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The generation of synthetic tabular data has emerged as a key privacy-
enhancing technology to address challenges in data sharing, particularly in
healthcare, where sensitive attributes can compromise patient privacy. Despite
significant progress, balancing fidelity, utility, and privacy in complex medical
datasets remains a substantial challenge. This paper introduces a
comprehensive and holistic evaluation framework for synthetic tabular data,
consolidating metrics and privacy risk measures across three key categories
(fidelity, utility and privacy) and incorporating a fidelity-utility tradeoff metric.
The framework was applied to three open-source medical datasets to evaluate
synthetic tabular data generated by five generative models, both with and
without differential privacy. Results showed that simpler models generally
achieved better fidelity and utility, while more complex models provided lower
privacy risks. The addition of differential privacy enhanced privacy preservation
but often reduced fidelity and utility, highlighting the complexity of balancing
fidelity, utility and privacy in synthetic data generation for medical datasets.
Despite its contributions, this study acknowledges limitations, such as the lack
of evaluation metrics neither privacy risk measures for required model training
time and resource usage, reliance on default model parameters, and the
assessment of models that incorporates differential privacy with only a single
privacy budget. Future work should explore parameter optimization, alternative
privacy mechanisms, broader applications of the framework to diverse datasets
and domains, and collaborations with clinicians for clinical utility evaluation.
This study provides a foundation for improving synthetic tabular data
evaluation and advancing privacy-preserving data sharing in healthcare.
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1 Introduction

Recent advancements in digital health have enabled the design

and development of sophisticated data analysis technologies that

enhance diagnostics, personalised treatment plans, and predictive

healthcare solutions among other applications (1). However, fully

leveraging these advances requires access to large amounts of

data to ensure the reliability of data analysis paradigms and

foster a data-driven approach to healthcare (2). Much of the data

collected for these purposes contains sensitive information that

may identify individuals or reveal personal details about them,

raising significant privacy concerns. As a result, strict regulations

and ethical standards, such as the General Data Protection

Regulation (GDPR) (3) or Health Insurance Portability and

Accountability (HIPAA) (4), often restrict or delay the external

sharing of this data.

Synthetic tabular data generation (STDG) through generative

models has emerged as a key privacy-enhancing technology

(PET) in digital health (5) to address these challenges. This

technology uses generative models to create realistic, non-

identifiable data that preserves the essential statistical properties

and relationship of the real data while mitigating privacy risks.

This enables researchers to share data securely, fostering

innovation in applications such as decision support systems,

disease prediction, and other healthcare solutions (6, 7).

Despite the promises of STDG, its application in the health

domain presents several challenges. Medical datasets are complex

and have diverse attributes that need to be accurately modelled

to maintain data fidelity (how closely the synthetic data

resembles the original), utility (its usability for analytical tasks)

and privacy (protection against sensitive information leaks).

Balancing these three dimensions is crucial when generating

synthetic tabular data that can be a proxy for real tabular data,

especially when sharing it with external researchers and entities,

which poses a gap on synthetic tabular data evaluation

benchmarks and frameworks (8).

Several attempts have been made to propose evaluation

frameworks covering different categories. Specifically, Hittmeir

et al. (9), Rankin et al. (10), Dankar et al. (11) and El Emam

et al. (12), have primarily focused on evaluating the utility of

synthetic data. On the other hand, works by Hernandez et al.

(13), Lautrup et al. (14), Livieris et al. (15), Höllig et al. (16),

Cheng-Hsin et al. (17) and Vibeke et al. (18) also considered

privacy and fidelity, providing usage examples to benchmark

STDG models. Beyond these proposals, other evaluation

categories have also been explored in the literature. For example,

Vibeke et al. (18) included fairness, fingerprint and

computational complexity, while Stenger et al. (19) proposed an

evaluation taxonomy including diversity and generalisation.

However, these categories are more related to the evaluation of

the generative models themselves rather than the generated

synthetic data.

While different synthetic data evaluation frameworks exist, all

the listed studies lack a clear consensus on which metrics and

privacy risk measures should be used in each evaluation category

and acceptable ranges for them, making it difficult to standardise
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synthetic data evaluation. Furthermore, a recent scoping

review by Kaabachi et al. (20) highlights the extensive and

varied research on synthetic data evaluation in the health

domain, with no clear agreement on the most suitable metrics

and methods for different use cases. To this end, Stenger et al.

(19) proposed a standardised synthetic data evaluation

framework with a broad taxonomy of quality categories

(authenticity, generalization, interpretability, etc.) that defines

a common language and evaluation criteria but focused

specifically on synthetic time series data. Although it is

conceptually aligned with the goal of this paper, their

proposed categories are closely tied to the temporal structure

of time series and are not directly applicable to tabular data.

Despite these efforts, gaps remain in providing a

comprehensive and adaptable framework capable of assessing

and comparing the performance of different STDG models in

a standardised manner while ensuring fidelity, utility,

and privacy.

In this context, we propose a robust and flexible evaluation

framework that rigorously assesses and compares synthetic

tabular data generated by various STDG models. Building

upon previous work by Hernandez et al. (13), our framework

consolidates a minimal yet robust set of metrics and privacy

risk measures carefully chosen to capture all critical features of

the generated synthetic tabular data while avoiding

redundancy across the three key evaluation dimensions

(fidelity, utility, and privacy). Additionally, the metric

introduced by Galloni et al. (21) to quantify the tradeoff

between fidelity and utility under different privacy constraints

is integrated into our framework to enable a holistic

evaluation of the synthetic tabular data.

To demonstrate the effectiveness of our evaluation framework,

we apply it to three open-source medical datasets, comparing

synthetic data generated by different STDG models, both with

and without differential privacy (DP). The results of this

validation allow us to assess whether incorporating DP to STDG

models impact significantly the fidelity, utility and privacy of the

generated synthetic tabular data, and to determine the most

suitable STDG model for different use cases (i.e., data

augmentation or privacy preservation). By providing a detailed

evaluation framework, this paper aims to help researchers,

healthcare organisations, and policymakers make informed

decisions about using synthetic data for data-driven healthcare

solutions while ensuring privacy protection and maintaining the

utility of the data.
2 Materials and methods

2.1 Synthetic tabular data evaluation
framework

This subsection provides a detailed overview of the metrics

and privacy risk measures included in the proposed synthetic

tabular data evaluation framework for each evaluation category

(fidelity, utility, privacy and tradeoff between fidelity and
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TABLE 1 Summary of the synthetic tabular data evaluation metrics and privacy risk measures included in the framework.

Category Metric or measure Description Range Best
Fidelity Hellinger distance Distance metric that quantifies the similarity between distributions of real and synthetic attributes. [0,1] � 0

Pairwise correlation
difference (PCD)

Mean difference between real and synthetic data pairwise correlations. [0,1] � 0

R2 of DD-plot Real data depth adjustment to the depth of the synthetic data. [0,1] � 1

AUC-ROC Ability of a classifier to distinguish between real and synthetic samples. [0,1] � 0:5

Utility Classification metrics
differences

Absolute difference in classification metrics (accuracy, precision, recall, f1-score) between predictive
models trained on real data and on synthetic data apart for categorical attributes.

[0,1] � 0

Regression metrics
differences

Absolute difference in regression metrics (mae, mse, rmse and r2) between predictive models trained on
real data and on synthetic data apart for numerical attributes.

[0,1] � 0

Privacy risk
measures

Univariable singlingout Success rate in finding out that a record with a specific attribute exists in the real data. [0,1] � 0

Multivariable singlingout Success rate in finding out that a record with a specific set of attributes exists in the real data. [0,1] � 0

Linkability Success rate in linking an existing record in the real and synthetic data corresponding to the same
record.

[0,1] � 0

Membership inference Success rate in linking an existing record in the real data to a set of records in the synthetic data. [0,1] � 0

Attribute inference Success rate in linking a set of attributes of the synthetic data that correspond to the same set of
attributes of the real data.

[0,1] � 0

Tradeoff Ge Tradeoff between fidelity and utility of synthetic data. [0,1] � 0
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utility) that are summarised in Table 1. These evaluation

categories were selected because they are widely accepted in

the literature as core dimensions for evaluating synthetic

tabular data, focusing on how well the synthetic data

resembles the real data (fidelity), how useful it is for

downstream applications (utility), and how effectively it

protects sensitive information (privacy) (6). While other

categories such as efficiency, generalization, or interpretability

have been analysed in the literature, they are more related to

the evaluation of the STDG themselves rather than the

generated synthetic tabular data.

2.1.1 Fidelity
Metrics within the fidelity category assess the ability of synthetic

tabular data to accurately represent real tabular data in terms of

distributions, correlations, adjustments, and distinguishability.

2.1.1.1 Hellinger distance
The Hellinger distance quantifies the similarity between two

probability distributions, serving as a bounded metric in the

space of probability distributions over a given probability

space. This distance metric was chosen mainly for its

robustness across both numerical and categorical attributes, its

bounded nature (0 to 1), and its focus on probability

distributions. Unlike other distance metrics, such as

Wasserstein or Kullback-Leibler, the Hellinger distance offers

a normalized and interpretable measure of marginal

distributions and is less sensitive to outliers or extreme values.

This makes this distance metric particularly suitable and

robust for comparing real and synthetic data univariate

distributions in mixed-type tabular data.

For two probability distributions (P and Q), the Hellinger

distance is directly related to the Euclidean norm of the

difference between the square root vectors, as shown in Equation

1. Here, P represents the attribute of the real tabular data, and Q

represents the attribute of the synthetic tabular data. This

distance metric is computed for each attribute between real and
Frontiers in Digital Health 03
synthetic tabular data to assess the similarity in

probability distributions.

