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Introduction: The detrimental consequences of stress highlight the need for

precise stress detection, as this offers a window for timely intervention.

However, both objective and subjective measurements suffer from validity

limitations. Contactless sensing technologies using machine learning methods

present a potential alternative and could be used to estimate stress from

externally visible physiological changes, such as emotional facial expressions.

Although previous studies were able to classify stress from emotional

expressions with accuracies of up to 88.32%, most works employed a

classification approach and relied on data from contexts where stress was

induced. Therefore, the primary aim of the present study was to clarify

whether stress can be detected from facial expressions of six basic emotions

(anxiety, anger, disgust, sadness, joy, love) and relaxation using a

prediction approach.

Method: To attain this goal, we analyzed video recordings of facial emotional

expressions collected from n = 69 participants in a secondary analysis of a

dataset from an interventional study. We aimed to explore associations with

stress (assessed by the PSS-10 and a one-item stress measure).

Results: Comparing two regression machine learning models [Random Forest

(RF) and XGBoost], we found that facial emotional expressions were promising

indicators of stress scores, with model fit being best when data from all six

emotional facial expressions was used to train the model (one-item stress

measure: MSE (XGB) = 2.31, MAE (XGB) = 1.32, MSE (RF) = 3.86, MAE (RF) =

1.69; PSS-10: MSE (XGB) = 25.65, MAE (XGB) = 4.16, MSE (RF) = 26.32, MAE

(RF) = 4.14). XGBoost showed to be more reliable for prediction, with lower

error for both training and test data.

Discussion: The findings provide further evidence that non-invasive video

recordings can complement standard objective and subjective markers of stress.
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1 Theoretical background

It is late and you are preparing to leave the office. In the

hallway, you meet your supervisor, and she asks you for an

important report, which, as you suddenly remember, was due

today. Your heart starts to race, you start to sweat, your stomach

tightens: You are feeling stressed. Encountering a challenging

situation such as this—experiencing a threatening situation while

subjective coping resources are deemed insufficient—may prompt

a stress response (1). This reaction is adaptive and necessary to

ready an individual to either fight or flee the threat (2, 3). The

stress response can be subdivided into the subjective experience

of stress, typically assessed via self-report (e.g., the Perceived

Stress Scale, PSS-10, 4), and the physiological stress response of

nervous, endocrine, and immune mechanisms. Notably, both

self-report and psychophysiological stress assessment suffer from

important drawbacks. The assessment of subjective stress via

questionnaire measures might be skewed due biases such as, e.g.,

social desirability (5) or extreme responding biases (6).

Assessment of physiological markers, such as cortisol levels or

heart rate, can be confounded by a plethora of factors, including

sampling time, smoking, alcohol consumption, medication,

physical activity levels, and use of hormonal contraception (7–9)

and markers may not be specific to stress (10). Lastly, obtaining

physiological measures might be perceived as obtrusive and their

assessment and analysis requires considerable time and resources.

Thus, they may not be feasible in every research context, which

often limits physiological stress research to controlled

(laboratory) situations such as the Trier Social Stress Test (TSST,

11). Thus, stress research could be advanced with scalable and

accessible assessment tools.

Recently, novel technological developments have advanced

non-invasive assessment of voluntary or involuntary behavioral

changes occurring under stress and allow passive sensing of

stress in various daily applications. In this context, tools already

integrated into the everyday lives of many people, such as

smartphones, could be used as sensors that are unobtrusive and

easy-to-disseminate. Smartphones are typically equipped with a

plethora of sensors that could potentially be used to measure

stress (e.g., camera, depth sensors, gyroscope). Externally visible

physiological changes under stress include both “macro” changes

involving larger muscle groups (e.g., facial muscles, body posture)

