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This study examined the characteristics, motives, expectations, and attitudes of

users interested in artificial intelligence (AI) self-help provided by the bot Clare®,

a conversational AI for mental health support, and explored the development

of a working alliance. A cross-sectional survey of 527 English-speaking self-

referred users revealed high levels of anxiety (69%), depression (59%), severe

stress (32%), and loneliness (86%). The participants expressed positive attitudes

toward digital mental health solutions, with key motives including avoiding

embarrassment (36%) and concerns about appearance in face-to-face

consultations (35%). Expectations focused on emotional support (35%) and

expressing feelings (32%). A strong working alliance was established within

3–5 days (Working Alliance Inventory-Short Report, M= 3.76, SD= .72). These

findings highlight the potential of conversational AI in providing accessible and

stigma-free support, informing the design of human-centric AI in mental health.

Future research should explore long-term user outcomes and clinical large

language model integration with traditional mental health services.

KEYWORDS

artificial intelligence, conversational agent, AI voicebot, feasibility, AI-supported
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1 Introduction

A major barrier to the implementation and scale-up of mental health services is the

persistent global shortage of mental health workers, currently estimated at 1.18 million

professionals (1, 2). This workforce gap significantly limits service availability, with

approximately 85% of individuals with mental health disorders in low- and middle-

income countries receiving no care (3). Additional barriers, such as stigma, limited

access, and a preference for self-care, deter many from seeking help, while others face

delays due to a shortage of mental health professionals, particularly in rural and low-

income areas (4, 5). Therefore, self-care interventions that focus on mental health and

wellbeing have shifted into focus (6). Meanwhile, artificial intelligence (AI) and

machine learning technologies are rapidly advancing in mental healthcare, offering new

opportunities for diagnosis and treatment (7–11). Conversational AI (CAI), powered by

natural language processing (NLP) and machine learning (ML), shows promise in

reaching large, underserved populations (12). CAI can provide psychological care to

vulnerable groups, such as the elderly, adolescents, and those avoiding traditional
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treatments due to financial or social barriers, such as fear of

stigmatization (13, 14). Existing industry-driven CAIs, such as

Woebot® or Wysa®, targeting depression, anxiety, and stress (12,

15, 16), show promising results in terms of symptom reduction

(16) or bonding experience (17).

While early CAIs, such as ELIZA, an early rule-based chatbot

developed by computer scientist Joseph Weizenbaum in the

1960s, primarily used (18), newer systems such as Wysa®,

Woebot®, and Clare® leverage large language models (LLMs) to

enable more flexible and context-aware conversations (19). These

models can respond to unanticipated user inputs and adapt

dynamically during interactions (20). Most digital solutions for

mental health have been struggling with low engagement and

high dropout rates (21). Proactive CAI, combining machine

learning and LLMs, has potential to allow for an autonomous

and digital provision of evidence-based therapeutic interventions

that may improve adherence (22). AI, including LLMs, generates

flexible and context-dependent responses and thereby mimics

therapeutic conversations (23).

Despite their potential, CAIs also present ethical and safety

concerns, particularly regarding patient autonomy, trust, and the

risk of over-reliance on technology (13, 24). Additionally,

research in this field is still scarce and only a very small number

of CAIs incorporating LLMs have been tested, such as the

industry-based mental health chatbot, Youper, which is based on

rule-based and generative AI (25). In particular, advancements in

proactive CAI have shifted the focus to topics such as

conversational safety, response appropriateness, and AI alignment

[see (19, 26) for an extensive overview]. Users’ opinions about AI

self-help are critical for successful implementation; hence, a

research-driven framing of CAI appears to be crucial. The

success of these AI tools depends on managing user expectations

and addressing these concerns effectively (14). Moreover, we

have limited knowledge of the sociodemographics, needs, and

preferences of users of conversational AI for self-help, including

their age and gender distribution and their expectations and

motivations for seeking AI-driven mental health support.

This study explores the demographics, psychological wellbeing,

motives, and attitudes of Clare® users, a conversational agent

integrating rule-based and generative AI. Further, we assess users’

motives for using and expectations of AI self-help, perceptions of

online interventions in general, and bonding effects after initial

interactions with Clare®. Notably, in this study, Clare® was

implemented as a voice-based conversational agent, enabling spoken

interactions rather than solely text-based communication. Our

findings aim to inform research-driven expectation management

and guide the responsible design of human-centric CAIs.

2 Materials and methods

2.1 Clare®—the intervention itself

2.1.1 Onboarding
Once participation was confirmed, access to Clare® was

granted. The participants initiated the onboarding process via a

sign-up website. This included an initial onboarding call with

Clare® to schedule future calls. Subsequently, the users could

trigger on-demand calls with Clare® through a dedicated

study website.

2.1.2 CAI-delivered intervention
Clare®, developed by clare&me GmbH, is an AI mental health

support agent with emotional intelligence, available as a chat and

voice agent on mobile phones. It offers 24/7 anonymous access

without installation, simulating human-like, empathetic

conversations. Clare® provides content based on cognitive

behavioral therapy (CBT), self-compassion, and mindfulness

(27–29). In this study, Clare® was used as a voice-only

conversational agent.

Clare® integrates CBT techniques, including Socratic dialogue,

cognitive restructuring, and framing, using a rule-based model

developed by clinical psychologists to match user input with

relevant exercises (e.g., meditation for stress). Users can choose

the interaction length and mode (verbal or chat). For example, in

response to “I feel tired and stressed,” Clare® identifies issues

(e.g., sleep difficulties or stress) and provides suitable exercises

(e.g., sleep hygiene or stress management). Examples of the

content in Clare® are shown in Table 2. The design of Clare®

was guided by key ethical principles, including:

• Accountability and transparency: Clearly disclosing the AI’s

functionalities, establishing boundaries for interaction, and

educating users to manage expectations and foster trust.