HðP; QÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk
i¼1

ffiffiffiffiffi
pi

p � ffiffiffiffi
qi

p� �2
vuut (1)

If the distance is 0 (the minimum possible value), the two

probability distributions (real and synthetic) are identical. If the

distance is 1 (the maximum possible value), the distributions of

the real and synthetic attributes are as opposite as possible.

Therefore, the lower and closer to 0 the Hellinger distance, the

more similar the distributions of the real and synthetic attributes.

To summarize the results for each variable in a dataset, the

average of all the Hellinger distances across all attributes

is calculated.
2.1.1.2 Pairwise correlation difference
The Pairwise Correlation Difference (PCD) is a well-established

and widely used metric to quantify the difference between the

pairwise correlations in real and synthetic tabular data. It

captures how well the synthetic data preserves the correlations

among variables in the real data in a simple and interpretable

way, which makes it a standard choice for synthetic data

fidelity evaluation.

This measure is computed by extracting the upper triangular

part (excluding the diagonal) of the correlation matrix from real

and synthetic data, resulting in a vector of n unique correlation

values, where n is the number of unique variable pairs. Being

CorrðXrealÞi the correlation between the i-th variable pair in real

data and CorrðXsynthÞi the correlation between the i-th variable

pair in synthetic data, the PCD is computed as shown in

Equation 2, where the absolute differences between all pairwise

correlations are averaged. A low value (close to 0) indicates that

the correlations in the synthetic data do not differ much from

those in the real data. In contrast, a higher value (close to 1)
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1576290
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Hernandez et al. 10.3389/fdgth.2025.1576290
implies that the correlations in the synthetic tabular data are

strongly different from the correlations in the real data. To assess

whether there is a statistical difference between these correlation

differences, this metric is complemented by a Student’s t-test

with a significance level of 5% to determine if the differences in

correlations are statistically significant.

PCDðXreal; XsynthÞ ¼
1
n

Xn
i¼1

CorrðXrealÞi � CorrðXsynthÞi
���

��� (2)

For the calculation of the correlation matrices for both the real and

synthetic datasets, we propose using the correlation constant fk

introduced by Baak et al. (22). This constant works consistently

across categorical and numerical variables, captures non-linear

relationships between variables, and defaults to the pearson

correlation coefficient in the case of bivariate normal input

distributions. Therefore, this correlation constant allows

computing the correlation matrix of variables with mixed types

of variables.

2.1.1.3 Coefficient of determination of the Depth vs.
Depth plot
The Depth vs. Depth Plot (DD-Plot) is a non-parametric method

introduced by Regina et al. in 1999 (23) to plot the depth values

of combined samples under two corresponding distributions.

This method was selected because, unlike marginal distribution

measures, it evaluates the multivariate distributional similarity

between real and synthetic data, providing a more holistic view

of the data structure, making it a robust tool for comparing

high-dimensional tabular datasets.

Following the approach followed by Restrepo et al. (24), the

plot aims to compare the depth of measurements obtained from

synthetic tabular data with those from real tabular data,

representing the real data depths on the X-axis and the synthetic

data depths on the Y-axis. If both distributions are identical, the

plot should show a set of points aligned along the line y ¼ x.

Points located close to this line suggest a high agreement

between the synthetic and real tabular data, while deviations

from this line indicate discrepancies.

The coefficient of determination (R2) is proposed to provide an

analytical value to this plot. This metric indicates the proportion of

variance in the dependent variable (synthetic depths) that can be

predicted from the independent variable (real depths). It

quantifies the degree of agreement between the real and synthetic

dimensions, with 1 pointing that the synthetic samples come

from the same multivariate distribution as the real samples, and

0 representing a lack of linear relationship between multivariate

distributions of synthetic and real samples. This combination of

visual analysis with an associated analyticial value enhances the

interpretability of multivariate fidelity in synthetic data.

2.1.1.4 Area under the receiving operating characteristic
curve
The Area Under the Receiver Operating Characteristic Curve

(AUC-ROC) measures the ability of a binary classifier to

distinguish between different classes across various threshold
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settings, making it commonly used to evaluate how

distinguishable synthetic samples are from real ones. A value

around 0.5 indicates that the classifier performs no better than

random guessing, suggesting high similarity between real and

synthetic samples. On the other hand, a value significantly higher

than 0.5, with a possible maximum of 1, implies that the

classifier is effective in distinguishing between real and synthetic

samples pointing to lower fidelity. Although, the AUC-ROC has

limitations in certain settings, it is a robust and widely accepted

metric to effectively capture the distinguishability between real

and synthetic samples.

To compute the AUC-ROC and analyze the distinguishability

of synthetic samples from real samples, real and synthetic

samples are combined into a single dataset, and a Random

Forest classifier is trained with a maximum depth of 3 decision

trees, 1,000 estimators, and the out-of-bag (OOB) score function

enabled with AUC-ROC. This classifier was selected due to its

robustness, its ability to handle mixed-type tabular data, and its

minimal reliance on hyperparameter tuning. The AUC-ROC

value is then obtained by averaging the OOB scores across all

trees, which offers an internal cross-validation mechanism by

computing scores on test samples that were not used in training

the corresponding decision trees. This method allows for a

controlled and reproducible comparison of real and synthetic

data without requiring a separate validation set.

2.1.2 Utility
To evaluate the utility of synthetic tabular data, its performance

in real-world data analysis tasks was assessed by comparing the

results to those obtained using real tabular data, following the

widely used methodology suggested by Hernandez et al. (13) and

Rankin et al. (10). The goal is to determine whether synthetic

tabular data can effectively replace real data for training machine

learning models. Specifically, we aim to verify if models trained

with synthetic data produce results comparable to those trained

with real data when validated on the same real test samples.

The utility evaluation follows two standard training-testing

scenarios with several machine learning models: (1) training on

real tabular data, tested on a real test sample (TRTR), and (2)

training on synthetic tabular data, tested on the same real test

sample (TSTR). The performance of TRTR models serves as the

baseline, and the mean absolute difference between TRTR and

TSTR models is calculated. A smaller difference (closer to 0)

indicates better utility of the synthetic tabular data. In contrast to

previous works, which often assess utility based on a single

(typically categorical) target variable, we train predictive models

for all variables in each dataset This provides a more robust and

comprehensive view of the utility of synthetic data across

diverse tasks.

For this analysis, classification models are applied for

categorical attributes, and regression models are used for

numerical attributes. To ensure broad applicability, five widely

adopted ML models were considered: Random Forest, K-Nearest

Neighbors, Decision Trees, Support Vector Machines, and

Multilayer Perceptron. Performance differences of these models

are evaluated using standard metrics: accuracy, precision, recall,
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and F1-score for classification tasks, and MAE, MSE, RMSE, and

R2 for regression tasks. To summarise the results, we compute

the mean difference between TSTR and TRTR models for each

metric, along with the associated p-value obtained through a t-

test comparing the means of the two samples. If the p-value

exceeds the significance level of 0.05, we conclude that there is

no statistically significant difference between the TRTR and

TSTR models concluding that the synthetic data provides similar

utility to the real data.
2.1.3 Fidelity-utility tradeoff
The G metric proposed by Galloni et al. (21) is added to the

framework to provide a single, interpretable value that captures

the ability of synthetic data to preserve utility while maintaining

fidelity to the real data. This is particularly useful when

comparing different generative models or parameter

configurations, as it condenses two critical aspects of synthetic

tabular data (fidelity and utility) into a single score. The metric

assesses the balance between fidelity and utility in synthetic

tabular datasets under different privacy constraints. It evaluates

synthetic tabular data in two key dimensions; statistical fidelity

and data utility. This value combines these two aspects,

weighting equally the PCD and the TSTR-TRTR metrics

differences for different machine learning tasks to provide a

comprehensive evaluation. A lower G value (closer to 0) indicates

a better balance between preserving utility and maintaining

fidelity, while higher values suggest a weaker tradeoff. This

metric is especially relevant when evaluating the impact of DP,

as it allows to analyze how applying DP to the STDG model

with different noise addition (e) settings can affect this tradeoff,

creating the Ge metric.
2.1.4 Privacy risk measures
Privacy risk measures estimate the performance of an external

agent attempting to extract sensitive information from a real

dataset if they gain access to the synthetic dataset. These privacy

simulations measure the effectiveness of the synthetic tabular

data in preserving data privacy.

The selection of privacy risk measures follows the framework

proposed by Giomi et al. (25), which identifies singling out,

linakbility and inference risks as key indicators of factual

anonymization according to data protection regulations. These

privacy risk measures are therefore widely accepted as

meaningful for evaluating the privacy of synthetic data.

Additionally, the membership inference risk was included, which

is one of the most commonly used privacy attack, according to

the synthetic data review developed by Osorio-Marulanda et al.

(5). This attack complements the others by addressing the

specific risk of attribute disclosure. For the proposed evaluation

framework, the success probability of an adversary executing the

following privacy attacks was simulated and quantified:

• Singling out: This attack occurs when a unique data record can

be identified based on a distinct combination of attributes

within the real tabular data. The attack is performed for each

attribute individually (univariate singling out) and in
Frontiers in Digital Health 05
conjunction with all attributes (multivariable singling out).

The objective of these attacks is to identify a specific record

based on its attribute combination, even when other records

in the real dataset have similar attributes.

• Linkability: This attack arises when attributes from two or more

records, either within the same dataset or across different

datasets, can be linked to the same individual or group. The

attack is deemed successful if the known attributes and a

synthetic dataset allow linking information back to the real

dataset, revealing the identity or sensitive details of a

individual or a group of individuals in the real dataset.

