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Lung transplantation (LTx) is an effective method for treating end-stage lung

disease. The management of lung transplant recipients is a complex, multi-

stage process that involves preoperative, intraoperative, and postoperative

phases, integrating multidimensional data such as demographics, clinical data,

pathology, imaging, and omics. Artificial intelligence (AI) and machine learning

(ML) excel in handling such complex data and contribute to preoperative

assessment and postoperative management of LTx, including the optimization

of organ allocation, assessment of donor suitability, prediction of patient and

graft survival, evaluation of quality of life, and early identification of

complications, thereby enhancing the personalization of clinical decision-

making. However, these technologies face numerous challenges in real-world

clinical applications, such as the quality and reliability of datasets, model

interpretability, physicians’ trust in the technology, and legal and ethical issues.

These problems require further research and resolution so that AI and ML can

more effectively enhance the success rate of LTx and improve patients’ quality

of life.

KEYWORDS

lung transplantation, artificial intelligence, machine learning, organ allocation,
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1 Introduction

Lung transplantation (LTx) is primarily utilized for the treatment of chronic end-stage

lung diseases. When a patient with chronic end-stage lung disease exhibits progressive

deterioration in lung function despite receiving optimal treatment, and no further

medical or surgical interventions are feasible, with a mortality risk exceeding 50%

within two years, LTx should be considered (1).

Artificial intelligence (AI) investigates the use of computer systems to simulate human

cognitive processes and intelligent behaviors, such as learning, reasoning, self-correction,

and environmental perception, with the goal of achieving higher functionality. Machine

learning (ML), a branch of AI, focuses on developing algorithms that autonomously

learn from data and recognize patterns. By training on input datasets, these algorithms

discern fundamental principles, which are then used to make informed decisions or

predictions, thereby enhancing system intelligence and adaptability (2).

In recent years, the application of AI and ML in medicine has expanded significantly,

encompassing disease risk prediction, diagnosis, and treatment, thus improving clinical
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diagnosis, treatment, and management levels. In the field of LTx,

researchers can employ ML as a decision support tool for various

aspects, including waitlist optimization, organ allocation, donor

organ assessment, postoperative complication diagnosis (e.g.,

primary graft dysfunction (PGD), airway complications), clinical

outcome prediction (e.g., survival, quality of life), and long-term

monitoring [e.g., rejection, chronic lung allograft dysfunction

(CLAD)] (Figure 1A). Figure 1B illustrates the distribution of

research focus areas in LTx, quantified by their relative

prevalence in recent studies. CLAD and survival (each account

for 20.51%) represent the most actively investigated topics, while

AI applications in quality of life (5.13%) and airway

complications prediction (2.56%) remain emerging areas

requiring further exploration. This review provides a

comprehensive summary of studies utilizing ML techniques in

LTx, highlighting key advancements, current limitations, and

potential avenues for future research.

2 Pre-transplant

2.1 Organ allocation

Predicting risks and outcomes by considering various factors

and constraints is essential in medical practice, especially in solid

organ transplantation, where precise predictive models are critical

for identifying patients with the greatest need. Given the

persistent organ shortage, these models play a key role in

balancing waitlist mortality and post-transplant survival, ensuring

efficient and equitable organ allocation (Table 1) (3).

In May 2005, the Organ Procurement and Transplantation

Network in the United States implemented the lung allocation

score (LAS) as a comprehensive system to prioritize lung

transplant candidates. This scoring method incorporates a range

of clinical metrics, including functional status, exercise tolerance,

pulmonary function, hemodynamic parameters, and the

requirement for supplemental oxygen or mechanical ventilation

(11). The LAS employs a prediction model to assign candidates a

normalized score between 0 and 100. Designed to balance

medical urgency (waitlist mortality) with expected outcomes

(one-year post-transplant survival), the LAS prioritizes candidates

with higher scores, facilitating more equitable organ distribution.

Since its introduction, LAS has successfully reduced waitlist

mortality and increased LTx rates in the United States, along

with initially a modest improvement in one-year survival post-

transplant (12–14).

