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Background: Wearable devices offer innovative solutions for chronic pain (CP)

management by enabling real-time monitoring and personalized pain control.

Although they are increasingly used to monitor pain-related parameters, their

potential for predicting CP progression remains underutilized. Current studies

focus mainly on correlations between data and pain levels, but rarely use this

information for accurate prediction.

Objective: This study aims to review recent advancements in wearable

technology for CP management, emphasizing the integration of multimodal

data, sensor quality, compliance with data security standards, and the

effectiveness of predictive models in identifying CP episodes.

Methods: A systematic search across six major databases identified studies

evaluating wearable devices designed to collect pain-related parameters and

predict CP. Data extraction focused on device types, sensor quality,

compliance with health standards, and the predictive algorithms employed.

Results: Wearable devices show promise in correlating physiological markers

with CP, but few studies integrate predictive models. Random Forest and

multilevel models have demonstrated consistent performance, while advanced

models like Convolutional Neural Network-Long Short-Term Memory have

faced challenges with data quality and computational demands. Despite

compliance with regulations like General Data Protection Regulation and ISO

standards, data security and privacy concerns persist. Additionally, the

integration of multimodal data, including physiological, psychological, and

demographic factors, remains underexplored, presenting an opportunity to

improve prediction accuracy.

Conclusions: Future research should prioritize developing robust predictive

models, standardizing data protocols, and addressing security and privacy

concerns to maximize wearable devices’ potential in CP management.

Enhancing real-time capabilities and fostering interdisciplinary collaborations

will improve clinical applicability, enabling personalized and preventive

pain management.
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1 Introduction

Chronic Pain (CP) is a major public health issue affecting

millions of people worldwide, causing significant physical,

emotional, and financial challenges (1, 2). Approximately 10% of

the global population experiences CP (3, 4), with some studies

reporting prevalence rates between 20% and 77% in certain

countries (5–9). CP is often associated with various health

problems, including musculoskeletal disorders, neuropathies, and

chronic diseases, which frequently reduce quality of life and

impair functionality. According to the World Health

Organization, the most common form of CP is low back pain,

which has impacted 619 million people in 2020. This number

will increase to 843 million by 2050, primarily due to population

growth and aging (10). Traditional methods for reducing CP,

such as medications, interventional procedures, physical and

psychological therapies, and lifestyle approaches have shown

limited long-term effectiveness (2, 11). These approaches lack

real-time monitoring, may cause side effects, and are not always

tailored to individual pain patterns. This reinforces the need for

more effective and customized solutions.

Wearable technologies are emerging as innovative, non-intrusive

solutions to pain management. They enable real-time data collection,

continuous monitoring, enhanced patient engagement, and reduced

dependence on pharmaceuticals (12, 13). Such technologies have

been shown to improve communication between patients and

healthcare providers (14). However, despite the increasing number

of research on digital tools for managing CP, existing studies have

primarily focused on detecting pain severity (15–17) and improving

adherence to prescribed treatments (18–20). Previous article reviews

provided an overview of digital technologies for pain management.

Although they reported various physiological signals such as heart

rate, muscle activity, and sleep patterns (16, 21, 22) for pain

monitoring, and explored the usability and feasibility of health tools

(23–25), they do not adequately address the predictive capabilities

of these technologies. Many of them emphasize the correlation

between pain and physiological data without addressing the quality

of the data collected by the different types of sensors and the

predictive potential of the wearable device, in order to anticipate

CP episodes. Furthermore, most studies are limited to controlled

settings, bypassing the importance of real-world data and

longitudinal analysis for proactive CP management.

This review focuses on predictive models for CP using wearable

devices by highlighting how these technologies can not only

monitor CP but also anticipate its intensity through multimodal

data. Indeed, pain is a complex phenomenon, encompassing

sensory perception as well as behavioral, physiological and

psychological responses (26). Therefore, its management requires a

multidisciplinary approach, involving expertise in medicine,

psychology, physiotherapy and social sciences for a comprehensive

understanding and treatment. Another key aspect of this study’s

contribution is the priority given to data security, privacy

protection, and compliance with health data standards in the use of

these devices. While much research has explored the usability and

technical aspects of wearable devices (21), there is an insufficient

consideration given to the security and privacy of sensitive health

information. With the rise of cyberattacks and the increasing need

to safeguard personal data, data security and privacy in healthcare

systems have become crucial (27, 28). This presents a major

challenge, as both device and software security must be ensured.