• Membership inference: This attack involves associating a record

from the real dataset with a set of records in the synthetic

dataset. It identifies the closest synthetic record to a given real

record and calculates the distance between them. The attack

succeeds if the distance falls below a specific threshold,

enabling the adversary to infer whether a particular record is

present in the original dataset.

• Attribute inference: This attack assumes that the adversary has

access to a subset of attributes for a synthetic sample. The

attacker infers unknown attribute values from the closest

synthetic record, comparing the guessed values to the actual

values. The attack is successful if the inferred values are

sufficiently accurate (for numerical or continuous attributes)

or match the correct category. This allows the attacker to

deduce sensitive attributes from synthetic records.

For each of these attacks, the success rate is computed using the

anonymeter framework created by Giomi et al. (25), except the

membership inference which was implemented following a

similar approach as the other attacks of this framework and

based on the proposal done by Hernandez et al. (13). A test

sample of real tabular data was used as the control data for all

attacks. A lower success rate (close to 0) indicates that the

synthetic data effectively preserves the privacy of the real dataset

and does not contain sensible or personal information, while a

higher success rate (close to 1) points to the synthetic data

containing sensible or personal information.
2.2 Framework application

2.2.1 Datasets
Three open-source health-related datasets were selected,

covering different pathologies, data sizes, and types, as baselines

for generating synthetic tabular data. These datasets were

subsequently used to apply and validate the proposed evaluation

framework. The datasets are described as follows:

• Acute myeloid leukemia dataset: Created by Papaemmanuil

et al. in 2016 (26), this dataset contains metadata and medical

biomarkers from 1,540 patients diagnosed with Acute Myeloid

Leukemia (AML). These patients participated in three

prospective medical trials conducted by the German-Austrian

AML Study Group (AMLSG). The dataset includes a total of

12 variables: 6 numerical and 6 categorical.
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TABLE 2 Characteristics of the selected health-related datasets.

Dataset name Num. attributes Cat. attributes Train samples Test samples
Acute myeloid leukemia dataset (26) 6 6 1,232 308

Brain stroke dataset (27) 3 8 31,169 7,793

Cardiovascular disease dataset (28) 6 7 56,000 14,000
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• Brain stroke dataset: Developed by Tianyu et al. in 2019 (27),

this dataset comprises 38,962 records, consisting of patient

metadata and risk factors for predicting the likelihood of a

brain stroke. It includes 11 attributes: 3 numerical and

8 categorical.

• Cardiovascular disease dataset: Published by Svetlana Ulianova

in 2019 (28), this dataset contains 70,000 records with

metadata and risk factors to predict the occurrence of

cardiovascular disease. The dataset includes a total of 13

attributes: 6 numerical and 7 categorical.

Each dataset was pre-processed, deleting missing values and

performing a data split into two subsets. 80% of the samples

were used for training and evaluating the STDG models, while

the remaining 20% were reserved as a test set. The test set was

used for two purposes: evaluating machine learning models

trained with synthetic tabular data and serving as a control set

for the privacy attacks simulations presented in Section 2.1.4.

Table 2 summarises the final number of samples and attributes

for each dataset after pre-processing. A more detailed description

of each dataset’s attributes and descriptive statistics of them is

provided in Tables S1–S3 of the Supplementary Material.
2.2.2 Synthetic tabular data generation models
To generate synthetic tabular data for the tabular medical

datasets presented previously in Section 2.2.1 we used diverse

state-of-the-art STDG models, including copulas, generative

adversarial networks (GAN), variational autoencoders (VAE) and

diffusion models (DM). These models were chosen to include

different typologies of generative models:

• Nonparametric copula (NPC): This STDG model, proposed by

Restrepo et al. (24) and adapted by Osorio-Marulando et al.

(29) to make it compatible with multi-type variables and DP,

generates synthetic tabular data by modelling the

dependencies between attributes through an empirical copula

and the marginal distributions of the real tabular data. It uses

random uniform data that is transformed using these

distributions to generate synthetic tabular data.

• Gaussian copula (GC): This STDG model is also based on real

tabular data statistical modelling. Using a Gaussian copula to

combine marginal probabilities estimated using univariate

distributions, the model developed by Patki et al. (30)

implements a multivariate distribution to generate synthetic

tabular data. It was successfully used for medical datasets by

Goncalves et al. (31), Yale et al. (32) and Hernandez et al.

(13) and is available in a Github repository (33).

• Conditional tabular generative adversarial network (CTGAN):

A GAN based model proposed by Xu et al. (34) designed and

adapted by Patki et al. (30) for synthetic tabular data
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generation. As usually in GAN architectures, the model

comprises a generator that generates synthetic data and a

discriminator that distinguishes the synthetic and real samples.

After various epochs, these two neural networks are trained

adversarially to generate high-quality synthetic tabular data.

This model was successfully used for medical datasets by

Goncalves et al. (31), Yale et al. (32) and Hernandez et al.

(13) and is available in a Github repository (33).

• Tabular variational autoencoder (TVAE): A VAE based model

proposed by Xu et al. (34) designed and adapted by Patki

et al. (30) for synthetic tabular data generation. The model

comprises a neuronal network with a variational encoder and

decoder. The encoder encodes the data to a known

distribution while the decoder decodes it, generating the

synthetic samples. This model was successfully used for

medical datasets by Goncalves et al. (31) and Yale et al. and is

available in a Github repository (33).

• Table-diffusion (TabDif): This STDG introduced by Gianluca

et al. (35) is based on a diffusion model (DM). It iteratively

removes noise added during a diffusion process to generate

new synthetic samples. After this denoising process, the model

learns to generate new synthetic samples from pure noise.

This model is available in a Github repository (36)

To ensure privacy in these types of STDG models, differential

privacy (DP) is commonly used. This mechanism was formally

defined by Cynthia Dwork in 2008 (37) and introduces carefully

calibrated noise into the data generation process to ensure that

synthetic data does not reveal sensitive information about

individuals in the real dataset. This noise is usually controlled by

the privacy budget (e), which balances privacy and utility: lower

e values ensure stronger privacy with more noise, while higher e

values provide better utility with weaker privacy.

By applying DP to the previously defined STDG models, we

trained each STDG model with and without DP, totalling ten

models, divided into pairs according to their typology: NPC vs.

DP-NPC, GM vs. DP-GM, CTGAN vs. DP-CTGAN, TVAE vs.

DP-TVAE, and TabDif vs. DP-TabDif. All these models were

trained with default parameters and using an e value of 1 for the

STDG models that incorporate DP. Thus, the proposed metric to

evaluate the tradeoff between fidelity and utility (G) is only

applied with a unique e value, being G for the STDG models

without DP and G1 for the STDG models with DP.
2.2.3 Experimental procedure
The experimental procedure for applying the synthetic tabular

data evaluation framework is illustrated in Figure 1. This figure

outlines the steps followed for each combination of dataset and

STDG model. The process begins by randomly splitting the real
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FIGURE 1

Flow diagram of the used procedure to apply the synthetic tabular data evaluation framework
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dataset into training (80%) and test (20%) sets using a fixed

random seed to ensure reproducibility. This split was performed

only once and used consistently throughout the evaluation to

avoid retraining the synthetic data generation models multiple

times and reduce computational costs. Next, the TRTR

methodology is applied using the classification and regression

models described in Section 2.1.2. These initial results serve as

the baseline for evaluating the utility of the synthetic tabular

data. After that, the STDG model is trained, and a synthetic

dataset of the same size as the training set is generated. The

evaluation framework is then applied to this synthetic dataset

and repeated for 10 folds, simulating a cross-validation approach.
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Finally, the results from each fold are aggregated by calculating

the best, worst, and average values for each metric and privacy

risk measure. All this flow was executed using the Python

programming language, and the open-source MLflow platform

(38) was used to track the trained models and store the results in

an organised manner for easy access.
2.3 Framework validation

To validate the effectiveness of the proposed synthetic tabular

data evaluation framework in comparing and evaluating different
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STDG models, we applied the experimental procedure described in

Section 2.2.3 to each dataset and STDG model combination

outlined in Sections 2.2.1, 2.2.2. The primary goal of this

validation is to assess the ability of the evaluation framework to

two key challenges of STDG in the health domain:

1. Analyse the impact of incorporating the DP mechanism into

different STDG model types on the fidelity, utility and

privacy of the generated synthetic tabular data. Specifically,

the statistically significant differences in each evaluation

category of the synthetic tabular data generated with STDG

models with and without DP were analysed.

2. Analyse the suitability of different STDG model types for

medical tabular datasets for different use cases, specifically,

data augmentation and privacy preservation. To this end, we

selected the best and worst-performing STDG models for

each dataset based on their performance across the

evaluation categories.

To address these aspects, the results obtained from applying the

evaluation framework were analysed. The mean values for each

metric and privacy risk measure across all evaluated models and

folds were recorded. Additionally, a paired t-test was performed

to compute p-values for each metric and privacy risk measure,

comparing the results of STDG models with and without DP.

