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Telerehabilitation improves accessibility and accelerates recovery: in this context,

Inertial Measurement Units (IMUs) are promising wearable sensors for remote

movement data collection, which allows to evaluate how closely exercise

repetitions align with a prescribed trajectory. Current data processing methods

for this purpose include data-driven approaches, requiring exercise-specific

training through large amount of data, or distance-based methods with

unbounded output, not easy to interpret. This study proposes a novel

algorithm which combines the versatility of a bounded output score with

numerical stability of quaternions. Data from an IMU-based device were

acquired during the execution of human functional shoulder movements by

both a young and elderly group of participants. Outputs from the application

of the proposed methodology on collected data from same or different

movements were statistically compared, revealing ability of discriminating

repetitions of the same or of different movements (p , 0.01, rrb effect size =

0.97, contrast ratio 1.7). The proposed algorithm was also confronted with the

traditional approaches by statistically comparing outputs from comparison

matrices rescaled in equal range of values, and results indicated mild

differences in performance (rrb effect size < 0.5). Future works may involve

integrating this approach into a functioning telerehabilitation system and

obtaining feedback on the usability from real users.
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1 Introduction

The shoulder joint is one of the most complex structures in the human body (1) and is

one of the most frequently affected by musculoskeletal disorders (MSDs) (2). MSDs

significantly impact the quality of life of those affected (3) and represent an economic

and logistic burden for the healthcare system (2, 4–6). This is mainly due to the

prolonged rehabilitation treatment required for full recovery (4). Rehabilitation is

indeed often performed in clinical settings, but the possibility of pursuing the treatment

at home would allow patients to save time and money, and healthcare structures to
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simplify procedures and contain costs (4–7). Therefore, the interest

in developing home-based rehabilitation solutions has grown over

time (4).

Nonetheless, home-based rehabilitation is often jeopardized by

the patient’s low adherence to the prescribed treatment owing to

the absence of expert supervision (8). Ensuring the patient’s

adherence to a prescribed movement and its correct execution

represent key elements that can speed up the rehabilitation

process (9–13).

To this extent, data from motion capture sensors need to be

processed to provide both the patient and clinician with intuitive

feedback about the appropriateness of the executed movement.

Among motion capture technologies, the most suitable for

telerehabilitation are Inertial Measurement Units (IMUs)

(14–19): these types of sensors can indeed be easily worn and

attached to a person, measuring joint angles and accelerations

without the need for any additional devices or supervision (15).

A successful algorithm for processing data from IMUs to

provide feedback on correct movement execution in a

telerehabilitation system should therefore account for two factors:

numerical stability and patient engagement.

Numerical stability is highly influenced by the representation

used to describe three-dimensional kinematics. Kinematic

description of movements of the shoulder joint involves not only

assessing basic planar movements (10, 20, 21), but also

functional movements performed in daily life that might be

impeded by impairments (10, 22–24). In this context, the most

numerically stable representation is provided by quaternions, due

to the singularity phenomena inherent to other three degrees of

freedom representations (25, 26). Moreover, quaternions are the

output of most sensor fusion algorithms that extract orientation

from raw IMU data (27), which makes them a convenient

representation to be used for assessing correct execution of

movements in telerehabilitation systems.

Patient engagement is usually obtained by processing data to

obtain an indicator of movement conformity to a template. Some

methods provide discrete indicators (e.g., correct/incorrect)

(28–30), which, however, do not provide a continuous scale of

correctness, impeding the patient to understand the degree of

error (31). Other methods involve data-driven approaches (31):

this is a very powerful methodology, which, however requires

large dataset that are exercise-specific to be trained, and therefore

does not allow flexibility in changing the movement being

assessed without training on new datasets (31, 32).

Another possibility involves using distance-based algorithms to

compare trajecotries (31, 33), which is a very operationally simple

technique, requiring no a priori knowledge nor training phase (31).

Nonetheless, most of the studies exploring this approach use

distance-based algorithms with unbounded outputs, which makes

the output not easy to interpret and less intutive. The potential

of using distance-based algorithms providing an output in a

bounded range seems underexplored.

In this study, we present an approach for the evaluation of

shoulder functional movements that is quaternion-based for

numerical stability and relies on a new bounded algorithm for

the trajectory similarity measure. Next, we present results from

the verification of the approach using data collected through an

IMU-based device developed by our research group (34) and

comparing its performance with that of existing algorithms.

The contributions of the study are the following:

• To define an assessment methodology in quaternion space with

the aim of improving numerical stability with respect to other

representations of kinematics

• To provide a novel easy-to-use (no training required), flexible

(not exercise-dependent) and easy to understand (bounded

score) algorithm to compare quaternion trajectories and

compare its performance with the one of existing algorithms

• To verify the joint approach involving quaternion analysis and

trajectory comparison through bounded output distance-based

algorithms using IMU data related to shoulder functional

movements, with the aim of enhancing the potential of IMUs

in wearable devices for remote monitoring by promoting their

use in a functional approach to telerehabilitation

2 Related works

The analysis of human movement plays a crucial role in many

different fields (35). However, traditional movement analysis

techniques such as photogrammetry, optoelectronic analysis and

video analysis, require complex and expensive instrumentation

(36). Furthermore, these systems are characterized by low

portability, which limits their applications outside the laboratory

environment (14). As a first step towards the applicability of

motion capture systems for remote monitoring of movement,

some studies explored assessing the quality of movement

combining Virtual Reality systems and kinematic models (37,

38): however, also these systems require the use of cameras with

markers or controllers and head-mounted displays.

