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The integration of artificial intelligence (AI) in voice biomarker analysis presents a

transformative opportunity for objective and non-invasive diagnostics in

healthcare. However, clinical adoption remains limited due to challenges such

as data scarcity, model generalizability, and regulatory hurdles. This

perspective article explores effective and scalable methods for clinical

validation of voice biomarkers, emphasizing the importance of proprietary

technology, high-quality, diverse datasets, strong clinical partnerships, and

regulatory compliance. We propose a multifaceted approach leveraging

proprietary AI technology (Musicology AI) to enhance voice analysis, large-

scale data collection initiatives to improve model robustness, and medical

device certification to ensure clinical applicability. Addressing technical,

ethical, and regulatory challenges is crucial for establishing trust in AI-driven

diagnostics. By combining technological innovation with rigorous clinical

validation, this work aims to bridge the gap between research and real-world

implementation, paving the way for AI-powered voice biomarkers to become

a reliable tool in digital healthcare.
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Introduction

Clinical validation is a critical process in healthcare that ensures medical devices,

diagnostic tests, or treatments (in short interventions) are both effective and safe when

applied in real-world clinical settings. This process involves rigorous evaluation to

confirm that the intervention performs as intended and delivers expected clinical

outcomes, maintaining patient safety and treatment efficacy [U.S. Food and Drug

Administration (FDA), 1993–2017] (1). Effective clinical validation methods are

characterized by their ability to produce accurate and consistent results, comprehensively

evaluate all relevant aspects—including safety, efficacy, usability, and potential risks—and

adhere to regulatory standards set by agencies such as the FDA in the US or European

Medicines Agency (EMA) within the European Union. Equally important are scalable

methods, which enable the widespread adoption of healthcare innovations, ensuring

resource efficiency, and leveraging advanced technologies such as automation and data

analytics (1).
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Voice, with its unique properties, when analysed with

artificial intelligence (AI) has the potential to become a

powerful biomarker for various health conditions. As a non-

invasive and nonintrusive approach, it enables remote diagnosis

and monitoring through any phone or digital device, meeting

the criteria for safety, usability, and accessibility. Additionally, it

is potentially independent of variables such as language,

geography, and age, supporting its applicability across diverse

populations. The AI-driven analysis of voice data ensures

secure, encrypted patient identification and integrates seamlessly

with established clinical protocols set out by the regulatory

agencies (2, 3). Despite the numerous benefits of integrating

voice biomarkers into clinical practice, their adoption in real-

world settings remains limited (e.g., 4–8). In this perspective

article, we first explore the historical and conceptual

foundations of voice biomarkers, before moving to the

challenges of integrating voice biomarkers into clinical practice,

followed by a number of solutions to these challenges directly

derived from our own research and practice.

Historical and conceptual foundations
of voice biomarkers

The use of voice as a diagnostic tool has a long history in

medicine, dating back to Hippocrates, who noted that voice

changes could indicate underlying health conditions. More

recently, physicians observed that disorders such as Parkinson’s

disease, depression, and respiratory illnesses could alter speech

patterns, including pitch, rhythm, and articulation. Before the

advent of AI, clinical speech analysis relied on subjective

auditory assessments by trained professionals and objective

acoustic measurements using tools like spectrograms and

frequency analyzers.

In the mid-20th century, advancements in phonetics and

speech science led to more structured approaches in analyzing

voice abnormalities. Researchers identified measurable vocal

markers associated with various conditions, such as increased

jitter and shimmer in Parkinson’s disease and slowed speech rate

in depression. However, traditional methods were often labor-

intensive, requiring manual analysis and expert interpretation (9).

The introduction of AI and machine learning in the 21st

century revolutionized the field by automating voice analysis

and uncovering complex patterns beyond human perception.

Early AI applications in voice diagnostics focused on

neurodegenerative diseases and psychiatric disorders. The

emergence of deep learning further enhanced the accuracy and

scalability of voice biomarkers, allowing for real-time analysis

across diverse populations.

Most recently, AI-driven voice biomarkers have expanded

beyond neurological and psychiatric conditions to include

cardiovascular diseases, respiratory illnesses, and even COVID-19

detection (10–12). However, despite significant progress, the

clinical adoption of voice biomarkers remains limited due to

concerns about model generalizability, regulatory approval, and

clinician trust (e.g., 4–8).