This statistical analysis enabled to determine whether

incorporating DP leads to significant differences in the quality of

the synthetic data generated by the same STDG model. Finally,

the metric and privacy risk measure results across different

model types were compared.
3 Results

This section presents the results obtained by applying

the proposed synthetic tabular data evaluation framework using

the application methodology detailed in Section 2.2. For each of

the three datasets, we summarise the resulting evaluation metrics

and privacy risk measures and briefly discuss the impact of
TABLE 3 Fidelity and tradeoff results summary for the acute myeloid leukem

Model Hellinger distance PCD R
NPC 0.2193 0.0624

DP-NPC 0.2539 0.0627

p-value ,0:05� .0:05

GC 0.2124 0.0668

DP-GC 0.3006 0.1562

p-value ,0:05� ,0:05�

CTGAN 0.2346 0.1012

DP-CTGAN 0.2553 0.0982

p-value ,0:05� .0:05

TVAE 0.2812 0.1190

DP-TVAE 0.3010 0.1049

p-value ,0:05� ,0:05�

TabDif 0.3104 0.2430

DP-TabDif 0.2402 0.1230

p-value ,0:05� ,0:05�

Bold values indicate statistically significant difference between the above model pairs.
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adding DP to the STDG models and the identification of the

best-performing STDG model. A more extended description of

the results is provided in the Supplementary Material.
3.1 Acute myeolid leukemia dataset

3.1.1 Fidelity and tradeoff
The fidelity and tradeoff metrics for the Acute Myeolid

Leukemia dataset as summarised in Table 3, showing the mean

values across the 10 evaluation folds. Figure S5 of the

Supplementary Material provides a visual representation of the

variability and significance of these metrics across the

STDG models.

STDG models trained without DP achieved significantly lower

Hellinger distances across four out of five models (p , 0:05), with

GC (0:2124) and NPC (0:2193) preserving univariate distributions

most effectively. The only model to improve with DP was DP-

TabDif, reducing its distance from 0:3104 to 0:2402, while for

the rest of the models the inclusion of DP had a negative impact

to replicate univariate distributions. Conversely, TabDif (0:3104)

and DP-TVAE (0:3010) showed the highest distances,

highlighting a lower ability to preserve univariate distributions.

For PCD, NPC (PCD ¼ 0:0624) and DP-NPC (PCD ¼ 0:0627)

models achieved the lowest values, with no significant difference

between the two versions (p . 0:05). DP-TVAE (PCD ¼ 0:1049)

and DP-TabDif (PCD ¼ 0:1230) outperformed their non-DP

counterparts in preserving correlations suggesting a positive

impact of DP for correlations preservation. On the other hand,

DP-GC (PCD ¼ 0:1562) showed a significant increase in PCD

compared to GC (PCD ¼ 0:0668), reflecting a negative impact of

DP on this model. The poorest correlation preservation was

observed for TabDif (PCD ¼ 0:2430).

In terms of the R2 of the DD-Plot, NPC (R2 ¼ 0:9975) and GC

(R2 ¼ 0:9301) performed best without DP, while DP-CTGAN

(R2 ¼ 0:9880) and DP-TabDif (R2 ¼ 0:9104) DP had a

significantly positive impact (p , 0:05), increasing the value. DP-

NPC (R2 ¼ 0:9114) and DP-TVAE (R2 ¼ 0:6823) experienced
ia dataset.

2 of DD-plot AUC-ROC Tradeoff (G)
0.9975 0.6568 0.0211

0.9114 0.7418 0.0498

,0:05� ,0:05� ,0:05�

0.9301 0.7504 0.0393

0.9401 0.8809 0.1028

.0:05 ,0:05� ,0:05�

0.9136 0.8319 0.0653

0.9880 0.8639 0.0654

,0:05� ,0:05� .0:05

0.6873 0.8709 0.0546

0.6823 0.8744 0.0653

,0:05� ,0:05� .0:05

0.5534 0.9589 0.2079

0.9104 0.8097 0.0625

,0:05� ,0:05� ,0:05�
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reductions (p , 0:05), suggesting a negative impact on

dimensional fidelity when DP was added.

NPC (AUC � ROC ¼ 0:6568) and DP-NPC (AUC � ROC ¼
0.7418) were the only models to approach the ideal AUC-

ROC of 0.5, indicating that the synthetic tabular data generated

with these models was the least distinguishable from real data.

All other models showed considerably higher scores, which

increased significantly with DP, suggesting a negative impact of

DP to generate synthetic samples indistinguishable from

real samples.

Regarding the fidelity-utility tradeoff, statistically significant

(p , 0:05) and higher mean G values were observed for the NPC

and GC models when adding DP, indicating a negative impact of

DP for maintaining a tradeoff in the generated samples. In

contrast, statistically significantly lower mean G values were

obtained with TabDif when adding DP, indicating a positive

impact. For CTGAN and TVAE, the addition of DP did not

result in significant changes in the G metric when adding DP.

Among all models, the lower G values were achieved by NPC

(G ¼ 0:0211) and DP-NPC (G ¼ 0:0498), highlighting their

capacity to balance fidelity and utility effectively.
3.1.2 Utility
The classification and regression metrics differences between

TRTR and TSTR for the Acute Myeolid Leukemia dataset are

summarised in Table 4, showing the mean differences across the

10 evaluation folds. Figures S7, S9 of the Supplementary Material

provides a visual representation of the variability and significance

of these metrics across the STDG models. In most cases,

statistically significant (p , 0:05) and higher mean differences

were observed for all classification and regression metrics when

adding DP, indicating that DP negatively impacts the utility of

the generated synthetic tabular data. However, the NPC model

consistently exhibited the smallest differences, ranging from

0.0183 to 0.0385. Additionally, all models achieved metric

differences below 0.3, suggesting that the utility of the synthetic
TABLE 4 Utility results summary for the acute myeloid leukemia dataset.

Model Classification metrics

ACC dif. PREC dif. REC dif. F1 d
NPC 0.0385 0.0316 0.0385 0.03

DP-NPC 0.0589 0.0564 0.0589 0.05

p-value ,0:05� ,0:05� ,0:05� ,0:0

GC 0.0866 0.0456 0.0866 0.07

DP-GC 0.2970 0.1179 0.2970 0.25

p-value , 0:05� ,0:05� ,0:05� ,0:0

CTGAN 0.1286 0.1383 0.1286 0.13

DP-CTGAN 0.1424 0.1249 0.1424 0.13

p-value ,0:05� ,0:05� ,0:05� .0:

TVAE 0.0559 0.0558 0.0559 0.05

DP-TVAE 0.0629 0.0614 0.0629 0.05

p-value ,0:05� ,0:05� ,0:05� .0:

TabDif 0.0501 0.0431 0.0501 0.05

DP-TabDif 0.1219 0.1111 0.1219 0.12

p-value ,0:05� ,0:05� ,0:05� ,0:0

Bold values indicate statistically significant difference between the above model pairs.
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data remains preserved to a reasonable extent across all

STDG models.

3.1.3 Privacy
The privacy risk measures for the Acute Myeloid Leukemia

dataset, summarised in Table 5, demonstrate the significant

impact of adding DP to decrease the privacy risks in certain

models. In the table the mean differences across the 10

evaluation folds are shown and Figure S13 of the Supplementary

Material provides a visual representation of the variability and

significance of these measures across the STDG models.

For linkability attack, DP significantly reduced risks in NPC

from 0.1042 (NPC) to 0.0245 (DP-NPC), while no significant

reductions were observed for GC, CTGAN, TVAE and TabDif in

their DP counterpart. However, all models achieved linkability

risks below 0.1, indicating minimal risk of linking synthetic

samples to real ones for all models.

In univariate singlingout, risks were low across all models

(<0.02), with a significant increase only for CTGAN, from 0.0042

(CTGAN) to 0.0129 (DP-CTGAN), when adding DP. No other

models showed significant differences in their corresponding DP

counterparts. For multivariate singlingout, DP significantly

reduced risks for NPC from 0.1975 (NPC) to 0.1154 (DP-NPC).

For the other models, risks remained low (<0.2) without

significant difference in their DP counterpart, indicating a

generally low likelihood of identifying samples with specific

attribute combinations.

In the membership inference attack, NPC showed the highest

risk (0.3060), which dropped significantly with DP-NPC

(0.0651). All other models maintained very low risks (ranging

from 0.0 to 0.0032), with a significant risk decrease only for

TabDif, from 0.0032 (TabDif) to 0.0009 (DP-TabDif). Therefore,

all models except NPC were able to generate synthetic samples

that cannot be linked to an existing sample in the real data.

Finally, for attribute inference attacks, DP significantly reduced

risks in NPC, from 0.3976 (NPC) to 0.2739 (DP-NPC), and

TabDif, from 0.0641 (TabDif) to 0.0439 (DP-TabDif). The rest of
Regression metrics

if. MAE dif. MSE dif. RMSE dif. R2 dif.
56 0.0081 0.0042 0.0112 0.0183

86 0.1146 0.1043 0.1795 0.0218

5� ,0:05� ,0:05� ,0:05� .0:05

30 0.0440 0.0193 0.0516 0.0316

24 0.0822 0.0465 0.1011 0.0773

5� ,0:05� ,0:05� ,0:05� ,0:05�

47 0.0437 0.0208 0.0505 0.0777

79 0.0347 0.0184 0.0454 0.0787

05 ,0:05� ,0:05� ,0:05� .0:05

52 0.0803 0.0793 0.1394 0.0548

82 0.1222 0.1538 0.2132 0.0624

05 ,0:05� ,0:05� ,0:05� ,0:05�

28 0.5419 0.3943 0.8258 0.0439

41 0.0417 0.0236 0.0527 0.0776

5� ,0:05� ,0:05� ,0:05� ,0:05�
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TABLE 5 Privacy risk measures summary for the acute myeloid leukemia dataset.