and “micro” changes, which are caused by physiological

processes (e.g., Kurz et al., in preparation). As users typically face

their smartphone when using it, and as facial expressions seem

to a promising target of stress research (12, 13), the assessment

of facial expressions via a smartphone front camera might be a

promising avenue for stress assessment. Empirically, previous

research on the relationship between stress and facial expressions

found a link between arousal and visible facial expressions, as

activity in several facial action units (AUs), which correspond to

facial expressions, correlated with markers of the

psychophysiological stress response (14). Another study found

that reporting fear vs. indignation after a stress induction task

was related to differential patterns in cortisol and cardiovascular

activity (15). Lastly, one study found that not only confrontation

with a stressor, but also anticipatory appraisal of a potentially

stressful situation induced a cardiovascular stress response,

highlighting how not only the presence of a “real” stressor but

also our psychological appraisal can influence physiological

responding (16). In a recent study (12, 13, 17, 18), we developed

and evaluated a novel smartphone-based training to reduce stress

by reacting to stress-related cognitions with facial expressions of

positive and negative emotions, providing data on both

emotional facial expressions during smartphone use and self-

reported stress levels, which could be used to explore various

emotional facial expressions as a marker for subjective stress.

In recent years, several researchers have successfully developed

algorithms to detect stress based on video data of facial expressions,

with accuracies of up to 88.32% (19–28). However, many of these

studies use data collected in measurement setups in which stress

was induced through performance demands (20, 23, 25, 27, 28)

or in situations where individuals were prone to experience

elevated stress, such as driving (21). Secondly, studies focused

mostly on the role of negative emotions in stress prediction (22,

24, 26). Thirdly, the previously mentioned studies have employed

classification instead of prediction approaches, which limits the

applicability to real-world contexts, in which stress may change

continuously and in nuanced patterns, and few studies validated

their findings against a standard measure of stress. Lastly,

research on the role of facial emotional expressions in the stress

process has been hindered by the fact that detecting and labeling

emotional expressions in video recordings by human raters,

although reliable (29), requires intensive training and time (30).

In recent years, software such as OpenFace2.0 (31) have

harnessed machine learning (ML) approaches to allow for

automatic detection of facial emotional expression in video data,

extracting landmarks that can be used in further analyses using

ML methods.

In summary, whereas these studies offer important insights in

the role of facial expressions under stress, several gaps remain:

Firstly, many studies experimentally induced high levels of stress

and study its consequences. Less is known about correlates of

subjectively reported stress in conditions where stress was not

explicitly induced. Secondly, it is unclear which specific facial

emotional expressions are associated with subjective stress and

not only negative, but positive emotions should be considered.

Individuals might not only experience stress in situations where

they display negative emotions, but also when they display facial

expressions of positive emotions. Different emotions with the

same valence might be differentially associated with subjective

stress levels (15). Lastly, current methods of detecting stress from

facial expressions still often require extensive laboratory

setups (32–36).

To address these gaps, this study analyzes videos of facial

emotional expressions recorded via smartphone in a setting in

which participants were prompted to display facial expressions of

both negative and positive emotions (12, 13, 17, 18), but where

stress was not directly induced. In the current study, we

examined whether the extracted visual features processed with a

Random Forest (RF) regression algorithm relate to subjectively

reported stress.
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2 Methods

This study is a secondary analysis of data from a randomized

controlled pilot study which evaluated a smartphone-based

intervention aimed to reduce stress. A detailed description of the

study procedure can be found in the protocol paper (for the

protocol paper, see 37). This study did not evaluate the efficacy

and clinical potential of the intervention. The evaluation of the

randomized controlled pilot study can be found elsewhere (13,

17, 18). The study was conducted in accordance with the

declaration of Helsinki and ethical approval was obtained by the

university’s ethical review board. The study was preregistered in

the German clinical trials register (Deutsches Register Klinischer

Studien; DRKS00023007).

2.1 Participants

Individuals with elevated stress (n = 80) were recruited through

advertisements in public places in Erlangen, a medium-sized

German city. Participants were eligible to participate in the study

if they (1) reported elevated levels of stress, corresponding to a

score of 19 or higher in the German version of the Perceived

Stress Scale-10 (PSS-10, 4, 38), (2) were ≥18 years, and (3)

provided informed consent. Exclusion criteria were (1) acute

severe psychiatric conditions/symptomatology (e.g., suicidal

ideation, substance abuse, or psychotic symptoms), physical

impairment of facial emotion expression (e.g., facial paralysis),

and heavy smoking (due to the assessment of salivary cortisol,

see protocol paper; 33). In this study, we analyzed data of n = 69

participants who were allocated to the experimental conditions,

as only participants in these conditions were asked to display

emotional facial expressions.