Challenges of integrating voice
biomarkers into clinical practice

Two recent systematic reviews by Meehan et al. (7) and Salazar

de Pablo et al. (8) provide comprehensive comparisons of

diagnostic models (which identify the presence of a psychiatric

condition1), prognostic models (which predict the future onset or

course of a condition), and predictive models (which estimate the

likely response to a treatment). Out of 89 models included in the

review by Salazar de Pablo et al. (8), the researchers mention one

that was considered for implementation. Similarly Meehan et al.

(7), out of identified 308 models, demonstrated that one

published diagnostic model had its potential utility in clinical

practice formally assessed. This indicates a significant gap in the

clinical adoption of AI models and voice biomarkers for

mental health.

Several factors may contribute to the above drafted situation.

Martin and Rouas (6) argue that the primary barrier to

integrating voice biomarkers into clinical settings is the lack of

trust among clinicians. Furthermore, according to the authors the

heterogeneity of symptoms further complicates the use of AI in

mental health diagnostics. For instance, Fried and Nesse (13)

found that among 3,703 patients diagnosed with major

depressive disorder (MDD), there were 1,030 distinct

symptomatic profiles, many of which had minimal overlap. Such

variability makes it difficult to develop AI models that generalize

effectively across diverse clinical populations. To address this

challenge, the authors propose a shift in research focus toward

the automatic estimation of psychiatric symptoms rather than

diagnosing conditions. This approach, they argue, better reflects

the complexity of mental health, where disorders like depression

rarely occur in isolation and often present with comorbidities

that influence speech patterns.

Additional challenges are highlighted by Berisha and Liss (4).

As a primary concern they mention the lack of large-scale data,

which leads to models that perform well in controlled conditions

but fail to generalize in broader clinical applications. They also

emphasize the importance of developing theoretically grounded

models rather than just relying on purely data-driven approaches,

particularly in contexts where data scarcity and the heterogeneity

of conditions like depression may undermine model accuracy. To

address these issues, they propose an analytical pipeline that calls

for a closer collaboration between clinical speech scientists and

data scientists. They further elaborate that the focus should be on

creating models that account for the specific contexts of use—

ranging from diagnostics and non-specific risk assessment to

longitudinal tracking and the development of digital therapeutics.

Also, Fagherazzi et al. (5) highlight several key challenges that

must be addressed for the efficient use of voice technology in

1In this manuscript, we focus specifically on mental health and depression to

make our claims more concrete.
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healthcare. On the technical side, they stress the importance of

creating and sharing extensive databases of high-quality audio

recordings which are linked with clinical data. They advocate for

increased harmonization and standardization of audio data across

studies, the development of universal vocal biomarkers that

transcend language, accent, age, and culture differences. On the

ethical side, they stress the importance of secure data collection

and storage, reliance on gold-standard clinical data for training

algorithms, and transparency in defining the types and frequency

of data collected. They also highlight the need to protect

personal data, as voice is considered non-anonymous under

Article 4.1 of the General Data Protection Regulation of the

European Union (GDPR EU). To advance voice technology from

research to clinical practice, they propose various study types,

including proof-of-concept studies, replication studies, qualitative

studies with co-design sessions, usability and pilot studies, and

clinical utility evaluations, such as randomized controlled trials

and real-world evaluation studies.

Finally, according to a recent review by Alhuwaydi (14), AI

models show diagnostic accuracy ranging from 21% to 100% for

various conditions like schizophrenia and cognitive impairment.

Also, AI-driven personalized treatment plans, virtual therapists

and chatbots have demonstrated early success in therapy.

However, limitations in the generalizability of AI models, often

due to reliance on homogenous datasets, remain a challenge.

Furthermore, the author argues that ethical concerns, including

data privacy, algorithmic bias, and the lack of empathy in AI-

driven care, limit broader adoption of voice biomarkers. These

challenges are compounded by evolving legal frameworks

regarding AI accountability in healthcare. To address some of

these issues, Alhuwaydi (14) stipulates that future research

should focus on long-term studies, larger sample sizes, and

culturally sensitive AI models to optimize its potential in mental

health care.