Model Linkability Univariate singlingout Multivariate singlingout Membership inference Attribute inference
NPC 0.1042 0.0006 0.1975 0.3060 0.3976

DP-NPC 0.0245 0.0006 0.1154 0.0651 0.2739

p-value , 0:05� . 0:05 , 0:05� , 0:05� , 0:05�

GC 0.0009 0.0082 0.1758 0.0 0.0356

DP-GC 0.0003 0.0076 0.1265 0.0 0.0177

p-value . 0:05 . 0:05 , 0:05� . 0:05 . 0:05

CTGAN 0.0009 0.0042 0.1253 0.0003 0.0282

DP-CTGAN 0.0003 0.0129 0.1264 0.0 0.0216

p-value . 0:05 , 0:05� . 0:05 . 0:05 . 0:05

TVAE 0.0006 0.0060 0.0833 0.0016 0.0394

DP-TVAE 0.0006 0.0085 0.0944 0.0003 0.0386

p-value . 0:05 . 0:05 . 0:05 . 0:05 . 0:05

TabDif 0.0019 0.0 0.0 0.0032 0.0641

DP-TabDif 0.0032 0.0 0.0475 0.0009 0.0439

p-value . 0:05 . 0:05 . 0:05 , 0:05� , 0:05�

Bold values indicate statistically significant difference between the above model pairs.

TABLE 6 Fidelity and tradeoff results summary for brain stroke dataset.

Model Hellinger distance PCD R2 of DD-plot AUC-ROC Tradeoff (G)
NPC 0.1593 0.0119 0.9989 0.5332 0.0224

DP-NPC 0.2282 0.0400 0.9984 0.5752 0.0429

p-value ,0:05� ,0:05� .0:05 ,0:05� ,0:05�

GC 0.1614 0.1308 0.9599 0.6793 0.0695

DP-GC 0.2835 0.1593 0.9608 0.9175 0.1318

p-value ,0:05� ,0:05� .0:05 ,0:05� ,0:05�

CTGAN 0.1365 0.0613 0.9958 0.6195 0.0421

DP-CTGAN 0.1465 0.0726 0.9916 0.6384 0.0469

p-value ,0:05� ,0:05� ,0:05� ,0:05� .0:05

TVAE 0.1733 0.1064 0.9474 0.6532 0.0534

DP-TVAE 0.2408 0.1375 0.8670 0.7560 0.0677

p-value ,0:05� ,0:05� ,0:05� ,0:05� ,0:05�

TabDif 0.2203 0.1597 0.6398 0.9217 0.1345

DP-TabDif 0.3127 0.2056 0.4876 0.9544 0.2538

p-value ,0:05� ,0:05� ,0:05� ,0:05� ,0:05�

Bold values indicate statistically significant difference between the above model pairs.
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the models showed consistently low risks (<0.08), indicating

minimal vulnerability to attribute linking.
3.2 Brain stroke dataset

3.2.1 Fidelity and tradeoff
The fidelity and tradeoff metrics for the Brain Stroke dataset

are summarised in Table 6, showing the mean values across the

10 evaluation folds. Figure S18 of the Supplementary Material

provides a visual representation of the variability and significance

of these metrics across the STDG models.

STDG models trained without DP achieved significantly lower

Hellinger distances for the five models (p , 0:05), with CTGAN

(0:1365) and NPC (0:1593) preserving univariate distributions

most effectively. Conversely, DP-TabDif (0:3127) and DP-GC

(0:2835) showed the highest mean Hellinger distances,

highlighting a lower ability to preserve univariate distributions.

When adding DP to the models, significantly higher Hellinger
Frontiers in Digital Health 10
distances were obtained, suggesting the negative impact of DP

for preserving univariate distributions.

For PCD, NPC (PCD ¼ 0:0119) and DP-NPC (PCD ¼ 0:04)

models achieved the lowest values, with a significant difference

between the two versions (p , 0:05). In general, all models

obtained significantly higher PCD values (p , 0:05) when adding

DP, reflecting a negative impact of DP when preserving pairwise

correlations. The poorest correlation preservation was observed

for DP-TabDif (PCD ¼ 0:2056).

In terms of the R2 of the DD-Plot, NPC (R2 ¼ 0:9989),

CTGAN (R2 ¼ 0:9958) and GC (R2 ¼ 0:9599) performed best

without DP, while DP-NPC (R2 ¼ 0:9984) and DP-GC

(R2 ¼ 0:9608) did not have any significant impact under DP

constraints (p . 0:05). For DP-CTGAN (R2 ¼ 0:9916), DP-

TVAE (R2 ¼ 0:8670) and DP-TabDif (R2 ¼ 0:4876), the addition

of DP impacted negatively, suggesting a loss of dimensional

fidelity when DP was added.

NPC (AUC � ROC ¼ 0:5333), DP-NPC (AUC � ROC ¼
0.5752), CTGAN (AUC � ROC ¼ 0:6195) and DP-CTGAN
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((AUC � ROC ¼ 0:6385) were the only models approaching

the ideal AUC-ROC of 0.5, indicating that the synthetic tabular

data generated by these models was the least distinguishable

from real data. All other models showed considerably higher

scores, which increased significantly with DP, suggesting a

negative impact of DP on the distinguishability of synthetic

tabular data.

Regarding the fidelity-utility tradeoff, statistically significantly

(p , 0:05) and higher mean G values were observed for the

NPC, GC, TVAE and TabDif models when adding DP,

indicating a negative impact of DP for fidelity-utility tradeoff.

For CTGAN, the addition of DP did not result in significant

changes in the G metric when adding DP. Among all models,

the lower G values were achieved by NPC (G ¼ 0:0224), DP-

NPC (G ¼ 0:0429), CTGAN (G ¼ 0:0421), and DP-CTGAN

(G ¼ 0:0469) highlighting their capacity to balance fidelity and

utility effectively.
3.2.2 Utility
The classification and regression metrics differences between

TRTR and TSTR for the Brain Stroke dataset are summarised

in Table 7, showing the mean values for the 10 folds and

Figures S20, S22 of the Supplementary Material provides a visual

representation of the variability and significance of these

metrics across the STDG models. In all STDG models except

CTGAN and DP-CTGAN, statistically significant (p , 0:05) and

higher mean differences were observed for all classification and

regression metrics when adding DP, indicating that DP negatively

impacts the utility of the generated synthetic tabular data in

most models. However, the NPC model consistently exhibited

the smallest differences, ranging from 0.0088 to 0.0513.

Additionally, all models except TabDif and DP-TabDif achieved

metric differences below 0.3, suggesting that the utility of the

synthetic data remains preserved to a reasonable extent most

STDG models.
TABLE 7 Utility results summary for the brain stroke dataset.

Model Classification metrics

ACC dif. PREC dif. REC dif. F1 d
NPC 0.0513 0.0424 0.0513 0.051

DP-NPC 0.0702 0.0588 0.0702 0.073

p-value ,0:05� ,0:05� ,0:05� ,0:0

GC 0.1104 0.0926 0.1105 0.053

DP-GC 0.3060 0.1015 0.3060 0.073

p-value ,0:05� ,0:05� ,0:05� ,0:0

CTGAN 0.0890 0.0688 0.0890 0.086

DP-CTGAN 0.0933 0.0672 0.0933 0.091

p-value .0:05 .0:05 .0:05 .0:0

TVAE 0.0870 0.0649 0.0870 0.084

DP-TVAE 0.1079 0.7389 0.1079 0.107

p-value ,0:05� ,0:05� ,0:05� ,0:0

TabDif 0.1142 0.0662 0.1142 0.099

DP-TabDif 0.1828 0.2292 0.1828 0.234

p-value ,0:05� ,0:05� ,0:05� ,0:0

Bold values indicate statistically significant difference between the above model pairs.
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3.2.3 Privacy
The privacy risk measures for the Brain Stroke dataset,

summarised in Table 8, showed that adding DP to the STDG

models had no significant impact on privacy risks for most

STDG models and privacy attacks. In the table, the mean

differences across the 10 evaluation folds are shown and

Figure S26 of the Supplementary Material provides a visual

representation of the variability and significance of these

measures across the STDG models.

An exception was observed in the linkability attack, where DP

significantly increased the risk for TabDif, from 0.0 (TabDif) to

0.0032 (DP-TabDif). For all other STDG models, no significant

changes in linkability risks were observed between non-DP and

DP versions. Additionally, all models achieved linkability risks

below 0.0008, highlighting a very minimal risk of linking

synthetic samples to real ones for all models.

In univariate singlingout attacks, no significant differences were

found between non-DP and DP model versions, with risks

remaining low (<0.062). In contrast, multivariate singlingout

attack risks were significantly reduced when adding DP for

TVAE, from 0.0904 (TVAE) to 0.0140 (DP-TVAE), and for

TabDif, from 0.008 (TabDif) to 0.0 (DP-TabDif). For the rest of

the models, the multivariate singlingout attack risks were slightly

higher, ranging from 0.1138 (DP-NPC) to 0.0611 (DP-GC).

These results suggest a generally low likelihood of identifying

samples with specific attribute combinations for all STDG models.

Membership inference attack risks, were highest for NPC

(0.5642), which was significantly reduced for DP-NPC (0.3042).

All other models exhibited lower risks, ranging from 0.0109 (DP-

TabDif) to 0.0530 (GC), with no significant changes between

non-DP and DP model versions. These results demonstrate that,

except for NPC, all models effectively generated synthetic

samples that cannot be linked to existing samples in the real data.

Finally, for attribute inference attacks, DP significantly reduced

risks in NPC, from 0.2313 (NPC) to 0.1961 (DP-NPC), and GC,

from 0.0260 (GC) to 0.0172 (DP-GC). The remaining models
Regression metrics

if. MAE dif. MSE dif. RMSE dif. R2 dif.
3 0.0101 0.0031 0.0088 0.0492

2 0.0503 0.0200 0.0584 0.1385

5� ,0:05� ,0:05� ,0:05� ,0:05�

1 0.0471 0.0157 0.0480 0.1472

2 0.0712 0.0307 0.0787 0.2329

5� ,0:05� ,0:05� ,0:05� ,0:05�

6 0.0278 0.0089 0.0310 0.951

0 0.0266 0.0089 0.0301 0.0869

5 .0:05 .0:05 .0:05 ,0:05�

2 0.0385 0.1644 0.0490 0.1373

0 0.0521 0.0224 0.0667 0.1694

5� ,0:05� ,0:05� ,0:05� ,0:05�

7 0.3808 0.3941 0.5909 0.1132

9 0.6902 0.5744 0.6154 0.1862

5� ,0:05� .0:05� .0:05� ,0:05�
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TABLE 8 Privacy risk measures summary for the brain stroke dataset.