In recent years, significant progress has been made in the

development of Inertial Measurement Units (IMUs). As a result,

researchers have suggested the use of these devices to overcome

the limitations of conventional movement analysis systems,

especially when data needs to be collected in ecological settings

(14, 15). IMUs are widely used in the most recent studies for

movement analysis, since this type of sensors offers the

possibility to be easily worn and attached to the person,

measuring joint angles and accelerations without the need for

any other additional devices (14–19).

Thanks to the potential of recent motion capture technologies

to allow for the development of telerehabilitation systems, literature

about data processing for remotely assessing conformity of

movement has grown over time.

One first aspect to consider when assessing the conformity of

movement is how to represent the kinematics. Because recent

techniques for shoulder rehabilitation not only involve simple

planar movements, but also complex three-dimensional

functional movements (11, 12, 39), for these complex movements

the evaluation of the Range of Motion (RoM) on a plane (20, 24,

40, 41) is not sufficient, and an analysis of the overall three-

dimensional kinematics is needed. However, representation of

rotations through three degrees of freedom approaches
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(e.g., Euler or Cardan angles) is very prone to errors due to

phenomena such as singularities and gimbal lock (25, 26).

Therefore, even if it is less intuitive, quaternion representation is

recommended to enhance numerical stability. Moreover,

quaternions are the output of most sensor fusion algorithms that

extract orientation from raw IMU data (27).

The second aspect to consider for movement conformity

assessment is the algorithm used to compare trajectories.

A review of the available computational approaches for

evaluating rehabilitation exercises has been provided by Liao

et al. (31). They have classified assessment techniques into three

categories: discrete movement score, rule-based, and template-

based approaches (31).

Discrete movement score approaches evaluate movement based

on discrete classes (e.g., correct/incorrect): despite being a first

good indicator of correctness, this might be frustrating for the

patient owing to the unavailability of finer information about the

level of correctness, which could instead be provided through a

continuous assessment scale (31).

Rule-based approaches rely on the a priori definition of a set of

rules for exercise execution: despite being a well-performing

approach in many contexts, it lacks generality and therefore

forces the evaluation system to be exercise-specific, leaving little

flexibility to the clinician who has to re-define the rules if the

therapeutic approach changes (31).

Finally, in the template-based approach, a series of exercise

repetitions is compared with a template (reference) movement,

and a quantitative indicator of coherence with respect to the

reference is provided. This approach both allows personalized

patient-based therapy (by defining a patient-specific template)

and fosters patient enhancement by providing engaging

indicators. The comparison of repetitions with the reference

template is very often performed using probabilistic approaches,

such as Hidden Markov Models (42–45) or deep learning

algorithms (e.g., Graph Convolutional Networks) (46). This

approach is very powerful, although it requires the collection of

sufficiently large datasets to be trained (32), partially leading to

the loss of flexibility in defining patient-specific therapy.

Another approach for comparing repetitions with the reference

template is using distance metrics, such as Euclidean or

Mahalanobis distance (42, 43, 47, 48). These techniques are very

easy to implement if signals have the same length and are

uniformly sampled (i.e., all movement repetitions have the same

duration and are performed at the same speed) (31, 48): in this

case, the use of Euclidean distance is defined as lock-step

Euclidean distance (point-to-point distance measure) (49).

However, if a constraint on the speed is not imposed, more

elaborated trajectory comparison methods need to be considered.

A comparative analysis of algorithms for measuring trajectory

similarity was provided by Tao et al. (49). Specifically, they

considered five methods: dynamic time warping (DTW) (50–52),

Fréchet distance (FD) (53), discrete Fréchet distance (DFD) (54),

edit distance on real sequence (EDR) (55) and longest common

subsequence (LCSS) (56). All these methods allow the

comparison of trajectories of different lengths and non-uniformly

sampled, using two main different approaches: DTW, FD and

DFD are a variation of the basic lock-step Euclidean distance

aimed at considering different lengths and non-uniform

sampling; therefore, these methods provide as an output an

unbounded measure of similarity. On the other hand, EDR and

LCSS define a threshold below which points in the compared

trajectories are considered similar; consequently, the output of

these algorithms is a bounded similarity measure, related to the

number of points classified as similar.

Unbounded algorithms, especially DTW, are often used when

assessing rehabilitation exercises because of their proven

reliability (31, 33). Nonetheless, to make the unbounded output

intuitive for the clinician and engaging for the patient, it is

necessary to convert it into a conformity score, which is usually

done by: relying on information about data estabilished a priori

or inferred from large datasets (e.g., bound limits) (43, 57–59),

familiarization procedures for the clinician and the patient (60),

or output discretization (61, 62). This may limit the potential

versatility of the template-based approach.

Bounded algorithms rely on determining the similarity of

points in trajectories based on an acceptance threshold; therefore,

they can directly provide a conformity score as an output

without a priori knowledge of the movement. However, their

potential in telerehabilitation applications remains underexplored.