2.2 Procedure

Participants completed a 4-day training aimed to reduce stress.

Stress was not specifically induced before the training, instead,

participants were invited to work on their stress that arose from

day-to-day life. The training required the display of various facial

emotional expressions in response to written statements

displayed on a smartphone screen. The statements included

potentially stress-reducing beliefs (e.g., “It is okay to make

mistakes.”) and stress-increasing beliefs (e.g., “I always have to be

perfect.”). Participants were instructed to distance themselves

from the stress-inducing beliefs by displaying negative facial

emotional expressions (such as anxiety, anger, sadness, or

disgust) and approach stress-reducing beliefs by displaying

positive facial emotional expressions (such as joy, relaxation,

confidence, or pride). Participants were randomly allocated to

eight different intervention groups (six intervention and two

control conditions). The six intervention groups differed in the

negative facial emotional expressions participants were asked to

display. Participants in the first group (n = 10) were asked to

display anxiety in response to stress-inducing statements, the

second group (n = 10) was asked to display anger, the third

group (n = 10) was asked to display sadness, the fourth group

(n = 10) was asked to display disgust, and the fifth and sixth

groups (total n = 20) were asked to display all four negative

emotions in varying ratios with the positive emotions (1:1 vs.

1:4). The emotions were chosen from the six basic emotions (39)

and relaxation. Different experimental groups performed

different negative emotions as the aim of the original study was

to compare variations of the training enhanced by different

emotions (37). Participants in all groups were asked to display

the same positive facial emotional expressions (training day 1:

joy, relaxation, and love; day 2: excitement, tranquility, and

gratitude; day 3: happiness, resolve, and contentment; day 4:

courage, confidence, and pride). The order of the emotions

across days was determined before the beginning of the study to

include a variety of different positive emotions. Participants were

given examples on how the emotional expression could be

performed by the experimenter and viewed videos of an actor

displaying the different emotional expression on the study

smartphone. The experimenter highlighted that these options

should only serve as examples, and that the participant could

perform the emotional expression as they would normally do

(e.g., in terms of intensity, accompanying gestures, etc.). During

the training session, participants’ facial emotional expressions

were recorded with a video camera and the experimenter

provided feedback whether the expression had been performed

correctly. To monitor participants’ compliance with the

instructions, the experimenter additionally rated the perceived

quality of the facial emotional expressions in face and body.

Participants in the active control condition (n = 10, not included

in this study) were not specifically asked to display facial

emotion expressions and participants in the inactive control

condition (n = 10, not included in this study) did not participate

in any laboratory intervention A full description of the study

procedure can be found in the protocol paper (12).

2.3 Measures

A full overview of all outcome assessed in the study can be

found in the protocol paper (12). This study included two

measures of stress, the PSS-10 (4) and a one-item stress measure.

The PSS-10 (4) was assessed before the first training day (T1),

after the last training day (T2), and 1 week after the last training

day (T3). Participants rated statements regarding their stress level

during the past week on a 5-point Likert scale (0 = never to

4 = very often). The German version of the PSS-10 has been

found to have good reliability (Crohnbach’s alpha = 0.84; 38). As

the PSS-10 records stress experienced within the past week, it

was included in this study to capture stress experienced over a

longer period of time.

Stress at the time of assessment was assessed before the first

study session and after the last study session with one self-

constructed item using an 11-point Likert scale (0 = not at all to

10 = very much). The question stated (1) “Please indicate how
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stressed you feel at the moment” (current stress). This measure was

included to capture participants’ stress at the time of assessment.

The item had a medium test-retest reliability, with a correlation

of r = .29 between the two assessment time points.

2.4 Statistical analyses

2.4.1 Facial emotion detection
Data on facial emotional expressions collected during the

training session was used to explore associations with stress

experienced over the past week (assessed with the PSS-10 at the

beginning of the study) and with stress experienced at the time

of assessment (assessed with the one-item stress measure at the

beginning of the study).

To analyze facial emotional expressions, we employed the

Facial Action Coding System (FACS), which provides a

standardized taxonomy for observable and anatomically

grounded movements of facial muscles (40). FACS assign a

unique code to each AU, thereby enabling researchers to

systematically analyze and classify facial expressions.