Addressing these factors is essential for developing effective tools for

CP management. Sensor capabilities, data security, and standards

compliance are closely interconnected in the context of predicting

CP using wearable devices. Synergy between these aspects is

essential to ensure the accuracy of the collected data, its protection

against unauthorized access, and its use in compliance with

regulatory requirements.

This scoping review presents a novel framework for managing

CP by examining device technologies, addressing legal

considerations such as data privacy, regulatory compliance, and

ethical concerns, and highlighting predictive modeling based on

multimodal data from wearable sensors. To the best of our

knowledge, no review published to date has emphasized the

importance of combining various types of data (physiological,

behavioral, environmental factors, etc.) to improve the accuracy

and reliability of CP prediction models while deepening the data

security and privacy requirements. In doing so, we aim to

provide more robust methods for secure, compliant, and

comprehensive pain management tools, ultimately benefiting

designers, users and healthcare providers.

2 Methods

To systematically analyze studies focusing on CP and wearable

devices, this review was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis-Scoping Review (PRISMA-ScR) guidelines (29). We

followed the structure defined by Arksey and O’Malley (30),

comprising five stages: (1) defining the research question; (2)

identifying relevant studies; (3) establishing eligibility criteria for

study selection; (4) charting the data; (5) summarizing and

reporting the results. Adhering to these stages facilitated a

comprehensive mapping of the literature and a synthesis of

findings related to CP prediction.

2.1 Review questions

This review aims to address the following questions regarding

technologies designed to collect data related to CP: (a) Which

wearable devices, through their algorithms and monitoring

capabilities, can help detect or prevent chronic pain? (b) How do

these devices comply with regulatory standards to ensure data

security and protect user privacy? (c) What key features

contribute to their effectiveness for chronic pain prediction?

2.2 Identifying relevant studies

The search strategy was developed using keywords and terms

existing on pain management technologies. It included three
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main steps: step 1) identifying terms related to chronic pain (e.g.,

persistent pain); step 2) defining terms related to wearable

devices (e.g., wearable technology); and step 3) combining

parameters from steps 1 and 2 to retrieve references covering

both concepts. Studies were extracted across six databases

(PubMed, Web of Science, Scopus, Engineering Village, IEEE

Xplore, and Google Scholar) from the inception of the database

to November 4, 2024, with no limit on publication year applied.

The first 155 results from Google Scholar and all identified

studies from the other databases were imported into Covidence

systematic review software (31) for duplicate removal.

Furthermore, an additional manual search of reference lists

within relevant systematic reviews was conducted. The search

strategy was tailored to each database, giving priority to articles

in English or French. The detailed search strategy is presented

in Supplementary Material.

2.3 Eligibility criteria

Eligible studies for addressing our third review question must

include participants experiencing chronic pain, defined by the

International Association for the Study of Pain (IASP), as “pain

that persists or recurs for longer than three months” (32). Only

studies utilizing wearable devices for CP prediction were included.

Studies involving invasive technologies, non-autonomous systems,

robotic systems or exoskeletons, and studies only exploring

relationships between biometrics data (e.g., heart rate variability,

skin conductance) and CP without developing predictive models

were excluded. To extend the literature scope and guide future

research, all experimental study designs were considered. However,

protocols, reviews, books, abstracts, editorials, commentaries,

dissertations, and poster presentations were excluded. In cases

where the same author has multiple publications on this review

topic, the publication with the most comprehensive and updated

data was prioritized while ensuring relevance to the scoping review

objectives. Studies were also excluded if they focused on activity

recognition or virtual reality systems, or had other purposes.

2.4 Data charting

The relevant information was extracted and synthesized:

(1) authors, publication year and country; (2) sample size and

participants characteristics; (3) intervention settings (e.g.,

hospital, home, or laboratory); (4) type of the wearable device

used; (5) prediction models and their accuracy; (6) outcomes,

focusing on technical effectiveness, usability, data security, and

conformity to relevant norms and standards.

2.5 Summary and report of the results

The summary and report included an overview of current

wearable devices described in the literature, the representation of

the most used prediction models, sensing elements and biometric

variables across the extracted studies. Additionally, a table is

included to illustrate how these devices align with different

health standards. An in-depth analysis of the included studies

was conducted to identify limitations in the predictive models,

thereby providing valuable information to guide future research.