Still, there is potential for improvement. The comparatively low

long-term survival of some LTx recipient subgroups, particularly

older and younger patients, may not be adequately represented

by one-year post-transplant survival. A more thorough

assessment of the patients’ long-term prognosis may be possible

with an extended follow-up time (15, 16). Brahmbhatt et al. (7)

evaluated the accuracy of different prediction models, including

the LAS, least absolute shrinkage and selection operator

(LASSO), random forests (RF) and “clinician” model, in

predicting 1-year and 3-year post-transplant mortality in lung

transplant patients. The study showed that both RF and

“clinician” models improved short-term (1-year) prediction

compared to LAS, but all models had low area under the curve

(AUC) values (0.55–0.62). Although the negative predictive

values (NPVs) were reasonable, ranging from 0.87 to 0.90,

positive predictive values (PPVs) were low, all below 0.25. The

LAS model calibration slope for 1-year post-transplant survival

was 0.38 (95% CI [0.03, 0.73]), suggesting that the LAS

overestimated mortality risk within this timeframe.

Additionally, all models’ predictive performance was assessed

by long-term (3-year) survival, fit by disease category, donor

variables, and the LAS allocation era. However, none of the

models improved performance for 3-year outcomes, with results

generally worsening. The main limitations of the study included

its reliance on data from the united network for organ sharing

(UNOS) database provided by the Organ Procurement and

Transplantation Network, which may not capture all relevant

factors, potentially omitting key elements that influence long-

term mortality outcomes. Furthermore, while the dataset was

relatively recent, 3-year survival data from the final years

remained limited, impacting the accuracy of long-term survival

predictions. Given these limitations, applying short-term survival

predictions from LAS and similar models based on pre-

transplant recipient factors should be implemented with caution.

For ethical organ allocation and efficient resource utilization, it

remained crucial to develop accurate models to predict both

medium- and long-term survival post-transplant.

Developing LTx risk-prediction models that integrate recipient,

donor, and transplant characteristics to forecast long-term post-

transplant survival is imperative. Zafar et al. (6) proposed an

objective LTx allocation system that incorporates these factors by

applying advanced statistical methods alongside ML and deep

learning (DL) techniques. They employed a Cox-LASSO

regression model to predict long-term survival probabilities and

categorized recipients into three risk clusters (low, medium, and

high) through the expectation-maximization clustering algorithm.

Using these clusters, the researchers developed the Lung

Transplantation Advanced Prediction Tool, a web-based tool to

predict long-term survival probabilities at 1, 5, and 10 years, as

Abbreviations

AI, artificial intelligence; ANN, artificial neural networks; AS, airway stenosis;

AUC, area under the curve; AUROC, area under the receiver operating

characteristic curve; BAL, bronchoalveolar lavage; BOS, bronchiolitis obliterans

syndrome; CAS, composite allocation score; CLAD, chronic lung allograft

dysfunction; CT, computed tomography; DL, deep learning; DT, decision

trees; ECMO, extracorporeal membrane oxygenation; EVLP, ex vivo lung

perfusion; FEV1, forced expiratory volume in the first second; FRC, functional

residual capacity; GA, genetic algorithms; GBT, gradient boosting trees; IRD,

increased risk for disease transmission; IRI, ischemia reperfusion injury; KNN,

K-nearest neighbors; LAS, lung allocation score; LASSO, least absolute

shrinkage and selection operator; LR, logistic regression; LTx, lung

transplantation; ML, machine learning; MLP, multilayer perceptron; NPV,

negative predictive value; PC, principal component; PGD, primary graft

dysfunction; PPV, positive predictive value; PT, post-transplant; RF, random

forests; RFE, recursive feature elimination; RSF, random survival forests;

SHAP, shapley additive explanations; SVM, support vector machine; TBBs,

transbronchial biopsies; TCMR, T-cell-mediated rejection; UNOS, united

network for organ sharing; WL, waiting list; XGBoost, extreme

gradient boosting.
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well as the half-life for each recipient-donor match. The study,

which involved a cohort of 19,263 eligible double LTx recipients,

demonstrated good performance in predicting long-term survival

probabilities across different risk groups. This study represents a

significant first step towards developing more precise and

dynamic risk prediction tools, such as the Advanced Prediction

Tool, to assist in lung transplant decision-making and improve

the accuracy of survival forecasts for transplant candidates.