These premises led to the development of a quaternion-based

approach with trajectory comparison performed through a novel

bounded algorithm aimed at assessing repetitions of functional

complex movements of the shoulder joint, which is presented in

this study.

3 Materials and methods

3.1 Mathematical description of the
proposed methodology

In this section, we provide detailed mathematical description of

the proposed methodology for assessing coherence between

repetitions of functional movements using analysis in quaternion

space and bounded distance-based algorithms for

trajectory comparison.

Considering the acquisition of a quaternion over time, it is first

necessary to calculate the spatial trajectories resulting from the

combination of quaternion components. In the following, a

quaternion q is denoted as in Equation 1:

q ¼ qw þ iqx þ jqy þ kqz (1)

where w, x, y, z are the four components of the quaternion and i,j,k

denote the imaginary parts (63).

To analyze the trajectories in the quaternion space, we

evaluated the bi-dimensional correlations among the four

components of a quaternion. To this extent, by coupling the

components, we analyzed the following bi-dimensional trajectories:

y(x), z(x), z(y), w(x), w(y), w(z) (2)
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The six trajectories listed in Equation 2 represent the six

combinations of the four quaternion components in couples (all

possible couple combinations of four elements with no repetition).

After obtaining the spatial trajectories in quaternion space,

it is necessary to compare the various repetition of a

movement with a template trajectory. To this extent, we

applied trajectory comparison algorithms (49) to each of the

quaternion components trajectories listed in Equation 2,

comparing the trajectory of the repetition with that of the

template. Next, to provide a synthetic indicator of coherence

between the two movements, we averaged the outputs from the

six comparisons.

For the comparison of the quaternion components trajectories,

we considered a novel algorithm called Nearest Neighbor Score

(NNS) and compared its performance with the trajectory

comparison methods described in (49) (DTW, FD, DFD, EDR,

and LCSS).

The implementation of the new NNS algorithm is described

hereafter. We implemented the algorithm in Python 3.11, with

Numpy 1.26 and Pandas 2.1 for calculations, through a routine

suitable for every platform and operating system. See data

availability statement for reference to the code repository.

However, hereafter, we explain the concept behind the

implementation and we present the pseudo-code so that the

steps necessary to calculate the conformity score can be

replicated in any other programming language.

The trajectories compared through the algorithm are in the

following denoted as: b(a) for the template movement with length

n, b0(a0) for the repetition movement with length m. For each

point in the template trajectory, the algorithm:

1. finds the two nearest points in the repetition trajectory;

2. calculates the interpolating line between these two points;

3. finds the b-value on the interpolating line at the same a as the

template point;

4. calculates the distance between the b-value of the point on the

interpolating line and the b-value of the template point;

5. increments a conformity score, expressed as a percentage of the

number of samples n, if the distance calculated in the previous

step exceeds one of the following thresholds:

• bt , defined as the 20% of the absolute range of the target

curve (value chosen by considering a + 10% tolerance

around the considered point)

• tacc, which was set based on the accuracy of the measurement

instruments used.

Figure 1 illustrates the described process, and Algorithm 1 provides

the pseudo-code implementation.

In the final step of the algorithm, the score is expressed as a

percentage of points classified as similar (based on the

thresholds) over the total number of points. This implies that an

output below 50% means that there were less points classified as

similar than points classified as different. On the opposite, a

score greater than 50% means more similar point than different

points, and the closer the score gets to 100%, the higher is the

number of similar points.

3.2 Data collection

This section illustrates the methodologies for the data

collection performed in order to verify the proposed approach.

Orientation data were acquired through an IMU-based

wearable device, called Sentry, developed by Swhard s.r.l. in

collaboration with the REHELab (University of Genoa, Italy).

The device incorporates two BNO080 sensors, produced by a

collaboration between Hillcrest Labs and Bosch Sensortec GmbH

(64), each one integrating a 14-bit tri-axial accelerometer, a

16-bit 3-axis gyroscope and a geomagnetic tri-axial sensor,

accompanied by a 32-bit ARM Cortex®-M0 microcontroller

running a proprietary software (34). The accuracy, reliability, and

repeatability of the device measurements were previously

demonstrated through tests involving movements on a robotic

arm (34). The output from the sensors are two unitary

quaternions over time, representing their orientation expressed in

the earth Reference Frame. Data are transmitted via Bluetooth at

a sampling frequency of 25 Hz to a personal computer. On the

FIGURE 1

Schematic illustration of the steps of the NNS algorithm for one

point in the template trajectory.

Algorithm 1 Pseudo-code implementation of the NNS algorithm.

Define threshold bt
Define threshold tacc
Initialize score s ¼ 0

for i ¼ 1 to n do

for j ¼ 1 to m do

Calculate Euclidean Distance dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a0j � ai)
2 þ (b0j � bi)

2
q

end

Find the two smallest dij and the respective points b0n1 ¼ b0(a0n1)
, b0n2 ¼ b0(a0n2)

Interpolate linearly hi ¼
ai�a0n2
a0n1�a0n2

b0n1 �
ai�a0n1
a0n1�a0n2

b0n2
if jh(ai ) � b(ai )j , tacc then

Increment score s ¼ sþ 1

end

else if jh(ai ) � b(ai)j , bt then

Increment score s ¼ sþ 1

end

end

Express score as a percentage of the number of samples s% ¼ s
n
� 100
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computer, an acquisition and storage software platform (customly

developed Microsoft Universal Windows Platform) saves the data

as plain text files.