3 Results

The literature search identified 613 references, which were

screened for relevance. After removing duplicates, 334 studies

were retained for further analysis. Of these, 72 studies were

eligible for full-text review. Sixty-two (62) studies were excluded

from the analysis for several reasons: they either did not use

recorded parameters to predict pain, did not involve patients

with CP, or focused exclusively on interventions aimed at

reducing CP (e.g., physical therapy, medication trials) without

addressing predictive methodologies, such as the use of predictive

algorithms. As a result, 10 studies met the inclusion criteria for

this scoping review. The study selection process is detailed in the

flowchart presented in Figure 1.

3.1 Sensing elements and predictive models
for chronic pain

Different tools have been used over the past three years in

scientific papers for CP prediction/detection (Figure 2). Wearable

sensors, including accelerometers and optical sensors, enable real-

time monitoring of physiological parameters such as heart rate and

step count. These advancements not only aid in the prediction of

CP but also enhance patient engagement and preventive health

management. Figure 3 illustrates the various algorithms, sensing

elements, and predicted variables used in CP prediction. Methods

such as Random Forest algorithms, accelerometer sensors, and key

variables like movement intensity, heart rate, heart rate variability,

and electrodermal activity (EDA) have shown particular

effectiveness. These approaches provide valuable information into

CP intensity and its modulation, which could enable more precise

and personalized pain management strategies.

3.2 Multimodal for chronic pain prediction

The studies summarized in this scoping review have achieved

varying levels of accuracy, using a number of technologies

(Figure 2) and models (Table 1). More than half of the studies

focused on patients with an average age above 40 years (Table 1).

Notably, one study was conducted in a naturalistic setting,

collecting data from 688 patients with CP. The remaining were

conducted in clinical, home and/or laboratory settings. A variety

of subjective pain scales, including self-report measures such as

the Visual Analog Scale (VAS), the McGill Pain Questionnaire,

and the Brief Pain Inventory, are employed by these studies to

validate pain intensity. In addition, our scoping review

specifically examined how physiological data were combined to
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other parameters for predicting pain intensity. While some studies

demonstrate a combination of specific physiological markers

correlated with self-reports pain, no study has revealed how

factors such as demographic and clinical characteristics,

environmental factors, and technology adoption can provide

more comprehensive information on chronic pain prediction

(Figure 4). Table 2 summarizes the use of multimodal inputs and

highlights their potential complementary contributions to CP

prediction, emphasizing the missed opportunity for more

integrated modeling approaches in the current literature.

FIGURE 1

PRISMA flow chart for study selection.
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3.3 Data security, privacy and standards
compliance in wearable devices for CP

While all these devices (Figure 2) are wearable smart devices, they

collect, store, process, treat, and deliver data. These data are

considered personal data and must be protected and handled

securely to ensure the privacy of healthcare information. For these

reasons, many industry standards and regulations, presented in

Table 3, provide guidelines and techniques to ensure data security

in connected devices, including healthcare devices. Indeed,

industrial standards like ISO 27001 require conformity with

techniques such as data encryption, user authentication, data

masking, access control, secure development lifecycle, backup and

restore management, protection against malware, equipment

maintenance, and compliance with data protection regulations.

Table 4 outlines the challenges, methods as well as some

FIGURE 2

Overview of wearable chronic pain management devices. For more information on these devices, please refer to the following ref. [21, 38, 40, 42, 43,

45, 64].

FIGURE 3

Predictive models, sensors, and variables used across literature for predicting chronic pain. CNN-LSTM, convolutional neural network-long short-term

memory; MLM, multilevel model; RF, random forest; LMMs, linear mixed-effects models; ACC, accelerometer; BVP, blood volume pulse; EDA,

electrodermal activity; Resp, respiration sensor; EMG, electromyography; ECG, electrocardiogram; HR, heart rate; HRV, heart rate variability; SC,

skin conductance; STS: sit-to-stand.
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TABLE 1 Study characteristics and model performance for chronic pain prediction.

Author
(ref)

Year Country Participants’ characteristics & Settings CP prediction features Outcomes

Sample size
(health status)

Age in years
(mean ± SD or

Range)

Settings Wearable
Type

Model
performance

Correlation scale

Dudareva et al.