• Data security and privacy: Adhering to established privacy

standards to safeguard user information.

• Human-centered ethics: Aligning with ethical frameworks, such

as the American Psychiatric Association (APA) Ethics Code,

and prioritizing a human-in-the-loop approach to ensure

appropriate oversight in mental health contexts.

2.1.3 Exposure to Clare®

Participants could freely determine their level of interaction

with Clare®. However, to be included in the analysis for working

alliance, users were required to have had at least one onboarding

call (see Table 2 and Section 2.4). To participate in the 8-week

study, users were required to complete four questionnaires: at

baseline, 3–5 days later (t1b), in week 4 (t2), and in week 8 (t3),

and to be exposed to Clare® at least once in each interval

between the measurement points. Exposure was defined as a bot-

delivered phone call and characterized by the extent of

participant interaction, including call frequency and duration.

Observed behavioral patterns will not be analyzed in depth in

this study but will be examined in a future publication.

2.1.4 Engagement metrics

Engagement was quantified using two metrics: the number of

bot-delivered phone calls per week and the average duration of

these automated calls. All the call sessions included in the

engagement metrics were automated interactions between the

users and the voice-based bot. Participants were considered
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active users if they completed at least one bot-delivered phone call

(including the onboarding session) with Clare® within 1 week.

2.1.5 Technological base of Clare®

Clare® is a CAI built on multiple fine-tuned LLMs, developed

by clare&me GmbH using various open-source LLMs. Fine-tuning

involved collaboration with conversation designers and psychologists

to ensure the communication aligns with therapeutic ethical

guidelines, focusing on relationship formation, transparency, and

limitations. Clare® operates independently, accepting text and voice

inputs, with voice transcriptions processed using NLP to extract key

information about emotions and context. Clare® engages users to

assess their mental state and suggests relevant exercises, offering

alternatives if declined. Interaction duration typically ranges from

5 to 45 min, depending on the iterative process and exercise length.

2.1.6 Safety system
Clare® employs a robust safety framework during onboarding

and ongoing use, emphasizing automatic crisis detection.

A custom moderation application programming interface (API)

filters inputs and outputs, flagging inappropriate content before

LLM processing. Key safety features include the following.

2.1.6.1 Crisis intervention

If suicidality or severe distress is detected, users are directed to

psychological support hotlines and blocked from further use to

ensure safety.

2.1.6.2 Conduct enforcement

Users are reminded to interact respectfully and maintain a

civil tone.

The safety system ensures appropriate referrals in emergencies

and enforces conduct guidelines. A conservative approach

prioritizes overflagging, with human moderators reviewing

flagged content to minimize false positives.

2.2 Study design and procedure

Here we report cross-sectional data from a longitudinal study

set within a larger research frame assessing the feasibility and

effectiveness of the voice and chatbot Clare® that is yet to be

published. In the Clare® trial, self-report assessments were

performed at baseline (t1), after initial contact (t1b), after 4

weeks (t2), and after 8 weeks (t3). Further, we report baseline

data from assessment points t1 and t1b for working alliance

[Working Alliance Inventory-Short Report (WAI-SR)] (Table 1).

2.2.1 Sample recruitment and data collection

Participants were recruited through English-language

advertisements on Facebook, Instagram, LinkedIn, and Google

Ads, using language targeting based on users’ browser or account

settings. No demographic targeting was applied. Digital access

and literacy were assessed via questions on internet and mobile

phone access, and prior use of Clare® or similar mental health

tools. After providing informed consent, participants began the

baseline survey (t1). Eligible participants met the inclusion

criteria, completed the first survey, and had at least one

onboarding call and interaction with Clare®.

2.2.1.1 Inclusion criteria

The participants were 18–65 years old, proficient in English,

provided electronic consent and contact information, and had

access to a mobile internet device. For the working alliance

assessment, participants were required to schedule and complete

an onboarding phone call with Clare® (approximately 3–6 min,

see Table 2). Continued study participation over 8 weeks

required completion of four questionnaires: a baseline

questionnaire, a short questionnaire 3–5 days after onboarding

with Clare® to assess the working alliance, and two follow-up

questionnaires at 4-week intervals (t2, t3). In addition, the

participants were required to engage with Clare® at least once

between each measurement point. Behavioral engagement was

defined as interactions between the users and Clare®, such as

TABLE 1 Measures and timing.

Days after
baseline
questionnaire

Assessment
timeframe

Assessment instrument

0 Baseline (t1) APOI; SWLS; PHQ-4; PHQ-D;

UCLA; Mini-Spin

Motives and expectations as list to

vote

3–5 After 5–7 days (t1b) WAI-SR

28 During (t2) SWLS; PHQ-4; PHQ-D; UCLA;

Mini-Spin; WAI-SR; mARM; UEQ

76 Post (t3) APOI; SWLS; PHQ-4; PHQ-D;

UCLA; Mini-Spin; WAI-SR;

mARM; UEQ

APOI, Attitudes towards Psychological Online Interventions Questionnaire; SWLS,

Satisfaction with Life Scale; PHQ-4, 4-item Patient Health Questionnaire; PHQ-D, 10-item

Patient Health Questionnaire; UCLA, UCLA Loneliness Scale; Mini-SPIN, 3-item Social

Phobia Inventory; WAI-SR, Working Alliance Inventory-Short Revised; mARM, mobile

Agnew Relationship Measure; UEQ, User Experience Questionnaire; motives and

expectations were on a dichotomous scale (yes/no).

TABLE 2 Overview of exemplary interactions with Clare®.