LAS decisions constrained by strict geographic boundaries

resulted in inequities, particularly disadvantaging patients

residing near these boundaries who possess differing medical

priorities. Such limitations can lead to lower-priority candidates

receiving organs before higher-priority individuals outside the

geographic zones (17).

To address these disparities, significant changes were

introduced in March 2023 with the adoption of the composite

allocation score (CAS), a new system for prioritizing lung

transplant candidates (18). CAS promotes greater equity by

removing traditional geographic constraints and prioritizing

candidates based on a composite of geographic proximity and

critical medical and socioeconomic factors (19).

To evaluate the effectiveness of the CAS model, Dalton and his

team conducted a comprehensive study comparing its

discriminative performance to alternative statistical and ML

methods. The study also examined how socioeconomic and

clinical factors influenced model performance (8). Researchers

evaluated four models for predicting waiting list (WL) and post-

transplant (PT) survival, including traditional WL-LAS/CAS

models and their extended versions, as well as the random

survival forests (RSF) model. In addition, survival stacking was

employed with various ML techniques, such as logistic models

and gradient boosting trees (GBT), to improve prediction

accuracy. The study analyzed data from 13,735 candidates on the

WL. WL models demonstrated high discriminative capability

reflected by an AUC of 0.93, but performance declined in

residual cohorts. For PT survival analysis, data from 20,763 adult

transplant recipients were included. Compared to the WL

models, the PT models exhibited lower and relatively stable

FIGURE 1

Artificial intelligence in lung transplantation: current applications and research areas.
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TABLE 1 Machine learning in graft allocation and donor organ assessment.

Reference Objective Dataset
description

Dataset
split
(train/
test)

Predictors ML method/
model

Evaluation of best
model/Model
performance

Top predictive
variables

Mark et al. (4) Prognosis: 5-year

survival

IRD: 1010; non-

IRD: 12013; WL:

19217; UNOS

dataset

Cross-

validation:

80%/20%

Clinical and

laboratory variables

The Cox proportional

hazards model and

the RSF model

Root mean square error:

5.3

None reported

Dueñas-Jurado

et al. (5)

Prognosis: 6-month

survival

404 lung

transplants; single

center

None

reported

36 donor-recipient

pairing

characteristic input

variables

The optimal Logistic

Regression using

Initial Covariates and

Product Units model

None reported Positive variables:

higher pre-

transplant and post-

transplant functional

vital capacity

Negative variables:

low FEV1 pre-

transplant

Zafar et al. (6) Prognosis: 1-, 5-,

10-year survival,

and half-life

prediction

15214 double lung

transplants,

UNOS

Single split:

70%/30%

Recipient-, donor-,

and transplant-

related variables

Cox-LASSO

regression model

C statistics: 1 year: 0.67 5

year: 0.64 10 year: 0.72

None reported

Brahmbhatt

et al. (7)

Prognosis:1- and

3-year post-

transplant mortality

19900 adults,

UNOS dataset

Single split:

85%/15%

LAS: all pre-

transplant recipient

covariates;

“clinician” model:

27 predictors;

LASSO: 16

predictors; RF: 15

predictors

LAS, “clinician”

model, LASSO and

RF

AUC: 0.55–0.62 NPV:

0.87–0.90 PPV: 0.18–0.24

Specificity: 0.66–0.76

Sensitivity: 0.41–0.52

None reported

Dalton et al.

(8)

Prognosis: 1-, 3-

and 6-month

waitlist survival,

and 1-, 3-, and

5-year post-

transplantation

survival

13,204 candidates,

20,763 adult

transplant

recipients

10-fold cross-

validation:

split not

reported

Socioeconomic and

clinical factors

(I) WL-LAS/CAS

model, (II) re-

estimated WL-LAS/

CAS model, (III)

model II

incorporating

nonlinear

relationships, (IV)

RSF model, (V)

logistic model, (VI)

linear discriminant

analysis, and (VII)

GBT model

AUC: WL-CAS: 0.92 PT-

CAS: 0.61

None reported

Sage et al. (9) Prognosis: donor

lung assessment

725 EVLP cases;

single center

5-fold cross-

validation:

80%/20%

Biological,

physiological, and

biochemical

assessments

XGBoost, InsighTx

model

AUROC: 79 ± 3%

(training), 75 ± 4% (test

dataset 1) 85 ± 3% (test

dataset 2)

