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Introduction: Early diagnosis of cognitive impairment and dementia relies on

comprehensive, evidence-based cognitive assessments, which currently requires

a clinic visit and access to skilled healthcare providers. This poses a challenge

for people who live in areas with inadequate primary care services and those

who have economic, insurance, or other transient hardships (transportation,

time, etc.) that limit their access to healthcare services. Digital cognitive

assessments (DCAs) with remote testing capabilities have emerged as an

efficient and cost-effective solution. The aim of this study was to validate the

reliability of BrainCheck, a platform for DCAs, when self-administered remotely.

Methods: A total of 46 participants (60.9% female; age range 52–76) remotely

completed a battery of six BrainCheck cognitive assessments twice on the same

device (iPad= 8, iPhone= 5, laptop= 33): the participants self-administered in

one session and were administered by a research coordinator (RC) in the other

session. Thirty participants completed the self-administered session first, while 16

completed it second. The inter-session interval (ISI) varied across participants,

from within the same day to 21 days apart. Testing outcomes, including the

duration of time needed to complete the battery, the raw score from each

assessment, and the raw overall score, were compared between the two sessions.

Results: We found moderate or good agreement between self- and RC-

administered performance, with intraclass correlation ranging from 0.59 to

0.83. Results from mixed-effects modeling further confirm the non-significant

difference between self- vs. RC-administered testing performance, which is

independent of other factors including testing order, ISI, device, and

participants’ demographic characteristics.

Discussion: These results demonstrate the feasibility of remote self-

administration using BrainCheck.

KEYWORDS

dementia diagnosis, digital cognitive assessment, self-administered testing,

BrainCheck, reliability

1 Introduction

Dementia has become a public health concern worldwide with significant social and

economic impacts (1–4). Early diagnosis of dementia is crucial for timely interventions,

care planning, and reducing healthcare costs (5). However, early diagnosis relies on

comprehensive, evidence-based cognitive assessments, which currently requires a clinic

visit and access to trained healthcare providers. On the patient side, this poses a challenge
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for people who live in rural or underserved areas with inadequate

medical services and those who have health, economic, insurance,

or other transient hardships (transportation, time, etc.) that limit

their access to healthcare services (6). On the provider side, with

the shortage of specialists like geriatricians and neurologists (7, 8),

primary care providers (PCPs) are often on the front lines of

providing dementia care (9). However, many are constrained by

short appointment times and limited staff (10), which makes it

difficult to offer routine cognitive assessment to meet the growing

needs of an aging population and the rising prevalence of the

disease. These challenges highlight a critical need for a better

solution to improve the accessibility of cognitive assessments in

the primary care setting.

Remote cognitive assessment has emerged as a promising

solution to improve accessibility, particularly in light of the

limitations on in-person care imposed by the COVID-19 pandemic.

With this shift, various remote cognitive testing methods have been

developed. Videoconference-based teleneuropsychology facilitates

real-time interaction between patients and providers, making it

possible to administer conventional in-person cognitive tests

remotely under supervision (11). However, many patients may lack

access to the required equipment (e.g., videoconference capable

devices) or struggle with technical complications during setup.

Telephone-based testing is a convenient alternative (12), but may

not be suitable for patients with hearing loss. Importantly, as

assistance from a healthcare professional during testing is still

required, these methods are not likely to be scalable and practical.

Recent development in innovative digital cognitive assessments

(DCAs) that allow for self-administration presents a more efficient

and cost-effective solution for remote testing by eliminating the need

for professional oversight during testing. Unlike traditional paper-

and-pen instruments, DCAs offer automated objective scoring and

instant interpretation of results. Additionally, DCAs are able to

capture granular measurements (e.g., response time) and provide

multiple alternate sets of stimuli to minimize practice effects (13,

14). By allowing patients to complete assessments independently at

home, self-administered DCAs can significantly improve the

screening, diagnosis, and monitoring of dementia, alleviating the

burden on healthcare providers and enhancing the efficiency of

routine and repeated cognitive testing. Self-administered DCAs also

offer psychometric advantages. The home environment may reduce

test anxiety, leading to more accurate reflections of a patient’s day-

to-day cognitive abilities and enhancing ecological validity (15).

These advantages position self-administered DCAs as a vital tool for

addressing the growing demand for dementia care, ultimately

contributing to improved patient outcomes and more efficient

utilization of healthcare resources.

BrainCheck Assess (BC-Assess) is an evidenced-based DCA

developed by BrainCheck (16–19). It consists of a brief battery of

standardized assessments that evaluate multiple cognitive domains

relevant to cognitive decline, such as memory, attention, and

executive function. Previous validation studies have demonstrated

that BC-Assess can reliably and sensitively measure cognitive

decline among those with early cognitive impairment (16, 17).

Designed for flexibility and accessibility, the full battery takes just

10–15 min to complete and can be administered by clinical

support staff with minimal training in a clinical office setting or

self-administered at home. Unlike other self-administered DCAs

such as Cantab (20), BC-Assess is web-based, device-agnostic, and

mobile-responsive, allowing users to take the test on any internet-

connected device at any time without downloading an app or

requiring technical setup. Other platforms, including TestMyBrain

(21) and BRANCH (22–24), offer similar features, but BC-Assess

is built specifically for clinical use. It offers direct integration with

electronic health records (EHRs), includes clinical decision support

in the results report, and provides a digital care planning tool for

post-diagnosis support.

While BC-Assess supports remote, unsupervised testing, its

effectiveness depends not only on the design of the assessments

but also on the testing environment. When self-administered

remotely, the lack of supervision and real-time support may make

the testing vulnerable to variability in the testing environment,

including issues with connectivity, device capability, and users’

technical literacy (25). Within this context, this study aimed to

evaluate the feasibility and reliability of BC-Assess on different

types of devices by comparing individuals’ performance in self-

administered vs. examiner-assisted settings. Comparisons were

performed in terms of the time taken to complete the assessments

and their testing result in each assessment.

2 Materials and methods

2.1 Participants

Participants were recruited through convenience sampling,

utilizing the personal networks of BrainCheck employees.

Employees were encouraged to share study details within their

networks, allowing interested individuals to volunteer.

Additionally, participants were invited to refer other eligible

individuals who might be interested, expanding the pool through

a snowball recruitment approach. Interested participants received

an invitation via email to complete a screening questionnaire.

Eligible participants were those aged 50 years or older who self-

reported as cognitively healthy, had no motor impairments that

might affect their ability to complete cognitive assessments, and

had no experience with BC-Assess prior to the study. Enrollment

and data collection occurred between April 9, 2020, to May 4,

2020 during the COVID-19 pandemic. A total of 46 participants

(60.9% female; age range 52–76, mean 64.0, standard deviation

5.8) participated in this study. Table 1 summarizes demographic

characteristics of the participants.