Model Linkability Univariate singlingout Multivariate singlingout Membership inference Attribute inference
NPC 0.0007 0.0 0.1129 0.5642 0.2313

DP-NPC 0.0007 0.0 0.1138 0.3042 0.1961

p-value .0:05 .0:05 .0:05 ,0:05� ,0:05�

GC 0.0 0.0598 0.0701 0.0530 0.0260

DP-GC 0.0 0.0550 0.0611 0.0234 0.0172

p-value .0:05 .0:05 .0:05 .0:05 ,0:05�

CTGAN 0.0 0.0212 0.0862 0.0472 0.0259

DP-CTGAN 0.0 0.0589 0.0727 0.0074 0.0251

p-value .0:05 .0:05 .0:05 .0:05 .0:05

TVAE 0.0 0.0712 0.0904 0.0177 0.0359

DP-TVAE 0.0001 0.0614 0.0140 0.0398 0.0395

p-value .0:05 .0:05 ,0:05� .0:05 .0:05

TabDif 0.0 0.0 0.0080 0.0131 0.0267

DP-TabDif 0.0032 0.0 0.0 0.0109 0.0387

p-value ,0:05� .0:05 ,0:05� .0:05 .0:05

Bold values indicate statistically significant difference between the above model pairs.

TABLE 9 Fidelity and tradeoff results summary for the cardiovascular disease dataset.

Model Hellinger distance PCD R2 of DD-plot AUC-ROC Tradeoff (G)
NPC 0.2539 0.0115 0.9911 0.9462 0.0168

DP-NPC 0.2543 0.0131 0.9949 0.9474 0.0261

p-value ,0:05� ,0:05� .0:05 ,0:05� ,0:05�

GC 0.2779 0.0412 0.9962 0.9234 0.0355

DP-GC 0.3974 0.1149 0.9953 0.9560 0.1138

p-value ,0:05� ,0:05� .0:05 ,0:05� ,0:05�

CTGAN 0.2903 0.0791 0.8960 0.7817 0.0427

DP-CTGAN 0.2905 0.0765 0.8210 0.7746 0.0555

p-value .0:05 ,0:05� ,0:05� ,0:05� ,0:05�

TVAE 0.3200 0.1572 0.0 0.8170 0.0800

DP-TVAE 0.3164 0.2062 0.0 0.8815 0.1221

p-value .0:05 ,0:05� .0:05 ,0:05� ,0:05�

TabDif 0.3592 0.1585 0.3701 0.9643 0.4898

DP-TabDif 0.4084 0.2073 0.3524 0.9789 0.0335

p-value ,0:05� ,0:05� ,0:05� ,0:05� ,0:05�

Bold values indicate statistically significant difference between the above model pairs.
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maintained consistently low risks (<0.04), indicating minimal

vulnerability to attribute linking.
3.3 Cardiovascular disease dataset

3.3.1 Fidelity and tradeoff
The fidelity and tradeoff metrics for the Cardiovascular Disease

dataset are summarised in Table 9, showing the mean values across

the 10 evaluation folds. Figure S31 of the Supplementary Material

provides a visual representation of the variability and significance

of these metrics across the STDG models.

STDG models trained without DP achieved significantly lower

Hellinger distances for all STDG models (p , 0:05), indicating a

negative impact of DP on preserving univariate distributions.

However, CTGAN and TVAE showed no significant differences in

Hellinger distance when DP was added to the model. NPC

(0:2539), DP-NPC (0:2543) and GC (0:2779) were the models that

best preserved univariate distributions, achieving the lowest distance

values. In contrast, DP-TabDif (0:4084), DP-GC (0:3974) and
Frontiers in Digital Health 12
TabDif (0:3592) demonstrated the poorest performance in

preserving univariate distributions, with the highest distance values.

Regarding the PCD, NPC (PCD ¼ 0:0115) and DP-NPC

(PCD ¼ 0:0131) achieved the lowest values, with a significant

difference between the two versions (p , 0:05). In general, all

models obtained significantly higher PCD values (p , 0:05)

when adding DP, reflecting a negative impact of DP when

preserving pairwise correlations. However, DP-CTGAN

(PCD ¼ 0:0765) showed significantly lower PCD value than

CTGAN (PCD ¼ 0:0791). The poorest correlation preservation

were observed for DP-TabDif (PCD ¼ 0:2073), TabDif

(PCD ¼ 0:1585) and TVAE (PCD ¼ 0:1572).

In terms of the R2 of the DD-Plot, GC (R2 ¼ 0:9962) and NPC

(R2 ¼ 0:9911) performed best without DP, while DP-GC

(R2 ¼ 0:9949) and DP-NPC (R2 ¼ 0:9949) did not have any

significant impact under DP constraints (p . 0:05). For DP-

CTGAN (R2 ¼ 0:8210) and DP-TabDif (R2 ¼ 0:3524), the

addition of DP impacted negatively, suggesting a loss of

dimensional fidelity when DP was added. The worst dimensional

fidelity was obtained with TVAE and DP-TVAE (R2 ¼ 0 for both
frontiersin.org
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models), with no significant difference between the DP and non-

DP versions.

Despite being a bit far, CTGAN (AUC � ROC ¼ 0:7817), DP-

CTGAN (AUC � ROC ¼ 0:7746) were the only models

approaching the ideal AUC-ROC of 0.5, indicating that the

synthetic tabular data generated by these models was the least

distinguishable from real data. All other models showed

considerably higher scores, which increased significantly with DP,

suggesting a negative impact of DP on the distinguishability of

synthetic tabular data.

Regarding the fidelity-utility tradeoff, statistically significantly

(p , 0:05) and higher mean G values were observed for the

NPC, GC, TVAE and CTGAN models when adding DP,

indicating a negative impact of DP for fidelity-utility tradeoff.

For TabDif, the addition of DP resulted in a significant reduction

of the G metric when adding DP. Among all models, the lower

G values were achieved by NPC (G ¼ 0:0168) and DP-NPC

(G ¼ 0:0261), while the higher G values were achieved by TabDif

(G ¼ 0:4898) and DP-TVAE (G ¼ 0:1221).
3.3.2 Utility
The classification and regression metric differences between

TRTR and TSTR for the Cardiovascular Disease dataset are

summarised in Table 10, showing the mean values for the 10

folds and Figures S33, S35 of the Supplementary Material

provides a visual representation of the variability and significance

of these metrics across the STDG models. Statistically significant

(p , 0:05) mean differences were observed for all classification

and regression metrics in GC and TabDif, with higher

differences for DP-GC and lower differences for DP-TabDif.

These results indicate that DP negatively impacted the utility of

synthetic tabular data generated by DP-GC, while it had a

positive impact for DP-TabDif. For the remaining models (NPC,

CTGAN, and TVAE) no statistically significant (p . 0:05) mean

differences were observed for most classification and regression

metrics, suggesting that DP had no significant impact on the
TABLE 10 Utility results summary for the cardiovascular disease dataset.

Model Classification metrics

ACC dif. PREC dif. REC dif. F1 d
NPC 0.0532 0.0271 0.0532 0.05

DP-NPC 0.0539 0.0309 0.0539 0.05

p-value .0:05 ,0:05� .0:05 .0:

GC 0.0864 0.0386 0.0846 0.07

DP-GC 0.3745 0.0982 0.3744 0.36

p-value ,0:05� ,0:05� ,0:05� ,0:0

CTGAN 0.0657 0.0356 0.0657 0.06

DP-CTGAN 0.0693 0.0336 0.0693 0.06

p-value .0:05 .0:05 .0:05 0:0

TVAE 0.1159 0.0406 0.1159 0.09

DP-TVAE 0.1137 0.0501 0.1137 0.09

p-value .0:05 ,0:05� .0:05 .0:

TabDif 0.0897 0.0511 0.0897 0.09

DP-TabDif 0.1253 0.1009 0.1253 0.13

p-value ,0:05� ,0:05� ,0:05� ,0:0

Bold values indicate statistically significant difference between the above model pairs.

Frontiers in Digital Health 13
utility of the generated synthetic tabular data. NPC consistently

exhibited the smallest differences, ranging from 0.001 to 0.0582.

Additionally, all models except TabDif achieved metric

differences below 0.25, indicating that the utility of synthetic data

remains well-preserved for most STDG models.
3.3.3 Privacy
The privacy risk measures for the Cardiovascular Disease

dataset, summarised in Table 11, showed that adding DP to the

STDG models generally had no significant impact on privacy

risks for most STDG models and privacy attacks. In the table,

the mean differences across the 10 evaluation folds are shown

and Figure S39 of the Supplementary Material provides a visual

representation of the variability and significance of these

measures across the STDG models.

In the linkability attack, DP significantly reduced the risk for

NPC, from 0.0012 (NPC) to 0.0 (DP-NPC), while it significantly

increased the risk for TabDif, from 0.0 (TabDif) to 0.0017 (DP-

TabDif). For all other STDG models, no significant changes were

observed between non-DP and DP versions, with all models

achieving linkability risks of 0.0, highlighting negligible risk of

linking synthetic samples to real ones.