A first set of tests was carried out with a robotic arm, using the

same setup as described in (34), to test the algorithm under

controlled conditions, simulating basic shoulder movements. One

sensor was fixed as a reference on the table, and the other was

mounted on the robotic arm. In this scenario, three movements

were considered as the template: 30� abduction, 50� flexion, and

10� external rotation, performed at a constant speed of 25�/s.

Ten repetitions for each of these three movements were executed

at varying speeds of 10�/s (slow), 25�/s (normal), and 50�/s ( fast)

and were compared with the respective template. The movement

amplitude was chosen based on a compromise between the

amplitudes commonly achieved in everyday movements and the

possibilities offered by the robot’s workspace. The speed values

were selected based on the technical capabilities of the robot.

Examples of the angular and quaternion trajectories are provided

in Supplementary Material.

After testing on the robotic arm, the approach was applied to

shoulder movement data replicating activities of daily living (ADL)

acquired from human participants. We included right-handed

adults with no history of shoulder surgery or lesions from two

different age groups (one ranging between 20 and 30 years old—in

the following denoted as the young group, and the second between

60 and 85 years old—in the following denoted as the elderly

group), as approved by the Ethical Committee for University

Research of the University of Genoa (CERA n. 2023/78). Six ADL-

related movements—upper care, medium care, lower care, driving a

car, frontal reaching, and upper reaching—were retraced based on

(65) (Table 1). Exercises were defined as either non-standardized

(NST) with unrestricted shoulder RoM or standardized (ST) with

RoM constrained by verbal instructions (see Table 1). See

Supplementary Material for examples of the angular and

quaternion trajectories. The participants freely performed ten

repetitions of each exercise in a randomized order. The IMUs were

placed on the Acromion and 4 cm above the Epicondyle (Figure 2).

For each movement, a randomly selected repetition was used as the

template to which compare the other nine repetitions.

3.3 Data processing and statistical analysis

Hereafter we describe in detail the data processing performed

to obtain outcomes from the algorithms and compare

performances. An overview of the process is provided in Figure 3.

The data were processed using Python 3.11, with Numpy 1.26

and Pandas 2.1 for calculations and Matplotlib 3.8 for data plotting.

The data processing was aimed at comparing each of the

trajectories acquired in data collection process with a selected

template trajectory.

For the on-robot test, the first acquisition at the normal speed

for each movement was used as the template to which every of the

ten repetitions for each speed was compared, obtaining a

distribution of ten outputs for each algorithm at every speed.

For the on-person test, for each individual, a randomly selected

repetition of each movement was used as the template for the

considered movement. The other nine repetitions for every

movement were compared to the templates of the movement

itself and of all the other movements. For each comparison, the

outcomes from the nine repetitions were averaged. Thus, a

matrix of comparisons was obtained, with auto-comparisons on

the diagonal and cross-comparisons outside the diagonal.

The extraction of the comparison outcomes was performed as

in Figure 3 and is detailed hereafter.

Starting from the two quaternions q1 and q2 provided by each

of the two IMUs, the fused quaternion qfused was calculated as in

Equation 3 to obtain the relative orientation between the sensors:

qfused ¼ q1q
�
2 (3)

All analyses were performed using qfused. For both the on-robot and

on-person tests, the NNS and algorithms considered in (49) were

TABLE 1 Functional movements considered in the experiment, divided in standardized (ST) and non-standardized (NST). All movements start in
anatomical position (rest position). For each movement, the associated ADL is reported.

Name NST movement ST movement Associated ADL

Upper care With the hand: reach forehead, reach nape, go back to

forehead, return to rest

With the hand: reach forehead keeping the elbow in contact with trunk,

reach nape while opening the elbow outside, go back to forehead while

closing the elbow inside, return to rest keeping the elbow in contact with

trunk

Washing head

Medium

care

With the hand: reach contralateral shoulder, go behind

neck, reach wrist, go back to shoulder, go behind neck,

return to rest

Same as NST, but keeping the elbow in contact with trunk whenever

possible

Washing arm

Lower care With the hand: reach contralateral gluteus Same as NST, but keeping the hand in contact with the body Picking an object from the

opposite pocket

Frontal

reaching

Bring the hand in front of the sternum at shoulder

height, bring the hand to the mouth, return to rest

Same as NST, but keeping the elbow in contact with trunk whenever

possible

Picking food in front of you

and feeding yourself

Upper

reaching

Bring the elbow in front of the sternum at eyes height

with the arm extended, bring the hand to the mouth,

return to rest

Same as NST, but keeping the elbow in contact with trunk whenever

possible

Picking food upon a shelf

and feeding yourself

Driving Bring both hands at shoulder height with the arm extended, rotate 90�

right, return in the previous position, rotate 90� left, return in previous

position

Driving

Iurato et al. 10.3389/fdgth.2025.1576031

Frontiers in Digital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1576031
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


applied to the six quaternion component trajectories listed in

Equation 2. The algorithms in (49) were imported into Python

relying on the repository by Guillouet and Van Hinsbergh (66).