2.2 Procedure

Each participant completed BC-Assess remotely in two sessions:

one where the participant self-administered the assessments and

another where a research coordinator (RC) administered it. For

the self-administered session, the participant received general

instructions via email. During the RC-administered session, which

took place amid the COVID-19 pandemic, the RC connected with
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the participant over the phone call or video chat. If requested, the RC

provided assistance to help the participant get set up. The RC stayed

on the phone or video throughout the test with the participant,

answering any questions that arose. In both sessions, testing was

taken on the same device for each participant, which could be

either an iPad (n = 8), iPhone (n = 5), or laptop (n = 33), based on

the participant’s accessibility of devices and preference. The time

interval between the two sessions varied across participants,

from within the same day to 21 days apart. The order of the

self-administered and RC-administered sessions was randomized

across participants. Among the 46 participants, 30 completed

the self-administered session first, while 16 completed it second

(see Table 1).

2.3 Measurements

BC-Assess included six assessments measuring key cognitive

abilities:

(1) Immediate Recognition: Participants were shown a list of 10

words and later asked to identify which of 20 words (10

original and 10 distractors) were presented earlier, assessing

short-term memory through recognition.

(2) Trail Making A: Participants tapped numbered circles in

sequential order as quickly as possible, assessing visual

attention and processing speed.

(3) Trail Making B: An extension of Trail Making A, this task

requires participants to alternate between tapping numbers

and letters in order (e.g., 1-A-2-B), measuring cognitive

flexibility and set-switching.

(4) Stroop: This assessment measures executive function and

inhibitory control using a color-word interference paradigm.

Participants were shown a target word in black and must

find it in a 4 × 3 grid where word colors varied: neutral

(black), congruent (word and color match), or incongruent

(word and color conflict).

(5) Digit Symbol Substitution: Participants were shown a key

pairing symbols with digits and must quickly select the digit

that corresponded to a target symbol, evaluating

processing speed.

(6) Delayed Recognition: Similar to Immediate Recognition but

with a time delay filled with assessments (2)-(5). Without

seeing the original 10 words again, participants were asked

which of 20 words (10 original and 10 distractors) were

presented, testing the ability to recognize information after

a delay.

A more detailed description of these assessments can be found in

our previous studies (17, 18). At the beginning of each

assessment, participants were presented with test instructions and

engaged in an interactive practice session that included

simulations of the actual test and feedback on any incorrect

responses. This approach was designed to ensure participants

understand the tasks well before the actual test. To minimize

practice effects, BC-Assess includes built-in mechanisms for

randomly generating alternative forms of each assessment. For

example, in Trail Making A, the spatial positions of the

numbered dots are randomized with each administration.

Performance on each assessment was quantified by either

accuracy- or reaction time-based measures (Table 2).

In addition to assessment-level scores, a battery-level overall

score was calculated to provide a composite metric summarizing

each participant’s cognitive performance across multiple

domains. The BC-Assess raw overall score was calculated as the

mean of performance scores from all assessments in the BC-

Assess (except the Trail Making B), where each assessment score

had been transformed from its natural range into a common

range [0,100], using the formula in Table 2. Although Trail

Making B remains as an important component that informs

TABLE 1 Demographics of the study sample.

Demographic characteristics Self-administered first (N = 30) RC-administered first (N= 16) Total (N= 46)

Sex, n (%)

Female 17 (56.7%) 11 (68.7%) 28 (60.9%)

Male 13 (43.3%) 5 (31.3%) 18 (39.1%)

Age, years

Mean (SD) 64.1 (6.2) 63.9 (5.1) 64.0 (5.8)

Range 52–76 56–70 52–76

Education Level, n (%)

>=12 years 19 (63.3%) 12 (75%) 31 (67.4%)

<12 years 1 (3.4%) 1 (6.3%) 2 (4.3%)

Not reported 10 (33.3%) 3 (18.7%) 13 (28.3%)

Device, n (%)

iPad 5 (16.7%) 3 (18.7%) 8 (17.4%)

iPhone 1 (3.3%) 4 (25%) 5 (10.9%)

Laptop browser 24 (80%) 9 (56.3%) 33 (71.7%)

Inter-session interval (hours)

Median (25–75th percentile) 62 (22–284) 19 (3–25) 27 (13–197)

Range 1–497 1–248 1–497

SD, standard deviation.
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clinicians’ understanding and interpretation of an individual’s

cognitive functioning, it is excluded from the calculation of the

overall score. This is because Trail Making B is administered

only if Trail Making A is completed. This design is intended to

reduce frustration for individuals with cognitive difficulties by

avoiding the presentation of a significantly more difficult

assessment following failure on a simpler one. Trail Making

B places high demands on cognitive flexibility and set-switching,

making it more challenging than Trail Making A. Therefore,

including Trail Making B in the overall score would lead to

missing data that is conditional on prior task performance. This

could introduce bias and potentially skew the interpretation of

overall cognitive functioning.

2.4 Data analysis

Participants’ performance was evaluated through the following

outcomes: the total duration of time needed to complete the

battery, the raw score from each individual assessment in BC-

Assess defined in Table 2, and the BC-Assess raw overall score. For

each outcome, descriptive statistics were calculated separately for

the self- and RC-administered sessions. The reliability of self-

administered BC-Assess was examined by comparing participants’

performance across the two testing sessions. Bland-Altman plots

were used to identify systematic differences and evaluate the

variability of the differences in performance between the two

sessions. Paired-samples t-tests were used for significant testing of

the mean of the differences. The consistency and absolute

agreement of performance between the two sessions were measured

by Pearson correlation (r) and intraclass correlation (ICC). To

calculate ICC, a two-way mixed-effects model with administration

mode (self- vs. RC-administered) as a fixed factor and participant

as a random factor was used to determine between- and within-

subject components of variance. ICC was then calculated as the

ratio of between-subject variance to the total variance.

To further investigate the factors that might influence

participants’ performance, we applied two complementary

modeling approaches:

Approach-1. Absolute score modeling: a mixed-effects linear

regression model was run for each outcome to analyze the effects

of administration mode and participant/session characteristics on

performance. In the model, administration mode (RC-

administered = 0; self-administered = 1) was included as the main

fixed factor of interest. Five covariates were included as

additional fixed factors:

(1) testing order (first test = 0; second test = 1): to capture any

difference in the testing outcome due solely to learning effect;

(2) time point of test measured in hours (first test = 0): to

capture the effect of inter-session interval on the second

testing outcome;

(3) device type (with iPhone selected to be the baseline): to

capture differences in the testing outcome between

computer browser, iPad and the baseline;

(4) participant’s age;

(5) participant’s sex (female = 0; male = 1).

Interaction terms between administration mode and each of the

five covariates were also included in the model to capture the

possible influence of each factor on the difference in

performance between the self- and RC-administered sessions.

A random intercept by participant was included in the model to

account for the effects of individual differences.

Approach-2. Relative score difference modeling: a fixed-effects

linear regression model was run where each outcome variable

was the within-subject difference in score between the self- and

RC-administered sessions (self—RC) for each participant. This

relative score difference modeling allowed us to examine whether

the magnitude of discrepancy between administration modes

could be systematically explained by participant or session-

related variables. The predictors included delta testing order (+1

if self-administered testing occurred first; −1 otherwise), delta

inter-session interval in hours (self-administered time minus RC-

administered time), age, sex, and device type. Although

participants used the same device in both sessions, device type

was retained as a predictor in this model to assess whether the

magnitude of performance difference varied across platforms.

Age and sex were also included, as individual characteristics may

relate to different patterns of performance change, even though

they remained constant across sessions.

