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Introduction: Heart Failure (HF) complicated by thyroid dysfunction presents a

complex clinical challenge, demanding more advanced risk stratification tools.

In this study, we propose an AI-driven machine learning (ML) approach

to predict mortality and hospitalization risk in HF patients with coexisting

thyroid disorders.

Methods: Using a retrospective cohort of 762 HF patients (including euthyroid,

hypothyroid, hyperthyroid, and low T3 syndrome cases), we developed and

optimized several ML models—including Random Forest, Gradient Boosting,

Support Vector Machines, and others—to identify high-risk individuals.

Results: The best-performing model, a Random Forest classifier, achieved robust

predictive accuracy for both 1-year mortality and HF-related hospitalization (area

under the ROC curve ∼0.80 for each). We further employed model

interpretability techniques (Local Interpretable Model-agnostic Explanations,

LIME) to elucidate key predictors of risk at the individual level. This

interpretability revealed that factors such as atrial fibrillation, absence of

cardiac resynchronization therapy, amiodarone use, and abnormal thyroid-

stimulating hormone (TSH) levels strongly influenced model predictions,

providing clinicians with transparent insights into each prediction. Additionally,

a multi-objective risk stratification analysis across thyroid status subgroups

highlighted that patients with hypothyroidism and low T3 syndrome are

particularly vulnerable under high-risk conditions, indicating a need for closer

monitoring and tailored interventions in these groups.

Discussion: In summary, our study demonstrates an innovative AI methodology

for medical risk prediction: interpretable ML models can accurately stratify

mortality and hospitalization risk in HF patients with thyroid dysfunction,

offering a novel tool for personalized medicine. These findings suggest that

integrating explainable AI into clinical workflows can improve prognostic

precision and inform targeted management, though prospective validation is

warranted to confirm realworld applicability.
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1 Introduction

Heart Failure (HF) is one of the leading causes of morbidity

and mortality globally, imposing a significant burden on

healthcare systems and the quality of life of patients.

Concurrently, thyroid dysfunctions, particularly hypothyroidism,

have been associated with worsening clinical outcomes in

patients with HF, adversely affecting prognosis. Recent studies

underscore that subclinical hypothyroidism (SH) significantly

raises the risk of cardiovascular mortality in HF patients,

emphasizing the need for precise monitoring and intervention

strategies (1). Optimal ranges of thyroid-stimulating hormone

(TSH) and free thyroxine (FT4) levels are linked to reduced

mortality risks, suggesting that both high and low extremes can

worsen HF outcomes (2). Previous studies have demonstrated

that hypothyroidism can negatively impact cardiac function and

increase the risk of developing HF. Recent meta-analyses have

confirmed that subclinical hypothyroidism is associated with an

increased risk of all-cause mortality and hospitalization in

patients with HF, highlighting the importance of thyroid

evaluation in this population (3). However, the relationship

between hypothyroidism, HF, and mortality remains complex

and multifactorial, requiring further exploration for optimal

patient management.

The complexity of clinical management of this patient cohort

underscores the need for advanced tools for accurate and

personalized risk assessment. Machine learning (ML) has shown

revolutionary capabilities in the medical field, particularly in

predictive medicine, where complex models such as XGBoost,

Random Forest, and LightGBM have managed large volumes of

clinical data and identified complex patterns not immediately

apparent to human analysis (4). Recent advancements, such as

the use of SF-IIAdaboost algorithms integrating IoT and AI, have

achieved high predictive accuracy in cardiovascular contexts,

underscoring the potential for enhanced prognostic precision (5).

The use of advanced ML algorithms has enabled the

identification of clinical and biochemical features that predict

mortality risk, examining how these interact with each other and

with the patient’s baseline condition. Such models have been

shown to improve risk stratification and treatment

personalization in patients with HF, including those in a

hypothyroid state (6). In patients with HF, ML analysis has

identified prognostic phenotypes, facilitating the application of

precision medicine. This approach is particularly relevant for

hypothyroid patients, who present a unique disease dynamic

compared to patients with overt thyroid dysfunction (7).

This work aims to explore the application of ML in estimating

the mortality risk in hypothyroid patients suffering from HF, with a

particular emphasis on the analysis of age and TSH levels as

prognostic factors. Through the analysis of a large cohort of

cardiac patients stratified by thyroid conditions, this study aims

to develop ML models that provide accurate estimates for two

main targets: mortality and hospitalization in this specific

population. Our goal is twofold: on one hand, to contribute to

the scientific literature by offering insights into the underlying

mechanisms of the association between thyroid conditions and

HF; on the other hand, to provide healthcare providers with an

innovative tool for improving risk stratification and personalizing

therapeutic strategies.

The core of this work involves the presentation of the research

methods used to develop the ML models, including feature

selection, model training, and validation. Finally, the results are

analyzed in detail, highlighting how various factors contribute to

predicting the risk of mortality and hospitalization in patients

with HF and how these models can be employed in clinical

practice to support more informed therapeutic decisions.

The use of ML in predicting mortality risk in patients with HF

could mark a significant advancement in managing this complex

intersection of conditions. This study aims to explore such

potential, opening new frontiers in cardiovascular and

endocrinological research. By highlighting these computational

underpinnings, the manuscript extends the theoretical

understanding of explainable AI in clinical contexts and bridges

the gap between algorithmic transparency and medical

applicability. The article begins in Section 2 with a

comprehensive background, offering an overview of related

studies and showcasing the unique benefits and objectives of this

research. In Section 3, the methodology is detailed, guiding

readers through the study’s innovative approach. Section 4 dives

into a discussion of the primary findings, spotlighting key results

and their implications. Finally, the conclusion ties everything

together, underscoring the study’s contributions and

future directions.

2 Background

The growing awareness of the negative impact of

hypothyroidism on patients with HF underscores the need for

comprehensive risk assessment and personalized management

strategies. Studies have shown that hypothyroidism, including its

subclinical form, is prevalent among HF patients and

significantly contributes to an increased risk of mortality,

hospitalization, and deterioration of cardiac function.

Amiodarone, a commonly used antiarrhythmic drug, has been

identified as a determining factor in the onset of hypothyroidism

in this population (8). Research highlights the importance of

monitoring TSH levels as a key indicator of thyroid function in

these patients. It has been demonstrated that correcting thyroid

hormone deficiency, indicated by elevated TSH levels, leads to

improvements in cardiac function while simultaneously reducing

the risk of hospitalization and mortality. Conversely, worsening

thyroid function, characterized by rising TSH levels, is associated

with a decline in cardiac function and adverse outcomes (9, 10).

Beyond traditional risk markers, the role of N-terminal pro-B-

type natriuretic peptide (NT-proBNP) has emerged as a

significant prognostic factor in patients with suspected HF. Even

in the absence of echocardiographic evidence of HF, elevated

NT-proBNP levels, combined with factors such as advanced age,

male sex, chronic kidney disease (CKD), chronic obstructive

pulmonary disease (COPD), and dementia, have been associated

with higher mortality (11). These findings highlight the complex
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interaction between HF and thyroid dysfunction, suggesting a need

for more sophisticated approaches for accurate risk stratification

and timely interventions.

The emergence of Machine Learning (ML) algorithms such as

XGBoost, Random Forest, and LightGBM offers a promising

avenue forward. These ML algorithms have demonstrated their

ability to discern complex prognostic patterns and improve

treatment personalization in various healthcare contexts,

including predicting acute kidney injury (AKI) following

percutaneous coronary intervention (PCI) in patients with acute

coronary syndrome (ACS) (12). In HF, recent studies indicate

that ML models enhance predictive accuracy for mortality and

readmission by integrating comprehensive clinical data and

managing issues like data imbalance and incompleteness (13).

Advanced deep learning techniques, such as multi-head self-

attention, further improve model performance, particularly in

handling complex and diverse datasets common in HF

populations (14). Applying ML algorithms in this context may

improve the precision of risk assessment and support more

personalized management of patients with HF and

hypothyroidism, although prospective validation is still required.

By harnessing the power of these algorithms, we could develop

predictive models capable of accurately identifying high-risk

individuals for adverse outcomes, allowing for targeted

interventions and improved patient outcomes. Additionally, the

integration of variables such as age and TSH levels into ML

models could provide further insights into the delicate balance

between cardiac and thyroid function. By incorporating these

factors, the resulting models may achieve higher predictive

accuracy, guiding clinical decisions and leading to personalized

treatment strategies.

2.1 Related studies and benefits

Recent scientific literature highlights the effectiveness of ML in

predicting complex clinical outcomes, such as mortality and

hospitalization, especially in patients with endocrine and

cardiovascular comorbidities. Some studies have explored the use

of ML to analyze autoimmune and endocrine diseases, revealing

the significant role that conditions like diabetes and thyroid

disorders play in elevating mortality rates (15). Similarly, other

studies have applied ML to diagnose forms of secondary

hypertension, showing how abnormal TSH levels can influence

cardiovascular risk (16). Additionally, models have emerged

linking diabetes and hypothyroidism with increased mortality in

COVID-19 patients requiring hospitalization (17), while other

research has developed algorithms to predict atrial fibrillation

associated with thyrotoxicosis, emphasizing the importance of

thyroid profiles in heart disease (18). Further investigations into

the connection between subclinical hypothyroidism and

cardiovascular diseases have also examined the potential for

accurately predicting mortality and hospitalization in patients

with HF (19, 20). ML models that incorporate social

determinants of health have also shown promise in predicting

in-hospital mortality for HF patients, illustrating the benefits of

integrating clinical and social factors to improve outcomes in

complex cardiovascular cases (21). Efforts to enhance

cardiovascular risk predictions by integrating factors such as

diabetes and thyroid health have further refined risk stratification

models (22). Additionally, there is promising research on ML

frameworks that predict postprocedural outcomes in

interventional radiology using random forest models, offering

insight into complications, mortality, and length of stay (23).

However, these studies often treat thyroid dysfunctions as one of

many risk variables, without fully exploring their specific impact

on patients with cardiovascular conditions.

This study stands out by providing a detailed, targeted analysis

of the influence of thyroid conditions on clinical outcomes through

an innovative ML approach. Unlike previous studies, this work

focuses specifically on the impact of thyroid dysfunctions,

making each prediction more precise and tailored to clinical

management. Additionally, by using Local Interpretable Model-

agnostic Explanations (LIME), predictions are both transparent

and individualized, allowing clinicians to clearly see how each

clinical variable contributes to the risk of mortality or

hospitalization for each patient, thereby supporting more

informed and personalized decision-making.

