Complexity of time series wave n/a ACC: 94.6%

Cao et al. (10) 4/10 CNN STFT n/a ACC: 98.5%/80.7%

Huang et al. (11) 105 CAE Fiducial features of time series wave BAC: 96.5% EER: 3.8% n/a

Hinatsu and Wada (13) 13 SVM AC/DCT +MFCC ACC: 92.3% EER: 6.1% n/a

Kobayashi et al. (14) 6/30 (public dataset) SVM MFCC n/a ACC: 96.3%/99.4%

This work 13 CVAE CWT BAC: 97.3% EER: 2.7% ACC: 94.7%

SVM, support vector machine; KNN, k-Nearest Neighbor; RSS, residual sum of squares; CNN, convolutional neural networks; CAE, convolutional autoencoder; CWT, continuous wavelet

transform; AR model, autoregressive model; STFT, short-time Fourier transform; AC, autocorrelation; DCT, discrete cosine transform; MFCC, mel-frequency cepstral coefficient; ACC,

accuracy; BAC, balanced accuracy; EER, equal error rates.
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