NNS was implemented using Python 3.11.5. For the algorithms

with bounded output considered in (49) (EDR, LCSS), the

threshold for considering two points as similar was set to 0:025,

which corresponds to an equivalent variation of 2:86� in Euler

angles, which is approximately the error tolerance of our

measurement instrument (34). For the same reason, in the NNS

the threshold tacc was set to the same value 0:025. Outputs

from the EDR and LCSS typically range on opposite scales (that is,

EDR outputs 0 for identical trajectories, and 1 for completely

different trajectories, and LCSS viceversa). However, the

Python implementation that we used (66) aligns the output of the

two algorithms, so that both range between 0 and 1, with 1 being

the output for identical trajectories for both algorithms. In

addition, we multiplied the output from these two algorithms by

100 to obtain a conformity score comparable to the results from

the NNS. Thus, the outputs from all three bounded algorithms

ranged between 0 and 100, with 100 being the output for two

identical trajectories.

The metrics obtained for each of the six quaternion

components trajectories were then averaged to obtain a single

conformity indicator for each algorithm.

After concluding the process of extracting a comparison

outcome for each acquired trajectory, we proceeded with the

statistical analysis of the results. Descriptive statistics was

performed in Python 3.11, while statistical tests were run in R 4.4.3.

For the on-robot test, we constructed the distributions of the

ten outcomes from each algorithm at each considered speed.

For the on-person test, based on the obtained comparison

matrices, distributions for both values along the diagonals and

values outside of it were constructed for each of the considered

algorithms. Normality was evaluated on each distribution with a

Shapiro-Wilk test.

For normal distributions, a two-sided t-test was performed,

whereas for non-normal distributions a two-sided Mann-

Whitney U-test was applied, to test the hypothesis of

dissimilarity between diagonal and off-diagonal distributions. The

Cohen’s d or the absolute value of rank-biserial correlation (rrb)

were used as effect sizes for the t-test or Mann-Whitney

U-test, respectively.

Next, the average comparison matrix across all participants

was calculated.

To verify the contrast of the average comparison matrix, the

values in the average comparison matrix were normalized to the

maximum value in the matrix. Because the unbounded

algorithms output higher values when the dissimilarity between

movements increases, and vice versa for the bounded algorithms,

we aligned these two behaviors by subtracting the normalized

FIGURE 2

On-person sensors positioning.

FIGURE 3

Flowchart of the data processing performed for each

acquired trajectory.
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matrices of the unbounded algorithms from 1. Considering the

normalized matrices, the average of values on the diagonal and

the average of values outside the diagonal were then calculated.

The ratio between the average on the diagonal and the average

outside the diagonal was then calculated as Equation 4:

r ¼
mean (diag)

mean (outsidediag)
(4)

The r ratio was calculated separately for each of the two age groups

in the testing population, and finally an overall average ratio

was calculated.

An analysis of the performance of the NNS algorithm compared

to the others was also performed. In order to be comparable, values

in the comparison matrices for each participant and each algorithm

were rescaled in a 0–100 scale, with 0 representing the minimum

value and 100 the maximum, based on Equation 5:

valuescal ¼
100

max(M)�min(M)
�(valueorig �min(M)) (5)

where M represents the overall matrix, valuescal the rescaled value,

and valueorig the original value.

After rescaling, the distributions of values on diagonals and

outside diagonals were constructed. Normality of the distributions

was evaluated through Shapiro-Wilk tests. Next, the distribution on

the diagonal from the NNS algorithm was compared with the

distribution on the diagonal from each of the other algorithms

through a two-sided t-test in case of normality, or a Mann-Whitney

U-test in case of non normality. The Cohen’s d or the rank-biserial

correlation (rrb) were used as effect sizes for the t-test or Mann-

Whitney U-test, respectively. The same process was repeated also

for distributions of values outside the diagonals.

4 Results

4.1 On-robot test

Figure 4 shows the distributions of the outputs from the

various algorithms obtained when comparing the same planar

robotic movements performed at different speeds.

4.2 On-person test

4.2.1 Number of participants

We included 25 participants for the first age group (average age

+ standard deviation: 26:1+ 2:9 years) and 11 participants for

the second age group (average age + standard deviation:

68:1+ 5:2 years).

4.2.2 Algorithms outcomes
Figures 5, 6 show heatmaps for the average comparison

matrices across subjects obtained when applying the various

algorithms to cross-compare the movements performed during

the on-person tests. The diagonal in the matrices represents

auto-comparison, i.e., average outputs from the comparison of

repetitions of a movement with a template of the same

movement. Values outside the diagonal represent cross-

comparisons, i.e., average outputs from the comparison of

repetitions of a movement with a template of a different movement.

4.2.3 Performance indicators

Table 2 shows the r ratios, calculated as in Equation 4, obtained

for each of the considered algorithms for both the young and

elderly groups, and for the overall population. r ratios are all >1.

All Shapiro-Wilk tests applied to distributions obtained from

values on the diagonals and outside the diagonals of the

comparison matrices of all subjects exhibited p , 0:05; therefore,

all distributions were assumed to not be normal, and Mann-

Whitney tests were used to test the hypothesis of dissimilarities

between the distributions.