The ML analysis also extends to specific patient subgroups,

such as euthyroid and hypothyroid patients, making this study

uniquely comprehensive compared to existing literature. Through

advanced predictive modeling, the study has identified the

absence of Cardiac Resynchronization Therapy (CRT) as a

critical risk factor for mortality in patients with thyroid

dysfunctions, suggesting that targeted interventions could

improve patient prognosis. Another key finding is the association

between low TSH levels and reduced hospitalization risk in

euthyroid patients, introducing new parameters to monitor even

in the absence of overt hypothyroidism or hyperthyroidism.

Finally, ML has enabled the identification of an increased

mortality risk associated with Amiodarone use in patients with

LT3, offering practical insights for optimizing therapeutic

decisions in cardiology.

In summary, this study not only enriches scientific knowledge

but also serves as an innovative pillar for precision medicine in

managing patients with thyroid and cardiovascular comorbidities.

The advanced use of ML enables more accurate and personalized

predictions, thus transforming the quality of clinical care.

2.2 Patient selection

In this study, we examined a cohort of 762 patients to assess

significant clinical outcomes such as HF hospitalization and

mortality over the follow-up period. The patients were monitored

for durations ranging from less than a month to almost 12.7

years, with an average follow-up period of approximately 4.5

years (9).

The selection of participants was meticulously conducted to

include only those subjects for whom complete data were

available regarding arrival date, follow-up date, age, sex, and key

clinical events such as mortality and HF hospitalization. No
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patient was excluded due to a lack of essential data, thus

maintaining the integrity of the cohort.

From a demographic perspective, the average age of

participants at the time of arrival was 63.5 years, ranging from

14 to 89 years. Males constituted 78% of the cohort,

demonstrating a prevalence of this gender. This sex imbalance

reflects the characteristics of the referred population but may also

introduce gender-related bias, particularly relevant given the

higher prevalence of thyroid dysfunction in females. Regarding

clinical outcomes, about 30% of the patients died, and 22%

experienced at least one episode of HF hospitalization during the

follow-up period. All consecutive outpatients with CHF referred

to the HF Unit of the University Policlinic Hospital of Bari from

January 2006 to December 2016 were retrospectively evaluated.

All the evaluations with patients in stable clinical conditions

from at least 30 days and in conventional medical and electrical

therapy from at least 3 months were considered. The adoption of

well-defined inclusion criteria minimized potential biases arising

from incomplete data and enhanced the representativeness

and generalizability of the results. For patients who developed

thyroid dysfunction after their initial evaluation, the clinical

timepoint corresponding to the diagnosis of hypothyroidism,

hyperthyroidism, or low-T3 syndrome was considered as the

analytical baseline (9). This allowed for consistent classification

of thyroid status and ensured that risk predictions were anchored

to the relevant endocrine condition.

3 Materials and methods

The study is based on a dataset of 762 patients and employs

ML techniques implemented in Python to build predictive

models that estimate the risks of mortality and hospitalization.

The main objective is to analyze the influence of various clinical

characteristics, including thyroid variables, on these outcomes.

The analyses were conducted using Orange Data Mining

software version 3.36.2 on an Apple M1 Pro system equipped

with 16 GB of RAM and 1 TB of storage, operating on

macOS Sonoma 14.2.1. This setup, combined with the use of

advanced ML techniques, ensured the efficiency and

reproducibility of our analyses. The importance of such ML

methodologies in extracting meaningful insights and predictive

models from complex datasets has been previously highlighted

and validated in similar studies in the field of health

performance assessment, such as efficiency and mobility (24–27)

and for predicting neurodevelopmental disorders in children

(28). The methodological phases of the study, illustrated in

Figure 1, were developed in a Python environment, highlighting

the key steps of the analysis.

The methodological workflow, illustrated in Figure 1, follows a

multi-step approach organized into key phases:

1. Data preprocessing and handling of missing data: Missing data

is managed through model-based methods that leverage

relationships among variables to estimate missing values,

preserving the original distribution and minimizing

potential bias.

2. Dataset sampling: To assess model robustness, the dataset is

split into a training set and a test set, allowing for rigorous

validation of predictive performance.

3. Selection of ML models: Various ML algorithms are tested,

including Random Forest, Gradient Boosting, Naive Bayes,

Support Vector Machine, K-Nearest Neighbors, Neural

Networks, Decision Trees, AdaBoost, Stochastic Gradient

Descent, and Logistic Regression.

4. Internal Validation and Hyperparameter Optimization:

Techniques such as grid search and cross-validation are

employed to optimize hyperparameters, ensuring that model

performance generalizes and is not limited to the training

set alone.

5. Performance Model Evaluation: An evaluation function is

created to automate model assessment on the test data,

calculating metrics such as area under the ROC curve (AUC),

accuracy, F1-score, precision, recall, and MCC to facilitate

model comparison.

6. Model interpretation with LIME: To interpret predictions,

LIME is used, highlighting the contribution of each variable

to the final prediction and providing visual representations

accessible to a non-technical audience.

7. Evaluation of models on different thyroid conditions: Models

are evaluated on both the entire dataset and subgroups based

on thyroid conditions (Euthyroidism, Hypothyroidism,

Hyperthyroidism, and Low T3 Syndrome). This approach

allows exploration of how model performance varies

according to different thyroid conditions.

In summary, the study adopts a ML approach to develop and

validate predictive models for mortality and hospitalization risks

in cardiology and endocrinology patients. The workflow

FIGURE 1

Workflow diagram for data collection and ML model training.
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incorporates multiple phases, from data preprocessing to model

interpretation, with particular attention to the influence of

thyroid variables.

3.1 Dataset

Initially, we collected a broad set of clinical data, including both

numerical and categorical variables ranging from demographic to

biochemical parameters (29). In accordance with the study

conducted by Iacoviello et al. in 2020, for each patient, the

baseline evaluation was conducted during the first recorded

medical visit. At this stage, a comprehensive medical history,

physical examination, 12-lead ECG, mono- and two-dimensional

echocardiographic evaluation, and blood samples were collected.

For patients who subsequently developed thyroid disorders, the

evaluation corresponding to the diagnosis of hypothyroidism,

hyperthyroidism, or low T3 syndrome (LT3) was considered as

the baseline. During the medical visit, the presence of ischemic

cardiomyopathy, arterial hypertension, atrial fibrillation, and

diabetes mellitus was carefully documented, along with any

previous thyroid disease diagnosis. Data on HF therapy and any

prior or ongoing treatment with amiodarone were also gathered.

Additionally, information regarding the thyroid disease diagnosis

was recorded. The 12-lead ECG was used to assess heart rhythm

and rate. Echocardiographic recordings were obtained using a

phased-array echo-Doppler system (Sonos 5500, Philips,

Netherlands; from September 2008 onward, Vivid 7, GE,

Wisconsin, USA) to estimate the left ventricular ejection fraction

(LVEF) using the Simpson method. At baseline, levels of sodium

(mEq/L), serum creatinine concentrations (mg/dl), and

hemoglobin (g/dl) were measured. The glomerular filtration rate

(GFR, ml/min) was calculated using the EPI formula (30).

Additionally, amino-terminal brain natriuretic peptide (NT-

proBNP, Dade Behring, Eschborn, Germany), free T3 (fT3), free

thyroxine (fT4), and TSH levels were measured through

immunoassays, using the reference ranges provided by the kit

manufacturers (Advia Centaur, Bayer HealthCare, Diagnostics

Division, Tarrytown, NY, US until 2011, and subsequently

Dimension Vista, Siemens Healthcare Diagnostics, Erlangen,

Germany). The resulting dataset with the selected variables is

shown in Table 1.

The table provides a comprehensive description of the variables

used to feed our ML model for predicting two key clinical

outcomes: mortality and hospitalization. The variables are

organized into two main categories, namely Target, which

includes the clinical outcomes of interest, and Feature, which

comprises the relevant clinical and demographic factors selected

to optimize the predictive accuracy of the model.

In the Target category, there are two variables, “Mortality” and

“Hospitalization,” which respectively indicate the occurrence of

patient mortality and hospitalization. Each is coded as a

categorical variable, with the value 1 representing the occurrence

of the event and the value 0 indicating its absence. These targets

serve as the dependent variables of the model, which is trained

to identify and classify the risks associated with each outcome.

The Features include a range of demographic and clinical

variables, carefully selected to identify significant correlations and

enhance the model’s predictive capabilities. Among the

demographic characteristics, MALE GENDER indicates the

TABLE 1 Overview of variables in the dataset.

Model variable Variable name Description Type variable

Target Mortality Patient mortality event (1: Yes, 0: No) Categorical

HF hospitalization Patient hospitalization (1: Yes, 0: No)

FEATURE Male gender Patient’s gender (1: male, 0: female)

Ischemic cardiomiopaty Presence of ischemic cardiomyopathy (1: present, 0: absent)

Diabetes Diabetes diagnosis (1: Diabetic, 0: non-diabetic)

ACEi/ARBs Use of ACE inhibitors or ARBs (1: Use, 0: no use)

Beta-blockers Use of beta-blockers (1: Use, 0: no use)

Diuretics Use of diuretics (1: Use, 0: no use)

Aldosterone antagonists Use of aldosterone antagonists (1: Use, 0: no use)

Amiodarone Use of amiodarone (1: Use, 0: no use)

ICD Implantable defibrillator (1: Present, 0: absent)

CRT Cardiac resynchronization therapy (1: present, 0: absent)

NYHA class NYHA functional class (1, 2, 3)

Atrial fibrillation Presence of atrial fibrillation (1: present, 0: absent)

Age Patient’s age (years) Numerical

BMI Body mass index (kg/m²)

Systolic arterial pressure Systolic blood pressure (mmHg)

LVEF Calculated ejection fraction (percentage)

GFR-EPI Estimated glomerular filtration rate (ml/min/1.73 m²)

Natremia Blood sodium concentration (mmol/L)

NT-proBNP NT-proBNP levels in blood (pg/ml)

FT3 Free triiodothyronine levels (pmol/L)

FT4 Free thyroxine levels (pmol/L)

TSH TSH levels (mU/L)

Iacoviello et al. 10.3389/fdgth.2025.1583399

Frontiers in Digital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1583399
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


patient’s gender, with 1 for male and 0 for female, an important

attribute as gender can influence HF prognosis. The patient’s age

is represented by the continuous numeric variable AGE, allowing

the model to capture risk variations associated with advanced

age. The body mass index BMI, expressed in kg/m², is also

included as a general health indicator, potentially associated with

overall cardiovascular risk.