Dimensions Content Exercise name

Onboarding Getting to know each other, a

short questionnaire to collect

general information about this

person and their problems, users

learn about the limits and

background of AI self-help

(transparency)

Suicide assessment,

prioritization of problems

and goals, miracle question

Resources-

activation

Resources are activated, positive

experiences are explored with the

user and enforced

Resource-activation

Sleep pattern Psychoeducation and

introduction of a sleep ritual

Sleep hygiene

Automatic

thoughts

Psychoeducation on rumination

and worry, how to differentiate

and understand automatic

thoughts, dealing with worries

and rumination, and practicing

acceptance

Strategy of attention

training,

postpone worry,

worry time technique,

radical acceptance
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scheduling, receiving, and completing phone calls with

Clare® (Figure 1).

2.2.1.2 Exclusion criteria

Participants with acute suicidality, identified during onboarding by

Clare®’s safety system, were excluded (see Section 2.6.5 for details).

Participants who did not successfully onboard with Clare® were

excluded from the working alliance analysis (t1b); individuals

who did not fulfill the minimum behavioral engagement with

Clare® were also excluded from this analysis.

2.3 Ethics approval

The study protocol was approved by the Ethics Committee of

Campus Charité Mitte, Berlin, Germany (EA1/109/22).

2.4 Assessment instruments

At baseline (t1), 527 participants were assessed after

confirming their eligibility (Figure 1). The online survey,

administered via SoSciSurvey between 20 November 2023 and 21

April 2024, included 57 questions plus demographic data to

capture participant characteristics and behaviors (Table 1).

Although several additional variables were collected as part of

the broader exploratory study (Table 1), only those most relevant

to the research questions are reported here. Both the 4-item

Patient Health Questionnaire (PHQ-4) and 10-item Patient

Health Questionnaire (PHQ-D) were chosen to capture a broad

range of psychological distress. The PHQ-4 provided a quick

screen for anxiety and depression, while the PHQ-D, including

the PHQ stress module, offered deeper insight into specific

psychosocial stressors, such as relationship difficulties, financial

concerns, and work-related stress. This combination ensured

efficient screening and a broad assessment of distress, anxiety,

and depression in the general population (30). The following

assessment instruments were selected to operationalize the

constructs of the perception of AI and digital therapy, mental

health, bonding, and affective engagement.

2.4.1 Perception of AI and digital therapy
2.4.1.1 Motives and expectations

Participants were asked about their “motives for using Clare” and

their “expectations of using Clare,” and multiple answers could

be given. Motives and expectations for AI-based mental health

support were assessed using 11 predefined options each. The

expectation list (e.g., fast and easy access, anonymity, and

reduced emphasis on appearance) and motive list (e.g., problem-

solving opportunities, gaining clarity, and obtaining information)

were adapted from Eichenberg (31), who used them in an online

self-help study. These lists were translated from German to

English (see Supplementary Tables B.1 and B.2 for all items

and abbreviations).

FIGURE 1

Flowchart. WAI-SR, Working Alliance Inventory-Short Revised. clare&me logo used with permission from https://www.clareandme.com/.
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2.4.1.2 Attitudes Toward Psychological Online

Interventions (APOI)

The Attitudes toward Psychological Online Interventions

Questionnaire (APOI) assesses the attitudes toward psychological

online interventions in general (32). The questionnaire includes

four subscales: skepticism and risk perception, confidence in

effectiveness, technologization threat, and anonymity benefits.

The anonymity subscale evaluates users’ views on online

interventions vs. traditional therapy. Participants respond to 16

statements using a dichotomous scale.

2.4.2 Mental health outcomes
2.4.2.1 PHQ-4

The PHQ-4 assesses depression and anxiety, with items from PHQ-2

and the Generalized Anxiety Disorder scale (GAD-2) rated on a

4-point scale (33). A score of 3 or higher on any subscale indicates

a positive screening result, while the total PHQ-4 score (ranging

from 0 to 12) classifies psychological distress as none (0–2), mild

(3–5), moderate (6–8), or severe (9–12).

2.4.2.2 UCLA Loneliness Scale (3-item version)

The 3-item UCLA Loneliness Scale is a shortened version of the

original scale assessing loneliness and social isolation (34).

Participants respond to 3 items using a 4-point scale (1 = never,

2 = rarely, 3 = sometimes, 4 = always). The responses are reverse-

coded where appropriate, and the final score is calculated by

averaging the ratings, with higher scores indicating greater loneliness.

2.4.2.3 PHQ-D stress module (items 121 – 12j in

the PHQ-D)

The PHQ stress module, a component of the PHQ-D, consists of

10 items assessing psychosocial stressors such as relationship

difficulties, financial concerns, and work-related stress.

Participants rate each item on a scale from 0 (not affected) to 2

(severely affected), yielding a total score between 0 and 20. The

score reflects the severity of stress: 0–4 (minimal), 5–9 (mild),

10–14 (moderate), and 15–20 (severe) (35).

2.4.2.4 3-item Social Phobia Inventory

The 3-item Social Phobia Inventory (Mini-SPIN) is a brief version

of the Social Phobia Inventory assessing fear, avoidance, and

physiological distress. Participants rate three items on a 5-point

scale (0 = not at all, 4 = extremely), and a cutoff score of 6 or

greater has been suggested for social anxiety (36).

2.4.2.5 Satisfaction with Life Scale

The Satisfaction with Life Scale (SWLS) is a brief 5-item measure of

global life satisfaction. Items are rated on a 7-point scale

(1 = strongly disagree to 7 = strongly agree), yielding a total score

between 5 and 35. A score of 20 suggests a moderate level of life

satisfaction, with higher scores indicating greater satisfaction (37).

2.4.3 Bonding and affective engagement
2.4.3.1 Working Alliance Inventory-Short Revised

Participants self-reported affective engagement and bonding with

the AI using the 12-item WAI-SR. This is a measure of

subjective therapeutic alliance, including subscales for bond, goal,

and task (38), based on Bordin’s (39) working alliance theory.