OpenFace2.0 (31) was utilized for extracting facial behavior

features. This open-source toolkit enables real-time analysis of

facial videos. Among the extracted parameters are (1) AUs, (2)

facial landmarks, (3) eye gaze, and (4) head pose. OpenFace2.0

accurately predicts the presence and intensity of a subset of 18

AUs, namely AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10,

AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU28,

and AU45). The intensity of an AU is defined on a 5-point scale

(0 = not present to 4 = present at maximum intensity). The tool

achieves an average Concordance Correlation Coefficient (CCC)

of 0.73 on the DISFA dataset (31), indicating an agreement of

73% between the predicted AU intensities by OpenFace2.0 and

manually annotated AU intensity in the DISFA dataset (41).

Apart from AUs, facial landmarks also represent key facial

features such as eyes, nose, mouth, and consist of 64 locations

(2D and 3D) extracted per video frame. Along with these

parameters, the angle of left and right eye gaze is given in

radians. We analyzed the entire duration of the experiment using

video recordings captured with a frame rate of 30 frames per

second (fps). Additionally, the analysis incorporates the three-

dimensional head position relative to the camera, in addition to

rotational data: roll (rotation around the head’s front-to-back

axis), pitch (rotation around the head’s side-to-side axis), and

yaw (rotation around the head’s vertical axis). This ensured

comprehensive coverage of all emotional expressions exhibited by

participants, rather than focusing only on specific movements.

In the next step, noise in the data was reduced in a four-step

approach. Firstly, with the aid of the attribute “Confidence” in

OpenFace 2.0, frames where less than 80% of the face were

visible (e.g., during the start and end of the video where

participants sometimes moved out of the recorded frame) were

excluded. Secondly, only frames where the AU was 100% present

were considered. We followed this approach as AUs are the

primary features considered in this work and the AUs of interest

might not be visible in all frames of the video if the participant

had difficulties performing the emotional expression. Thirdly, the

mean and standard deviation of the features across the video

were computed to reduce noise and to capture the variability of

emotional expression over the video. The missing values induced

through the calculation of standard deviation were systematically

eliminated p � 0:05.

2.4.2 Training of machine learning models

To develop a stable model for detecting subjective stress scores

from emotional facial expressions, we employed Random Forest

(RF, 68) and Extreme Gradient Boosting (XGBoost, 37) as two ML-

based regression techniques. The features derived from the video

data served as input. These features were considered as the

independent variables, whereas the stress score was considered as

the dependent variable. The methodology followed a structured

pipeline comprising feature standardization, hyperparameter tuning

via cross-validation, model training using optimized parameters,

and performance evaluation. Prior to training, we standardized the

feature set to ensure that all input variables had a mean of zero

and a standard deviation of one. As we used ensemble methods in

our ML models, we included standardization as a preprocessing

step to mitigate the impact of varying feature scales and enhances

model stability. This transformation prevents features with larger

magnitudes from disproportionately influencing the model, thereby

ensuring a more balanced learning process.

To optimize the predictive performance of both models, we

applied a hyperparameter tuning approach using randomized

grid search within a five-fold cross-validation framework. Cross-

validation ensures that the model generalizes well by evaluating it

across multiple subsets of the data, thereby reducing the risk of

overfitting. The tuning process was carried out in the following

steps: Firstly, a predefined range of hyperparameters was

established for both the RF and XGBoost models. Secondly,

randomized grid search was conducted to sample

hyperparameter combinations from the defined space, enabling

efficient exploration of the parameter landscape without an

exhaustive search. Thirdly, five-fold cross-validation was

employed during the search process, splitting the dataset into five

subsets where, in each iteration, the model was trained on four

subsets and validated on the remaining one. Lastly, the best-

performing hyperparameters were selected based on the lowest

mean squared error (MSE) observed during cross-validation.

Once the optimal hyperparameters were identified, both the RF

and XGBoost models were trained using five-fold cross-validation

to ensure consistent performance across different data partitions.

Prior to the model training, feature selection was performed

using the SelectKBest method with an ANOVA F-test, retaining

750 most relevant features out of the original 1,315 features. This

step not only enhanced model interpretability by focusing on the

most informative features but also served as a dimensionality

reduction technique, mitigating potential overfitting.