Together, the two approaches provide complementary insights.

Approach 1 identifies which factors, including administration

mode, are associated with absolute test performance across

participants, accounting for individual differences. Approach 2

isolates the within-subject change between self- and RC-

administered sessions, showing which factors explain variation in

mode-related performance differences.

In both approaches, due to data missingness and the majority

of participants having more than 12 years of education, education

level was excluded from analysis. All non-categorical independent

variables, as well as the dependent variable, were standardized to

have a mean of 0 and standard deviation of 1 prior to model

fitting. Model fitting was based on the Restricted Maximum

Likelihood (REML) method for the mixed-effects model, and

Ordinary Least Square (OLS) method for the fixed-effects model.

TABLE 2 Raw score (RS) metric and transformed score (TS) calculation for
each assessment.

Assessment Raw score metric Transformed
score

Immediate/delayed

recognition

Number of correct

responsesa
TS = 100 × RS/MAXc

Stroop Median reaction timeb TS = 100 × (1 − RS/

MAX)

Digit symbol substitution Number of correct

responses per sa
TS = 100 × RS/MAX

Trail making A Median reaction timeb TS = 100 × (1 − RS/

MAX)

Trail making B Median reaction timeb N/A

aHigher score indicates better performance.
bLower score indicates better performance.
cMAX represents the population maximum score of the assessment across all individuals in

the BrainCheck normative database.
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3 Results

The mean and standard deviation of each outcome are

provided in Tables 3 for each administration mode.

The Bland-Altman plots in Figure 1 show for each outcome the

distribution of the differences in performance between the self- and

RC-administered sessions as a function of their means. Results

from paired-samples t-tests show non-significant differences

between self- and RC-administered performance for all testing

outcomes except for Stroop [t(45) = 2.43; p = 0.019]. We found

moderate or strong consistency and agreement between self- and

RC-administered performance for most outcomes, with Pearson

correlation r in the range 0.62–0.85 and intra-class correlation

ICC in the range 0.59–0.83 (Table 3 and Figure 2). Pearson

correlation and ICC were not calculated for Immediate/Delayed

Recognition because no linear relationship was observed for the

outcome measures of these assessments. It is worth noting that,

unlike the other assessments, performance in these assessments is

based only on accuracy of responses and does not take into

account reaction times. When taking reaction times into account

(with performance measured as the number of correct responses

per median reaction time), we observed moderate Pearson

correlations of 0.79 (95% CI: 0.59–0.88) and 0.69 (0.49–0.82),

and ICCs of 0.78 (95% CI: 0.64–0.87) and 0.69 (0.50–0.81), for

Immediate and Delayed Recognition, respectively (Figure 3). For

Stroop, although the difference between self- and RC-

administered performance is significant, the difference mean of

0.1 s (Figure 1) is relatively small compared with the variance of

Stroop raw scores across participants, reflected by a high ICC

value for this assessment.

Standardized estimates of fixed effects obtained from the

mixed-effects modeling (Approach-1) for each testing outcome

TABLE 3 Mean (standard deviation), t-statistic from paired t-tests (degrees of freedom= 45), Pearson correlation r, intraclass correlation ICC, and their
95% confidence interval (CI) for each testing outcome.

Outcome Self RC t-statistic r (95% CI) ICC (95% CI)

Duration (s) 835 (248) 801 (199) 1.16 0.62 (0.37–0.80) 0.59 (0.37–0.75)

BC-Assess overall score 78.8 (3.3) 79.9 (3.6) −0.53 0.65 (0.39–0.79) 0.63 (0.42–0.78)

Immediate Recognition (correct responses) 18.7 (1.1) 18.8 (1.4) −0.24 N/A N/A

Delayed Recognition (correct responses) 18.3 (1.4) 18.3 (1.7) 0.0 N/A N/A

Stroop (s) 2.31 (0.52) 2.22 (0.41) 2.43 0.85 (0.74–0.92) 0.83 (0.71–0.90)

Digit Symbol Substitution (correct responses per s) 0.39 (0.08) 0.39 (0.09) −0.20 0.70 (0.52–0.84) 0.68 (0.49–0.81)

Trail Making A (s) 1.20 (0.33) 1.18 (0.38) 0.65 0.80 (0.63–0.90) 0.80 (0.66–0.88)

Trail Making B (s) 1.85 (0.61) 1.89 (0.59) −0.51 0.74 (0.57–0.86) 0.73 (0.56–0.84)

Self, self-administered; RC, RC-administered.

FIGURE 1

Bland-Altman plot for each testing outcome: differences between self- and RC-administered performance (y-axis) as a function of their means

(x-axis). The orange dashed lines represent point estimates of the upper and lower limits of agreement (LoA: ±1.96 standard deviations of the

differences). The blue dashed line represents point estimate of the mean of the differences. The shaded areas along the lines represent the

corresponding 95% confidence intervals.
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data, along with their 95% confidence intervals, are provided in

Table 4A. For all outcomes, we found that the main effect of

administration mode and all interactions between administration

mode and the other five factors were not significant. These

results indicate that participants performed equally well when

they self-administered and when they were administered the

assessments by a professional, regardless of testing order, the

time interval between the two tests, testing device, and

participants’ age and sex. The non-significant effect of

administration mode is consistent with the results from the

t-tests for all outcomes except the Stroop raw score where t-test

result is significant.

Significant main effects of the covariates were found for certain

testing outcomes. Testing order impacts only performance in Digit

Symbol Substitution (p = 0.025), suggesting participants got better

at encoding and matching the symbols or developed a better

strategy to complete the task after the first test. Inter-session

interval does not significantly impact performance on any

assessment. The effect of device type is found for only Trail

Making A. With iPhone as the reference, the significant

difference in Trail Making A response time when using laptop

browser (p = 0.020), and the non-significant difference when

using iPad, reflect the advantages of searching and directly

tapping visual items on touch-based devices (iPad and iPhone)

FIGURE 2

Linear regression (solid blue line) and the line of identity (dashed black line) for comparing self-administered performance (y-axis) against RC-

administered performance (x-axis). Linear regression was not run for Immediate/Delayed Recognition due to the data showing no linear relationship.

FIGURE 3

Linear regression (solid blue line) and the line of identity (dashed black line) for comparing self-administered performance (y-axis) against RC-

administered performance (x-axis) for Immediate/Delayed Recognition, where performance is measured as the number of correct responses per

median reaction time.
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compared with using a touchpad on laptops. The effect of age is

significant for Trail Making B (p = 0.011), Stroop (p = 0.003),

Digit Symbol Substitution (p < 0.001), and BC-Assess overall

performance (p = 0.009).

Results from the relative score difference modeling

(Approach 2) are presented in Table 4B. Testing order emerged

as a significant predictor of performance differences for both

Digit Symbol Substitution (p = 0.015) and Stroop (p = 0.001). In

both cases, results from the linear regression model reflect that

participants performed better during whichever session occurred

second, regardless of whether it was self- or RC-administered,

relative to the first, suggesting a learning or practice effect

independent of administration mode. Notably, no significant

effects of age, device type, or inter-session interval were found

for any outcome in the difference score model. These results

suggest that, beyond testing order effects for Digit Symbol

Substitution and Stroop, other participant and session

characteristics did not systematically influence the magnitude of

performance differences between administration modes.