Table 3 shows p values, effect size (absolute value of rank-

biserial correlation, rrb), 95% confidence interval (CI) and test

power for the Mann-Whitney U test comparing distributions of

values on the diagonals and outside the diagonals. Mann-

Whitney tests exhibited p , 0:05 for every algorithm: therefore,

the null hypothesis was rejected for every algorithm. rrb effect

sizes are all >0.9 (with the exception of EDR being however still

>0.5), indicating a strong difference between the distributions.

Therefore, we can assume that distributions of values outside the

diagonal significantly differ from the distribution of values on

the diagonal for every algorithm.

All Shapiro-Wilk tests applied to distributions rescaled in 0–

100 range from values on the diagonals and outside the

diagonals of the comparison matrices of all subjects exhibited

p , 0:05; therefore, all distributions were assumed to not be

normal, and Mann-Whitney tests were used to compare

distributions from the NNS algorithm with the ones from the

other algorithms.

Table 4 reports p values, effect size (rank-biserial correlation,

rrb), 95% confidence interval (CI) and test power for the Mann-

Whitney U test comparing the rescaled distributions of NNS on

the diagonal with the rescaled distributions on diagonals from

the other algorithms. Table 5 reports results from the same tests

applied on rescaled distributions of values outside the diagonal.

All tests exhibited statistically significant difference (p , 0:05)

both on diagonal and outside diagonal, with the only exception

of DFD on diagonal, where no statistically significant difference

was found. However, effect sizes were very contained for DTW

and FD, indicating a mild difference. On the contrary, significant

TABLE 2 Ratios r between average on diagonal and outside diagonal of
obtained comparison matrices for the considered algorithms for both
the young and elderly population, and overall.

Parameter DTW FD DFD EDR LCSS NNS

r (overall) 1:91 2:67 2:11 1:55 2:88 1:70

r (young group) 2:01 2:32 2:16 1:41 2:78 1:66

r (elderly group) 1:81 3:0 2:02 1:69 2:99 1:74
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FIGURE 4

Boxplot representation of distributions of the outputs from the various algorithms obtained when comparing the same planar robotic movements

performed at different speeds.
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effect sizes were obtained for comparison EDR and LCSS, with

rrb assuming negative values, indicating higher ranks associated

with NNS.

5 Discussion

5.1 Algorithm performance and applicability

The numerical stability of the analysis in quaternion space is

confirmed by the traditional unbounded algorithms’ capability of

detecting similarities and differences between movements, as

supported by the good r ratios and low p values with high effect

sizes obtained when assessing contrast of DTW, FD and DFD.

However, bounded algorithms can provide several advantages

from the point of view of user experience and patient

engagement, as they can directly provide a conformity score

without the need for any additional information about the

movement being performed (e.g., for estimating boundary

conditions to constrain the output).

To the best of our knowledge, this is the first study to explore

the application of bounded algorithms in shoulder functional

rehabilitation. Our results suggest the applicability of bounded

algorithms to the assessment of shoulder rehabilitation exercises,

combined with an analysis in the quaternion space for

numerical stability.

All bounded algorithms, in fact, performed acceptably in

detecting similarities and differences between movements, with r

ratios >1.5, low p values and high effect sizes (comparable to the

ones from unbounded algorithms) in statistical tests for contrast

performance assessment. It is, however, worth discussing some

specificity for each one that is supported by the results we

obtained, especially how our new NSS proposal collocates in

this context.

Among these algorithms, EDR demonstrated to be the worst

performer, with the lowest contrast ratio and smaller effect size

FIGURE 5

Heatmaps for the average comparison matrices for the unbounded algorithms, obtained by comparing the first repetition of each movement with the

other nine, for both non-standardized (NST) and standardized (ST) movements. Values in the cells are average accross compared repetitions

and participiants.
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in statistical tests. This behavior, apparently worse than LCSS,

could be explained by a different impact of the acceptance

threshold on the final scoring because of a different main goal of

the algorithm. Whereas EDR extracts the final score by

thresholding a cost matrix similar to that of DTW, the LCSS

implementation is conversely aimed at finding the maximum

score path (49).

It is interesting to analyze the performance of our new NNS

proposal in comparison to the other algorithms. Looking at the r

contrast ratio, NNS performs better than EDR and comparable

FIGURE 6

Heatmaps for the average comparison matrices for the bounded algorithms, obtained by comparing the first repetition of each movement with the

other nine, for both non-standardized (NST) and standardized (ST) movements. Values in the cells are average accross compared repetitions

and participiants.

TABLE 3 p values, effect size (absolute value of rank-biserial correlation,
rrb), 95% confidence interval (CI) and test power obtained from Mann-
Whitney test comparing distributions on diagonal and outside diagonal.

Algorithm p value Effect size
(rrb)

95% CI Test
power

DTW ,0:01� 0:96 [0:95, 0:96] 1

FD ,0:01� 0:95 [0:94, 0:95] 1

DFD ,0:01� 0:98 [0:97, 0:98] 1

EDR ,0:01� 0:73 [0:71, 0:76] 1

LCSS ,0:01� 0:97 [0:97, 0:98] 1

NNS ,0:01� 0:97 [0:97, 0:97] 1

Asterisks indicate p , 0:05.

TABLE 4 p values, effect size (rank-biserial correlation, rrb), 95%
confidence interval (CI) and test power obtained from Mann-Whitney
test comparing scaled distributions on diagonal of NNS with
other algorithms.