The clinical variable set consists of critical diagnostic information,

such as the presence of ischemic cardiomyopathy, described by the

variable ISCHEMIC CARDIOMYOPATHY, and diabetes diagnosis,

represented by the DIABETES variable. Both are binary variables

distinguishing between patients with and without these conditions,

each known to negatively impact the progression of HF. Other

clinical variables include pharmacological treatments followed by the

patients, such as the use of ACE inhibitors or angiotensin

receptor blockers ACEinhibitor/ANGIOTENSIN II RECEPTOR

BLOCKERS (ACEi/ARBs), BETA-BLOCKERS, DIURETICS, and

MINERALCORTICOID RECEPTOR ANTAGONISTS. These

medications, coded as 1 for use and 0 for non-use, play a crucial

role in managing symptoms and preventing cardiovascular

complications. The use of AMIODARONE, an antiarrhythmic drug,

is similarly included as a binary variable, as it is relevant for

patients with severe arrhythmias. ATRIAL FIBRILLATION is a key

clinical feature indicating the presence of atrial fibrillation, coded as

1 for present and 0 for absent. This variable is essential for HF

patients, as atrial fibrillation can exacerbate symptoms and increase

the risk of adverse events.

The model also incorporates instrumental characteristics, such

as the presence of an implantable cardioverter-defibrillator ICD

and cardiac resynchronization therapy CRT, both coded to

indicate the presence or absence of the device, respectively with 1

and 0. The patient’s NYHA functional class, categorized with

values from 1 to 3, is another critical clinical parameter, as it

reflects the severity of HF symptoms and helps predict the risk

of adverse events.

The dataset further includes a series of relevant physiological

and biochemical parameters, such as systolic blood pressure,

measured in mmHg, and the calculated ejection fraction (LVEF),

expressed as a percentage, which represent the level of blood

pressure and the heart’s contractile capacity, respectively. Renal

function is evaluated through the estimated glomerular filtration

rate by EPI formula (GFR-EPI), measured in ml/min/1.73 m²,

while blood sodium concentration (NATREMIA) provides

insights into electrolyte balance and fluid regulation, both

relevant to cardiovascular function. Amino-terminal Brain

Natriuretic Peptide (NT-proBNP), a biomarker of HF severity, is

also included and measured in pg/ml to quantify the

condition’s severity.

The dataset is completed by the levels of the thyroid hormones

FT3 and FT4, along with TSH, which offer valuable information

about the patient’s thyroid function. These variables are

particularly significant for patients with thyroid dysfunction,

given their potential impact on outcomes in HF.

This set of variables forms a robust and multidimensional data

foundation essential for training ML models. Through this wide

array of clinical and demographic features, the ML model can

process complex details and identify significant patterns, thereby

providing valuable support in predicting clinical risks and

personalizing therapies for patients with HF and

associated comorbidities.

3.2 Preprocessing and data sampling

These data were meticulously cleaned to eliminate anomalies

and missing values, thereby ensuring the integrity of the dataset

used for model training. The handling of 0.2% missing data was

performed using the model-based imputer with a simple tree

model, through Orange (version 3.36.2), a data mining software

built on open-source Python libraries for scientific computing,

such as NumPy and SciPy. The Impute widget was used for this

purpose, allowing the construction of models to predict missing

values based on the available data in other variables. With the

integration of advanced Python libraries, Orange provides a

powerful interface for imputation and scientific calculations,

enabling accurate estimation of missing values with a simple

decision tree while preserving dataset integrity, even with a low

percentage of missing data.

Mathematically, the imputation process can be represented as

follows: each missing value Xi is estimated using other observed

variables X�i through a function f derived from a simple decision

tree, as shown in (Equation 1):

bXi ¼ f (X�i) (1)

Where bXi denotes the imputed value for the variable Xi, X�i

represents the set of all other observed variables used as

predictors, and f is the function constructed by the decision tree

to predict the missing values.

For continuous variables, this function imputes missing values

as the mean of known values within the relevant leaf node, as

described in (Equation 2):

bXi ¼
1

n

X

j[leaf

Xj (2)

where n is the number of samples in the same leaf node and

Xj represents each known value of Xi within that node. The

summation
P
j[leaf

Xj calculates the total of known values for Xi in

the node, with the division by n yielding the mean.

Equations 1, 2 together provide the general method for

accurately filling in missing values, preserving dataset integrity

for effective model training.

The dataset was divided into a training set (70%) and a

validation set (30%), using this split to minimize the risk of

overfitting and to verify the model’s ability to generalize to

unseen data. This split was done in Python using the

train_test_split command of the sklearn library.

Formally, if we consider X as the set of independent variables

(features) and y as the target, we can represent the data separation
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as shown in (Equations 3, 4):

(Xtrain, ytrain) ¼ {(Xi, yi)j i [ Training set} (3)

(Xtest , ytest) ¼ {(Xi, yi)j i [ Validation set} (4)

where Xtrain and ytrain represent the features and targets of the

training set, respectively, while Xtest and ytest represent the

features and targets of the validation set.

For each model, after training on the training set, we calculate

evaluation metrics on the validation set to assess model

performance. The evaluation function, denoted as Metric,

measures the performance of the optimized model using the

validation set observations, as shown in (Equation 5):

Metric ¼ 1

N

XN

i¼1

L(f (Xtest,i , uopt), ytest,i) (5)

Where f (Xtest,i , uopt) is the model’s prediction for test data point

Xtest,i , using the optimized parameters uopt . ytest,i represents the

actual target value for Xtest,i . L is a loss function that quantifies

the difference between the prediction and the actual value (e.g.,

mean squared error for regression or cross-entropy for

classification). N is the number of observations in the validation set.

Equations 3, 4 describe the division of data into training and

validation sets, while (Equation 5) defines the evaluation metric

to assess model performance after optimization. This approach

ensures that the model is tested on unseen data, providing a

reliable measure of its generalization capabilities.

3.3 Validation and optimization process for
ML models

We explored a broad range of ML algorithms, including

Gradient Boosting, Naive Bayes, Random Forest, AdaBoost,

Logistic Regression, SVM, SGD, Decision Trees, and KNN,

optimizing each to enhance the accuracy of predictions for

mortality and hospitalization risks (31). Previous studies have

demonstrated the effectiveness of ML in cardiovascular risk

stratification, showing that these models outperform traditional

methods in handling complex datasets and modeling non-linear

relationships, thus providing higher sensitivity and specificity (32,

33). The implementation was carried out in a Python

environment, using advanced libraries such as pandas, numpy,

and scikit-learn, with a script that managed data loading,

cleaning, and splitting for model training and validation.

The selected features include 10 numerical and 11 categorical

variables, as outlined in Table 1. After dividing the dataset into a

training set (70%) and a validation set (30%) using the

train_test_split function from scikit-learn, we created pipelines

for each model, applying feature standardization via

StandardScaler. Feature standardization was performed using the

following formula (Equation 6):

Xscaled ¼
X � m

s
(6)

Where X represents the original value of the feature, m is the mean

of the feature values in the training set, s is the standard deviation

of the feature in the training set. This transformation scales the

features to have a mean of zero and a standard deviation of one,

improving the stability and performance of ML algorithms,

especially those sensitive to data scaling.

We developed two distinct predictive models, focusing on

mortality and hospitalization events as target variables for our

patient cohort. Each model was trained separately on target-

specific data and validated to ensure the reliability of the results.

To minimize variance and improve the robustness of

performance estimates, we applied 10-fold cross-validation, in

line with established methods (34). The training process included

a class balancing phase to address the data imbalance for

mortality and hospitalization targets, a common issue in clinical

datasets. Using SMOTE (Synthetic Minority Over-sampling

Technique), we balanced the training set for each target by

creating synthetic samples of the minority class, enhancing the

models’ ability to handle imbalanced data. This approach

improved the sensitivity and specificity of the models, reducing

the risk of misclassifying high-risk patients. The developed

models were rigorously validated using standard metrics such as

the AUC, accuracy, sensitivity, and specificity (35). For each

model, we implemented a hyperparameter tuning phase using

Python’s GridSearckCh, a tool provided by the scikit-learn library

that enables an exhaustive search for the optimal combination of

hyperparameters to maximize model performance. GridSearchCk

evaluates each combination specified in a predefined parameter

grid, applying cross-validation to ensure that the performance

obtained is representative and not overly dependent on the

training data.

We used AUC as the primary metric for hyperparameter

tuning, chosen because it represents the model’s ability to

correctly distinguish between classes, regardless of the

classification threshold. AUC is particularly useful in medical

contexts, where it is crucial to reduce both false positives and

false negatives. A higher AUC indicates a more accurate model

in predicting clinical events such as mortality and hospitalization,

thereby improving the quality of therapeutic decision-making.

Formally, the optimization process aims to maximize AUC by

selecting the optimal set of hyperparameters u, and can be

expressed as follows (Equation 7):

u� ¼ argmax
u[Q

AUC(f (Xtrain; u), ytrain) (7)

Where u [ Q represents the set of hyperparameter

combinations specified in the search grid, f (Xtrain; u) is the

model’s predictive function trained on the training data Xtrain

with parameters u, AUC is the evaluation metric that measures

the area under the ROC curve, representing model performance
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relative to the true values ytrain, u� is the combination of

hyperparameters that maximizes AUC.

In Python, GridSearchCV applies cross-validation to each

combination of hyperparameters u, splitting the training set into

k folds. The cross-validated mean AUC, denoted as AUCcv, for

each fold can be expressed as (Equation 8):

AUCcv ¼
1

k

Xk

i¼1

AUC( f (Xtraini ; u), ytraini ) (8)

Where Xtraini and ytraini represent the training data and targets for

the i-th fold, respectively, k is the number of folds in the cross-

validation. At the end of the procedure, GridSearchCV returns

the combination of hyperparameters u�that maximizes the mean

AUC across folds, providing an optimal configuration that

represents the entire training set and minimizes the risk of

overfitting. This approach ensures that the model is optimized

for class discrimination, enhancing its generalizability to new data.

3.4 Selected ML models post-optimization

After the hyperparameter optimization process and using AUC

as the primary metric to select the most effective model, Random

Forest proved to be the best suited for predicting both the

Mortality target (patient mortality event) and the HF

Hospitalization target (patient hospitalization event). Model

selection was based on comparing the average AUCs obtained

through cross-validation for each model and target.

