AUTHOR=Rupp Lydia Helene , Kumar Akash , Sadeghi Misha , Schindler-Gmelch Lena , Keinert Marie , Eskofier Bjoern M. , Berking Matthias TITLE=Stress can be detected during emotion-evoking smartphone use: a pilot study using machine learning JOURNAL=Frontiers in Digital Health VOLUME=Volume 7 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1578917 DOI=10.3389/fdgth.2025.1578917 ISSN=2673-253X ABSTRACT=IntroductionThe detrimental consequences of stress highlight the need for precise stress detection, as this offers a window for timely intervention. However, both objective and subjective measurements suffer from validity limitations. Contactless sensing technologies using machine learning methods present a potential alternative and could be used to estimate stress from externally visible physiological changes, such as emotional facial expressions. Although previous studies were able to classify stress from emotional expressions with accuracies of up to 88.32%, most works employed a classification approach and relied on data from contexts where stress was induced. Therefore, the primary aim of the present study was to clarify whether stress can be detected from facial expressions of six basic emotions (anxiety, anger, disgust, sadness, joy, love) and relaxation using a prediction approach.MethodTo attain this goal, we analyzed video recordings of facial emotional expressions collected from n = 69 participants in a secondary analysis of a dataset from an interventional study. We aimed to explore associations with stress (assessed by the PSS-10 and a one-item stress measure).ResultsComparing two regression machine learning models [Random Forest (RF) and XGBoost], we found that facial emotional expressions were promising indicators of stress scores, with model fit being best when data from all six emotional facial expressions was used to train the model (one-item stress measure: MSE (XGB) = 2.31, MAE (XGB) = 1.32, MSE (RF) = 3.86, MAE (RF) = 1.69; PSS-10: MSE (XGB) = 25.65, MAE (XGB) = 4.16, MSE (RF) = 26.32, MAE (RF) = 4.14). XGBoost showed to be more reliable for prediction, with lower error for both training and test data.DiscussionThe findings provide further evidence that non-invasive video recordings can complement standard objective and subjective markers of stress.