In summary, while voice biomarkers and AI models hold

great promise for mental health diagnostics and treatment, their

clinical adoption remains limited due to several interrelated

challenges. Trust among clinicians, symptom heterogeneity,

data scarcity, and the need for theoretically grounded models

all contribute to the slow transition from research to practice.

Additionally, ethical concerns, regulatory uncertainties, and the

necessity for standardized, high-quality datasets further

complicate implementation.

Discussion—bridging AI innovation and
healthcare implementation

Our research and practice corroborate many of the limitations

identified by the authors of the studies mentioned above. To

overcome these challenges we follow a multifaceted approach that

integrates cutting-edge technology, large-scale data collection,

strong clinical collaborations, and regulatory compliance. In the

discussion, we explore these four key solutions: (1) leveraging

proprietary technology and complex feature engineering based on

knowledge from Musicology (i.e., Musicology AI) to enhance voice

biomarker analysis; (2) addressing the urgent need for larger, more

diverse and high quality medical voice datasets; (3) strengthening

clinical partnerships to support large-scale studies; and (4)

achieving medical device certification to ensure regulatory approval

and real-world applicability.

In our view, a key factor in improving voice-based diagnostics

is the reliance on proprietary technology and informed feature sets,

which enable a more sophisticated approach to data analysis.

Existing studies on voice biomarkers rely on a limited set of

acoustic features (Table 1), often analyzed using open-source

tools such as openSMILE (https://www.audeering.com/de/

research/opensmile/), VOICEBOX (https://voicebox.metademolab.

com/), or Praat (17). While these tools offer valuable insights,

they appear to struggle capturing the full complexity of voice-

based signals relevant to medical diagnosis. For instance, research

on conditions like heart failure, multiple sclerosis (MS), and lung

cancer has mainly focused on features such as jitter, shimmer,

loudness, MFCC, and F0 variability. Jitter and shimmer, key

acoustic features reflecting variations in frequency and amplitude,

respectively, have significantly improved the diagnostic accuracy

and predictive ability of AI-driven diagnostic models, particularly

in neurological disorders. However, a limited set of features and

TABLE 1 Examples of acoustic features investigated across various health conditions.

Condition Heart failure/pulmonary hypertension Multiple sclerosis Lung cancer

Acoustic features Jitter Jitter Jitter

Shimmer Shimmer Shimmer

Loudness F0 mean/variability Loudness

MFCC Tremor F0

Pitch and format measures Intensity variability MFCC

Max phonation time Formant 1–3 frequency/bandwidth

Speech/Articulation rate Harmonic difference

Pause rate

(e.g., 12) (e.g., 15) (e.g., 16)

F0 (Fundamental Frequency): the average rate of vocal fold vibrations, determining the perceived pitch of a voice; Formant 1–3 Frequency/Bandwidth: the resonance frequencies of the vocal tract

(F1, F2, F3) and their bandwidths; Harmonic Difference: the amplitude difference between harmonics in a speech signal; Intensity Variability: the degree of fluctuation in loudness; Jitter: the

cycle-to-cycle variation in fundamental frequency; Loudness: the perceived intensity of speech; Max Phonation Time: the longest duration a person can sustain a vowel sound; Mel-Frequency

Cepstral Coefficients (MFCC): a representation of the speech spectrum that captures timbral characteristics; Pause Rate: the frequency and duration of silent pauses in speech; Pitch and Formant

Measures: features related to voice pitch and vocal tract resonances; Shimmer: the cycle-to-cycle variation in vocal intensity; Speech/Articulation Rate: The speed at which speech sounds or

syllables are produced; Tremor: a rhythmic oscillation in voice frequency or amplitude.
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traditional methods may miss deeper, musicologically informed

patterns that enhance diagnostics.

To address these limitations, we leverage a proprietary technology

that draws on the foundations of quantitative musicology

(Musicology AI). Musicology is the scholarly study of music,

encompassing historical, theoretical, and analytical approaches to

sound. Applied to voice biomarkers, it involves analyzing speech

using music theory concepts such as prosody (rhythm, intonation,

stress), acoustic properties (timbre, harmonics, spectral features),

and temporal organization (timing patterns, pauses, speech rate).