We first employed a RF regression algorithm, an ensemble

learning method that enhances predictive accuracy and reduces

overfitting (42). RF operates by constructing multiple decision

trees during training and aggregating their predictions. This

ensemble approach minimizes variance and improves
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generalization. The algorithm utilizes bootstrapping and bagging

techniques, where bootstrapping generates diverse datasets by

randomly sampling from the original data with replacement, and

bagging ensures each tree is trained on a different subset of data.

This de-correlation of data contributes to a more robust

predictive model by mitigating overfitting. For this study, we

employed the optimized RF regressor with the best-selected

hyperparameters, ensuring that the model effectively learned the

relationship between the facial features extracted from video data

and the subjective stress scores of participants.

In addition to the RF model, we also trained an XGBoost

regression model to predict subjective stress scores. XGBoost is an

advanced gradient boosting framework that builds trees

sequentially, where each new tree corrects the errors of its

predecessors. Unlike traditional boosting methods, XGBoost

incorporates advanced regularization techniques such as L1 and L2

regularization, which improve generalization and reduce the risk of

overfitting. It also employs a weighted quantile sketch algorithm for

efficient handling of sparse data and parallelized tree construction

for computational efficiency. Moreover, XGBoost utilizes a unique

split-finding algorithm that balances model complexity and

predictive performance, making it well-suited for structured data

applications. With these optimizations, the XGBoost model was

trained using the optimized hyperparameters, following the same

five-fold cross-validation process as the RF model.

2.4.3 Model evaluation

The models were trained using the facial features extracted

through OpenFace as input. The stress levels based on the PSS-

10 and the one-item stress measure served as labels. For model

evaluation, Mean Absolute Error (MAE) and Mean Squared

Error (MSE) were used. MAE quantifies the average magnitude,

while MSE emphasizes larger error due to squaring. Lower values

for both metrices indicate better performance.

The mathematical representation of MAE and MSE are

as follows:

MAE ¼
1

n

Xn

i¼1

jyi � ŷij

Where:

n: Number of data points
yi Actual value of the target variable for the ith data point
ŷi Predicted value of the target variable for the ith data point

MSE ¼
1

n

Xn

i¼1

(yi � ŷi)
2

Where:

n: Number of data points
yi Actual value of the target variable for the ith data point
ŷi Predicted value of the target variable for the ith data point

MAE treats all errors equally due to its absolute nature and does

not adequately penalize large errors or outliers. In contrast, MSE

squares errors, thereby heavily penalizing large errors. In this

study, both metrics were evaluated. The algorithm, however, tried

to minimize MSE. The code that was used to generate and train

the model is available under OSF.io (https://osf.io/ksyda/?

view_only=5da173bacf4b485bb9e6e28510d3844b).

3 Results

3.1 Demographic characteristics

The demographic information for the sample is presented in

Table 1. Overall, the sample was mostly female, highly educated,

and young, with a mean age of 21.36 (SD = 16.65; range from 19

to 46). Descriptive statistics for PSS-10 and the one-item stress

measure are presented in Table 2. Correlations between the PSS-

10 and the one-item stress measure are displayed in Table 3.

Neither baseline scores of the PSS-10 [t(67) =−0.41, p = .682], nor

of the one-item stress measure [t(67) = 0.66, p = .514] differed

significantly between male and female participants.

TABLE 1 Demographic characteristics of the sample (n = 69).

Variable Frequency (percentage)

Gender

Male 14 (20.29%)

Female 55 (79.71%)

Occupation

Student 1 (1.44%)

University student 62 (89.86%)

Employee 6 (8.70%)

TABLE 2 Means (M ), standard deviation (SD), minimum (min) and
maximum (max) for PSS-10 scores and one-item stress measure at pre-
and post-assessment (n = 69).

Variable Pre Post

M (SD) Min Max M (SD) Min Max

PSS-10 20.17 (6.10) 5 33 15.72 (6.32) 0 31

Current stress

(one-item measure)

4.17 (2.07) 0 8 3.51 (2.08) 0 9

TABLE 3 Pearson correlations between the PSS-10 and the one-item
stress measure at pre- and post-assessment (n = 69).