For univariate singlingout attacks, no significant differences were

found between non-DP and DP model versions, with risks remaining

low (, 0:2) across all STDG models except TVAE (0.3176) and DP-

TVAE (0.3567). In contrast, multivariate singlingout attack risks

increased significantly for CTGAN when adding DP, rising from

0.0770 (CTGAN) to 0.1147 (DP-CTGAN), while risks decreased

significantly for TVAE, from 0.0451 (TVAE) to 0.0276 (DP-

TVAE). For the rest of the models, multivariate singlingout risks

did not significantly change when adding DP, ranging from 0.0

(TabDif and DP-TabDif) to 0.0761 (DP-NPC), indicating a low

likelihood of identifying samples with specific attribute

combinations for all STDG models.

Membership inference attack risk was highest for NPC

(0.3938), but was significantly reduced for DP-NPC (0.0832).
Regression metrics

if. MAE dif. MSE dif. RMSE dif. R2 dif.
82 0.0061 0.0010 0.0062 0.0196

88 0.0547 0.0246 0.0812 0.0175

05 ,0:05� ,0:05� ,0:05� .0:05

85 0.0417 0.0158 0.0726 0.0266

08 0.0742 0.0341 0.1138 0.0499

5� ,0:05� ,0:05� ,0:05� ,0:05�

26 0.0372 0.0787 0.1496 0.0336

92 0.0369 0.2184 0.2238 0.0323

5 .0:05 ,0:05� ,0:05� .0:05

49 0.0597 0.1509 0.2150 0.0281

93 0.1090 0.5197 0.4631 0.0268

05 ,0:05� ,0:05� ,0:05� .0:05

05 0.8206 0.5662 0.5881 0.0380

26 0.4057 0.0103 0.0711 0.0415

5� ,0:05� ,0:05� ,0:05� ,0:05�
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TABLE 11 Privacy risk measures summary for the cardiovascular disease dataset.

Model Linkability Univariate singlingout Multivariate singlingout Membership inference Attribute inference
NPC 0.0012 0.0 0.0554 0.3938 0.1752

DP-NPC 0.0 0.0 0.0761 0.0823 0.0702

p-value , 0:05� . 0:05 . 0:05 , 0:05� , 0:05�

GC 0.0 0.1722 0.0758 0.0304 0.0279

DP-GC 0.0 0.1217 0.0671 0.0002 0.0132

p-value . 0:05 . 0:05 . 0:05 , 0:05� , 0:05�

CTGAN 0.0 0.1886 0.0770 0.0413 0.0362

DP-CTGAN 0.0 0.1449 0.1147 0.0750 0.0293

p-value . 0:05 . 0:05 , 0:05� . 0:05 . 0:05

TVAE 0.0 0.3176 0.0451 0.0059 0.0311

DP-TVAE 0.0 0.3567 0.0276 0.0122 0.0330

p-value . 0:05 . 0:05 , 0:05� . 0:05 . 0:05

TabDif 0.0 0.1810 0.0 0.0024 0.0317

DP-TabDif 0.0017 0.1787 0.0 0.0039 0.0408

p-value , 0:05� . 0:05 . 0:05 . 0:05 . 0:05

Bold values indicate statistically significant difference between the above model pairs.
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Similarly, DP significantly reduced risks for GC, from 0.0304 (GC)

to 0.0002 (DP-GC). For all other models, risks remained low,

ranging from 0.0024 (DP-TabDif) to 0.0750 (DP-CTGAN), with

no significant changes between non-DP and DP model versions.

These results demonstrate that, apart from NPC, all models

effectively generated synthetic samples that could not be linked

to existing samples in the real data.

Finally, for attribute inference attacks, DP significantly reduced

risks in NPC, from 0.1752 (NPC) to 0.0702 (DP-NPC), and in GC,

from 0.0279 (GC) to 0.0132 (DP-GC). The remaining models

maintained consistently low risks (<0.05), indicating minimal

vulnerability to attribute linking.
3.4 Results summary

The obtained results across all evaluation categories and

datasets are summarised in Table 12 summarised, highlighting

the best and worst STDG models and the impact of DP in each

evaluation category for each dataset. The impact of DP is

classified as positive if it significantly improves the majority of

metrics or privacy risk measures within a category, negative if it

significantly worsens them, and neutral if no significant changes

are observed (p . 0:05).

3.4.1 Acute myeolid leukemia dataset
For the Acute Myeolid Leukemia dataset, NPC was the most

balanced model, achieving high fidelity, maintaining utility, and

demonstrating the best tradeoff between fidelity and utility,

though it exhibited the highest privacy risks. The addition of DP

negatively impacted the utility of all models and the fidelity of

most models, except for DP-TabDif, which showed

improvements in both fidelity and tradeoff. TabDif had the

poorest fidelity and tradeoff results, making it the worst model

overall. In terms of privacy, DP-TabDif achieved the lowest

attack risks that were reduced when adding DP, as did DP-NPC.

In contrast, DP-CTGAN performed worst in preserving the

utility of synthetic tabular data and was the only STDG model
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where DP negatively impacted privacy risks. These findings

highlight the improvement of TabDif when adding DP (DP-

TabDif) in synthetic tabular data quality while reducing privacy

risks and the consistent performance of NPC across all categories

except privacy.

3.4.2 Brain stroke dataset
For the Brain Stroke dataset, NPC was the most balanced

model, achieving high fidelity, maintaining utility, and

demonstrating the best tradeoff between fidelity and utility,

although it exhibited the highest privacy risks. The addition of

DP negatively impacted the fidelity of all models, as well as the

utility and tradeoff of most models. DP-TabDif demonstrated the

poorest performance across fidelity, utility and tradeoff, making

it the weakest model overall. Regarding privacy, TabDif achieved

the lowest attack risks and for DP-NPC, the incorporation of DP

significantly reduced privacy risks. These findings underscore the

consistent performance of NPC across all categories except

privacy and highlight the positive effect of adding DP to this

model (DP-NPC) in reducing privacy risks. For the remaining

models and most categories, the addition of DP generally had no

impact or a negative impact.

3.4.3 Cardiovascular disease dataset
For the Cardiovascular Disease dataset, NPC emerged as the

most balanced model, achieving high fidelity, maintaining utility,

and demonstrating the best tradeoff between fidelity and utility,

unless it obtained the highest privacy risks. TabDif and DP-

TabDif performed poorest across fidelity, utility and tradeoff,

making them the weakest models overall. Adding DP negatively

impacted the fidelity of DP-NPC, DP-GC and DP-TabDif, while

it positively impacted DP-CTGAN. Regarding utility, only DP-

TabDif was improved when adding DP, while DP-GC was

worsened. For the fidelity-utility tradeoff, DP had a negative

impact across all STDG models except DP-TabDif, which

benefited from a positive impact. In terms of privacy, DP-GC

achieved the lowest attack risks, while DP-NPC had a positive

impact on privacy risks when adding DP. These findings
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TABLE 12 Summary of best STDG models and DP impact across datasets for each dimension and overall performance.

Dataset Category Best model Worst model DP impact
Acute myeloid leukemia dataset (26) Fidelity NPC TabDif † Negative: DP-NPC, DP-GC, DP-CTGAN and DP-TVAE

† Positive: DP-TabDif

Utility NPC DP-CTGAN † Negative: all models

Tradeoff NPC TabDif † Negative: DP-NPC and DP-GC
† Positive: DP-TabDif
† Neutral: DP-CTGAN and DP-TVAE

Privacy DP-TabDif NPC † Negative: DP-CTGAN
† Positive: DP-NPC and DP-TabDif
† Neutral: DP-GC and DP-TVAE

Brain stroke dataset (27) Fidelity NPC DP-TabDif † Negative: all models

Utility NPC DP-TabDif † Negative: DP-NPC, DP-GC, DP-TVAE and DP-TabDif
† Neutral: DP-CTGAN

Tradeoff NPC DP-TabDif † Negative: DP-NPC, DP-GC, DP-TVAE and DP-TabDif
† Neutral: DP-CTGAN

Privacy TabDif NPC † Positive: DP-NPC
† Neutral: DP-GC, DP-CTGAN, DP-TVAE and DP-TabDif

Cardiovascular disease dataset (28) Fidelity NPC DP-TabDif † Negative: DP-NPC, DP-GC, DP-TabDif
† Positive: DP-CTGAN
† Neutral: DP-TVAE

Utility NPC TabDif † Negative: DP-GC
† Positive: DP-TabDif
† Neutral: DP-NPC, DP-CTGAN, DP-TVAE

Tradeoff NPC TabDif † Negative: DP-NPC, DP-GC, DP-TVAE and DP-CTGAN
† Positive: DP-TabDif