4 Discussion

In this study, we found that self-administration of BC-Assess

resulted in testing performance comparable to that obtained

through professional administration. Moderate to high

consistency and agreement were observed across testing

outcomes between the two administration methods, with Pearson

correlations and ICCs ranging from 0.62 to 0.85 and 0.59 to

0.83, respectively. Findings from the mixed-effects model further

reinforce this conclusion, showing no significant main effect of

administration mode for any test outcome, and no significant

interactions between administration mode and participant or

session characteristics. This suggests that participants, regardless

of age, sex, testing device, or the order and timing of sessions,

performed similarly across self- and RC-administered

assessments. These findings contribute to a growing body of

research demonstrating the feasibility and reliability of

unsupervised DCAs, highlighting key factors such as data quality

and completion rates (24, 26), participant retention (27),

TABLE 4A Standardized estimates and their 95% confidence intervals for fixed effects obtained from mixed-effects modeling (Approach 1) of different
testing outcomes.

Fixed effect Outcome

Duration IR DR TA TB ST DS OS

Administration

mode (adm)

.48 [−1.05, 2.02] .69 [−.79, 2.16] .36 [−1.04, 1.77] .09 [−.80, .97] −.34 [−1.32, .64] .34 [−.45, 1.12] .34 [−.50, 1.18] .48 [−.52, 1.48]

Testing order (ord) −.11 [−.91, .69] −.43 [−1.20, .34] −.18 [−.99, .62] −.18 [−.84, .48] .07 [−.60, .75] −.20 [−.79, .40] .66 [.08, 1.24] .13 [−.54, .79]

Inter-session interval

(isi)

.02 [−.31, .35] .30 [−.01, .61] .04 [−.28, .36] .00 [−.19, .19] −.10 [−.33, .12] −.03 [−.19, .14] .07 [−.12, .25] .17 [−.06, .39]

Device [browser]

(dev1)

.07 [−1.02, 1.16] .24 [−.81, 1.29] .23 [−.88, 1.34] 1.16 [.18, 2.14] −.76 [−1.74, .21] .58 [−.30, 1.46] −.59 [−1.43, .25] −.50 [−1.45, .45]

Device [iPad] (dev2) .10 [−1.13, 1.34] .11 [−1.08, 1.30] .34 [−.92, 1.60] .05 [−1.07, 1.16] −.85 [−1.96, .26] −.38 [−1.38, .63] −.06 [−1.01, .90] .17 [−.91, 1.24]

Age (age) .04 [−.3, .38] .10 [−.23, .42] −.19 [−.53, .15] .29* [−.00, .58] .38 [.09, .68] .39 [.13, .65] −.51 [−.76, −.26] −.38 [−.67, −.10]

Sex [male] (male) −.07 [−.78, .64] .32 [−.37, 1.0] .01 [−.71, .73] −.28 [−.89, .34] −.18 [−.79, .44] −.06 [−.61, .49] .35 [−.19, .87] .32 [−.29, .92]

Adm:ord −.33 [−1.45, .79] .02 [−1.07, 1.10] −.15 [−1.39, 1.09] .26 [−.94, 1.46] −.18 [−1.35, .99] −.14 [−1.22, .94] −.32 [−1.33, .69] −.26 [−1.39, .87]

Adm:isi 0.20 [−.68, 1.08] .20 [−.65, 1.05] .38 [−.51, 1.28] −.34 [−.86, .19] −.05 [−.65, .55] .14 [−.31, .59] −.15 [−.66, .37] .30 [−.33, .93]

Adm:dev1 .22 [−1.30, 1.73] −.37 [−1.83, 1.08] −.21 [−1.53, 1.11] −.37 [−1.04, .30] .37 [−.45, 1.19] .03 [−.56, .61] −.10 [−.80, .59] −.15 [−1.01, .70]

Adm:dev2 −.22 [−1.95, 1.51] .07 [−1.58, 1.73] −.15 [−1.64, 1.35] −.18 [−.94, .57] .29 [−.63, 1.21] −.35 [−1.01, .31] .06 [−.72, .85] .09 [−.88, 1.05]

Adm:age −.11 [−.56, .35] −.20 [−.64, .24] .24 [−.16, .64] −.08 [−.29, .12] .05 [−.20, .30] .03 [−.15, .21] .01 [−.20, .23] .04 [−.22, .30]

Adm:male −.55 [−1.52, .43] −.89 [−1.82, .04] −.09 [−.94, .77] .03 [−.41, .48] −.08 [−.62, .46] −.16 [−.55, .23] .01 [−.45, .47] −.29 [−.85, .27]

*Marginal p-value (p = .052).

Duration, total duration to complete the battery; IR, Immediate Recognition raw score; DR, Delayed Recognition raw score; TA, Trail Making a raw score; TB, Trail Making B raw score;

ST, Stroop raw score; DS, Digit Symbol Substitution raw score; OS, BC-assess raw overall score. Significant effects (p < 0.05) are highlighted in bold.

TABLE 4B Standardized estimates and their 95% confidence intervals of fixed effects obtained from fixed-effects modeling (Approach 2) of different
testing outcomes.

Fixed effect Outcome

Duration IR DR TA TB ST DS OS

Delta testing order −.28 [−.72, .16] −.30 [−.71, .11] −.26 [−.70, .17] −.18 [−.61, .26] −.14 [−.58, .31] −.50 [−.90, −.10] .63 [.28, .98] .03 [−.38, .44]

Delta inter-session

interval

.20 [−.23, .64] .35 [−.05, .75] .25 [−.18, .68] −.04 [−.47, .39] −.04 [−.48, .39] .10 [−.29, .50] .04 [−.30, .39] .34 [−.07, .74]

Device [browser] .08 [−1.04, 1.20] −.27 [−1.32, .78] −.24 [−1.35, .88] −.61 [−1.72, .51] .42 [−.72, 1.56] −.01 [−1.04, 1.01] −.11 [−1.0, .78] −.18 [−1.23, .87]

Device [iPad] −.17 [−1.13, 1.34] .05 [−1.13, 1.23] −.12 [−1.38, 1.13] −.29 [−1.55, .97] .39 [−.90, 1.67] −.60 [−1.76, .55] .08 [−.93, 1.09] .10 [−1.08, 1.29]

Age (age) −.13 [−.48, .22] −.15 [−.48, .18] .15 [−.20, .49] −.15 [−.49, .20] .02 [−.34, .37] .02 [−.30, .33] .03 [−.25, .31] .05 [−.28, .37]

Sex [male] −.28 [−.98, .42] −.56 [−1.21, .09] .09 [−.61, .78] −.09 [−.78, .61] −.05 [−.76, .65] −.15 [−.79, .49] −.05 [−.61, .50] −.24 [−.89, .41]

Duration, Total duration to complete the battery; IR, Immediate Recognition raw score; DR, Delayed Recognition raw score; TA, Trail Making A raw score; TB, Trail Making B raw score;

ST, Stroop raw score; DS, Digit Symbol Substitution raw score; OS, BC-assess raw overall score. Significant effects (p < 0.05) are highlighted in bold.
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participants’ adherence and acceptability (28), test-retest reliability

(24, 27, 29–32), and convergent validity with an in-person “gold

standard” paper-based neuropsychological test (30–32). While

previous studies have directly compared self- and examiner-

administered assessments (24, 33), the current study offers a

more comprehensive analysis by considering the effects of

various session and participant characteristics, as well as

including a broader range of assessments and cognitive domains.