Algorithm p value Effect size
(rrb)

95% CI Test
power

DTW ,0:01� 0:21 [0.14, 0.28] 0:87

FD ,0:01� �0:34 [−0.41, −0.27] 1

DFD 0:21 �0:05 [−0.13, 0.03] 0:11

EDR ,0:01� �0:69 [−0.73, −0.65] 1

LCSS ,0:01� �0:55 [−0.60, −0.49] 1

Asterisks indicate p , 0:05. Negative values of rrb indicate higher ranks associated with NNS.
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to DTW, while FD, DFD and LCSS exhibit better contrast. It is

however worth noting that NNS is the algorithm with lowest

difference in contrast ratio between the two age groups,

suggesting a better capability to generalize the evaluation among

a variety of motor strategies. This supports the potential of

comparing the trajectories analytically through a distance-based

scoring method: in fact, fluctuations in contrast are possible in

DTW, FD and DFD algorithms due to their unbounded nature,

which allows for the output to increase unlimitedly. This

consideration is further supported by statistical tests on rescaled

distributions: when rescaled in same range based on empirical

maximum and minimum in the data, the comparison between

NNS and unbounded algorithms (DTW, FD, DFD) leads to

small rrb effect sizes, suggesting equal performance due to

comparable output.

Among bounded algorithms, both the r ratio and the statistical

tests indicate improved performance with respect to EDR. In

comparison to LCSS, r ratio of NNS is lower, while LCSS

contrast even outperforms the unbounded algorithms, indicating

a very good resolution in the discrimination between the same

and different movements. However, in the LCSS average matrix,

the maximum value obtained was 63:02, which is quite far from

the maximum possible output of the algorithm (100). On the

contrary, looking at results from robotic data, it is visible that in

controlled conditions the output when comparing the same

movements is close to 100 in most cases. The statistical tests

comparing rescaled distributions of NNS with the ones of LCSS

indeed led to significant results, with low p value and a high rrb

effect size with negative values, indicating higher ranks for the

NNS both on the diagonal and outside diagonal.

This suggests that, when used on human movement data, LCSS,

despite being able to detect with good contrast the dissimilarities

between movements, it always detects some differences, even when

comparing repetitions of the same movements. In other words, the

algorithm classifies repetitions of the same human movement as

more similar to each other than when comparing different human

movements, but not as almost identical.

Conversely, our new NNS proposal, detects repetitions of the

same movements as almost identical, while detecting

comparisons of different movements as less similar than the

auto-compared ones, still with an acceptable r contrast ratio and

performance that was statistically demonstrated to be comparable

to the ones of the unbounded algorithms.

The choice of one or the other algorithm might therefore be

based on the intention of focusing mostly on penalizing incorrect

movements, or mostly on awarding well-performed movements,

depending on the clinical condition of the patient and on the

type of treatment.

5.2 Potential impact of the results

Most studies available in the literature dealing with

telerehabilitation systems exploit unbounded algorithms, mainly

DTW, to assess the exercises and provide feedback to the user.

Nonetheless, to make this feedback intuitive for the user, some

form of transformation of the unbounded output is necessary,

typically a conversion to a conformity score. This transformation

often involves the intervention of experimental estimation or

suggestions from clinicians to define boundaries, or the

discretization of the output, thereby losing the potential

versatility of the template-based approach.

As examples, (67) elaborated the DTW output using a sigmoid

function tuned relying on indications from clinicians and defining

a priori rules; (43) used an upper limit output estimated from

experimental data to transform DTW output into a score; (61)

converted DTW output in discrete levels (e.g., “Bad,” “Good,”

“Excellent”) using fuzzy logic; (57) converted DTW output into a

conformity score, but still needed calibration of the algorithm

using ratings from experts on a subset of participants. Among

the most recent works, Beaud et al. (58) developed a DTW-based

score, which, however, has a lower bounded constraint (the

closer the score is to 0, the most similar are the trajectories), but

still no constraint on upper boundary. Seo et al. (62) used DTW

to evaluate quality of upper limb tasks, but falled into a simple

binary categorization into “Correct” or “Incorrect.” Pereira et al.

(59) transformed DTW output into a z-score, which, however,

required information (mean and standard deviation) about their

specific dataset.

Therefore, in all these cases, some form of experimental

inference about the movement or of output discretization is

performed, but this limits the potential of tele-rehabilitation as a

tool that fosters the independence of the patient and allows for

personalized treatment.

Also, recent studies focus on the use of data-driven

probabilistic approaches, given the high potential of recent

advancements in machine and deep learning (31, 42, 43, 46, 68).

Those approaches are very powerful when it is necessary to

recognize or classify specific movements (68): however, they

require a large amount of data to be trained, and need to be

retrained if it is necessary to change the template trajectory,

while the advantage of distance-based methods is that they are

not exercise-specific (68). In fact, in functional rehabilitation, it is

essential to define the movements that need to be performed

based on the specific condition of the patient, and those might

vary depending on the specific pathology, the clinical progress

and even the psico-social context in which the patient is

immersed (10–13, 22–24). Therefore, it is important to ensure

that new template trajectories can be defined at any moment

TABLE 5 p values, effect size (rank-biserial correlation, rrb), 95%
confidence interval (CI) and test power obtained from Mann-Whitney
test comparing scaled distributions outside diagonal of NNS with
other algorithms.