Privacy DP-GC NPC † Positive: DP-NPC
† Neutral: DP-GC, DP-CTGAN, DP-TVAE and DP-TabDif
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highlight the consistent performance of NPC across all categories

except privacy and emphasize the positive effect of adding DP to

this model (DP-NPC) in reducing privacy risks. For the

remaining models and most categories, the impact of DP varied

depending on the category.
4 Discussion

4.1 Main findings

By applying the proposed evaluation framework to synthetic

tabular data generated by STDG models with and without

privacy guarantees (specifically, DP) across three open-source

medical datasets with varying characteristics, the results

demonstrated that the proposed synthetic tabular data evaluation

framework can effectively be used to assess and compare

synthetic tabular data. The applied methodology, which

simulated cross-validation and evaluated significant differences

between model pairs (non-DP and DP versions), successfully

validated the robustness of the framework. This approach

enabled a detailed and holistic analysis of the impact of

incorporating the DP mechanism into different STDG model

typologies and the suitability of these models for medical datasets

with diverse characteristics. Unlike previous frameworks

proposed by Hernandez et al. (13), Lautrup et al. (14) and

Livieris et al. (15), the presented evaluation framework provides a

holistic evaluation of synthetic tabular data by consolidating a

minimal yet robust set of metrics and privacy risk measures

focused on fidelity, utility, and privacy, while avoiding
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redundancy. Additionally, it incorporates the metric introduced

by Galloni et al. (21), which quantifies the tradeoff between

fidelity and utility, offering deeper insights into the performance

of the STDG model.
4.2 STDG models ranking

For the three datasets, NPC was the most balanced model,

achieving high fidelity, maintaining utility, and demonstrating the

best tradeoff between fidelity and utility. However, NPC

exhibited the highest privacy risks for all datasets, being the

worst model to preserve the privacy of real data. This finding

suggests that NPC has been the most effective model for data

augmentation but the worst for privacy preservation. On the

other hand, TabDif and DP-TabDif were the worst models to

preserve fidelity, and utility and demonstrate a tradeoff between

fidelity and utility for the three datasets. However, DP-TabDif,

TabDif and DP-GC exhibited the lowest privacy risks for the

Acute Myeloid Leukemia dataset, and Cardiovascular Disease

dataset respectively, suggesting that they have been the best

STDG models for privacy preservation. DP-CTGAN was the

worst model for utility preservation in the Acute Myeloid

Leukemia dataset.
4.3 DP impact on STDG models

The incorporation of DP generally worsened the fidelity of the

synthetic tabular data across most STDG models and dataset
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combinations. Specifically, fidelity metrics got worse for DP-NPC

and DP-GC models across all three datasets, highlighting the

negative impact of DP-induced noise on preserving statistical

properties. However, there were exceptions: DP-TabDif improved

fidelity for the Acute Myeloid Leukemia dataset, and DP-

CTGAN for the Cardiovascular Disease dataset. For the Brain

Stroke dataset, fidelity consistently was deteriorated across all

DP-integrated models. Apart from that, for the Cardiovascular

Disease dataset, the addition of DP to DP-TVAE neither

improved nor worsened fidelity, demonstrating a neutral impact.

These findings suggest that while DP introduces noise to the

generated synthetic samples, this often reduces their fidelity.

Regarding the utility of synthetic tabular data, the integration

of DP into the STDG models generally was also negatively

affected across most STDG models and dataset combinations.

For the Acute Myeloid dataset, utility consistently reduced across

all models when DP was integrated. Similarly, for the Brain

Stroke dataset, most models were not capable of preserving

synthetic data utility when adding DP, except DP-CTGAN,

which neither reduced nor improved utility. A unique exception

was observed for the Cardiovascular Disease dataset, where utility

deteriorated with DP-GC but improved for DP-TabDif, while the

addition of DP had no significant impact on the utility of other

models. These findings suggest that the noise introduced by DP

frequently diminishes or, at best, does not affect the utility of

synthetic tabular data.

The impact of adding DP to the STDG models on the fidelity-

utility tradeoff aligned closely with its effects on fidelity and utility,

generally worsening for most STDG models and dataset

combinations. Consistent with fidelity results, the tradeoff

deteriorated for synthetic tabular data generated by DP-NPC and

DP-GC models across all three datasets. However, DP-TabDif

demonstrated an improvement in the tradeoff for both the Acute

Myeloid Leukemia dataset and the Cardiovascular Disease

dataset, highlighting its adaptability under certain conditions.

These findings suggest that while DP introduces noise to

enhance privacy, this often comes at the cost of fidelity and

utility, underscoring the challenge of balancing privacy and

fidelity-utility tradeoff in synthetic tabular data generation.

Contrary to expectations, adding DP to the STDG models

neither significantly reduced nor increased privacy risks for most

STDG models and dataset combinations. The only model that

significantly reduced privacy risks across all datasets when

incorporating DP was DP-NPC. For the other models, the

addition of DP generally had no noticeable impact on privacy

risks. An exception was observed for the Acute Leukemia dataset,

where DP-CTGAN increased privacy risks, whereas DP-TabDif

reduced them. These findings suggest that incorporating DP

into selected STDG models did not reduce privacy risks as

expected; similar levels of privacy risk were observed for both

the non-DP and DP counterparts across most model and

dataset combinations.

In general, fidelity was the category most affected by the

addition of DP to the STDG models, while privacy was the least

affected. This suggests that, based on the performed evaluations

and analysis, unless DP introduces noise in the STDG models to
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reduce privacy risks in synthetic tabular data, the fidelity and

utility of synthetic data are negatively affected, with no

significant reduction in privacy risks observed. Therefore, further

research and evaluation are needed to determine whether

incorporating DP into STDG models for generating synthetic

tabular data is justified, as it compromised the fidelity and utility

of the generated samples without significantly mitigating

privacy risks.
4.4 Limitations and future work

While this paper presents a valuable evaluation framework for

synthetic tabular data in three main categories (fidelity, utility and

privacy) and the fidelity-utility tradeoff, applied to three open-

source medical datasets to asses STDG models with and without

privacy guarantees (specifically, DP), there are several limitations

and future directions that warrant further refinement and

exploration of the framework.

One key limitation of this framework is the lack of additional

evaluation categories beyond fidelity, utility and privacy. While

these three core categories are widely used to evaluate the quality

and risk of synthetic tabular data, other aspects more related to

the efficiency of STDG models, such as, training time, resource

consumption, generalization capability and model interpretability,

could also be relevant. The incorporation of such type of metrics

and measures can provide a more comprehensive analysis of the

computational costs associated with the training of different

STDG models and parameter configurations. Similarly, exploring

interpretability or generalization of used STDG models could

provide further insights for generative model selection for

different use cases. Future research should consider extending the

proposed evaluation framework to include these complementary

evaluation categories, and to perform an exhaustive comparison

focused on time efficiency, resource consumption and evaluation

outcomes between this framework and other available synthetic

tabular data evaluation frameworks. The evaluation framework

should also include more tradeoff metrics, for example, fidelity-

privacy tradeoff, that can provide more insights about the

capability of the model to generate synthetic tabular with low

privacy risk without impacting too much the fidelity.

The applied methodology of generating and evaluating 10 folds

and averaging the results to validate the efficacy of the framework

was particularly time-consuming in many cases, highlighting the

need for optimizing or paralleling the computation of the

evaluation metrics and privacy risk measures. Additionally, to

reduce computational costs, the train test split was randomly

performed only once at the beginning of the evaluation flow,

thus avoiding the need to train each STDG model on multiple

training folds. However, the representativeness and consistency of

the train and test folds were not explicitly verified, and using a

single train fold does not account for potential variability

introduced by different data partitions. Therefore, future work

could explore the use of multiple train and test splits, along with

the validation of their consistency by comparing descriptive

statistics and distributional properties.
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Another limitation of this methodology lies in the parameter

configuration for the used STDG models. With the objective to

ensure methodological consistency across experiments and to

maintain computational feasibility, all STDG models were trained

using default parameters, which may not represent their optimal

performance. While this approach allows for fair comparisons

between non-DP and DP counterparts of each model, it may not

reflect the optimal performance of individual models. Thus,

future research should follow the work developed by Du et al.

(39), which highlights the benefits of hyperparameter tuning for

deep learning-based STDG models while also emphasizing the

complexity it introduces, to include the performance assessment

and comparison of the synthetic tabular data generated with the

same STDG model but different parameter setting. This

functionality can be added to the evaluation framework to

identify the best parameter configuration of a STDG model to

maximize the fidelity, utility and privacy results of the generated

synthetic tabular data.

Regarding privacy guarantees of the STDG models, the analysis

of the impact of DP on the different STDG models should be

further explored with different privacy constraints. As the main

focus of the paper was the presentation of the evaluation

framework, the STDG models with privacy guarantees were

trained using a single privacy budget value (e ¼ 1:0), thus, the

impact of the tradeoff metric (Ge) for varying noise levels was

not analysed. Future work should explore the effects of adding

DP to the STDG models with different e values to better

understand and provide a more extensive analysis of how varying

levels of privacy can impact the STDG models’ performance,

especially, on the tradeoff metric. Additionally, the incorporation

of alternative privacy mechanisms beyond DP, such as the

private aggregation of teacher ensembles (PATE) or secure

multiparty computation (SMPC), to the STDG models should be

investigated to determine and analyse how each one can affect

the evaluation results of the generated synthetic tabular data.

Apart from that, the obtained results revealed specific

improvement areas for some STDG models. For example, DP-

TabDif consistently performed poorly in fidelity, utility, and

tradeoff metrics across most datasets but excelled in privacy for

two out of three datasets. A deeper analysis is required to

identify the factors contributing to these results and to explore

potential strategies to improve the fidelity of DP-TabDif while

maintaining its privacy advantages. Similarly, NPC and DP-NPC

demonstrated strong performance in fidelity, utility, and tradeoff

metrics but struggled in privacy. Future studies should focus on

enhancing the privacy capabilities of these models without

sacrificing fidelity and utility.

Beyond these limitations and future work tasks, the proposed

evaluation framework could be applied to other medical datasets

with diverse and varying characteristics such as genomics data,

signals, multimodal data, or time-series data. It can also be

applied to other application domains, including industry,

mobility and finances. Furthermore, evaluating purely numerical

or categorical datasets, as well as datasets obtained directly from

hospitals or laboratories, would further test the versatility and

efficiency of the evaluation framework. Finally, the application of
Frontiers in Digital Health 17
the framework could also be extended to federated environments

to enable a performance evaluation in distributed systems.

Collaborating with clinical experts to evaluate the clinical utility

of the synthetic data generated would also provide critical

insights into its real-world applicability.
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