We observed from the mixed-effects model a general negative

association between age and performance across assessments that

emphasized response time (see Table 2). Specifically, older age

was associated with slower performance, reflected in positive

standardized coefficients for Trail Making A (marginally), Trail

Making B, and Stroop, where performance is evaluated solely

based on response time. A similar trend was observed for Digit

Symbol Substitution, where performance is measured as the

number of correct responses per second; here, older age was

associated with a negative standardized coefficient, indicating a

decline in response efficiency with age. These associations

contributed to a significant effect of age in the overall score,

which integrates performance across assessments. The findings

align with established evidence of age-related declines in

processing speed, executive function, and attention (34–36). In

contrast, the model showed no significant effect of age for

Immediate and Delayed Recognition, which assess memory.

While aging is known to affect memory (37, 38), the recognition

tasks might not have been sufficiently demanding to capture

such changes among healthy participants in this study.

Interestingly, despite the significant effect of age on measures of

response times, the model revealed no age-related differences in

the total duration to complete the full battery. One possible

explanation for this is that total duration covers not only the

time spent on task execution but also differences in how

participants navigate the testing process. For example, while

some participants may take additional time during the practice

sessions to fully understand the tasks, others may proceed

through them more quickly.

We did not observe a clear linear relationship between scores

from the self- and RC-administered sessions for Immediate and

Delayed Recognition, and thus Pearson correlation and ICC were

not calculated for these assessments due to violations of linearity

and homoscedasticity assumptions. This lack of linearity likely

reflects a ceiling effect and limited variability on the lower end of

the score spectrum, due to the use of a healthy participant

sample, rather than being an artifact of the self-administered

format. Supporting this interpretation, results from our previous

study (19) showed that, even when these assessments were

administered in person by a professional, the distributions of

test-retest differences in accuracy-based scores from Immediate

and Delayed Recognition were similar to those observed in the

current study. Ceiling effects have been noted in memory tests,

including the verbal paired associates and word list tasks, from

the Wechsler Memory Scales (WMS) (39), the Rey Auditory

Verbal Learning Test (RAVLT) (40), and the California Verbal

Learning Test (CVLT) (41), where performance variability is

often limited among high-functioning individuals (42). These

effects can obscure the ability to detect subtle individual

differences and make it difficult to assess the true reliability of

memory tasks in healthy populations, as the reduced score range

complicates consistency evaluation. In this study, when response

time was incorporated into the performance metric (i.e., number

of correct responses per median reaction time), we observed

strong correlations and ICCs for both assessments (Figure 3).

Including reaction time introduces a continuous and more

sensitive measure of individual differences, which increases

variability across participants (43).

Practice effects were observed for the Digit Symbol Substitution

assessment in both the absolute and the relative score difference

approaches, and for the Stroop assessment only in the relative

approach. These findings highlight the role of task familiarity

and strategy adaptation, particularly in assessments involving

processing speed and executive function. The discrepancy in the

Stroop results suggests that the relative score approach may be

more sensitive to subtle within-subject changes, as it isolates the

effect of testing order by removing between-subject variability. In

contrast, the mixed-effects model incorporates both within- and

between-subject sources of variation, which may reduce

sensitivity to smaller effects that are consistent at the individual

level but not large enough to be detected across participants.

Practice effects may explain why a significant Stroop difference

between self- and RC-administered sessions was detected in the

paired-sample t-test, particularly given the imbalance in

administration order where 30 of the 46 participants completed

the self-administered session first. As the t-tests included

different components of variance, observed differences between

self- and RC-administered sessions in this analysis may be

influenced by a combination of factors, including practice effects.

Conversely, although practice effects were significant in both

models for the Digit Symbol Substitution, no significant

difference emerged from the paired t-test for this assessment.

Closer inspection of individual data showed that Stroop practice

effects were pronounced for many participants, potentially

driving the group-level results. In contrast, practice effects for

Digit Symbol Substitution appeared more modest and consistent

across individuals.

Although BrainCheck utilizes alternative test forms in all

assessments to reduce content-specific practice effects, procedural

learning, such as adapting to task structure, navigation, or

timing, cannot be entirely eliminated. This is especially relevant

for tasks like Digit Symbol Substitution (44), where participants

may develop more efficient encoding strategies with repeated

exposure, and Stroop (45, 46), where familiarity may enhance

cognitive control and reduce interference. Practically, these

findings highlight the importance of accounting for practice

effects in repeated cognitive assessments. Without appropriate

controls, familiarity with the task can lead to inflated

improvements or obscure real cognitive declines. The fact that

practice effects emerged across both self- and RC-administered

sessions further supports the comparability of administration

modes, suggesting that exposure, rather than supervision, drives

these gains. Future studies with larger samples and repeated

assessments across multiple time points are needed to better
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estimate the magnitude and timing of practice effects, and inform

strategies to mitigate practice effects, such as optimizing test

schedules and applying statistical corrections.

For the Trail Making A, performance differed across device

types. Participants using touchscreen devices (iPad, iPhone)

completed the task more quickly than those using laptops. This

difference may be due to the task’s requirement for rapid,

sequential selection of spatially dispersed targets, where the

touchscreen interface provides a more direct input method, in

contrast to the slower, more mechanical navigation with a

trackpad or mouse. Interestingly, no device effects were observed

for other assessments such as Trail Making B, Digit Symbol

Substitution, or Stroop. For Trail Making B, its greater cognitive

demands might have reduced the relative influence of input

mechanics on performance. The other assessments involve more

centralized and repetitive inputs, where the type of input device

may have less impact on performance, thus explaining the

absence of a device effect. While the observed device-related

variability is not a concern in the current within-subject design,

where each participant used the same device in both sessions, it

highlights the importance of applying device-specific corrections

in studies involving direct comparisons between devices,

especially for tasks that involve spatial or motor coordination. To

support this, BrainCheck employs device-specific normative data

to ensure valid performance evaluation and accurate comparisons

across devices.

Performance in cognitive testing when self-administered

remotely should not be immediately assumed to match that

when administered in a provider office setting. Compared with

in-person testing, remote and self-administered testing may

introduce greater variability due to uncontrolled factors in the

testing environment, such as unexpected interruptions, and the

lack of in-time support. To ensure accuracy and validity, it is

important to evaluate how well the assessments withstand such

variability and how intuitive they are for users without assistance

from a test administrator. Encouragingly, BC-Assess

demonstrated to be highly reliable when self-administered

remotely. The moderate to high consistency and agreement

between self- and RC-administered testing sessions observed in

this study are in similar ranges with previous evaluations of test-

retest reliability, both in supervised settings for BrainCheck (18)

and in unsupervised settings for other DCA tools such as Cantab

and Neurotrack Cognitive Battery (29, 47, 48). Several design

features of BC-Assess may contribute to its reliability in remote

and self-administered testing, although these remain untested

hypotheses and should be investigated further in future work.