(40)

2024 Canada 66 (with CP) 22–79 Home Wrist-worn Biostrap (t-test)

b = 0.012, P = 0.005

Standard 11-point pain

scale

A predictive relationship between sleep heart rate

and next-day pain intensity (P < 0.05).

Dorris et al.

(46)

2024 USA 688 (with CP) and

3552 (without CP)

49.54 ± 18.38 Naturalistic

setting

ActiGraph (AM-

7164)

AUC validation = 0.60,

AUC test = 0.57

Pain Questionnaire (home

interviews)

CP could be predicted using daily activity

movement intensity.

Gungormus

et al. (38)

2024 Spain 67 (adults with

rheumatic disease)

65 — 90 Multicenter Empatica E4 p = 0.001, adjusted

R2 = 0.154

McGill Pain Questionnaire Significant predictive values of HRV, SC,

perceived stress, and stress vulnerability in

relation to pain qualities and thresholds.

Patterson et al.

(39)

2023 USA 15 (twelve years of CP) 52.25 ± 9.7 Home and

Clinical

Apple ® Watch

(Series 3)

Accuracy = 0.768 ± 0.012 Numerical rating scale The model could predict the pain intensity of

mild, moderate, and severe.

Perraudin et al.

(62)

2018 Ireland 30 (with arthritis) 15

(healthy participants)

31 — 75 Home ActiGraph GT9X N/A Patient report outcomes

containing 0–10 numerical

scale

Able to predict the severity of morning pain and

stiffness via 5×STS duration, disease type, and

gender.

Critcher et al.

(63)

2023 USA 20 (with and without

knee osteoarthritis)

73.5 ± 8.26 N/A Smart knee brace P < 0.05 Monthly pain self-reported Increased resistance and decreased reactance per

unit length were linked to higher knee pain risk.

Luebke et al.

(41)

2023 Germany 72 (52 with CP and 20

healthy subjects)

18 — 65 Laboratory Empatica E4,

respiBAN, and

Electrodes

91.67% (using 31 features) Visual Analogue Scale Electrodermal activity is the best marker for

distinguishing between low and high pain levels.

Jacobson et al.

(48)

2021 USA 68 (54.41% with CP) 41.28 ± 8.11 Clinical Actigraph 74.63% accuracy Brief Pain Inventory Results suggest that digital biomarkers can

predict pain severity, pain chronicity, and worry

severity with high precision.

Sett et al. (45) 2019 Switherland 45 (30 arthritis patients

and 15 healthy

volunteers)

47.5 ± 4.5 Home Actigraph GT3X

Link

AUC: 0.79 (±0.18) Pain was recorded on a

0–10 scale

Physical activity is correlated with pain and

stiffness and can predict daily pain of arthritis

patients.

Stojancic et al.

(64)

2023 USA 20 (with sickle cell

disease)

30 — 41 Clinical Apple® Watch

(series 3)

37.72%

69.06%

84.52%

11-point pain scale The best-performing model was the random

forest model, which was able to predict the pain

scores with an accuracy of 84.5%, and a RMSE

of 0.84.

AUC, area under the curve; N/A, not available; STS, sit-to-stand; RMSE, root mean square error; CP, chronic pain; HRV, heart rate variability; SC, skin conductance.
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recommendations that should be considered when using those

techniques. These recommendations are based on several different

sources, showing the different challenges and methods of the

techniques used. Personal data protection regulations such as the

GDPR (General Data Protection Regulation) require that

individuals whose data is being collected must be informed about

the data being collected, and they must be able to access, rectify, or

delete it. The regulation also defines restrictions and special

requirements for data transferred both locally and internationally.

GDPR mandates that data collection be minimized to what is

strictly necessary for the intended purposes. The results reported in

Table 5 show the conformity of each device with one or more of

the mentioned industrial standards and regulations.

4 Discussion

Advancements in artificial intelligence and predictive analytics

offer promising opportunities for predicting chronic pain (CP)

intensity and tailoring interventions. In the following subsections,

we discuss various aspects involved in designing wearable devices

for managing CP.

FIGURE 4

Percentage of studies by parameter combination for chronic assessment purpose. HR, heart rate; HRV, heart rate variability; EDA,

electrodermal activity.