Music theory provides a well-established yet underexplored

framework for understanding sound beyond physics, making it a

valuable tool for advanced voice analysis. This approach enhances

AI models by improving interpretability and biological grounding,

for example, speech melodic contours, such as reduced pitch

variability, reflect psychomotor retardation in depression, linking to

diminished dopaminergic activity (10).

By incorporating musicology into clinical settings, we enhance

the accuracy and robustness of voice-based health assessments.

However, we recognize that small sample sizes and dataset biases

can impact the accuracy, stability, and generalizability of results.

To mitigate these challenges, we actively work on the creation of

minimally biased large-scale datasets for vocal biomarker

research. Additionally, our approach aligns with ensemble

learning and weighted feature analysis techniques, incorporating

methods such as bootstrap aggregation, boosting, and stacking.

These techniques allow us to combine multiple data items, identify

the most meaningful feature combinations as hypotheses, and

control their influence based on overlapping relationships—

enhancing the robustness of our models even in the presence of

data biases. By integrating these methods, we further improve the

performance, reliability, and fairness of voice-based health

assessments, offering a promising path forward in digital diagnostics.

Our most recent technological advancements integrate this

knowledge with large language models (LLMs) and fundamental

transformer architectures; whereby together with pharmaceutical

and quantum hardware partners, we incorporate quantum AI into

our core approach. Recent findings from our research (Krautz

et al., in prep) further demonstrate the potential of these methods

in detecting depressive disorders, showing that musicological

features significantly improve the sensitivity and specificity of

voice-based depression assessments, reaching AUC = 0.80, also

when female and male groups were analysed separately.

Furthermore, one of the fundamental challenges that we

identify in the field of mental health diagnostics pertains to the

scarcity of high-quality medical voice data. Many existing studies

are based on small sample sizes, some are conducted on specific

groups of depressed patients, e.g., those with post-traumatic

stress disorder (PTSD); which limits the model generalizability.

For example, nearly 94% of published studies on depression2

involve fewer than 100 participants, and only a small fraction

account for complexities such as comorbidities (16%), varying

severity levels (13%), or predictive analyses of critical outcomes

like death by suicide. This limitation arises partly because

obtaining high-quality data from clinical trials is often

prohibitively expensive, yet such data is necessary to meet the

rigorous requirements for regulatory approval and to

provide sufficient ground truth evidence for model performance

and efficacy.

To overcome these challenges, we propose a large-scale, data-

driven approach that prioritizes both quantity and quality of data.

This approach focuses on conducting multicenter studies across

diverse linguistic and cultural populations, ensuring that voice

biomarkers are validated against real-world clinical diversity.

Specifically, in collaboration with one of Europe’s largest clinic

chains, we launched a multi-site trial spanning two European

countries to collect data from a five-digit-amount of patients,

encompassing multiple audio recordings per individual alongside

comprehensive clinical background information. We currently

collect data at several dozens of clinics and aim to ramp up to

several hundreds of clinics of our partner. This will create the

largest dataset of its kind, significantly improving the robustness of

AI models trained for medical voice analysis.

The third pillar of our approach relates to the strong

collaboration with world-class clinical partners. That is, we have

established contracts entailing more than 400 clinics in Europe

enabling us to conduct large-scale, multicenter studies with a

diverse patient population. This extensive clinical network

ensures access to high-quality data, facilitates standardized

study protocols, and enhances the reproducibility and reliability

of results. Furthermore, as comparative validation against

gold-standard clinical tests is essential for establishing the clinical

relevance of voice biomarkers, our studies integrate voice analysis

with widely accepted diagnostic tools. In this way we ensure that

AI-driven insights are anchored in clinically recognized measures.

The final cornerstone of our approach emphasizes efforts in

medical device certification. We are in the process of CE

clearance for our voice-based ADHD algorithms. This positions

us as front-runner in medical certification. Achieving these

certifications, while time and resource consuming, will be a

significant milestone in the field of AI-driven medical

diagnostics. Regulatory approval necessitates adherence to

stringent data integrity, safety, and clinical efficacy standards—

challenges that many AI-driven healthcare solutions have

struggled to overcome. We therefore pave the way for broader

adoption of voice-based diagnostic tools in clinical practice.