Measures Measures

PSS-10,
t1

PSS-10,
t2

One-item
measure, t1

One-item
measure, t2

PSS-10, t1 – – – –

PSS-10, t2 .54 – – –

One-item

measure, t1

.54 .17 – –

One-item

measure, t2

.34 .52 .29 –
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3.2 ML model metrics

Table 4 illustrates the error metrics for the prediction of PSS-10

scores across considered emotions, while Table 5 presents the

corresponding metrics for the prediction of the one-item stress

measure. The MSE and MAE for PSS-10 predictions were 2.07

and 0.82, respectively, when all emotions are considered. For the

one-item stress measure, the MSE and MAE were 0.41 and 0.35,

respectively. The R2 score for PSS-10 prediction was 0.94 and

that of one-item stress measure was 0.9 (Tables 4, 5).

4 Discussion

The aim of this exploratory study, conducted as a secondary

analysis of data from a randomized controlled pilot study on a

novel emotion-based intervention to reduce stress (12), was to

assess how facial emotional expressions relate to stress. Previous

studies have found the emotion-based intervention to be

acceptable and clinically effective (13, 17, 18). Using video data

collected during emotion-evoking smartphone use, we found that

facial emotional expressions can be used to predict stress, as

assessed using both the PSS-10 and a one-item stress measure,

with low model error. The evaluation of XGBoost and RF

algorithms across two different stress prediction tasks

demonstrated marked differences their performance,

generalization capability, and potential overfitting tendencies.

Overall XGBoost achieved lower MSE and MAE on the test set

compared to RF, indicating higher robustness and better

generalization to unseen data. This was particularly evident for

the one-item stress measure, where XGBoost’s average test MSE

(2.31) was notably lower than RF’s (3.86). Findings for PSS-10

were similar, as XGBoost maintained lower test errors, which

indicates its advantage for handling structured tabular data with

complex patterns. The performance advantage of XGBoost could

be attributed to its gradient boosting approach, which

sequentially corrects errors from previous iterations and enabling

fine-tuned predictions. Additionally, XGBoost’s built-in L1 and

L2 regularization mechanisms helped control overfitting and

ensure stable generalization. In contrast, RF exhibited higher test

errors (particularly for MSE) which indicated a tendency to

overfit. The larger gap between training and test errors in RF

suggests that its reliance on bagging, which reduces variance but

does not explicitly refine errors iteratively, might lead to

suboptimal generalization compared to boosting techniques.

TABLE 4 MSE and MAE error metrics for the RF and XGBoost algorithms for the training and test data sets for the PSS-10.

Emotion Algorithm

RF RF XGBoost XGBoost

MSE MAE MSE MAE

Train Test Train Test Train Test Train Test

Joy 19.17 24.94 3.65 4.14 23.73 32.77 4.01 4.76

Love 19.00 27.12 3.60 4.30 23.98 32.32 4.05 4.71

Relaxation 18.77 26.10 3.58 4.22 24.68 34.62 4.07 4.88

Anger 18.45 21.46 3.42 3.73 14.15 29.23 2.84 4.22

Disgust 19.77 21.53 3.73 3.87 13.53 15.95 2.75 2.97

Sadness 2.59 2.40 0.03 1.05 5.34 6.48 1.83 2.01

Anxiety 6.81 7.81 2.14 2.29 0.46 2.50 0.38 0.89

All emotions 25.10 25.65 4.12 4.16 25.83 26.32 4.10 4.14

MSE, mean squared error; MAE, mean absolute error.

TABLE 5 MSE and MAE error metrics for the RF and XGBoost algorithms for the training and test data sets for the one-item stress measure.

Emotion Algorithm

XGB XGB RF RF

MSE MAE MSE MAE

Train Test Train Test Train Test Train Test

Joy 2.40 2.92 1.32 1.46 2.89 4.01 1.43 1.72

Love 2.01 2.84 1.22 1.45 2.78 3.79 1.41 1.66

Relaxation 1.99 2.90 1.21 1.46 2.57 3.97 1.33 1.68

Anger 2.00 2.23 1.20 1.27 2.61 3.66 1.31 1.56

Disgust 2.03 2.88 1.09 1.50 2.09 3.36 1.24 1.57

Sadness 1.35 2.54 0.97 1.34 0.70 2.24 0.67 1.23

Anxiety 0.13 2.05 0.22 1.02 0.28 1.89 0.34 1.01

All emotions 2.12 2.31 1.26 1.32 3.45 3.86 1.56 1.69

MSE, mean squared error; MAE, mean absolute error.
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An important difference between the two algorithms was found