For predicting both the Mortality and HF Hospitalization

targets, Random Forest showed optimal results. Random Forest is

an ensemble learning method that builds multiple decision trees

during training and combines their predictions to enhance the

model’s accuracy and robustness. The final prediction for each

target using Random Forest, denoted as fRF(X), is obtained by

averaging (for regression) or taking the majority vote (for

classification) across the predictions from all trees, as shown in

(Equation 9):

fRF(X) ¼
1

N

XN

j¼1

fj(X) (9)

Where N is the number of decision trees in the forest, fj(X)

represents the prediction of the j-th tree for input X.

Each tree is trained on a randomly sampled subset of the

training data with replacement, optimizing specifically for the

Mortality and HF Hospitalization targets. The aggregation of

predictions enhances the model’s generalization ability, reducing

the risk of overfitting and stabilizing its capacity to accurately

predict both mortality and hospitalization events.

3.5 Data measurements

In our study, predictive models effectively differentiate between

survival and mortality outcomes among HF patients. These models

categorize observations based on their predictions: an outcome is

identified as either an accurate mortality prediction (TP—true

positive), an accurate survival prediction (TN—true negative), an

incorrectly predicted mortality (FP -false positive), or a missed

mortality (FN—false negative). This classification is vital for

assessing the model’s accuracy and utility in clinical settings.

The model’s performance is evaluated using several metrics,

which are crucial for ensuring accurate and reliable predictions:

• AUC-ROC (Area Under the Curve—Receiver Operating

Characteristics): Measures the model’s discriminative ability

between outcome classes. The ROC curve plots the true positive

rate (TPR) against the false positive rate (FPR) across varying

thresholds u, and the AUC is calculated as (Equation 10):

AUC ¼
ð1

0

TPR [FPR�1(u)] du (10)

This integral covers all possible decision thresholds, providing a

comprehensive measure of predictive accuracy.

• Accuracy: Represents the ratio of correctly predicted instances

(both true positives and true negatives) to the total number of

instances evaluated. It is defined by the following (Equation 11):

Classification Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(11)

• Precision: Indicates the accuracy of positive predictions

(mortality predictions), highlighting the model’s ability to

minimize false alarms, defined as (Equation 12):

Precision ¼ TP

TP þ FP
(12)

• Recall (Sensitivity): Reflects the model’s ability to identify all

actual positive instances (actual mortalitys), which is crucial

for ensuring that no high-risk patients are overlooked, defined

as (Equation 13):

Recall ¼ TP

TP þ FN
(13)

• F1 Score: Combines precision and recall into a single metric,

providing a balanced view of the model’s overall predictive

precision and sensitivity, defined as (Equation 14):

F1 ¼ 2 x
Precision x Recall

Precisionþ Recall
(14)

• Matthews Correlation Coefficient (MCC): A comprehensive

measure that takes into account true and false positives and

negatives, offering a balanced metric even for imbalanced
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datasets. The MCC is especially valuable as it ranges from −1

(total disagreement between predictions and actuals) to +1

(perfect prediction), with 0 indicating no predictive power,

defined as (Equation 15):

MCC ¼ (TP x TN)� (FP x FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP þ FP)(TP þ FN)(TN þ FP)(TN þ FN)

p (15)

Utilizing these metrics ensures a thorough evaluation of the

model’s performance, facilitating improved clinical decision-

making and patient management strategies in HF treatment. The

integration of these diverse metrics, particularly AUC alongside

precision, recall, and F1 score, supports the model’s robustness,

making it a valuable tool in clinical environments.

4 Results and discussion

In this section, we will discuss the selection of ML models used

for risk prediction in patients with HF and thyroid dysfunctions,

provide a detailed interpretation of the results for different

thyroid subgroups, and introduce an experimental section on risk

stratification. The objective is to explore the models’ performance

and evaluate their clinical applicability in the context of

personalized risk management.

4.1 Performance of the selected predictive
models

The results obtained from the optimized ML models for

predicting mortality and hospitalization risks in patients with HF

and thyroid dysfunctions are presented in Tables 2, 3. Each table

includes a column labeled “Algorithm,” which lists the ML

algorithms considered in this study. Various algorithms known

for their effectiveness in classification tasks were selected,

including Random Forest, Stochastic Gradient Descent (SGD),

Logistic Regression, Support Vector Machines (SVM), Gradient

Boosting, AdaBoost, Naive Bayes, Neural Network, K-Nearest

Neighbors (KNN), and Decision Tree. This variety of algorithms

allows for a comprehensive comparison of performance, both in

terms of predictive accuracy and the ability to balance key

metrics such as precision, recall, and F1-score.

The performance of each algorithm was evaluated using

metrics such as the AUC, accuracy, F1-score, precision, recall,

and Matthews Correlation Coefficient (MCC). The AUC metric

was particularly emphasized as the primary indicator of model

performance, guiding the interpretation of results.

For mortality prediction, the Random Forest model achieved

the best performance with an AUC of 0.797, an accuracy of

74.7%, and an F1-score of 0.685. These values indicate a good

ability of the model to discriminate between high-risk and

low-risk patients, balancing precision (0.768) and recall (0.618).

The MCC for Random Forest was 0.485, further supporting its

balanced performance across classes. This combination suggests

that Random Forest is effective in identifying at-risk patients

TABLE 2 Model performance for mortality prediction.

Algorithm AUC Accuracy F1 Precision Recall MCC

RandomForest 0.797 0.747 0.685 0.768 0.618 0.485

SGD 0.794 0.764 0.724 0.755 0.696 0.520

LogisticRegression 0.786 0.738 0.681 0.744 0.627 0.466

GradientBoosting 0.786 0.707 0.621 0.733 0.539 0.404

AdaBoost 0.762 0.721 0.660 0.721 0.608 0.430

SVM 0.759 0.729 0.667 0.738 0.608 0.448

NaiveBayes 0.753 0.690 0.585 0.725 0.490 0.369

NeuralNetwork 0.735 0.699 0.631 0.694 0.578 0.384

KNN 0.698 0.668 0.600 0.648 0.559 0.322

DecisionTree 0.608 0.624 0.522 0.603 0.461 0.227

TABLE 3 Model performance for HF hospitalization prediction.

Algorithm AUC Accuracy F1 Precision Recall MCC

RandomForest 0.786 0.703 0.638 0.652 0.625 0.387

NeuralNetwork 0.785 0.725 0.659 0.685 0.635 0.430

LogisticRegression 0.784 0.729 0.687 0.667 0.708 0.449

SVM 0.779 0.725 0.683 0.660 0.708 0.442

NaiveBayes 0.769 0.690 0.643 0.621 0.667 0.370

SGD 0.763 0.712 0.673 0.642 0.708 0.418

GradientBoosting 0.746 0.681 0.597 0.635 0.563 0.336

KNN 0.727 0.664 0.645 0.579 0.729 0.342

AdaBoost 0.721 0.690 0.632 0.629 0.635 0.364

DecisionTree 0.641 0.659 0.606 0.588 0.625 0.307
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while maintaining a low rate of false positives, making it

particularly suitable for mortality prediction.

For hospitalization risk prediction, the Random Forest model

again demonstrated the best performance, with an AUC of 0.786,

an accuracy of 70.3%, and an F1-score of 0.638. With a precision

of 0.652, recall of 0.625, and an MCC of 0.387, Random Forest

effectively identifies patients at risk of hospitalization,

maintaining a favorable balance between accuracy and sensitivity.

This model’s reliability for predicting hospitalization risk makes

it a valuable tool for clinical applications where capturing at-risk

patients is essential, even if it involves a slightly higher rate of

false positives.

In summary, the results in Tables 2, 3 indicate that the Random

Forest model is particularly promising for predicting both mortality

and hospitalization risks. The AUC metric, used as the primary

indicator, confirms the effectiveness of this model in providing

robust decision support in clinical settings. Its application could

significantly improve risk stratification and personalize treatments

for patients with HF and thyroid dysfunctions, contributing to

more precise and patient-centered medicine.

Figure 2 presents the confusion matrices for the top-performing

ML model in predicting mortality and hospitalization risks, both

achieved using the Random Forest algorithm: mortality prediction

(left) and hospitalization prediction (right). These matrices are

displayed in percentages, offering a comprehensive view of model

performance regarding correct classifications and error rates. In

the mortality prediction matrix (left), the Random Forest model

correctly identified 85.04% of low-risk patients (class 0), while

14.96% of these patients were incorrectly classified as high-risk.

For the high-risk group (class 1), the model correctly classified

61.76% of patients but misclassified 38.24% as low-risk. These

results indicate that, while the Random Forest model has high

precision for predicting low-risk patients, its sensitivity in

identifying high-risk cases is moderate.

For hospitalization prediction (right), the Random Forest

model accurately classified 75.94% of patients not at risk

(class 0), with 24.06% misclassified as at-risk. In the at-risk

group (class 1), 62.50% of patients were correctly identified,

while 37.50% were classified as false negatives. This performance

shows that the Random Forest model is effective in predicting

hospitalization risk, maintaining a reasonable balance between

precision and recall for at-risk patients.

Figure 2 illustrates the strengths and limitations of the Random

Forest model in both predictive tasks. The model shows high

accuracy for the low-risk mortality class but misses a significant

portion of high-risk cases. Similarly, it performs well in

predicting hospitalization risk but also exhibits some false

negatives within the high-risk group. The model demonstrates a

satisfactory balance between accuracy and sensitivity, reinforcing

its clinical applicability for risk stratification.

Figure 3 shows the Receiver Operating Characteristic (ROC)

curves for the Random Forest model in predicting mortality and

hospitalization risks: mortality prediction (left) and

hospitalization prediction (right). The ROC curve illustrates the

model’s ability to distinguish between classes, plotting the

relationship between True Positive Rate (Sensitivity) and False

Positive Rate. The Area Under the Curve reflects model

performance, where values closer to 1 indicate greater

discriminatory power. For mortality prediction, the Random

Forest model achieved an AUC of 0.797, as depicted in the left

ROC curve, demonstrating a strong capability to differentiate

between high and low mortality risk. The ROC curve remains

well above the reference line (indicating random classification)

across thresholds, showcasing the Random Forest model’s ability

to sustain a high True Positive Rate while minimizing False

Positives. For hospitalization prediction, the Random Forest

model achieved an AUC of 0.786, as shown in the right ROC

curve. Although slightly lower than the AUC for mortality

FIGURE 2

Confusion matrices—random forest for mortality and hospitalization.
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prediction, this value still reflects strong performance in identifying

hospitalization risk. The ROC curve for the Random Forest model

stays above the reference line, indicating good model sensitivity

and specificity in distinguishing hospitalized from non-

hospitalized patients.