TABLE 2 Summary of multimodal data sources and their potential contributions to CP prediction.

Modality Sensors/sources Features Potential contribution to CP
prediction

Physiological Wearables, biosensors (e.g., EDA

sensors)

HR, HRV, SC, activity level, sleep metrics Captures real-time physical responses to CP

Demographic Surveys, EHR Age, sex, ethnicity, education level, employment Provides baseline risk factors and stratification across

populations

Clinical Medical records, clinician input Pain history, comorbidities, medications,

diagnoses

Offers diagnostic context and longitudinal health status

Psychological Questionnaires (e.g., BDI) Anxiety, depression, catastrophizing, mood Adds subjective and cognitive dimensions of pain

experience

Behavioral Smartphone use, app logs, passive

monitoring

Sleep patterns, mobility, communication, app

interactions

Reflects daily functioning, lifestyle, and behavioral

adaptations

Environmental/

Contextual

GPS, weather data, social context logs Location, ambient temperature, social setting Accounts for external triggers and modulators of CP

Self-reported Pain surveys Pain intensity, duration, interference, triggers Provides subjective ground truth and context-rich

annotations

CP, Chronic Pain; HR, heart rate; HRV, heart rate variability; EHR, Electronic Health Record; BDI, Beck Depression Inventory; GPS, Global Positioning System; EDA, Electrodermal Activity;

SC, skin conductance.
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4.1 Sensing elements

Sensing elements play a crucial role in acquiring biometric and

environmental data. Our findings reveal that certain sensors, such

as the accelerometer and optical sensors, are widely used (Figure 3),

underlining their importance in pain management. These sensors

seem to be preferred for their availability, ease of integration into

wearable devices and ability to provide reliable data in real time.

For example, accelerometer are essential for applications such as

step counting and posture analysis (33–36), while optical

sensors provide precise heart rate measurements using

photoplethysmographic methods (37–40). In contrast, other

sensors such as temperature, ECG, and EMG, although

valuable in specific contexts, are less commonly used

(Figure 3). This may be due to constraints such as higher cost,

larger size, or probably the complexity of interpreting the data

they generate. Finally, the use of specialized sensors, such as

EDA sensors, reflects a growing interest in psychophysiological

measures such as perceived stress (38, 41). The use of such

type of sensor (EDA) indicates a trend towards more focused

sensors for CP assessment. Overall, our findings underline the

evolution of demand for advanced instrumentation, with an

emphasis on the preference for versatile and easily integrable

sensors. This present scoping review also suggests a

reconsideration of design strategies to incorporate specialized

sensors where they can enhance predictive models.

4.2 Sensor data quality

When assessing the quality of sensor data for CP monitoring, only

devices such as Empatica 4, Polar V800, and Shimmer Sensor

(Figure 2) appear to provide features that are suited to tracking

physiological and behavioral parameters associated with pain (42,

43). Indeed, high-quality sensors ensure accurate computation of

critical parameters such as heart rate variability, skin conductance,

movement patterns, and sleep quality, which are critical indicators in

chronic pain studies (38, 41). Moreover, Shimmer sensor and

Empatica 4, which comply with standards such as ISO 13485 and

HIPAA (Health Insurance Portability and Accountability),

demonstrate the reliability and accuracy required for medical-grade

applications (Table 5). Specifically, Empatica 4 stands out in

particular in the field of continuous monitoring, thanks to its ability

to detect substantial changes in stress and autonomic responses,

facilitating the assessment of CP (38, 41). The accurate and

consistent data provided by these sensors offer valuable information

into pain triggers, individual response patterns, and treatment

effectiveness, making them indispensable tools for researchers and

clinicians in CP management.

4.3 Predictive models for chronic pain

Random Forest (RF) demonstrated strong performance across

multiple studies, achieving notable accuracy levels such as

0.768 ± 0.012 (39); 91.67% (41) and 84.52% (44) (Figure 3,

Table 1). This consistency highlights its efficiency in handling

large datasets with non-linear relationships. In addition, its area

under the curve (AUC) of 0.79 ± 0.18 in one study (45)

demonstrates its robustness in classifying pain vs. no pain,

particularly in scenarios requiring a balance between sensitivity

and specificity. Multilevel Model (MLM) regression also shows

significant predictive power, with a t-test coefficient of 0.012 and

p-value of 0.005, indicating its statistical reliability in capturing

relevant data patterns for CP prediction (40). Similarly, the

stepwise method, although less used across studies (Figure 3),

achieved an adjusted R² of 0.154, p = 0.001 (Table 1), indicating

moderate predictive ability in the dataset used (38). In contrast,

deep learning methods such as Convolutional Neural Network-

Long Short-Term Memory (CNN-LSTM) produced weaker

results, with AUC values of 0.60 for validation and 0.57 for testing

(46), which may reflect challenges in optimizing these models.