for their performance on data from different emotional

expressions: For positive emotions such as joy, love, and

relaxation, and higher stress levels in PSS-10, both models

showed similar performance trends. However, RF exhibited a

larger discrepancy between training and test errors, indicating

mild overfitting. The improvement for test MSE with XGBoost

(e.g., 2.92 for joy vs. 4.01 for RF) indicates that it can capture

emotional patterns without overfitting. For anger and disgust,

XGBoost significantly outperformed RF, with the largest

performance gap observed in disgust (RF test MSE: 3.36 vs.

XGBoost test MSE: 2.88). This suggests that RF might struggle

with generalizing lower-intensity or nuanced emotional

expressions, potentially due to noise sensitivity in bagging-based

approaches. For the prediction of anxiety, the overfitting issue in

RF was most pronounced (train MSE: 0.28, test MSE: 1.89).

Similarly, train MSE values were significantly lower than test

MSE values for PSS-10, which indicates that RF memorized the

training data rather than learning generalizable patterns. In

contrast, XGBoost maintained a more balanced train-test error

ratio, which indicates that it can capture complex stress patterns.

Another important finding was that both models had important

performance differences when aiming to detect subtle changes in

stress. In general, and particularly for higher PSS-10 scores,

XGBoost showed consistent test errors across multiple runs, while

RF exhibited fluctuating test performance. This shows that

boosting techniques like XGBoost are more stable for analyzing

psychological stress prediction. Similarly, RF exhibited overfitting

tendencies for lower stress in PSS-10, with an increase in test

errors compared to training errors. XGBoost had a more stable

train-test error relationship, which might make it more suitable to

detect subtle psychological patterns. Taken together, these findings

highlight the potential applicability of XGBoost-based automated

emotion and stress recognition systems for psychology, where

reliability, stability, and generalization are paramount.

From a psychological perspective, several study design features

might explain these findings. Firstly, in line with the hypothesis

that both stress and emotion are linked through arousal and

appraisal processes (43, 44), anger, disgust, and sadness might

have been characterized by higher arousal and the activation of

more AUs (45), which might have increased the number of

parameters that could be extracted in OpenFace and used as the

basis for model evaluation. In line, emerging literature on

changes in facial emotional expressions under stress indicates an

association between stress and emotions such as anger (46) and

activity in the musculus corrugator supercilii (47), which is

associated with negative facial emotional expressions (42, 48). In

turn, positive emotional expressions (joy, love, relaxation) might

have been characterized by weaker facial muscle activity, making

them more difficult to detect with OpenFace. Secondly, it should

be noted that there was a gender imbalance of the sample, with

80% of participants being female. However, males and females

have been only found to differ with regard to the frequency with

which different emotions are displayed and not how they are

displayed (49–52). As all participants in the current study were

instructed to perform the same emotional expressions and there

were no significant differences in baseline stress, it is unlikely

that the gender imbalance may have impacted the results. Lastly,

despite being routinely used as a measure of stress in many

studies (53), the accuracy for models including stress assessed

with the PSS-10 (4) was slightly lower than that for the one-item

stress measure. Whereas the PSS-10 asked participants to rate

their stress experienced during the past week, the one-item

measure asked participants to indicate their current stress at the

time of assessment. Thus, the response in the one-item stress

measure might have more closely reflected participants’ stress at

the time of video data collection (54–57).

This study yields several important implications: Firstly, this

study is one of the first to use a prediction instead of a

classification algorithm. Previous studies (21–23, 25–27) have

used classification approaches to distinguish stressed from non-

stressed individuals using ML approaches. However, instruments

such as the PSS-10 (4) capture subjective stress on a continuous

scale, making prediction approaches more suitable for capturing

nuanced changes in stress. Secondly, this study shows that that

stress detection using ML-based analysis of video data is also

possible in contexts in which stress was not directly induced

(albeit individuals may have experienced some degree of stress

due to the study context), contrasting previous studies that used

data from contexts in which stress was directly induced through

performance demands or individuals were likely to experience

high levels of subjective stress (see e.g., 21, 22) or have used

standardized laboratory paradigms such as the TSST (11).