Figure 3 highlights the effective performance of the Random

Forest model in both prediction tasks. The AUC values for

mortality and hospitalization predictions confirm the model’s

suitability for clinical risk stratification. The ROC curves emphasize

the model’s capacity to balance True Positive and False Positive

rates, reinforcing its utility as a reliable tool for clinical decision-

making in managing patients with HF and thyroid dysfunction.

4.2 Analysis of clinical and statistical
differences among thyroid subgroups

Among the 762 patients analyzed, 187 were affected by

hypothyroidism; of these, 93 had a prior history of

hypothyroidism, while in 94 cases, hypothyroidism was

diagnosed during the initial or subsequent evaluations at our

center. LT3 syndrome was diagnosed in 15 patients, while a total

of 58 patients had hyperthyroidism, with 46 having a prior

history and 12 diagnosed at the time of the first evaluation or

during follow-up.

Figure 4 presents the statistical characteristics of the patients,

divided into subgroups based on the presence or absence of

thyroid disorders, providing a detailed overview of demographic

variables, risk factors, and ongoing therapies for each subgroup.

This arrangement allows for an in-depth comparison of clinical

differences among patients with various thyroid dysfunctions.

Among the patients, 175 were on amiodarone therapy at the

time of the initial evaluation: 63 for secondary prevention of

supraventricular tachycardia or flutter/atrial fibrillation, 73 for

secondary prevention of sustained ventricular tachycardia/

ventricular fibrillation, 24 for both, and 15 for control of frequent

supraventricular or ventricular ectopic beats. To compare

characteristics across the different thyroid groups, the Kruskal–Wallis

test was used, a non-parametric test suitable for variables that do not

follow a normal distribution. This statistical method allows

significant differences to be detected among multiple groups without

assuming normality, which is particularly useful given the nature of

clinical variables, which are both continuous and categorical. In the

heatmap (Figure 4), significant differences (p < 0.005) are visually

highlighted using a blue background with white text, allowing

immediate identification of key variables. Additionally, NT-proBNP

values are color-coded using a gradient that reflects their magnitude

in relation to the scale shown in the accompanying color bar,

facilitating intuitive comparison across subgroups.

The results indicate that the mean age differs significantly between

groups (p < 0.001), with patients with LT3 syndrome being older on

average (71 years) than euthyroid patients (62 years). Systolic blood

pressure and renal function, measured by GFR-EPI, also show

significant differences (p < 0.001); hypothyroid and LT3 patients have

lower average values, suggesting possible involvement of

cardiovascular and renal function. NT-proBNP levels, an indicator of

HF severity, are significantly higher in hypothyroid and hyperthyroid

patients compared to euthyroid patients, reflecting a higher degree of

clinical impairment (p < 0.001).

Thyroid function parameters, such as FT3 and TSH, also differ

significantly among the groups. LT3 patients have the lowest

average FT3 levels compared to the other subgroups, while

hypothyroid patients show elevated TSH levels (p < 0.001). Atrial

fibrillation is more common in patients with thyroid dysfunctions,

particularly among those with LT3 and hypothyroidism, with

percentages of 33% and 28%, respectively, compared to euthyroid

patients (12%), suggesting an increased predisposition to arrhythmic

events in the presence of thyroid disorders (p < 0.001).

FIGURE 3

ROC curves—random forest for mortality and hospitalization.
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The distribution of patients across NYHA classes reveals further

differences, with lower representation of thyroid dysfunction

patients in the more advanced classes (p = 0.002), potentially

reflecting a different severity of symptoms among groups. In terms

of pharmacological therapies, hypothyroid and LT3 patients are

more frequently treated with diuretics and amiodarone compared to

euthyroid patients, with statistically significant differences for the

use of ACEi/ARBs and amiodarone (p < 0.001), which may indicate

specific therapeutic needs for these subgroups.

These differences between thyroid groups provide a deeper

understanding of the distinctive clinical profiles associated with

thyroid dysfunctions, highlighting how clinical risk and

therapeutic needs may vary based on thyroid status. The detailed

statistical breakdown in Figure 4, along with the Kruskal–Wallis

test, provides valuable information for a better understanding of

the clinical specificities of each group, supporting the

implementation of more targeted therapeutic strategies.

4.3 Interpretation of model results with
LIME for thyroid subgroups

This section applies the Local Interpretable LIME technique to

interpret the Random Forest model results, focusing on specific

subgroups within thyroid-related patient populations. LIME

enables the interpretation of complex models by creating locally

interpretable models around individual predictions, allowing us

to examine the contribution of each variable to the model’s final

decisions. The LIME technique was applied uniformly across all

thyroid-related subgroups to support the interpretability of the

model predictions. For each subgroup, the approach enabled the

identification of clinical variables such as atrial fibrillation,

ischemic cardiomyopathy, pharmacological treatment, and

thyroid hormone values, contributing to the estimated risks of

mortality and hospitalization. Illustrative examples of these

explanations are presented in Figures 4, 5–11, including

FIGURE 4

Heatmap of all clinical features by thyroid subgroup.
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euthyroid, hypothyroid, LT3 and Hyperthyroid patient groups,

thus offering a consistent interpretation framework across the

cohort. In the graphical representations (Figures 5–11, 12), the

impact of each clinical feature is visually represented through

color-coded horizontal bars. Specifically, green bars indicate

features that contribute to an increase in the predicted

probability of the outcome (e.g., mortality or hospitalization),

suggesting a higher risk associated with those variables.

Conversely, red bars represent features that reduce the predicted

probability, thus being protective factors associated with a lower

risk. This visual distinction enhances interpretability by allowing

a quick understanding of whether each feature pushes the model

prediction toward or away from a critical outcome.

For each thyroid subgroup, LIME was applied to generate

explanations that illustrate how key clinical factors modulate the

model’s predictions vary based on key clinical features, such as

TSH levels, T3 and T4 hormone concentrations, and patient

demographics. By analyzing these explanations, we can gain a

clearer understanding of which features drive the model’s

predictions for each thyroid subgroup, distinguishing between low

and high-risk classifications for both mortality and hospitalization.

Figures 5, 6 present the LIME interpretation results for the

mortality and hospitalization models, respectively, in euthyroid

patients. These figures list the main clinical features that impact

the model’s predictions. The impact values reflect the influence

of each feature on the predicted probability, with positive values

indicating features that contribute toward the outcome (e.g.,

mortality or hospitalization), while negative values indicate

protective associations.

In Figure 5, titled “LIME Explanations for Mortality Prediction

Model in Euthyroid Patients,” the model shows a 53%predicted

probability for “YES MORTALITY” vs. 47% for “NO

MORTALITY,” suggesting a slight inclination toward mortality

for this subgroup. Among the influential features, the absence of

atrial fibrillation (ATRIAL_FIBRILLATION = 0) shows a

protective effect with an impact of −0.0311, lowering the

mortality probability. Conversely, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) slightly

increases the likelihood of mortality, with an impact value of

0.0275. Other features contribute with varying, though smaller,

effects. For instance, the absence of the medication Amiodarone

(AMIODARONE = 0) and of cardiac resynchronization therapy

(CRT = 0) display minor positive impacts of 0.0077 and 0.0067,

respectively, indicating an association with increased mortality

when these treatments are not administered. Lower levels of TSH

(≤0.96) reduce the probability of mortality with an impact of

−0.0055, while the absence of diabetes (DIABETES = 0) has a

similarly protective effect, with an impact of −0.0048. Minimal

impacts are observed for free T4 levels (FT4 ≤1.08), BMI (23),

and the use of diuretics and beta-blockers, with values ranging

between 0.0005 and 0.0007, suggesting a more subtle influence

on mortality risk in this model.

Figure 6, “LIME Explanations for Hospitalization Prediction

Model in Euthyroid Patients,” presents results for hospitalization

prediction with identical predicted probabilities to the mortality

model (53% for “YES HOSPITALIZATION” and 47% for “NO

HOSPITALIZATION”), indicating a similar risk profile in this

patient subgroup.

FIGURE 5

LIME explanations for mortality prediction model in euthyroid patients.
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The absence of atrial fibrillation (ATRIAL_FIBRILLATION = 0)

has a protective impact, reducing the likelihood of hospitalization

with an impact value of −0.0309. Conversely, the absence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0)

slightly increases the risk, showing a positive impact of 0.0277. The

absence of Amiodarone (AMIODARONE = 0) and CRT (CRT = 0)

also contribute to an increased hospitalization probability, with

impact values of 0.0085 and 0.0070, respectively. Lower TSH levels

(≤0.96) provide a protective influence with an impact of −0.0051,

while the absence of diabetes (DIABETES = 0) similarly reduces the

likelihood of hospitalization, reflected by an impact of −0.0047.

BMI of 23 has a minor positive influence of 0.0013, indicating a

slightly increased hospitalization probability for patients with this

BMI value. Additional features with minimal impacts include free

T4 levels (FT4 ≤1.08), presence of an ICD (ICD= 1), and the use of

diuretics (DIURETICS = 1), each with values of 0.0007, −0.0003,

and −0.0003 respectively. These factors suggest a nuanced, though

limited, influence on the overall hospitalization prediction

compared to the primary variables in this model.

Figure 7, “LIME Explanations for Mortality Prediction Model

in Hypothyroid Patients,” presents the model’s interpretation

results for the mortality prediction in hypothyroid patients, with

54% predicted probability for “YES MORTALITY” and 46% for

“NO MORTALITY,” indicating a slight inclination toward

mortality in this group.

In this model, the absence of atrial fibrillation

(ATRIAL_FIBRILLATION = 0) serves as a protective factor,

reducing the mortality probability with an impact of −0.0305.