ΔpO2, static

compliance, airway

pressure, dynamic

compliance,

perfusate loss, base

excess, pH, Ca2+,

HCO3−, ΔpCO2

Pu et al. (10) Diagnosis: predict

donor’s lung size

4610 subjects;

single center

10-fold cross-

validation:

80%/10%/

10%

Chest CT scans and

basic demographics

U-Net model, DT, RF,

multiple linear

regression, SVM,

XGBoost, MLP, KNN,

Bayesian regression

U-Net model: Dice

coefficients Right lung:

0.951 ± 0.006 Left lung:

0.943 ± 0.007 Heart:

0.913 ± 0.035 Thoracic

cavity: 0.959 ± 0.013 MLP

(R2, mean absolute error,

mean absolute percentage

error): thoracic cavity

volume: 0.628, 0.736 L,

10.9% right lung volume:

0.501, 0.383 L, 13.9% left

lung volume: 0.507, 0.365

L, 15.2% XGBoost (R2,

mean absolute error, mean

absolute percentage error):

total lung volume: 0.514,

0.728 L, 14.0% heart

volume: 0.430, 0.075 L,

13.9%

None reported

(Continued)
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discriminative performance, with AUC values ranging between

0.58 and 0.61. The performance slightly decreased over extended

forecasting times and was worse in residual cohorts. Variability

in WL and PT AUC was most pronounced among candidates on

Medicaid, highlighting potential disparities tied to socioeconomic

factors. Despite leveraging contemporary data and advanced

modeling strategies, the study found no significant improvements

in the discrimination performance of the CAS-based WL and PT

survival models. This result indicates that current allocation

models may have already achieved their maximum predictive

power based on existing risk factors.

The CAS has yet to achieve universal acceptance worldwide,

largely due to the lack of an internationally standardized model

for lung donor-recipient allocation. Spanish researcher

J. M. Dueñas-Jurado developed a novel allocation model

informed by historical data from lung donors and recipients.

This aims to optimize lung transplant outcomes and minimize

morbidity and mortality in hospitals (5). The Logistic Regression

using Initial Covariates and Product Units model is a hybrid

framework combining classical statistical methods with newer

ML approaches. It incorporates key variables influencing

transplant survival, such as higher pre-transplant and post-

transplant functional vital capacity, which have positive effects on

survival with coefficients of 23.5 and 3.03, respectively. Lower

forced expiratory volume in the first second (FEV1) negatively

impacts survival with a coefficient of −23.51. While the model

underscores promising factors, its reliance on single-center,

retrospective data may limit generalizability. To bolster its

credibility, further validation through cross-validation and

longitudinal follow-up studies is necessary to improve predictive

accuracy for long-term outcomes. Future efforts should focus on

assessing its operational efficiency, clinical utility, and overall

impact on patient care.

Increased risk for disease transmission (IRD) refers to organ

donors who may transmit viruses such as hepatitis B virus,

human immunodeficiency virus, and hepatitis C virus through

transplantation (20, 21). Despite universal donor screening, there

remains a risk of missed detection during the early infection

“window period” when viral loads may be undetectable (4). As a

result, over 19% of deceased organ donors are categorized as IRD

for viral blood-borne disease transmission. Potential organ

recipients must weigh the risks of accepting an IRD organ offer

against the potential benefits of waiting for a non-IRD organ (21).

A study by Mark et al. (4) evaluated this complex decision-

making process by developing transplant and waitlist survival

models using RSF and the Cox proportional hazards model.

These models simulated 20,000 scenarios comparing survival

outcomes for patients accepting IRD organ offers vs. those

waiting for non-IRD organs across heart, lung, and liver

transplants. For lung transplants specifically, on average,

recipients of IRD organs experienced a 7.2% higher 5-year

survival probability than those who waited for non-IRD organs,

despite an average wait time of 223 days. Notably, 69.9% of

simulations favored IRD organ recipients, with the survival

benefit increasing as waiting times grew. In scenarios with an

estimated one-day wait, 49.4% of outcomes still indicated a

higher survival chance for IRD organ recipients.