However, their ability to extract features and model time series

suggests that, with improved data quality or tuning, they could

provide more significant advantages (47). XGBoost delivered an

accuracy of 74.63%, demonstrating its reliability in scenarios with

well-preprocessed datasets (48). This performance makes it a

viable alternative for real-time CP prediction. Our review

highlights the trade-offs inherent in the choice of predictive

algorithms. Indeed, for predicting CP, we can note that traditional

machine learning models such as RF and MLM regression are

more dominant (Figure 3), likely due to their reliability and ease

of implementation. However, advanced techniques such as CNN-

LSTM and XGBoost are also becoming more popular, especially in

scenarios requiring computational efficiency (49). Our results

underline the importance of aligning algorithm selection with the

specific characteristics of the dataset and the prediction of CP.

4.4 Multimodal data integration

This study also emphasizes the crucial importance of integrating

multimodal data to improve the prediction of CP. While

TABLE 3 List of industry standards and regulations.

Standard /
Regulation

Description

ISO13485 Medical devices — Quality management systems —

Requirements for regulatory purposes

ISO27001 Information security, cybersecurity and privacy protection —

Information security management systems — Requirements

ISO27701 Security techniques — Extension to ISO/IEC 27001 and ISO/IEC

27002 for privacy information management — Requirements

and guidelines

ISO62304 Medical device software — Software life cycle processes

GDPR General Data Protection Regulation (Europe)

HIPAA Health Insurance Portability and Accountability Act (United

States)

PIPEDA The Personal Information Protection and Electronic Documents

Act (Canada)

NIST SP 800-53 Security and Privacy Controls for Information Systems and

Organizations

FIPS 140-3 a U.S. government computer security standard used to approve

cryptographic modules
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TABLE 4 Challenges and recommendations for wearable devices used in chronic pain prediction.

Theme Challenges Methods Recommendations

Data encryption Encryption is not useful when:

– Using weak keys

– Key management are uncontrolled

– Used algorithms are vulnerable

– Symmetric Encryption Method: Using the same

private key to encrypt and decrypt data.

– Asymmetric Encryption Method: Using both

public key and private key to encrypt and

decrypt data. Used keys are

mathematically linked.

– Hybrid Encryption Method: is a combination

between symmetric and asymmetric encryption

method (65).

For healthcare connected systems, it is

recommended to use Hybrid Encryption

Method (66).

User

authentication

Each method of user authentication has its own

disadvantages. But, in general all authentication

systems can sometimes fail, locking out legitimate users

or, conversely, failing to block unauthorized access due

to technical glitches.

– Password based authentication

– Multifactor authentication

– Biometric authentication

– Single Sign-on authentication

– Token based authentication

– Certificate based authentication (67)

For connected devices included healthcare

devices, it is recommended to use:

– Password based authentication

– Multifactor authentication

– Certificate based authentication (68)

Data masking Data masking is not useful when:

– Data loss due to inaccurate data masking

– Incomplete data protection due to the potential for

reverse engineering of datasets

– Data Pseudonymization

– Data Substitution

– Data Scrambling

– Data Shuffling (69, 70)

N/A

Access control – Excessive permissions and exceptions

– Choosing the appropriate access control model to

guarantee adequate security and

employee productivity.

– The Mandatory Access Control (71)

– The Role-Based Access Control

– The Discretionary Access Control

– The fourth and final access control model is

Rule-Based Access Control

N/A

Data

minimization

The most popular challenge with data minimization is

to know what information you need to collect.

N/A N/A

Secure

Development Life

Cycle

Taken into consideration security aspects in all the

development life cycle steps.

No specific method, we must take into

consideration security aspect in the development

life cycle from requirement to deployment.

N/A

Backups and

restore

management

Backups and restore may require a lot of time when it is

done manually and may need a lot of storage when you

have a big amount of data.