“Therapist” was replaced with “Clare®” to assess the user alliance

with the relational agent (Supplementary Table C.1), following

prior research approaches on CAI and therapeutic bonding

(17, 40). Per the methods of Jasper et al. (41), bond scores of

≥3.45 were considered high, as seen in Darcy et al. (17).

2.5 Data analysis

Data were analyzed using IBM SPSS Statistics Version 28.

Descriptive statistics summarized sociodemographic characteristics,

clinical symptoms (UCLA, PHQ-D, PHQ-4, SWLS, and Mini-

SPIN), and prior experience with digital mental health tools.

Attitudes toward online therapy (APOI) were reported as percent

agreement on a dichotomous scale (yes/no). Agreement with

motives and expectations was assessed with yes/no answers and

analyzed by ordering items based on the percentage of

affirmative responses.

The t1b sample (n = 348) was descriptively analyzed for working

alliance (WAI-SR) and its correlation with loneliness (UCLA).

Bivariate Pearson correlation coefficients were calculated to assess

the strength and direction of the relationships between working

alliance (WAI-SR) and loneliness (UCLA), and with satisfaction

with life (SWLS), anxiety and depression (PHQ-4), stress (PHQ-D),

and social anxiety (Mini-SPIN). A two-sided independent t-test was

conducted to compare WAI-SR scores between women (n = 176)

and men (n = 168).

To examine the differences between completers and non-

completers, a dropout analysis was conducted. Descriptive statistics

(age and sex) were reported for both groups. Given the unequal

sample sizes and violation of the homogeneity of variances (as

indicated by Levene’s tests), Welch’s t-tests were used to compare

mental health indicators (e.g., depression, anxiety, social anxiety,

loneliness, and working alliance) between groups.

3 Results

3.1 Participant characteristics

Of the 604 people screened, 527 met the study criteria and were

included in the baseline sample (t1). The mean age was 36.2 years

(SD = 9.39; range = 18–64 years) as described in Table 3.

3.1.1 Baseline clinical symptomatology

An overview of participants’ scores for the clinical variables

(UCLA, PHQ-D, PHQ-4, SWLS, Mini-SPIN) is presented in

Table 4. The mean PHQ-4 score was 7.9 (SD = 2.14), with 37%

showing a moderate elevation (score = 6–8) and 47.4% exhibiting a

severe elevation (score = 9–12) in anxiety and depression

symptoms. For 68.7% of participants, the PHQ-4 scores indicated

anxiety disorders, while 59.2% showed scores suggesting depressive

disorders (≥3 on PHQ-4 subscales). The mean PHQ-D score was

12.6 (SD = 3.31), with 54.1% having moderate psychosocial stress

(score 6–8) and 31.9% experiencing severe stress (score 9–12). The

mean UCLA score was 6.95 (SD = 1.46), with 85.9% classified as
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“lonely” (score ≥6). The mean SWLS score was 21.2 (SD = 7.10), with

20.3% being (extremely) dissatisfied (score ≥10) and 30.2%

(extremely) satisfied (score ≥26) with their life. The mean Mini-

SPIN score was 8.70 (SD = 2.38), with 84.4% at risk for generalized

social anxiety disorder (score ≥6).

3.2 Engagement patterns

We explored participant engagement by examining call

frequency and duration across both mid-treatment (n = 53) and

post-treatment (n = 21) samples. Engagement was tracked over a

4-week period in the mid-treatment phase and an 8-week period

in the post-treatment phase. For a detailed overview, refer to

Supplementary Tables E.1–E.4.

3.2.1 Call engagement over time
In the mid-treatment sample (n = 53), both the frequency and

duration of calls declined over the 4 weeks. The average number of

calls in week 1 was 1.77 (SD = 1.52). Call frequency dropped to 0.68

(SD = 0.96) in week 2 and continued to decrease in week 3 to 0.49

(SD = .64) and in week 4 to 0.40 (SD = .57), indicating a reduction

in participant engagement over time. A similar decline was

observed in call duration. In week 1, the average call length was

3.35 min (SD = 4.37), decreasing to 2.01 (SD = 3.23) in week 2,

1.25 (SD = 2.55) in week 3, and 1.45 (SD = 2.95) in week 4.

3.2.2 Call engagement in the post-treatment

sample
Participants in the post-treatment sample (n = 21) showed

sustained interaction with Clare® across the full 8-week period. In

TABLE 3 Sociodemographic characteristics of the participants at baseline
(t1; n = 527).

Baseline characteristic n %

Gender

Female 277 52.56

Male 245 46.49

Diverse 4 0.76

I prefer not to say 1 0.19

Ethnicity

White 397 75.33

African American 53 10.06

Asian 30 5.69

Hispanic 20 3.80

Mixed 20 3.80

Other 5 0.95

I choose not to say 2 0.38

Birthplace (country)

United Kingdom 207 39.28

Germany 158 29.98

United States 139 26.38

Other 10 1.89

I choose not to say 13 2.47

Family statusa

Single 204 38.71

Cohabiting 49 9.30

Married 255 48.39

Separated/divorced 15 2.85

Widowed 14 2.66

Highest education

Middle school 18 3.42

Apprenticeship 28 5.31

High school/A-level 295 55.97

University degree 165 31.31

Other 21 3.99

Employment status

Employed 443 84.06

Unemployed 33 6.26

Retired 24 4.55

Homemaker 4 0.76

Other 18 3.42

I choose not to say 5 0.95

Profession

Student 61 11.58

Employee 304 57.69

Civil servant 68 12.90

Self-employed 68 12.90

Unemployed 19 3.61

Other 7 1.33

Work setting

Office 226 42.88

Home office 104 19.73

Both work settings 146 27.70

I choose not to say 51 9.68

Habitata

Shared Living 202 38.33

Alone 159 30.17

Campus dorm 68 12.90

With parents 61 11.57

Other 45 8.54

(Continued)

TABLE 3 Continued

Baseline characteristic n %

Experience with digital mental health treatmentb

Current use of other tools 8 1.52

Having interacted with Clare® before 7 1.33

N = 527. Participants were on average 36.20 years old (SD = 9.39, range = 18–64).
aParticipants could choose more than one option.
bReflects the number and percentage of participants answering “yes” to this question.