On the other hand, the absence of ischemic cardiomyopathy

(ISCHEMIC_CARDIOMYOPATHY = 0) slightly increases the

mortality risk, with a positive impact of 0.0213. The lack of

Amiodarone (AMIODARONE = 0) and CRT (CRT = 0) also

contribute to an elevated mortality probability, with impacts of

0.0076 and 0.0032, respectively. Other clinical variables influence

mortality predictions to a lesser degree. The absence of diabetes

(DIABETES = 0) decreases mortality risk, with an impact of

−0.0024, while a BMI of 19 has a slight positive effect of 0.0023,

indicating a marginal association with increased mortality. The

use of diuretics (DIURETICS = 1) and beta-blockers (BETA-

BLOCKERS = 1) exert small impacts, with values of 0.0012 and

−0.0005, respectively, highlighting their limited role in

influencing mortality predictions. Additional factors, such as

NYHA class (NYHA_CLASS = 3) and FT3 levels within the

range 2.70 < FT3 ≤ 3.00, have minimal impacts of 0.0004 each,

suggesting a nuanced but relatively insignificant influence on

the model’s overall prediction for mortality. In hypothyroid

patients, the predicted probability of mortality was 54 percent.

The absence of atrial fibrillation emerged as the most

protective factor, aligning with its recognized clinical relevance

in heart failure prognosis. Conversely, the absence of ischemic

cardiomyopathy contributed to a moderate increase in

predicted mortality, potentially reflecting the influence of

alternative etiologies. Other variables, such as the lack of

amiodarone therapy, absence of CRT, and a low BMI value,

were associated with slightly elevated risk. FT3 values within

borderline ranges and NYHA class exerted minor effects,

confirming the multifactorial nature of mortality risk in

this subgroup.

Figure 8, “LIME Explanations for Hospitalization Prediction

Model in Hypothyroid Patients,” outlines the hospitalization

prediction for hypothyroid patients, with 54% probability

for “YES HOSPITALIZATION” and 46% for “NO

HOSPITALIZATION,” again indicating a slight model tendency

towards predicting hospitalization.

FIGURE 6

LIME explanations for hospitalization prediction model in euthyroid patients.
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Key protective factors include the absence of atrial fibrillation

(ATRIAL_FIBRILLATION= 0), which reduces the hospitalization

risk with an impact of −0.0301. Meanwhile, the absence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0)

slightly increases the hospitalization likelihood, with an impact of

0.0216. The absence of Amiodarone (AMIODARONE = 0) and

CRT (CRT = 0) contribute positively, with impacts of 0.0074 and

0.0035, respectively, indicating that their absence may slightly

increase hospitalization risk. Further influencing factors include

BMI of 19, which has a minor positive impact of 0.0020 on

hospitalization probability, and the absence of diabetes

(DIABETES = 0), which has a small protective effect with an

FIGURE 7

LIME explanations for mortality prediction model in hypothyroid patients.

FIGURE 8

LIME explanations for hospitalization prediction model in hypothyroid patients.
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impact of −0.0018. Free T4 levels within the range 1.05 < FT4≤ 1.21

and FT3 levels within 2.70 < FT3≤ 3.00 add slight positive

contributions, with impacts of 0.0009 and 0.0007, respectively.

Finally, the presence of an ICD (ICD= 0) serves as a minor

protective factor, with an impact of −0.0006, while diuretic usage

(DIURETICS = 1) has a modest positive effect of 0.0008. These

features, though present, exert relatively small effects in

comparison to the more influential clinical factors impacting

hospitalization predictions in this subgroup. In hypothyroid

patients, the LIME interpretation results suggest a moderate

increase in hospitalization risk, with a predicted probability of

54%. The absence of atrial fibrillation emerged as the most

protective factor, consistent with its known adverse prognostic role

in heart failure populations. Conversely, the absence of ischemic

cardiomyopathy contributed positively to the predicted probability,

potentially indicating the clinical impact of non-ischemic HF

phenotypes in this subgroup. The absence of amiodarone and

CRT therapy also showed modest positive contributions, aligning

with the established utility of these interventions in selected HF

patients. A lower BMI (19) was associated with a slight increase in

predicted hospitalization, in line with the “obesity paradox”

described in HF literature. Additionally, borderline FT4 and FT3

values exerted limited but noticeable effects, confirming the

relevance of thyroid hormone levels in influencing short-term

outcomes in this subgroup.

Figure 9, “LIME Explanations for Mortality Prediction Model

in LT3 Patients,” shows the model’s interpretation results for

mortality prediction in LT3 patients, with a predicted probability

of 52% for “YES MORTALITY” and 48% for “NO

MORTALITY,” indicating a slight inclination towards predicting

mortality for this group. Among the significant features, the

absence of atrial fibrillation (ATRIAL_FIBRILLATION= 0)

reduces the likelihood of mortality, acting as a protective factor

with an impact of −0.0288. Conversely, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) slightly

increases the probability of mortality, with a positive impact of

0.0226. Additionally, the use of Amiodarone (AMIODARONE= 1)

appears to lower the mortality risk, indicated by an impact of

−0.0094. BMI at 23 also has a slight protective influence, with an

impact of −0.0034, while free T3 (FT3) levels in the range

2.00 < FT3≤ 2.10 contribute positively to mortality risk, showing

an impact of 0.0031. The absence of CRT (CRT = 0) adds a minor

positive influence with an impact of 0.0029, suggesting a potential

association with increased mortality in LT3 patients when CRT is

not in place. Other features play smaller roles: the absence of

diabetes (DIABETES = 0) has a slight protective effect on mortality

with an impact of −0.0015, and high levels of FT4 (>1.52) further

reduce the probability of mortality with an impact of −0.0011.

Additional factors, such as TSH levels between 2.30 and 2.75 and

LVEF (Left Ventricular Ejection Fraction) values within 24.50–

34.75, contribute minimally to the model’s mortality predictions,

with impacts of 0.0006 and −0.0005 respectively. Among LT3

patients, the model indicated a 52% probability of mortality. The

strongest protective effect was associated with the absence of atrial

fibrillation, while the absence of ischemic cardiomyopathy slightly

increased predicted risk. The presence of amiodarone was linked

to a lower mortality probability, possibly reflecting its therapeutic

role in rhythm control. Hormonal indicators such as FT3 in the

range 2.00–2.10 and higher FT4 levels provided subtle but

consistent contributions. Overall, the results illustrate the complex

FIGURE 9

LIME explanations for mortality prediction model in LT3 patients.
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interplay between metabolic, structural, and treatment-related

factors in shaping risk within this distinct population.

Figure 10, “LIME Explanations for Hospitalization Prediction

Model in LT3 Patients,” provides insights into the model’s

predictions for hospitalization within this group. The model shows

a 52% predicted probability for “YES HOSPITALIZATION” and

48% for “NO HOSPITALIZATION,” again reflecting a slight

tendency towards hospitalization risk. The absence of atrial

fibrillation (ATRIAL_FIBRILLATION = 0) has the strongest

protective effect, reducing the probability of hospitalization

with an impact of −0.0294. In contrast, the absence of ischemic

cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 0) is

associated with a slight increase in hospitalization likelihood, with

an impact of 0.0228. Use of Amiodarone (AMIODARONE = 1)

similarly lowers the hospitalization risk, shown by an impact of

−0.0087. The absence of CRT (CRT = 0) shows a positive

influence on hospitalization probability with an impact of 0.0045,

while BMI at 23 has a protective impact with a value of −0.0039.

Free T3 levels within 2.00 < FT3≤ 2.10 contribute a minor positive

influence on hospitalization, with an impact of 0.0031, indicating a

small association with increased risk for patients in this range.

Other variables include FT4 levels greater than 1.52, which lower

hospitalization probability with an impact of −0.0015, and the

absence of diabetes (DIABETES = 0), which also acts protectively

with an impact of −0.0014. Age within 73.00–78.00 years and

TSH levels in the range 2.30 < TSH≤ 2.75 exert minimal positive

influences on hospitalization, with impacts of 0.0005 and 0.0004,

respectively, suggesting limited yet present contributions in the

model’s hospitalization prediction. In LT3 syndrome patients, the

predicted probability of hospitalization was 52%, indicating a

subtle shift towards higher risk in this group. The absence of atrial

fibrillation was again the most significant protective variable.

Notably, the presence of amiodarone was associated with a lower

predicted risk, which may reflect its therapeutic role in arrhythmia

management among patients with compromised metabolic status.

The absence of CRT demonstrated a minor positive impact on

hospitalization probability, in line with its potential benefits in

patients with advanced HF and electrical dyssynchrony. BMI at 23

appeared to exert a small protective influence, while FT3 values in

the 2.00–2.10 range were associated with a mild increase in risk,

consistent with reduced metabolic activity typical of LT3. Other

features, including elevated FT4, absence of diabetes, and mid-range

TSH values, showed marginal impacts, reinforcing the multifactorial

nature of hospitalization risk in this complex subgroup.

Figure 11, “LIME Explanations for Mortality Prediction Model

in Hyperthyroid Patients,” shows the model’s interpretation results

for mortality prediction in hyperthyroid patients, with a predicted

probability split evenly at 50% for “YES MORTALITY” and 50%

for “NO MORTALITY,” indicating no strong inclination towards

either outcome in this group.

Key protective factors include the absence of atrial fibrillation

(ATRIAL_FIBRILLATION= 0), which reduces the mortality

probability with an impact of −0.0303, and the presence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY= 1),

which surprisingly acts as a protective factor in this model, with an

impact of −0.0271. Conversely, the absence of Amiodarone

(AMIODARONE= 0) contributes positively to mortality risk, with

an impact of 0.0097. The absence of diabetes (DIABETES = 0)

provides a protective effect with an impact of −0.0070, while TSH

levels between 0.23 and 1.02 slightly increase the risk, with an

impact of 0.0031. The presence of CRT (CRT = 1) also reduces the

mortality probability, with an impact of −0.0027, indicating a

marginal protective role. Other variables, such as a BMI of 18 and

the use of ACE inhibitors or ARBs (ACEi/ARBs = 1), exert minor

FIGURE 10

LIME explanations for hospitalization prediction model in LT3 patients.
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protective effects, with impacts of −0.0010 and −0.0007, respectively.

Finally, the presence of an ICD (ICD= 1) and FT4 levels above 1.45

contribute minimally to reducing mortality, each with an impact of

−0.0005.

Figure 12, “LIME Explanations for Hospitalization Prediction

Model in Hyperthyroid Patients,” provides insights into the

model’s predictions for hospitalization. Here, the predicted

probabilities are also evenly split, with 50% for “YES

HOSPITALIZATION” and 50% for “NO HOSPITALIZATION,”

indicating no dominant prediction tendency within this

patient group.