Backup management (72)

– Cloud Storage

– 3-2-1 Backup rule

– Hybrid backup solutions

– Periodic automated backup

– Onsite backup

N/A

Protection against

malware

The major downside to any antivirus software is that it

can’t protect your devices and data from every attack, as

various types of threats are constantly evolving and

being created.

– Install anti-malware software on the devices

(73)

– Apply threat detection and response procedures

to identify malware and prevent it

from spreading

– Ensure that files uploaded are properly scanned

– Implement security at the web browser level

Install anti-malware software on the

devices

Software/

hardware

maintenance

– Cost: Software maintenance can be time-consuming

and expensive and may require significant resources

and expertise.

– Schedule disruptions: Maintenance can cause

disruptions to the normal schedule and operations

of the software, leading to potential downtime

and inconvenience.

– Corrective Maintenance (74)

– Adaptive Maintenance

– Perfective Maintenance

– Preventive Maintenance

– Perfective Maintenance

– Preventive Maintenance (75)

N/A, not available.

TABLE 5 Health standards applied to the wearable devices displayed in Figure 2.

Device HIPAA GDPR ISO 27001 ISO 27701 NIST SP 800-53 FIPS 140-3 ISO 13485 ISO 62304

Actiwatch 2 ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✔

Actical ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✔

Shimmer sensor ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘

Polar V800 ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Actigraph GT3X ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✘

Empatica 4 ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘

Apple Watch S3 ✘ ✔ ✔ ✘ ✘ ✔ ✘ ✘

HIPAA, health insurance portability and accountability Act; GDPR, general data protection regulation; FIPS, federal information processing standards; NIST, national institute of standards

and technology.
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physiological data such as HR, HRV, physical activity and EDA

present objective information (41, 45), they may fail to capture the

subjective and contextual dimensions of pain. Similarly,

demographic and clinical characteristics present essential

information, but lack specificity when used alone. The absence of

studies (Figure 4) exploiting fully combined parameters shows a

missed opportunity to model the complex and multifaceted nature

of CP. Combining diverse data sources could improve predictive

accuracy by capturing the interplay between biological,

psychological and environmental factors, ultimately leading to

more personalized and effective CP management strategies.

To facilitate this integration, a structured approach is necessary.

Multimodal data can be processed using advanced modeling

techniques such as feature-level fusion (e.g., concatenating

features before model input) (50), decision-level fusion (e.g.,

ensembling predictions from unimodal models) (51), or

representation learning approaches like deep learning, which can

automatically capture cross-modal interactions (52). For example,

synchronizing physiological signals with self-report pain ratings

(Table 1) could provide a more comprehensive view of CP

experience. Table 2 summarizes the various data types and their

potential contributions to CP prediction, highlighting how each

modality could add unique value. Such integration will not only

enhance model interpretability and generalizability, but also

enable the way for real-time, adaptive systems capable of

supporting dynamic, personalized CP management.

4.5 Data security, privacy and compliance
with health standards

Manufacturers like Philips, Shimmer, Polar, ActiGraph,

Empatica and Apple, reported their compliance with several

industry standards and regulations related to data security and

privacy. However, companies like Microsoft and Biosignalsplux,

have not reported any compliance with any of the mentioned

standards and regulations (Table 3). Table 5 summarizes the

compliance status of different devices with the industry standards

and regulations.

For Actiwatch2 and Actical, Philips, the manufacturer,

mentioned several implemented measures to protect personal

data and ensure all data security collected by those devices (53).

For shimmer sensors and Polar V800, the manufacturer does not

have access to the data. All collected, transferred and stocked

data are handled by the end user. When a device is returned for

maintenance, the manufacturer ensures that all data is

immediately deleted. For these reasons, the applicable techniques

and methods (Table 4) are not relevant. Thus, there is no

information about the maintenance of the software and the

hardware (54). The Microsoft band 2 lacks detailed

documentation since it is no longer available on the market. We

have not found any reliable information about the techniques

and methods used. ActiGraph GTX3 and Empatica4, both of the

manufacturers, ensure that they take reasonable and appropriate

measures to protect personal data, but there is not enough

information for the used methods (55, 56). Regarding the Apple

Watch Series 3, Apple decided that this model will no longer

receive updates to watchOs 9, and support for watchOs 8 will

also be discontinued (57). So, this device becomes vulnerable.