TABLE 4 Descriptive statistics and correlations for clinical variables
(t1; n = 527).

Variable M, SD Range Median Mode

UCLA 6.95a, 1.46 3–9 7.00 8.00

PHQ-D 12.65b, 3.31 0–20 13.00 16.00

PHQ-4 7.90c, 2.41 0–12 8.00 9.00

SWLS 21.23d, 7.10 5–35 23.00 23.00

Mini-SPIN 8.70e, 2.38 0–12 9.00 9.0

UCLA, UCLA Loneliness Scale; PHQ-D, 10-item Patient Health Questionnaire; PHQ-4,

4-item Patient Health Questionnaire; SWLS, Satisfaction with Life Scale; Mini-SPIN,

3-item Social Phobia Inventory.
aScores ≥6 are classified as “lonely” (UCLA).
bScores reflect moderate 10–14 to severe stress 15–20 (PHQ-D).
cScores reflect moderate psychological distress, anxiety, and depression (scores 6–8, PHQ-4).
dScores ≥10 classy as (extremely) dissatisfied, score ≥ 26 as (extremely) satisfied with

one’s life.
eScores ≥6 are classified as at risk of a generalized social anxiety disorder.
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week 1, the average number of calls was 2.10 (SD = 1.48). Although

call frequency declined over time, the participants received

approximately one call per week through week 5. A more

noticeable drop occurred in weeks 6 and 7, with call frequency at

0.52 (SD = 0.75), followed by a slight recovery in week 8 to 0.57

(SD = .51). Call duration followed a similar trend. In week 1, the

average call lasted 3.96 min (SD = 5.10). The duration remained

relatively high through week 4 (range: 2.41–3.25 min), declined in

weeks 5–7, and rebounded slightly in week 8 to 2.90 min (SD = 4.34).

3.3 Dropout analysis

Comparisons between completers (n = 21) and non-completers

(n = 348) showed that non-completers reported significantly higher

mental health distress, with most completers being female. Both

groups initially formed a strong working alliance with the bot,

but non-completers did not maintain engagement. Similar

patterns were found when comparing individuals who completed

t2 (n = 53) to non-completers (n = 316). A detailed overview of

the dropout analysis is provided in Supplementary Material.

3.4 Previous experience and attitudes
toward psychological online interventions

Of the 527 participants, only 8 (1.52%) had used other digital

mental health tools, and 7 (1.33%) had previously interacted with

Clare®. Positive attitudes toward online interventions were generally

more prevalent than negative ones, except for crises, where 64.33%

(n = 339) favored traditional psychotherapy (Figure 2).

3.5 Motives and expectations of AI therapy

The primary motives were avoiding embarrassment when

discussing problems with humans (35.7%, n = 188) and receiving

advice regardless of appearance (35.29%, n = 186). Lesser motives

included reduced commuting (20.5%, n = 108) and anonymity

(19.6%, n = 102) (Figure 3). The main expectations were

emotional support (35.5%, n = 187) and expressing feelings

(32.5%, n = 171). Fewer participants expected referrals to local

contacts (14.3%, n = 75) or information on AI self-help (14%,

n = 74) (Figure 4).

After 3–5 days (t1b), users reported their working alliance with

Clare® (WAI-SR; M = 3.76; SD = 0.72; see Table 5). All the subscales

of the working alliance—total, goal, task, and bonding—showed

positive and significant correlations with loneliness (Table 6). Male

participants (n = 168) reported higher mean scores (M = 3.88) than

female participants (n = 176, M = 3.65) for overall working alliance.

The difference between the groups was small to moderate

[t (348) =−3.17, p = 0.002, d =−0.34], as was the difference in the

goal [t (348) =−2.40, p = .017, d =−0.26], task [t (348) =−4.09,

p < 0.001, d =−0.44], and bonding subscales [t (342) =−2.14,

p = 0.033, d =−0.23].

FIGURE 2

Attitudes toward Psychological Online Interventions Questionnaire (APOI; yes-votes in order of decreasing agreement; t1; n= 527). Items are

abbreviated for illustrative reasons. Abbreviations are defined in Supplementary Table A.1. Answers are on a dichotomous scale (yes/no). The

selection of multiple motives was possible. Green indicates positive and orange negative attitudes toward psychological online interventions. POI,

psychological online interventions; TP, traditional psychotherapy.
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FIGURE 3

Motives for seeking AI advice (yes-votes in order of decreasing agreement; t1; n= 527). Items are abbreviated for illustrative reasons. Abbreviations are

defined in Supplementary Table B.1. Answers are on a dichotomous scale (yes/no). The selection of multiple motives was possible.

FIGURE 4

Expectations of AI advice (yes-votes in order of decreasing agreement; t1; n= 527). Items are abbreviated for illustrative reasons. Abbreviations are

defined in Supplementary Table B.1. Answers are on a dichotomous scale (yes/no). The selection of multiple motives was possible.
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Furthermore, the total working alliance scores (WAI-SR)

showed statistically significant low positive correlations with

psychosocial stress (PHQ-D; r = .337, p < .001), anxiety and

depression (PHQ-4; r = .368, p < .001), and social anxiety (Mini-

SPIN; r = .336, p < .001). A negligible, but still significant, positive

correlation was also observed with life satisfaction (SWLS;

r = .097, p = .041). Correlation strengths are interpreted according

to the classification in a previous study (42).