First, the adaptation of traditional paper-based tests into a digital

format might help reduce errors that could arise in an

unsupervised setting. For example, in the BrainCheck Trail

Making A/B test, participants tap or click dots rather than

drawing lines to connect them, as in the paper version. This

digital format may help limit the variability introduced by more

open-ended actions like freehand drawing, potentially making the

task clearer and easier to perform accurately. Second, BC-Assess

typically takes 10–15 min to complete. This shorter format may

make it easier for individuals to find a quiet, uninterrupted time

to finish the test. Lastly, the clear instructions and interactive

practice session at the start of each test allow participants to

practice as needed to fully understand the task before the actual

test, helping reduce misunderstandings or mistakes during the

actual test. Future studies that quantify usability, task

comprehension, and within-subject variability could help

determine whether and how these design features contribute to

reliability in self-administered cognitive testing.

In this study, the participants were allowed to use their

preferred devices to take the tests. The majority 71.7% of

participants used laptops while only 10.9% and 17.4% used iPads

and iPhones. At the time of data collection, BrainCheck DCAs

on mobile devices were limited to iOS systems and required an

app download. The low usage of iPads and iPhones could be due

to the limited ownership of these iOS devices among the

participants. Participants with limited digital skills or those who

preferred not to download another app on their mobile device

might end up choosing to use a laptop where BrainCheck could

be run directly on a web browser. For optimal accessibility, it is

essential that DCAs are compatible with a wide range of devices

and simple in setup, allowing individuals of diverse backgrounds

and levels of digital literacy to complete them with ease. Since

the study, BC-Assess has been expanded and optimized to

support any devices with a browser—whether a smartphone,

tablet, or laptop—enabling users to start an assessment simply by

clicking a link sent via email or text message, without the need

to download an app. Based on the promising results from this

pilot study and the recent improvements, our future studies will

evaluate the usability and feasibility of BrainCheck DCAs for

remote self-administered testing across diverse populations and

devices in real-world settings.

While the results are promising, this study has several

limitations that should be considered when interpreting the

findings. First, the sample size in this pilot study is small, and

inter-session intervals varied significantly between participants.

Additionally, the study only examined two time points; a

longitudinal study would be needed to provide further insights

into the feasibility of using BC-Assess for long-term monitoring

of cognitive health. Second, the study did not include

participants with cognitive impairments, who may struggle to

complete the assessments independently. This limits the

generalizability of our findings to more vulnerable populations

who might be the primary beneficiaries of cognitive assessments.

Third, the study sample mainly consisted of participants with

higher education levels, who are also likely to have higher digital

literacy. Therefore, the results may not be applicable to

individuals with lower education levels or limited digital literacy.

Furthermore, the sample was drawn from a research setting

rather than a real-world clinical environment, where contextual

factors such as variability in support and test-taking conditions

may influence feasibility and performance. Future studies with

larger and more diverse samples are certainly needed to further

assess the feasibility of self-administration in broader

demographic settings.

Despite the limitations, this pilot study provides initial

evidence demonstrating the feasibility and reliability of BC-
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Assess as a tool for remote cognitive evaluations. Effective use of

remote and self-administered DCAs has the potential to improve

the accessibility of cognitive care, particularly for rural and

underserved populations, thereby addressing critical gaps in the

current healthcare landscape.

Data availability statement

The datasets presented in this article are not readily available

because the dataset used in this study is proprietary to

BrainCheck Inc. and cannot be shared due to confidentiality

agreements. As such, the data is not available for public

distribution or by request to the corresponding author. However,

interested parties may contact BrainCheck Inc. directly for

inquiries related to access or collaboration opportunities

involving the dataset. Requests to access the datasets should be

directed to Bin Huang, bin@braincheck.com.

Ethics statement

This study, involving human participants, was reviewed and

approved by Solutions IRB (1MAY15-93), and written informed

consent was obtained from all participants.

Author contributions

DH: Formal analysis, Methodology, Writing – original draft,

Writing – review & editing. SY: Data curation, Writing – review

& editing. RH: Writing – review & editing, Conceptualization.

MP: Writing – review & editing. BH: Writing – original draft,

Writing – review & editing, Conceptualization.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. The authors

declare that this study received funding from BrainCheck, Inc.

The funder was not involved in the study design, collection,

analysis, interpretation of data, the writing of this article or the

decision to submit it for publication.

Conflict of interest

DH, SY, RH, MP and BH report receiving salaries and stock

options from BrainCheck, Inc.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Kelley AS, McGarry K, Gorges R, Skinner JS. The burden of health care costs for
patients with dementia in the last 5 years of life. Ann Intern Med. (2015)
163(10):729–36. doi: 10.7326/M15-0381

2. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers
Dement. (2016) 12(4):459–509. doi: 10.1016/j.jalz.2016.03.001

3. Oba H, Kadoya Y, Okamoto H, Matsuoka T, Abe Y, Shibata K, et al. The
economic burden of dementia: evidence from a survey of households of people with
dementia and their caregivers. Int J Environ Res Public Health. (2021) 18(5):2717.
doi: 10.3390/ijerph18052717

4. Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of
dementia in the United States. N Engl J Med. (2013) 368(14):1326–34. doi: 10.1056/
NEJMsa1204629

5. Prince M, Bryce DR, Ferri DC. World Alzheimer Report 2011: The benefits of
early diagnosis and intervention.

6. Health Resources & Services Administration. Shortage areas. Available online at:
https://data.hrsa.gov/topics/health-workforce/shortage-areas?tab=muapHeader
(Accessed March 22, 2024).

7. KFF. Primary Care Health Professional Shortage Areas (HPSAs). KFF. Available
online at: https://www.kff.org/other/state-indicator/primary-care-health-professional-
shortage-areas-hpsas/ (Accessed March 22, 2024).

8. Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers
Dement. (2020) 16(3):391–460. Section 5: Caregiving. p. 423–9. doi: 10.1002/alz.12068

9. Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers
Dement. (2020) 16(3):391–460. Section 7: Special Report “On the Front Lines:

Primary Care Physicians and Alzheimer’s Care in America”. p. 455–60. doi: 10.
1002/alz.12068.