Two main issues arise across these devices. First, there is a huge

amount of data to be stored and transferred which increases the

complexity of the data security process. Second, devices like

Biosignalsplux, which do not provide data storage in cloud or in-

premise servers, place the recorded data in the hands of the end

user. Despite compliance with industrial standards and

regulations by manufacturers, data privacy and protection

continue to be at risk, as end users, including researchers, must

also follow the good practices described in Table 4.

4.6 Challenges and perspectives for
improvement

Beyond the promise of technology integration in CP

management, significant challenges remain in realizing the full

potential of these innovations. Data privacy concerns,

interoperability issues between different systems and disparities in

access to technology are key obstacles to the widespread adoption

of technological CP management solutions. The need to ensure that

patient data is protected and that technologies work smoothly

across different platforms is essential to building trust and efficiency

(58, 59). Similarly, in the context of predictive algorithms and

sensing elements, there are notable challenges. One of the main

issues is the variability in model performance across studies, as

shown by the large fluctuations in the accuracy of models, whose

results range from 37.72% to 91.67% (Table 1). Furthermore, the

CNN-LSTM model showed low AUC values (0.60 for validation

and 0.57 for testing), highlighting the need for greater consistency

in predictive capabilities. These inconsistencies underline the need

to improve the quality and standardization of the datasets used for

training and validation to ensure more reliable and reproducible

results. Furthermore, the computational complexity of advanced

models such as CNN-LSTM could limit their applicability in real-

time systems, particularly in resource-constrained environments.

Additionally, integrating various sensing elements such as EDA,

ECG, accelerometers, and others presents challenges related to

sensor fusion and data synchronization (60). These issues can affect

prediction accuracy, making it difficult to achieve consistent and

meaningful results across diverse populations and conditions.

To overcome these challenges, future research should focus on a

variety of strategies. Standardizing data collection and preprocessing

will help ensure data quality and comparability, facilitating the

training of more robust and generalizable models. Optimizing

feature selection techniques, tailored specifically to the

characteristics of the collected data, is essential to improve the

performance of predictive algorithms (41). Adapting models to the

specific application will help improve their relevance and

effectiveness in the real world (52). Refining the real-time

capabilities of these systems is also crucial, as the ability to provide

immediate feedback based on continuous data streams could greatly

improve patient outcomes. Moreover, promoting interdisciplinary

collaboration between data scientists, clinicians, engineers, and
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healthcare providers will be crucial to develop more practical and

reliable predictive systems that can be integrated into clinical practice.

Longitudinal studies are needed to investigate the temporal

relationships between physiological changes and CP episodes.

Such research would help to understand how individual

physiological profiles change over time and how these changes

correlate with CP outcomes (61). Personalized algorithms that

predict CP outcomes based on these profiles could enable great

potential to improve pain management by tailoring interventions

to the unique needs of each patient. In addition, emerging

technologies, such as wearable sensors and advanced machine

learning algorithms (21), provide exciting opportunities for real-

time monitoring. These innovations could enable continuous

monitoring of pain-related physiological parameters, allowing for

more dynamic and responsive pain management strategies that

adapt to the needs of the individual in real time. However,

integrating these technologies into clinical practice will require

overcoming existing barriers and ensuring that the systems are

both clinically effective and accessible to diverse populations.

Moreover, compliance with industry standards and regulations

(Table 3) will be essential to ensure data security and privacy.

Conclusion

Wearable devices offer significant potential for chronic pain

(CP) management through real-time monitoring and personalized

treatments. However, their ability to predict the evolution of CP

remains limited, as most studies focus on the correlation between

physiological markers and CP rather than predicting CP episodes.

In this scoping review, we focused on predictive models for CP as

well as the possibility of integrating multimodal data, combining

physiological, psychological, and demographic factors. While

models such as Random Forest are promising, more complex

algorithms face challenges related to data quality and

computational limitations. Data security and privacy also remain

major concerns. Although many proposed devices for CP adhere

to regulations such as GDPR and ISO, there are still gaps in user

data protection. Future research should focus on developing robust

predictive models, addressing security issues, and standardizing

data protocols. These efforts will enhance the efficacy and clinical

applicability of wearable devices, facilitating more efficient and

personalized pain management solutions.
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