4 Discussion

The presented study explored the characteristics of individuals

interested in conversational AI for self-help, and their

psychological wellbeing, motives, and expectations of AI therapy,

and the attitudes toward online therapy in general among users

of a conversational AI for mental health support (Clare®), and

their working alliance and bonding with Clare®.

4.1 Demographic profile of users of CAI

4.1.1 Age and gender

In this study, 53% of participants identified as female, closely

aligning with findings by Darcy et al. (17) with 57.5% female

participation of self-referred users of the CBT-based

conversational agent Woebot® within an age range of 18–78

years. Studies on AI interventions with self-referred samples are

scarce, often focusing on college or clinical populations. For

example, Fitzpatrick et al. (16) reported an average age of 22.2

years (67% female) among college students, while another study

(43) reported a mean age of 22.9 years (70% female) in a clinical

sample using the AI Tess®. This reflects broader trends where

women are more likely to seek mental health services. Unlike

previous CAI studies that focused on young female adults

(12, 16, 44), our sample shows a balanced gender distribution

and spans a broad age range. This may suggest that chatbots

such as Clare® may effectively address mental health issues

across genders, potentially reducing stigma and enhancing

participation. While both men and women are attracted to AI

for self-help, gender-specific approaches could further improve

the effectiveness of digital mental health interventions.

Additionally, our findings challenge the notion that AI is

primarily a solution for Generation Z (45), indicating that AI

tools can enhance mental health support for many generations.

4.1.2 Psychological wellbeing of users of Clare®

at baseline

The sample exhibited high anxiety and depression levels,

comparable to rates in the general populations of the UK, Germany,

and the US (46–48). Despite this, no acute crises were detected

during onboarding. Moderate psychosocial stress was reported by

half of the participants, and severe stress by 32%. Loneliness was

significant, affecting 86% of the participants, raising public health

concerns (49, 50). Loneliness is recognized as detrimental to health,

and while CAIs, including chatbots, have the potential for social

support, their impact on loneliness remains under-researched (9),

but could be a central therapeutic target of CAIs.

4.1.3 Drop-out and engagement patterns
This study found that individuals with higher levels of distress

were less likely to stay engaged with the AI-based support, aligning

with the bot’s intended scope for moderate distress. While initial

working alliances were strong, sustained engagement proved

challenging, suggesting the importance of maintaining this

connection for continued participation.

Differences in engagement patterns suggest that sustained

contact plays a critical role in participant retention. While the

mid-treatment sample showed a sharp drop in call frequency and

duration after week 1, the post-treatment sample maintained

more consistent engagement across all 8 weeks. These findings

highlight the importance of early and ongoing interaction in

supporting adherence and reducing dropout.

4.1.4 Attitudes toward digital mental health

support
We observed high acceptance of psychological online therapy,

with 71% finding it effective, useful, and helpful. However, only 3%

reported using other digital mental health support. Previous

research indicates that favorable attitudes do not always lead to

high engagement (51, 52), and initial interest often fades due to

the “novelty effect” (53). To be considered effective, interventions

should aim for positive long-term effects (54). User engagement

with Clare® may be partly influenced by a novelty effect. While

we examined whether the working alliance was sustained over

time, we did not directly assess this effect.

Future studies should aim to distinguish novelty-driven from

sustained engagement, for example, by comparing early and later

outcomes, including a familiar control group, or using a mixed

methods approach to gain a deeper behavioral understanding—

separating novelty-period responses from sustained motivation or

engagement (53).

TABLE 6 Association between loneliness at baseline and bonding
experience after 3–5 days of using Clare

®

.

Subscale of working alliance inventory-
short revised subscale correlated with
UCLA loneliness scale

r p

Total 0.25 <.001

Goal 0.21 <.001

Task 0.25 <.001

Bonding 0.21 <.001

N = 348; t1b sample assessed 3–5 days after using Clare
®

.

TABLE 5 Bonding experience after 3–5 days of using Clare
®

.

Working alliance inventory-
short revised – subscale

Mean (SD) Range

Total score 3.76 (0.72)a* 1–5

Goal subscale 3.73 (0.83)a 1–5

Task subscale 3.74 (0.78)a 1–5

Bonding subscale 3.82 (0.77)a 1–5

N = 348; t1b sample assessed 3–5 days after using Clare
®.

aPer the method of Jasper et al. (41), bond scores of ≥3.45 were considered high.
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Furthermore, positive attitudes are linked to better

implementation and efficacy (55, 56). Therefore, managing

expectations, ensuring transparency, and educating users on CAI’s

limitations and possibilities are vital for sustaining its positive

impact. These measures may prevent negative experiences and

attitudes that may undermine the positive effects of such

interventions. Interestingly, 69% of participants had no

confidentiality concerns with online therapy, and 64% found online

platforms more secure than traditional methods. While previous

guidelines emphasize confidentiality in e-therapy (57), this was less

of a concern for Clare® users. Additionally, 62% found it easier to

disclose feelings online and were more likely to discuss online

therapy with friends than traditional therapy. AI-driven self-help

tools may offer a valuable alternative for individuals who find

conventional counseling or mHealth interventions inaccessible.

Approximately 40% of the participants worried that online

interventions may worsen their loneliness, a concern relevant as

many users were already experiencing significant loneliness. This

concern reflects broader debates on AI and social isolation; while

some see human-AI interactions as a remedy, others warn of

increased societal withdrawal (58). Critics suggest that although

CAI may temporarily ease isolation, over-reliance could deepen

loneliness and alienate individuals from human contact (59), raising

concerns about “AI delusion,” and the need for safe AI responses

(26). Additionally, 33% questioned the professionalism of digital

mental health tools and 64% preferred traditional therapy over

online options in crisis, highlighting the need for further research

and careful management of expectations of CAI for mental health.