10. Neprash HT, Mulcahy JF, Cross DA, Gaugler JE, Golberstein E, Ganguli I.
Association of primary care visit length with potentially inappropriate prescribing.
JAMA Health Forum. (2023) 4(3):e230052. doi: 10.1001/jamahealthforum.2023.0052

11. Cullum CM, Hynan LS, Grosch M, Parikh M, Weiner MF. Teleneuropsychology:
evidence for video teleconference-based neuropsychological assessment. J Int
Neuropsychol Soc. (2014) 20(10):1028–33. doi: 10.1017/S1355617714000873

12. Castanho TC, Amorim L, Zihl J, Palha JA, Sousa N, Santos NC. Telephone-
based screening tools for mild cognitive impairment and dementia in aging studies:
a review of validated instruments. Front Aging Neurosci. (2014) 6:16. doi: 10.3389/
fnagi.2014.00016

13. Beglinger L, Gaydos B, Tangphaodaniels O, Duff K, Kareken D, Crawford J, et al.
Practice effects and the use of alternate forms in serial neuropsychological testing.
Arch Clin Neuropsychol. (2005) 20(4):517–29. doi: 10.1016/j.acn.2004.12.003

14. Goldberg TE, Harvey PD, Wesnes KA, Snyder PJ, Schneider LS. Practice effects
due to serial cognitive assessment: implications for preclinical Alzheimer’s disease
randomized controlled trials. Alzheimers Dement Diagn Assess Dis Monit. (2015)
1(1):103–11. doi: 10.1016/j.dadm.2014.11.003

15. Chaytor N, Schmitter-Edgecombe M. The ecological validity of
neuropsychological tests: a review of the literature on everyday cognitive skills.
Neuropsychol Rev. (2003) 13(4):181–97. doi: 10.1023/B:NERV.0000009483.91468.fb

16. Ye S, Sun K, Huynh D, Phi HQ, Ko B, Huang B, et al. A computerized cognitive
test battery for detection of dementia and mild cognitive impairment: instrument
validation study. JMIR Aging. (2022) 5(2):e36825. doi: 10.2196/36825

Huynh et al. 10.3389/fdgth.2025.1571053

Frontiers in Digital Health 10 frontiersin.org

https://doi.org/10.7326/M15-0381
https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.3390/ijerph18052717
https://doi.org/10.1056/NEJMsa1204629
https://doi.org/10.1056/NEJMsa1204629
https://data.hrsa.gov/topics/health-workforce/shortage-areas?tab=muapHeader
https://www.kff.org/other/state-indicator/primary-care-health-professional-shortage-areas-hpsas/
https://www.kff.org/other/state-indicator/primary-care-health-professional-shortage-areas-hpsas/
https://doi.org/10.1002/alz.12068
https://doi.org/10.1002/alz.12068
https://doi.org/10.1002/alz.12068
https://doi.org/10.1001/jamahealthforum.2023.0052
https://doi.org/10.1017/S1355617714000873
https://doi.org/10.3389/fnagi.2014.00016
https://doi.org/10.3389/fnagi.2014.00016
https://doi.org/10.1016/j.acn.2004.12.003
https://doi.org/10.1016/j.dadm.2014.11.003
https://doi.org/10.1023/B:NERV.0000009483.91468.fb
https://doi.org/10.2196/36825
https://doi.org/10.3389/fdgth.2025.1571053
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


17. Groppell S, Soto-Ruiz KM, Flores B, Dawkins W, Smith I, Eagleman DM, et al. A
rapid, Mobile neurocognitive screening test to aid in identifying cognitive impairment
and dementia (BrainCheck): cohort study. JMIR Aging. (2019) 2(1):e12615. doi: 10.
2196/12615

18. Yang S, Flores B, Magal R, Harris K, Gross J, Ewbank A, et al. Diagnostic
accuracy of tablet-based software for the detection of concussion. PLoS One. (2017)
12(7):e0179352. doi: 10.1371/journal.pone.0179352

19. Huynh D, Sun K, Ghomi RH, Huang B. Comparing psychometric characteristics
of a computerized cognitive test (BrainCheck assess) against the Montreal cognitive
assessment. Front Psychol. (2024) 15:1428560. doi: 10.3389/fpsyg.2024.1428560

20. Backx R, Skirrow C, Dente P, Barnett JH, Cormack FK. Comparing web-based
and lab-based cognitive assessment using the cambridge neuropsychological test
automated battery: a within-subjects counterbalanced study (Preprint) (2019).
Available online at: http://preprints.jmir.org/preprint/16792 (Accessed April 25,
2025).

21. Singh S, Strong RW, Jung L, Li FH, Grinspoon L, Scheuer LS, et al. The
TestMyBrain digital neuropsychology toolkit: development and psychometric
characteristics. J Clin Exp Neuropsychol. (2021) 43(8):786–95. doi: 10.1080/
13803395.2021.2002269

22. Weizenbaum EL, Soberanes D, Hsieh S, Molinare CP, Buckley RF, Betensky RA,
et al. Capturing learning curves with the multiday Boston remote assessment of
neurocognitive health (BRANCH): feasibility, reliability, and validity.
Neuropsychology. (2024) 38(2):198–210. doi: 10.1037/neu0000933

23. Weizenbaum EL, Hsieh S, Molinare C, Soberanes D, Christiano C, Viera AM,
et al. Validation of the multi-day Boston remote assessment of neurocognitive
health (BRANCH) among cognitively impaired & unimpaired older adults. J Prev
Alzheimers Dis. (2025) 12(3):100057. doi: 10.1016/j.tjpad.2025.100057

24. Papp KV, Samaroo A, Chou HC, Buckley R, Schneider OR, Hsieh S, et al.
Unsupervised mobile cognitive testing for use in preclinical Alzheimer’s disease.
Alzheimers Dement Amst Neth. (2021) 13(1):e12243. doi: 10.1002/dad2.12243

25. Polk SE, Öhman F, Hassenstab J, König A, Papp KV, Schöll M, et al. A scoping
review of remote and unsupervised digital cognitive assessments in preclinical
Alzheimer’s disease (2024). Available online at: http://medrxiv.org/lookup/doi/10.
1101/2024.09.25.24314349 (Accessed February 3, 2025).

26. Balit N, Sun S, Zhang Y, Sharp M. Online unsupervised performance-based
cognitive testing: a feasible and reliable approach to scalable cognitive phenotyping
of Parkinson’s patients. Parkinsonism Relat Disord. (2024) 129:107183. doi: 10.1016/
j.parkreldis.2024.107183

27. Berron D, Ziegler G, Vieweg P, Billette O, Güsten J, Grande X, et al. Feasibility of
digital memory assessments in an unsupervised and remote study setting. Front Digit
Health. (2022) 4:892997. doi: 10.3389/fdgth.2022.892997

28. Thompson LI, Harrington KD, Roque N, Strenger J, Correia S, Jones RN, et al. A
highly feasible, reliable, and fully remote protocol for mobile app-based cognitive
assessment in cognitively healthy older adults. Alzheimers Dement Amst Neth.
(2022) 14(1):e12283. doi: 10.1002/dad2.12283

29. Erkkinen MG, Butler M, Brown R, Hobbs M, Gabelle A, Becker A, et al.
Reliability of unsupervised digital cognitive assessment in a large adult population
across the aging lifespan from INTUITION: a brain health study (S8.009).
Neurology. (2023) 100(17 Suppl 2):3379. doi: 10.1212/WNL.0000000000203227

30. Kochan NA, Heffernan M, Valenzuela M, Sachdev PS, Lam BCP, Fiatarone
Singh M, et al. Reliability, validity, and user-experience of remote unsupervised
computerized neuropsychological assessments in community-living 55- to 75-year-
olds. J Alzheimers Dis. (2022) 90(4):1629–45. doi: 10.3233/JAD-220665

31. Morrissey S, Gillings R, Hornberger M. Feasibility and reliability of online vs in-
person cognitive testing in healthy older people. PLoS One. (2024) 19(8):e0309006.
doi: 10.1371/journal.pone.0309006