Although this study has shed light on potential new methods of

stress detection, there are several important limitations to be

considered: Firstly, we predicted stress based on a pre-specified

set of positive and negative facial emotional expressions instead

of spontaneously expressed emotions and subjective emotion

intensity was not assessed. Furthermore, we did not ask

participants how strongly they experienced the emotion in

question. Additionally, individuals may differ in their facial

expressiveness (e.g., due to differences in cultural background,

emotion regulation, and personality structure), which might

impair prediction accuracy for individuals with low

expressiveness and overall model generalizability. Fourthly, we

used a one-item rating to assess momentary stress over the

course of the study. While this is a valid and frequent procedure

in longitudinal psychological studies (54), the measure was not

previously validated. Lastly, the sample size was relatively small,

and the sample was not representative of the general population,

limiting the generalizability of the findings.

From these limitations, several directions for future research

can be derived: Firstly, further investigation into hybrid models

combining RF and XGBoost could be beneficial, leveraging the

variance reduction of bagging (RF) and sequential refinement of

boosting (XGBoost). Additionally, feature engineering techniques

such as interaction terms, domain-specific transformations, and

deep feature selection could further enhance model accuracy.

Secondly, the unobtrusive, video-based measurement setup used

in the current study could complement widely used, but often

intrusive and distracting measurement paradigms employed in

clinical psychological research and practice. A next step in
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research could be to connect these existing methods (55, 56) to

develop minimally invasive measurement set-ups. Sensor fusion

approaches could leverage input from various sensors, collecting

data on different physiological systems to develop multi-modal

stress detection systems and explore whether including

physiological parameters such as heart rate, voice, and respiratory

activity can improve prediction accuracy. These approaches

should be evaluated in real-time scenarios, as in-the-moment

stress detection using smartphone data could allow the delivery

of just-in-time interventions (57–59) to target stress as it

emerges. Samples should be representative of the general

population to avoid biases and allow for higher generalizability of

the results. In this context, researchers should specifically explore

potential differences between genders (49, 50, 60) and individuals

from various cultural backgrounds. Additionally, studies should

also consider the role of positive emotions, as researchers have

long argued that positive emotions may also serve important

functions in the stress process (61) preliminary evidence suggests

that deliberately showing expressions of positive emotions can

decrease the detrimental effects of stress (62). Using ML models,

a previous study was able to successfully distinguish self-reported

distress from eustress (63). Future works should consider the

impact of positive stress-related emotional experiences and

distinguish between eustress and distress states. Finally, as these

methods allow for unobtrusive measurement of inner states,

research in this context should be accompanied by ethical

considerations to ensure that measurement setups comply with

ethical standards (64, 65). In ML contexts, special care should be

taken to ensure that the resulting model is free of biases (66, 67),

highlighting the need for appropriate data samples (in terms of

gender, ethnicity, and socioeconomic background). Additionally,

stress is a sensitive psychological state, so stress detection models

should comply with data privacy laws and protect the healthcare

information of their users.

As an interdisciplinary study connecting biopsychological

stress research and ML methods, this study highlights how an

this perspective can advance psychophysiological stress research.

Using contactless approaches to detect indicators of inner states

(such as macro- or even micro movements) might offer novel

ways of measuring psychological processes.

5 Conclusion

This study aimed to explore whether macro movements in the

form of emotional facial expressions recorded on video can be

correlated with subjectively experienced stress. Using both a RF

and XGBoost algorithm, we found that overall model accuracy

for stress scores was good, with model accuracy being better for

negative facial emotional expressions. XGBoost demonstrated

better generalization, particularly for subtle patterns in emotional

intensity and stress levels. This makes it a more reliable choice

for real-world applications where unseen data distributions must

be handled effectively. RF exhibited higher overfitting tendencies,

particularly in lower-intensity emotions (e.g., disgust) and

complex psychological states (e.g., anxiety, PSS-10 scores).

Additional regularization strategies or hybrid approaches may be

required to enhance its generalization. By demonstrating that

stress can be inferred from facial emotional expressions, this

study further contributes to the emerging field of research on

non-invasive methods to detect inner states and offers important

opportunities for further research to improve diagnostic methods

in psychology.
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