4.2 Motives and expectations of AI self-help

The primary motivations for seeking AI-based mental health

support included avoiding face-to-face contact, managing

nervousness and embarrassment, and maintaining control.

Participants expected that AI would offer emotional support,

facilitate self-expression, aid in self-assessment, and improve

relationships. Other benefits included increased confidence and

knowledge of local support options.

First encounters with therapists can trigger insecurities and

feelings of shame (60), a universal emotion linked to perceived

inadequacy (61). Shame has been a barrier in therapeutic

contexts, particularly for trauma-related cases (62) or male

patients (63). Research indicates that AI chatbots can reduce

feelings of shame, nervousness, and distress, promoting the

realization that seeking help is not shameful (64). Moreover, a

recent study showed that there is no difference in self-reported

intimacy of self-disclosure between human and chatbot

conditions. While chatbots were associated with less fear of

judgment, humans were perceived as more trustworthy (65).

This may imply that conversational AI systems should prioritize

emotionally safe, non-judgmental environments to facilitate self-

disclosure and reduce help-seeking barriers. Despite comparable

levels of disclosure to chatbots and humans, lower trust in

chatbots underscores the need for transparent design, consistent

behavior, and empathetic responses. Incorporating human-in-the-

loop mechanisms and human-centered design approaches for bots

(23, 66) can enhance oversight and trust. As the exact purpose of

bots and the nature of the relationship a user has with them are

not always obvious and understood (13), user education and

digital literacy are essential for managing expectations and

supporting informed use. CAIs may serve as effective adjuncts to

traditional care, particularly in early engagement.

Contrary to earlier findings, anonymity and personalized

information were less crucial for Clare® users. While anonymity

often enhances self-disclosure in digital settings (67), recent

studies suggest that perceived emotionality in chatbots can

reduce self-disclosure (68). This highlights the potential benefits

of AI’s limited emotional engagement and artificiality.

4.3 Working alliance with Clare®

Our preliminary findings suggest that users develop a strong

bond with Clare® within 3–5 days, indicating an initial positive

working alliance. This effect appears particularly pronounced in

individuals with high loneliness scores. Moreover, we found that

a stronger working alliance was moderately associated with a

higher symptom burden. Given the well-documented link

between the therapeutic alliance and positive psychotherapy

outcomes (69), further research is needed to examine the stability

and clinical relevance of this bond over time. This level of

bonding is consistent with other conversational agents such as

Wysa® and Woebot® (17, 70). Beatty et al. (70) reported a mean

WAI-SR score of 3.64 (SD 0.81) among users (n = 1,205), and

Darcy et al. (17) observed similar scores among Woebot® users

(n = 36,070), with a mean bond subscale score of 3.8 (SD 1.0),

where bond scores of ≥3.45 are considered high (41). These

working alliance scores are comparable to in-person outpatient

psychotherapy (71) and group CBT (41).

Notably, our study found higher bonding scores among male

participants (M = 3.9) compared to women (M = 3.7), contrasting

with Darcy et al. (17), where higher scores were reported among

women. The finding of higher bonding scores among male

participants may reflect that men often report greater difficulty

talking to mental health professionals, such as psychologists (72).

Men may feel more comfortable engaging with AI-driven therapy.

Shame linked to a psychotherapeutic dialogue (73) and less fear of

perceived judgement in AI interactions (65) may reduce barriers to

emotional expression, fostering stronger bonds. Tailoring AI

interventions to address gender-specific needs could improve

engagement and accessibility, especially for men. Higher loneliness

in users correlated with stronger bonding with Clare®, linking AI

bonding to clinical variables. This highlights AI’s potential to meet

emotional needs and emphasizes the importance of considering

dependency and unhealthy attachments in users with mental

health issues (74).

The early formation of a bond with the AI agent appears

promising, but raises important questions about its long-term

stability. Notably, early therapeutic alliance ratings have shown

limited predictive value, highlighting the need to conceptualize the

alliance as a dynamic process that unfolds over the course of
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treatment. In internet-based cognitive behavioral therapy (ICBT) for

depression and anxiety, evidence on the relationship between the

alliance and clinical outcomes remains mixed; while some studies

report no significant association (75, 76), others found correlations

at various stages, including early (77) and mid-treatment (78, 79).

These inconsistencies suggest that the function and formation of

the therapeutic alliance may differ in digital compared to face-to-

face settings. Future research should investigate whether the alliance

formed with digital agents is sustained over time and whether it

contributes meaningfully to clinical improvement.

In this study, the WAI-SR was adapted by replacing “therapist”

with the AI agent “Clare®,” allowing for the assessment of alliance-

like perceptions in a digital context. However, this raises concerns

about the construct validity of relational constructs, such as “bond,”

when interacting with non-human agents. While alliance scores may

reflect perceptions of responsiveness or trustworthiness, their

comparability to traditional human-delivered therapy is limited.

Future research should explore the validity of these constructs in

digital interactions.

4.4 General implications of our results
for CAI

While Clare® offers promising potential in mental health

applications, it is essential to acknowledge the ongoing ethical and

safety concerns surrounding AI in therapeutic contexts. Issues such

as patient autonomy, over-reliance, and trust remain significant

challenges (13, 24, 80). The use of proactive conversational agents

capable of topic shifting and generating novel treatment plans (19)

presents additional complexities, including ensuring conversational

safety, preventing inappropriate responses, and maintaining

alignment with therapeutic objectives. Clare® was developed

through interdisciplinary collaboration involving data engineers,

developers, researchers, psychologists, and conversation designers to

address these concerns and key ethical principles (see Section 2.1.2).