The absence of atrial fibrillation (ATRIAL_FIBRILLATION = 0)

serves as the strongest protective factor, reducing the hospitalization

probability with an impact of −0.0309. Similarly, the presence of

ischemic cardiomyopathy (ISCHEMIC_CARDIOMYOPATHY = 1)

reduces hospitalization likelihood, with an impact of −0.0270. On

the other hand, the absence of Amiodarone (AMIODARONE= 0)

slightly increases the risk, with an impact of 0.0100. The absence

of diabetes (DIABETES = 0) has a protective impact of −0.0076 on

hospitalization probability. TSH levels in the range

0.23 < TSH≤ 1.02 contribute a slight positive influence on

hospitalization risk, with an impact of 0.0035. The presence of

CRT (CRT = 1) also has a minor protective effect, with an impact

of −0.0021, while a BMI of 18 provides additional protection with

an impact of −0.0017. Other features exerting limited impacts

include LVEF levels within 26.79–30.77, which slightly increase

hospitalization likelihood (impact of 0.0005), while the use of ACE

inhibitors or ARBs (ACEi/ARBs = 1) adds a minimal positive

impact of 0.0004. Age over 70 (AGE >70) serves as a slight

protective factor, with an impact of −0.0004, indicating a very

marginal influence on hospitalization predictions. These features,

though impactful to some extent, play a relatively small role in the

overall predictions for mortality and hospitalization in

hyperthyroid patients, highlighting the model’s balanced treatment

of features in predicting outcomes for this group.

4.4 Experimental risk stratifications

In this section, we present an experimental approach to risk

stratification, where we evaluate and combine the probabilities of

mortality and hospitalizations for patients across different thyroid

classes and in various optimization scenarios. This approach

aims to develop a risk stratification framework that can identify

patients at high risk, facilitating targeted interventions. The

process utilizes a multi-objective optimization strategy with four

scenarios, ultimately visualized in a combined heatmap to

summarize risk levels across groups. Our goal is to analyze and

combine the risk of Mortality and Hospitalization across four

thyroid classes: Euthyroid, Hypothyroid, LT3, and Hyperthyroid.

This analysis is performed under four scenarios:

1. Maximize Mortality and Maximize Hospitalization: This

scenario identifies conditions that maximize both risks.

2. Maximize Mortality and Minimize Hospitalization: This

scenario targets patients with high risk of Mortality but lower

risk of Hospitalization.

3. Minimize Mortality and Maximize Hospitalization: This

scenario focuses on minimizing Mortality risk while

maintaining a higher Hospitalization risk.

4. Minimize Mortality and Minimize Hospitalization: This

scenario seeks to minimize both risks, representing the lowest

overall risk profile.

FIGURE 11

LIME explanations for mortality prediction model in hyperthyroid patients.
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Each scenario provides insight into how the balance of Mortality

and Hospitalization risks varies across patient classes,

highlighting distinct risk profiles for targeted interventions.

To handle these dual objectives—Mortality and Hospitalization

—we use a weighted sum approach. This approach is common in

multi-objective optimization, where conflicting objectives must be

simultaneously optimized. In our context, each objective is

calculated based on the probability of Mortality (pDeath) and the

probability of Hospitalization (pHosp), derived from pre-trained

ML models. The weighted sum method allows us to combine

these objectives into a single metric for easier comparison. The

weighted sum method can be represented mathematically as

(Equation 16):

Combined Risk ¼ w1 � Objective1þ w2 � Objective2 (16)

where w1 and w2 are weights for each objective. In this analysis, we

have set w1 ¼ 0:5 and w2 ¼ 0:5, giving equal importance to both

Mortality and Hospitalization. The equal weighting provides a

balanced assessment of the risks without favoring one over

the other.

The optimization problem is structured around the four

scenarios described above. Each scenario is defined by specific

objective functions for Mortality and Hospitalization:

• Maximize Mortality & Maximize Hospitalization:

Objective1 ¼ pDeath, Objective2 ¼ pHosp

• Maximize Mortality & Minimize Hospitalization:

Objective1 ¼ pDeath, Objective2 ¼ 1� pHosp

• Minimize Mortality & Maximize Hospitalization:

Objective1 ¼ 1� pDeath, Objective2 ¼ pHosp

• Minimize Mortality & Minimize Hospitalization:

Objective1 ¼ 1� pDeath, Objective2 ¼ 1� pHosp

The predicted probabilities (pDeath and pHosp) are derived from pre-

trained ML models, such as Random Forest, which estimate the

likelihood of Mortality and Hospitalization for each patient.

These formulations enable the analysis of specific combinations

of high and low risks, tailoring the optimization to address

varying clinical priorities and patient profiles. By utilizing these

probabilities in the optimization framework, we ensure that the

risk stratification process is directly linked to model outputs,

providing actionable insights that align with predicted

patient outcomes.

The optimization is performed for each thyroid class, and the

results are summarized by calculating representative points—

average values of Follow-up for Mortality (Mortality_FU) and

Follow-up for Hospitalization (Hospi_FU). For each thyroid class

and scenario, we compute the mean Hospi_FU and

Mortality_FU values, which summarize the overall risk level

under the specified conditions. These average values serve as the

basis for comparison in the subsequent heatmap analysis. To

create a single, interpretable measure of risk, we calculate a

Combined Risk Score by averaging the Mortality_FU and

Hospi_FU scores, as (Equation 17):

Combined Risk ¼ w1 � Death FU þ w2 � Hospi FU (17)

where w1 ¼ 0:5 and w2 ¼ 0:5. This balanced weighting helps

identify thyroid classes and scenarios with higher overall risk,

simplifying the complex multi-objective results into a single

metric. We assigned equal weights (w1 ¼ w2 ¼ 0:5) to

combine mortality and hospitalization risks, ensuring a balanced

FIGURE 12

LIME explanations for hospitalization prediction model in hyperthyroid patients.
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approach that reflects the clinical importance of both factors.

Mortality represents the most severe outcome, while

hospitalization significantly impacts quality of life and healthcare

costs. By using identical weights, we ensure an unbiased analysis,

avoiding distortions and providing an easily interpretable

combined risk score. This exploratory approach, aligned with the

experimental nature of the study, provides a robust foundation

for future research that could explore customized weights based

on emerging clinical priorities. Finally, the combined risk is

normalized into a percentage for easier interpretation, as

(Equation 18):

Combined Risk (%) ¼ Combined Risk x 100 (18)

The final output of this analysis is a heatmap representing the

Combined Risk Levels across thyroid classes and scenarios, as

shown in Figure 13. Each cell in the heatmap corresponds to a

thyroid class-scenario combination, with color intensity indicating

the level of combined risk. Darker colors represent higher combined

risk scores, highlighting groups with elevated risks for Mortality

and/or Hospitalization. The heatmap is generated as follows:

• Data Preparation: The representative points (mean Hospi_FU

and Mortality_FU values) are organized into a pivot table

with thyroid classes as rows and scenarios as columns. The

Combined Risk Score is calculated for each combination.

• Heatmap Visualization: Using seaborn, we create a heatmap

where each cell is colored according to the Combined Risk

Score. Annotations show the exact risk level within each cell,

and a color bar to the side provides a legend for interpreting

the colors.

The heatmap provides an intuitive visualization of risk distribution

across thyroid classes and scenarios:

• High-Risk Cells: Dark red cells indicate thyroid classes and

scenarios with higher combined risks. For example, LT3 in the

Max-Mortality & Max-Hospitalization scenario shows high

risk, suggesting a need for close monitoring in this subgroup.

• Moderate-Risk Cells: Cells with medium color intensity

represent scenarios with balanced risks. Hypothyroid and

Hyperthyroid classes in the Max-Mortality & Min-

Hospitalization and Min-Mortality & Max-Hospitalization

scenarios display moderate risk, which may require

tailored interventions.

• Low-Risk Cells: Blue cells, particularly in the Min-Mortality &

Min-Hospitalization scenario, show the lowest combined risk.

These groups may require less intensive follow-up.

FIGURE 13

Risk stratification—combined risk heatmap across thyroid classes and scenarios.
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The Figure 12 heatmap offers an intuitive visualization of risk

distribution, highlighting clear differences between thyroid classes

and optimization scenarios. This stratification serves as a basis

for personalized clinical decision-making, identifying high-

priority groups for intervention.

The analysis of combined risk levels across thyroid classes and

scenarios reveals notable variations in risk profiles based on

different optimization configurations. For the Euthyroid class, the

combined risk is 0.35 when both mortality and hospitalization

risks are maximized, indicating that Euthyroid patients exhibit a

relatively low level of risk even under high-risk conditions for

both factors. When mortality risk is maximized and

hospitalization risk minimized, the combined risk rises to 0.50,

suggesting a moderate risk level. Similarly, the combined risk

remains at 0.50 when mortality risk is minimized and

hospitalization risk maximized, indicating that reducing the

mortality risk while maintaining high hospitalization risk does

not significantly change the overall risk level. Surprisingly, when

both risks are minimized, the combined risk increases to 0.65,

suggesting that reducing both risks may increase the overall risk

profile for Euthyroid patients.

For the Hyperthyroid class, the pattern of combined risk

closely mirrors that of the Euthyroid class. With the

maximization of both risks, the combined risk is also 0.35,

suggesting that Hyperthyroid patients, like Euthyroid patients,

maintain a relatively low risk level even under high-risk

conditions. When mortality risk is maximized and hospitalization

minimized, the combined risk reaches 0.50, a moderate level

identical to that of the Euthyroid class. The same combined risk

level of 0.50 is observed when mortality risk is minimized and

hospitalization maximized. However, when both risks are

minimized, the combined risk increases to 0.65, the highest value

for this class, indicating a significant rise in overall risk under

these conditions.

The Hypothyroid class demonstrates a distinct risk profile.

When both mortality and hospitalization risks are maximized,

the combined risk reaches 0.58, the highest observed so far,

suggesting that for Hypothyroid patients, maximizing both risks

considerably increases the overall risk level. In the scenario where

mortality risk is maximized and hospitalization minimized, the

combined risk reduces to a moderate level of 0.50, which

remains unchanged even when mortality risk is minimized and

hospitalization risk maximized. However, in a context where

both risks are minimized, the combined risk further drops to

0.42, indicating that minimizing both risks has a more

pronounced risk-reducing effect for the Hypothyroid class

compared to high-risk conditions.

Finally, for the LT3 class, the maximization of both mortality

and hospitalization risks results in the highest combined risk of

all classes, at 0.63. This finding suggests that LT3 patients are

particularly vulnerable in conditions of high mortality and

hospitalization risk. When mortality risk is maximized and

hospitalization minimized, the combined risk drops to 0.50,

representing a moderate risk level consistent with other classes in

this scenario. Similarly, when mortality risk is minimized and

hospitalization maximized, the combined risk remains stable at

0.50. However, when both risks are minimized, the combined

risk falls to the lowest level observed at 0.37, indicating that

reducing both risks is associated with a very low overall risk level

for the LT3 class.