Before regulatory approval can be achieved, however, it is crucial

to establish accuracy and standardization of measurements as a

foundation for compliance. Accuracy levels should be aligned

with established diagnostic gold standards, such as psychological

assessments, and performance metrics must be tailored to

specific use cases.

In sum, by combining technological innovation, data

scalability, clinical collaboration, and regulatory adherence, we

establish a framework for the seamless translation of AI-based

voice diagnostics into clinical practice.

2Based on our own review of 67 studies that employed machine learning

(ML) and voice analysis.
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Future research directions

If wemove beyond our current research and practice, we recognize

that several key research areas must be explored to maximize their

clinical impact. Initially, our primary focus is on mental health, with

plans to expand into a broader range of diseases and languages over

time. While we have already made significant progress in improving

the robustness and generalizability of our models, the large-scale

data we are currently collecting will elevate these capabilities to an

unprecedented level, ensuring even greater clinical reliability.

Additionally, integrating voice analysis with other biomarkers, such

as physiological data from wearables or facial expressions, presents

an opportunity to enhance diagnostic accuracy. This multimodal

approach could further refine assessments, particularly in complex

conditions like depression and anxiety.

Aforementioned approaches and feature sets aim at

establishing evidence for the presence of specific conditions of

disease based purely on content agnostic properties of speech.

Meanwhile content based analysis are reaching new heights of

performance driven by advances in (multilingual) speech to text

(STT) conversion and natural language processing (NLP) mainly by

the advent of generative pre-training on large copra. Improved STT

alone already boosts traditional NLP approaches when analyzing

utterance, word and sentence occurrences and relationships. In

combination with LLMs, a novel high-level analysis becomes feasible.

As an exemplary approach an LLM can be prompted or fine-tuned

to assess the contents of speech with respect to the symptoms of a

certain psychological condition and to reenact a psychological

assessment as either assessor or assesse based on the content presented.

Since content based and content agnostic information has by

definition to some degree an orthogonal character, the combination of

both has clearly a potential to further improve performance and

generalization. An interesting scenario arises when the content of

speech points into one direction, say psychological condition negative,

while the sub-content or content agnostic properties of the voice hint at

condition positive. To some extent the discrepancy between the “what”

and the “how” of speech can become a discriminative feature in itself.

An even deeper integration of advanced acoustic perception

with pre-trained models with large context awareness could be

achieved by feeding aggregated acoustic information directly into

the training and inference process. Towards this goal we

currently explore the usage of musicological inspired acoustic

tokenization to enrich content based tokens.

From an implementation perspective, AI literacy training for

healthcare professionals is essential. Medical education programs

should incorporate AI-based diagnostic tools, ensuring that

clinicians understand their capabilities, limitations, and best

practices for integrating them into patient care.

Finally, regulatory frameworks for AI-driven voice biomarkers

must evolve to keep pace with technological advancements. Future

research should focus on establishing standardized validation

protocols, ensuring that AI models meet rigorous clinical efficacy

and safety requirements. The ultimate goal is to transition voice

biomarkers from promising research tools to fully integrated

components of routine medical practice, bridging the gap

between innovation and real-world application.

Conclusion

While AI-driven voice analysis holds promise as a non-invasive

biomarker for various health conditions due to its accessibility and

ability to facilitate remote monitoring, its adoption in clinical

practice, particularly for mental health, remains limited. To fully

realize the potential of AI-driven voice analysis in healthcare, a

multifaceted approach is required. The integration of proprietary

technologies like Musicology AI enhances the depth of voice

biomarker analysis, moving beyond conventional methodologies.

Addressing the scarcity of high-quality medical voice data

through large-scale, multicenter studies ensures that AI models

are trained on diverse, representative populations. Strong clinical

partnerships provide access to high-quality patient data and

facilitate rigorous validation against established clinical scales.

Lastly, obtaining medical device certification is vital to adhere to

regulatory approval in AI-driven diagnostics. Combining these

elements can position voice-based AI as a transformative tool in

medical diagnostics.
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