The use of AI in caregiving, especially in clinical and

therapeutic settings, raises critical ethical and safety concerns

about the effectiveness of psychological support and human-AI

relationships. These concerns are particularly pronounced for

vulnerable groups, such as low-income or minority populations,

where emotional dependency on AI could pose substantial risks

(81, 82). This highlights the need for stringent ethical standards

(14, 83, 84). CAIs, especially those based on LLMs, face

significant safety and ethical challenges, including preserving

patient autonomy, reducing manipulation risks, and ensuring

proper user-technology relationships and privacy (13, 24).

Users’ expectations of AI mental health support are not fully

understood, raising concerns about AI capabilities and the

potential for misunderstanding or deception. Ensuring safety,

reliability, risk management, and expectation clarity is crucial

(14). Proactive CAI systems may be seen as intrusive, affecting

user comfort (66). Ethical issues, such as biased training data

(85) and harmful advice (86), can harm user outcomes and

erode public trust (23). Clear guidelines and risk assessments are

needed to address these concerns and ensure responsible AI use,

as demonstrated by models such as Clare®, which incorporates

safety measures and human support connections.

4.5 Limitations and future studies

While this baseline data provides valuable insights, several

limitations should be considered: the sample was predominantly

from Western countries (the UK, Germany, and the US), which

limits the generalizability of the findings to other cultural contexts.

Attitudes toward mental health, trust in digital technologies, and

communication norms vary across cultures (87), influencing user

engagement and perceptions of CAI. Misunderstandings about a

chatbot’s purpose or differing care expectations can also affect

engagement and perceived usefulness (13). Socio-cultural and

political contexts further shape expectations and concerns about

AI. Embedding cultural values is therefore essential (88). Future

research should aim to recruit more diverse samples by partnering

with international research institutions, translating interventions

into multiple languages, and adapting content to be culturally

sensitive. These steps help ensure CAIs are effective and acceptable

across a wide range of cultural contexts.

The recruitment method may have led to an inherent bias,

particularly in terms of digital access, language proficiency, and

platform-specific reach. Social media platforms differ in user

demographics and usage patterns; to mitigate this bias and foster

sample diversity, we deliberately employed a range of platforms

to engage participants from varied age groups, gender identities,

and educational backgrounds.

Given that only 1.52% of participants had used other digital

mental health tools, and only 1.33% had interacted with Clare®

previously, the novelty of the platform may have influenced initial

perceptions and alliance ratings. Users unfamiliar with such tools

may have rated their alliance more positively due to a lack of

comparison with other platforms. Future studies should examine

how prior experience with digital mental health tools may shape

user expectations and alliance development, the sustainability of

the working alliance over time, and whether familiarity leads to

different patterns of engagement and alliance formation.

Adapting the WAI-SR for AI interactions may affect the

interpretability and construct validity of the alliance subscales,

particularly the bond dimension. The results should, therefore, be

interpreted with caution, and future work should explore whether

new alliance measures tailored to digital agents are warranted.

This baseline paper relies on self-reported data, which can be

subject to biases such as social desirability and recall bias.

Furthermore, self-reported data is limited, as we did not ask for a

diagnosis or prior or current treatment. Another limitation of this

study is the use of surveys administered every 4 weeks instead of

Ecological Momentary Assessment (EMA), which could better

minimize recall bias, enhance ecological validity, and capture real-

time behaviors in natural environments in future research (89, 90).

Moreover, questions remain about the sustainability of the

therapeutic alliance of the CAI with its users over time, which

needs further investigation. Given the exploratory nature of this

study, participant attrition was expected. Future research should
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investigate factors contributing to attrition, including demographic

and psychological variables, and explore strategies to improve

engagement, especially for those with higher distress. A limitation

of the study is that expectations towards Clare® were only assessed

at the beginning of participation (t1). Therefore, it is not possible

to determine whether expectations changed over time or if they

were influenced by the actual usage experience. While a

comparison of expectations between the completers and dropouts

could be made, it remains unclear to what extent these

expectations influenced actual usage behavior or dropout.

The scope of this baseline paper is limited to reporting baseline

data and initial working alliance, assessed 3–5 days after

onboarding, a timeframe consistent with prior studies (16, 70,

79). Interaction data (e.g., call duration and frequency per week)

is also included. Follow-up measurements will be presented in a

subsequent publication. This will include the mobile Agnew

Relationship Measure (mARM), a measure of the therapeutic

relationship, which was administered only after the participants

had interacted with Clare® (at weeks 4 and 8, i.e., t2 and t3).

The mARM assesses experiences with digital mental health

interventions. Based on a review of existing research, no studies

were found that employed this measure after a short period of

interaction. While both the mARM and WAI-SR assess the

therapeutic alliance, the WAI-SR has been used in digital mental

health studies following brief interactions (3–5 days), supporting

its cross-sectional applicability. Given the novelty of this field, a

review of the item content led to the conclusion that the mARM

requires more prolonged interaction to yield valid measurements

and is most meaningful after at least 4 weeks of use, which is a

key methodological consideration for future research.

A future paper will explore the users’ interaction data alongside

changes in psychological distress and therapeutic alliance over 4-

and 8-week periods. Given the small sample size, analyses will be

primarily descriptive, supplemented by t-tests to explore potential

group differences. Variables of interest will include alliance scores

and changes in psychological distress. In addition, subgroup

analyses will examine usage frequency and its association with

these outcomes, offering preliminary insights into potential

patterns of engagement and effect.

5 Conclusions

Users with mental health challenges are attracted to and bond with

CAI for self-help, seeking emotional support without concerns about

shame or physical appearance. Future research should examine

change mechanisms, such as the working alliance, and their impact

on the overall wellbeing of users. Addressing ethical considerations,

relationship dynamics, and risk management is crucial for effective

CAIs. Understanding user expectations and user behavior of CAI will

enhance education on AI capabilities and limitations.
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