These findings, illustrated in Figure 4, clearly demonstrate how

combined risk levels vary across thyroid classes and scenarios. The

Euthyroid and Hyperthyroid classes maintain relatively low risk

levels across scenarios, while the Hypothyroid and LT3 classes

show greater sensitivity to changes in risk scenarios, with higher

combined risk levels in specific configurations of risk

maximization or minimization. This analysis provides valuable

insights for tailored interventions based on the unique risk

profiles of each thyroid class.

4.5 Implications, limits and future
perspectives

The ML models developed in this study offer significant

potential to improve the clinical management of patients with

HF and thyroid dysfunctions. By accurately identifying

individuals at high risk of mortality and hospitalization, these

models enable targeted interventions and personalized treatment

strategies. For instance, the early identification of hypothyroid

patients with a high likelihood of adverse events could lead to

more frequent monitoring, adjustments in pharmacological

therapy. Additionally, the interpretation of model outcomes using

LIME provides valuable insights to guide clinical decision-

making. By highlighting the specific factors contributing to a

patient’s individual risk, LIME allows clinicians to tailor

treatment plans and focus interventions on areas of

particular concern.

It is important to acknowledge the limitations of this study to

properly interpret the results and guide future research. Although

the ML-based approach has shown promising results, the

generalizability of the models must be further assessed in larger

and more diverse patient populations. The study was

retrospective in nature, which introduces potential biases and

limits the ability to establish causal relationships. Specifically,

there is an inherent risk of selection bias, as patients were not

randomly assigned, and the dataset reflects a single-center

population with specific inclusion criteria. Information bias

and residual confounding may also be present, despite efforts

to include a comprehensive set of clinical variables and

ensure complete case analysis. Moreover, since the data were

not originally collected for predictive modeling purposes,

the retrospective design may have introduced selection and

information bias. Although only 0.2% of missing values

were handled using model-based imputation—which is

methodologically appropriate for such low levels of missingness—

this approach could still introduce subtle distortions and affect

model interpretability, particularly for clinically sensitive variables

such as NT-proBNP or thyroid hormones, which may influence

risk classification thresholds. These potential biases, related both to

the study design and data handling procedures, should be carefully

considered when interpreting the results. While the dataset was
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sizable and well-characterized, these limitations must be considered

when interpreting the results. Furthermore, while the statistical

analysis included comparisons across multiple variables and

subgroups, no formal correction for multiple comparisons was

applied. This may increase the risk of Type I error, particularly in

exploratory analyses. Therefore, the results should be interpreted

with appropriate caution. Future research should incorporate

statistical correction techniques—such as Bonferroni or false

discovery rate (FDR) adjustments—especially in studies involving

formal hypothesis testing across large variable sets. In this study,

missing data (accounting for only 0.2% of the dataset) were

handled using model-based imputation with a simple decision

tree, implemented via the “Impute” widget in Orange. While this

approach ensures consistent and reliable estimation of missing

values and minimizes information loss, we acknowledge that even

low-level imputation may introduce subtle biases or influence

model transparency. Future studies should consider comparing

multiple imputation techniques to evaluate their impact on the

reliability and interpretability of predictive models. Therefore,

prospective and multicenter studies with external validation

cohorts are strongly recommended to confirm the generalizability

and clinical applicability of the proposed models. In this study, the

dataset was split into a training set (70%) and a validation set

(30%) using the train_test_split function from Python’s sklearn

library, with the aim of assessing model performance on unseen

internal data and minimizing the risk of overfitting. Additionally,

all models were subjected to 10-fold cross-validation to ensure

internal consistency and robustness. While these approaches

provide strong internal validation, they do not replace the use of

independent external datasets. The absence of external validation

limits the ability to assess the reproducibility of the model across

different populations and healthcare settings. Future research should

incorporate external, multicenter cohorts to confirm the

generalizability and clinical utility of the proposed framework. Testing

the model on broader and more clinically diverse populations will be

essential to validate its real-world applicability and ensure its

effectiveness in routine clinical practice. Moreover, the lack of

prospective validation in the current study represents a significant

limitation that further restricts the generalizability of the findings.

Although cross-validation and internal testing were rigorously

applied, these do not replace the need for validation in real-world,

forward-looking clinical environments. Future research should

prioritize prospective study designs to verify the model’s robustness

across diverse patient populations and clinical workflows. While the

sample size was substantial, it may not be sufficient to capture the full

range of complex interactions between HF and thyroid dysfunctions.

Moreover, the demographic composition of the dataset reflects a

predominance of male patients (78%), which may introduce gender

bias into the model’s predictions. This imbalance limits the ability to

draw sex-specific conclusions and could impact the model’s

performance in female subpopulations. Future studies should aim to

recruit gender-balanced cohorts to ensure the fairness and

representativeness of AI-based risk stratification tools. Additionally,

some clinically and socially significant variables—such as medication

adherence, health literacy, and socioeconomic status—were not

included in the model due to their absence from the structured

electronic health records used in this retrospective study. The lack of

these variables may limit the completeness and equity of the risk

predictions. Future research should prioritize the integration of

behavioral and contextual factors to develop more comprehensive

and socially aware AI models that better reflect real-world

complexities. Further studies in larger, ideally prospective, cohorts

would strengthen the study’s conclusions and validate its

clinical application.

The insights derived from this study pave the way for promising

directions in future research. Exploring the integration of additional

clinical variables, such as genetic markers and advanced imaging

data, could further enhance the predictive accuracy of the models.

Incorporating these multidimensional factors could lead to a more

comprehensive risk stratification and more precise personalized

medicine. Developing ML models capable of predicting not only

mortality and hospitalization but also other important patient

outcomes, such as quality of life and disease progression, would

improve the clinical value of these tools. Additionally, investigating

the role of different ML algorithms and optimization techniques

could lead to more robust and efficient models. Furthermore, it is

essential to study the impact of targeted interventions guided by

ML models on patient outcomes. Conducting randomized clinical

trials to evaluate the effectiveness of personalized treatment

strategies based on model predictions would provide definitive

evidence of their clinical benefit. Finally, translating these

research findings into practical and accessible clinical tools is

essential to realize their full potential. Developing intuitive

interfaces and integrating ML models into electronic health

record systems would facilitate their widespread adoption and

improve patient care. To promote clinical integration, the

proposed model could be embedded into electronic health

record (EHR) systems as a decision support tool. For example,

automatically generated risk scores could trigger alerts for

clinicians, prompting earlier intervention or closer monitoring

of high-risk patients with thyroid dysfunction and HF.

Moreover, the use of interpretable AI techniques such as LIME

can help clinicians understand and trust the model’s outputs,

enhancing transparency and supporting more personalized

treatment decisions.

To ensure real-world applicability, future studies should

focus on prospective validation using independent and

multicenter patient cohorts. This process should involve:

(1) recruiting representative populations across different

clinical sites; (2) integrating the model into electronic health

record systems for real-time risk assessment; (3) comparing

clinical decision-making and outcomes with and without model

support; and (4) conducting prospective, pragmatic trials

to assess the effectiveness of AI-assisted care in routine

clinical workflows.

In conclusion, this study demonstrates the immense potential

of ML in predicting the risk of mortality and hospitalization in

patients with HF and thyroid dysfunctions. AI and ML are

increasingly emerging as promising tools to support clinical

decision-making and personalize therapeutic pathways, offering

new perspectives in the integrated management of cardiovascular and

endocrine comorbidities (25). By recognizing the limitations and
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pursuing future research directions, this field is poised to advance our

understanding of this complex interaction and to guide personalized

treatment strategies to improve patient outcomes.

5 Conclusions

This study highlights ML as a promising tool to enhance risk

stratification and treatment personalization for patients with HF

and thyroid dysfunctions. Leveraging a comprehensive set of

clinical data, the study demonstrates that ML models, particularly

the Random Forest algorithm, can accurately predict mortality

and hospitalization risk in this patient population.

The good discriminative ability, evidenced by AUC values for

mortality prediction (0.797) and hospitalization risk (0.786),

underscores the effectiveness of the Random Forest model in

distinguishing between high- and low-risk patients. The model’s

robust performance, evaluated through metrics such as accuracy,

precision, recall, and F1 score, further reinforces its reliability for

clinical decision support.

Model interpretation using LIME provides valuable insights

into the factors contributing to an individual patient’s risk. This

information enables targeted interventions and personalized

treatment strategies, tailored to the specific needs of each patient.

For instance, identifying high-risk patients with clinical

characteristics, such as the presence of atrial fibrillation or the

absence of amiodarone therapy, could lead to more frequent

monitoring, adjustments in pharmacological therapy, and careful

consideration of interventions such as CRT.

The study analyzed 762 patients, divided into subgroups based on

the presence or absence of thyroid dysfunctions. The results revealed

significant clinical differences between groups, with LT3 and

hypothyroid patients showing a higher risk of atrial fibrillation and

elevated levels of NT-proBNP, an indicator of HF severity. These

differences underscore the importance of considering thyroid status

in risk assessment and treatment planning for patients with HF.

The risk stratification analysis, using a multi-objective

optimization strategy, provided additional insights into the risk

profiles of different thyroid classes. Hypothyroid and LT3

patients exhibited a higher combined risk in scenarios where

both mortality and hospitalization risk were maximized,

highlighting their vulnerability under high-risk conditions.

However, the study has certain limitations. Its retrospective

nature introduces potential biases, and the generalizability of the

findings should be assessed in larger, more diverse patient

cohorts. Further prospective studies are needed to validate the

study’s findings and clinical applicability.

Despite these limitations, the study represents a significant step

forward in applying ML to improve care for patients with HF and

thyroid dysfunctions. Integrating additional clinical variables, such

as genetic markers and advanced imaging data, could further

enhance the predictive accuracy of these models. Exploring

different ML algorithms and optimization techniques may lead to

more robust and efficient models.

In conclusion, this study demonstrates the potential of ML in

transforming the management of patients with HF and thyroid

dysfunctions. By leveraging ML, clinicians can gain a

deeper understanding of individual risk profiles, enabling

targeted interventions and personalized treatment strategies to

improve patient outcomes and promote more effective

healthcare delivery.
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