Algorithm p value Effect size
(rrb)

95% CI Test
power

DTW ,0:01� 0:36 [0.34, 0.38] 1

FD 0:025� �0:03 [−0.05, 0] 0:03

DFD ,0:01� 0:13 [0.11, 0.16] 1

EDR ,0:01� �0:11 [−0.13, −0.08] 1

LCSS ,0:01� �0:97 [−0.98, −0.97] 1

Asterisks indicate p , 0:05. Negative values of rrb indicate higher ranks associated with NNS.
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during the progress of the treatment for the specific patient,

without needing to retrain the comparison algorithms.

The calculation of a conformity score through trajectory

comparison algorithms with a bounded output, such as the NNS

proposed in this study, allows for more personalized treatment.

These algorithms only take as input a template trajectory

(whichever being its shape) and a repetition of the exercise, and

directly output a conformity score in a limited range (e.g., 0–

100) quantifying the similarity between the two movements.

This is very important to introduce in telerehabilitation the

potential for a patient-centric personalized treatment. In this way

the clinician can define a template trajectory based on the

clinical condition of the patient. Next, the assessment algorithm

will compare the at-home performed repetitions of the

movement, without the need for any experimental estimation of

the boundaries, any previous training dataset collection, or any

form of discretization of the output.

Quaternion-based assessment adds numerical stability, which

allows to avoid calibration procedures that are often performed

when working with angle-based approaches to estimate values in

known positions (e.g., T-pose) (69).

Moreover, bounded algorithms rely on a distance threshold for

the classification of points in a trajectory as either similar or

different to those in the template trajectory. This threshold can

become an important tool in telerehabilitation. Threshold tuning

can be used by the clinician to set the amount of accepted error

in movement execution, based on the specific condition of the

patient. This is another advantage in the direction of a patient-

centric remote rehabilitation treatment.

5.3 Limitations and future directions

This study explored the application of bounded algorithms for

trajectory comparison in the quaternion space during the execution

of shoulder functional rehabilitation exercises, introducing a new

algorithm for the comparison and confronting its performance

with existing ones.

The results demonstrated the applicability of the quaternion-

based approach and the reliability of using bounded algorithms,

including our new proposal, considering the potential flexibility

that they offer compared to the unbounded ones.

However, this study has some limitations. First, the sample size

could be further enlarged to strengthen the relevance of the results

obtained. Specifically, we tested on a group of young healthy

participants and a limited group of elderly participants, but

including actually impaired participants may provide further

insights on how the methodology responds in persons with

actual changes in kinematic trajectories. It is expected that the

output of the algorithms would be akin to when comparing

similar but slightly different movements (e.g., Frontal and Upper

Reaching), due to the performance of a similar movement but

with compensatory behavior. However, this might be pathology-

dependent: for example, a patient with an orthopedic impairment

that causes pain in a very specific area might present a very

specific compensatory phase, while patients with neurological

impairment might present a constant tremor or a different

trajectory planning, and the various considered algorithms could

respond differently in these two situations.

Moreover, because the goal was to verify the applicability of

such a method as an assessment tool based on data from

wearable devices, we directly tested on IMU data: nonetheless,

because no comparison were made with data collected

simultaneously from gold standard systems (e.g., the Vicon), the

actual similarity accross the various repetitions of movements

could be ulteriorly strengthened. We previously ensured the

functionality of the method on identical movements through the

tests on the robotic arm, but further developments of this work

might add analysis with gold standard instruments to reinforce

the assessment of identical movements. In fact, while IMU were

proven to be reliable sensors for upper limb motion analysis (15,

16, 34), it was also demonstrated that their error is larger when

compared to optoelectronic systems (70, 71): therefore, we

aknowledged this limitation by previously testing on robotic arm

and by inserting the measurement accuracy threshold in the

NNS algorithm, but a future comparison of trajectories

simultaneously acquired also through gold standard systems

might ensure the actual conformity between movements.

In addition, implementing the algorithm in a basic system that

can be used by a sample of elderly or impaired users might provide

more insights into the actual usability of the approach. This is a

future direction that should be pursued to further improve the

applicability of the approach in real scenarios.

We also defined only a subset of possible functional movements

involving the shoulder joint; however, future directions may involve

widening the number and type of movements to strengthen the

applicability of the proposed approach.

Other insights could arise from an analysis of the influence of

the choice of threshold for bounded algorithms on the resulting

conformity scores. This may further clarify the impact that the

implementation of bounded algorithms can have on

telerehabilitation systems, and also provide insights about the

feasibility of using the threshold as a tool for the clinician to

tune the accepted error in movement performance based on the

patient condition.

6 Conclusion

This study explored the feasibility of comparing repetitions of

upper limb functional movements to a template by analyzing

trajectories in the quaternion space. A novel algorithm for trajectory

comparison that produces a bounded conformity score was applied.

This approach effectively identified both coherence and

dissimilarities in shoulder functional exercise repetitions,

demonstrating the reliability of quaternion-based analysis and

bounded algorithms for trajectory comparison. This new

approach has some practical advantages, including improved

personalization of remote rehabilitation treatments.

Future work could involve implementing the proposed

approach in a real system to obtain feedback from end-users in

practical application scenarios.
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