32. Öhman F, Berron D, Papp KV, Kern S, Skoog J, Hadarsson Bodin T, et al.
Unsupervised mobile app-based cognitive testing in a population-based study of
older adults born 1944. Front Digit Health. (2022) 4:933265. doi: 10.3389/fdgth.
2022.933265

33. Atkins AS, Kraus MS, Welch M, Yuan Z, Stevens H, Welsh-Bohmer KA, et al.
Remote self-administration of digital cognitive tests using the brief assessment of
cognition: feasibility, reliability, and sensitivity to subjective cognitive decline. Front
Psychiatry. (2022) 13:910896. doi: 10.3389/fpsyt.2022.910896

34. Verhaeghen P, Cerella J. Aging, executive control, and attention: a review of
meta-analyses. Neurosci Biobehav Rev. (2002) 26(7):849–57. doi: 10.1016/S0149-
7634(02)00071-4

35. Gilsoul J, Simon J, Hogge M, Collette F. Do attentional capacities and processing
speed mediate the effect of age on executive functioning? Aging Neuropsychol Cogn.
(2019) 26(2):282–317. doi: 10.1080/13825585.2018.1432746

36. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin
Geriatr Med. (2013) 29(4):737–52. doi: 10.1016/j.cger.2013.07.002

37. Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging
and brain maintenance. Trends Cogn Sci. (2012) 16(5):292–305. doi: 10.1016/j.tics.
2012.04.005

38. Salthouse TA. Memory aging from 18 to 80. Alzheimer Dis Assoc Disord. (2003)
17(3):162–7. doi: 10.1097/00002093-200307000-00008

39. Holdnack JA, Drozdick LW. Using WAIS-IV with WMS-IV. In: Weiss LG,
Saklofske DH, Holdnack JA, editors. WAIS-IV Clinical Use and Interpretation. San
Diego, CA: Elsevier Academic Press (2010). p. 237–83. doi: 10.1016/B978-0-12-
375035-8.10009-6

40. Estévez-González A, Kulisevsky J, Boltes A, Otermín P, García-Sánchez C. Rey
verbal learning test is a useful tool for differential diagnosis in the preclinical phase of
Alzheimer’s disease: comparison with mild cognitive impairment and normal aging.
Int J Geriatr Psychiatry. (2003) 18(11):1021–8. doi: 10.1002/gps.1010

41. Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test–
Second Edition. San Diego, CA: Elsevier Academic Press (2016). doi: 10.1037/
t15072-000

42. Uttl B. Measurement of individual differences: lessons from memory assessment
in research and clinical practice. Psychol Sci. (2005) 16(6):460–7. doi: 10.1111/j.0956-
7976.2005.01557.x

43. Hartle L, Martorelli M, Balboni G, Souza R, Charchat-Fichman H. Diagnostic
accuracy of CompCog: reaction time as a screening measure for mild cognitive
impairment. Arq Neuropsiquiatr. (2022) 80(6):570–9. doi: 10.1590/0004-282x-anp-
2021-0099

44. Hinton-Bayre A, Geffen G. Comparability, reliability, and practice effects on
alternate forms of the digit symbol substitution and symbol digit modalities tests.
Psychol Assess. (2005) 17(2):237–41. doi: 10.1037/1040-3590.17.2.237

45. Dulaney CL, Rogers WA. Mechanisms underlying reduction in stroop
interference with practice for young and old adults. J Exp Psychol Learn Mem Cogn.
(1994) 20(2):470–84. doi: 10.1037/0278-7393.20.2.470

46. Davidson DJ, Zacks RT, Williams CC. Stroop interference, practice, and aging.
Neuropsychol Dev Cogn B. (2003) 10(2):85–98. doi: 10.1076/anec.10.2.85.14463

47. Berron D, Glanz W, Clark L, Basche K, Grande X, Güsten J, et al. A remote
digital memory composite to detect cognitive impairment in memory clinic samples
in unsupervised settings using mobile devices. Npj Digit Med. (2024) 7(1):79.
doi: 10.1038/s41746-024-00999-9

48. Myers JR, Glenn JM, Madero EN, Anderson J, Mak-McCully R, Gray M, et al.
Asynchronous remote assessment for cognitive impairment: reliability verification of
the neurotrack cognitive battery. JMIR Form Res. (2022) 6(2):e34237. doi: 10.2196/
34237

Huynh et al. 10.3389/fdgth.2025.1571053

Frontiers in Digital Health 11 frontiersin.org

https://doi.org/10.2196/12615
https://doi.org/10.2196/12615
https://doi.org/10.1371/journal.pone.0179352
https://doi.org/10.3389/fpsyg.2024.1428560
http://preprints.jmir.org/preprint/16792
https://doi.org/10.1080/13803395.2021.2002269
https://doi.org/10.1080/13803395.2021.2002269
https://doi.org/10.1037/neu0000933
https://doi.org/10.1016/j.tjpad.2025.100057
https://doi.org/10.1002/dad2.12243
http://medrxiv.org/lookup/doi/10.1101/2024.09.25.24314349
http://medrxiv.org/lookup/doi/10.1101/2024.09.25.24314349
https://doi.org/10.1016/j.parkreldis.2024.107183
https://doi.org/10.1016/j.parkreldis.2024.107183
https://doi.org/10.3389/fdgth.2022.892997
https://doi.org/10.1002/dad2.12283
https://doi.org/10.1212/WNL.0000000000203227
https://doi.org/10.3233/JAD-220665
https://doi.org/10.1371/journal.pone.0309006
https://doi.org/10.3389/fdgth.2022.933265
https://doi.org/10.3389/fdgth.2022.933265
https://doi.org/10.3389/fpsyt.2022.910896
https://doi.org/10.1016/S0149-7634(02)00071-4
https://doi.org/10.1016/S0149-7634(02)00071-4
https://doi.org/10.1080/13825585.2018.1432746
https://doi.org/10.1016/j.cger.2013.07.002
https://doi.org/10.1016/j.tics.2012.04.005
https://doi.org/10.1016/j.tics.2012.04.005
https://doi.org/10.1097/00002093-200307000-00008
https://doi.org/10.1016/B978-0-12-375035-8.10009-6
https://doi.org/10.1016/B978-0-12-375035-8.10009-6
https://doi.org/10.1002/gps.1010
https://doi.org/10.1037/t15072-000
https://doi.org/10.1037/t15072-000
https://doi.org/10.1111/j.0956-7976.2005.01557.x
https://doi.org/10.1111/j.0956-7976.2005.01557.x
https://doi.org/10.1590/0004-282x-anp-2021-0099
https://doi.org/10.1590/0004-282x-anp-2021-0099
https://doi.org/10.1037/1040-3590.17.2.237
https://doi.org/10.1037/0278-7393.20.2.470
https://doi.org/10.1076/anec.10.2.85.14463
https://doi.org/10.1038/s41746-024-00999-9
https://doi.org/10.2196/34237
https://doi.org/10.2196/34237
https://doi.org/10.3389/fdgth.2025.1571053
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Reliability of remote self-administered digital cognitive assessments: preliminary validation study
	Introduction
	Materials and methods
	Participants
	Procedure
	Measurements
	Data analysis

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