These findings underscore the potential of ML to refine organ

allocation by improving survival predictions, optimizing donor-

recipient matching, and reducing waitlist mortality. However,

implementing such models in clinical practice requires

addressing key challenges, including limited data acquisition, the

need for generalizable models, and balancing short- and long-

term survival predictions. By tackling these barriers, ML-based

organ allocation can enhance the fairness and effectiveness of LTx.

2.2 Donor lung assessment

The success of LTx hinges on accurately assessing donor lung

quality and ensuring size compatibility with the recipient. While

computed tomography (CT) scans precisely evaluate recipient

lung size, donor lung size and condition are often unavailable,

with evaluations limited to basic demographic data. AI offers a

promising solution to this gap. Pu et al. (10) utilized a U-Net

model to segment lung, thoracic cavity, and heart structures from

chest CT scans, calculating their respective volumes. Among

eight ML methods tested on a cohort of 4,610 subjects, the

multilayer perceptron (MLP) model was the best performer for

predicting thoracic cavity and lung volumes, while the extreme

gradient boosting (XGBoost) model excelled in heart volume

predictions. These findings highlight AI’s ability to estimate

three-dimensional thoracic structure volumes using basic

demographics, improving lung size matching for transplantation.

Traditional donor evaluations rely on donor history, clinical

parameters, chest x-rays, bronchoscopy findings, and visual

inspections by transplant surgeons (22–27). However, these

criteria lack standardization and may exclude potentially viable

lungs (28–30). The persistent gap between the number of

patients on the lung transplant waitlist and the availability of

TABLE 1 Continued

Reference Objective Dataset
description

Dataset
split
(train/
test)

Predictors ML method/
model

Evaluation of best
model/Model
performance

Top predictive
variables

Ram et al. (2) Diagnosis: donor

lungs assessment

100 subjects; a

single-center

prospective trial

Single split:

82.5%/17.5%

CT features,

“ground truth”,

clinically relevant

parameters from

both donors and

recipients

Dictionary learning None reported None reported
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suitable donor organs remains a critical challenge (31). To mitigate

this, many programs have adopted extended donor criteria,

increasing opportunities for patients with end-stage lung disease.

With the increased use of suboptimal donor lungs, the

development of objective techniques to support physicians in

accurately screening donor lungs to identify recipients at the

highest risk of post-transplant complications becomes

particularly important.

Ram et al. (2) used ex vivo CT imaging combined with a

supervised ML algorithm, “dictionary learning,” to screen donor

lungs more effectively. This method leverages sparse

representation-based classification to achieve high accuracy with

limited datasets (32–34). In a study of 100 donor lung pairs, 70

were initially deemed suitable for transplantation through

conventional clinical assessments prior to CT screening and then

transplanted into recipients. Despite being screened, the

remaining 30 pairs were not transplanted. ML algorithms

successfully segmented 80 cases using a bespoke automated

segmentation algorithm, of which 59 were accepted and 21 were

declined for transplantation. Among the 52 donor lungs deemed

suitable by clinical standards, the model predicted approximately

20% as unsuitable (“ML declined”), with these lungs

demonstrating significantly lower feature probabilities

(0.205 ± 0.042) compared to those accepted by the model (“ML

accepted”) (0.637 ± 0.134, p < 0.0001). Recipients of ML-declined

lungs faced poorer outcomes, including a median ICU stay of 14

days and a 19.13-fold increased risk (95% CI 3.98–91.80) of

developing CLAD within two years post-transplant. The ML

model showed 64% agreement with clinical decisions regarding

the 14 non-transplanted donor lungs. The majority of ML-

declined donor lungs had pulmonary complications, such as

emphysema or pneumonia. This single-center study has some

limitations: small sample size, model training and testing

confined to a finite number of cases, and false-negative or false-

positive risk. Therefore, the CT-ML strategy is not intended to

replace the current donor lung screening system. Instead, it is

designed to complement the existing screening process by

integrating its algorithms, providing additional data support for

clinical decision-making.

Ex vivo lung perfusion (EVLP) is a sophisticated medical

technology that allows physicians to perform lung ventilation

and circulatory perfusion in ex vivo, assessing and repairing

donor lungs to ensure suitability for transplantation (35–40).

This technology can increase the utilization rate of marginal

donor lungs (41), offering a vital source of transplantable lungs

for patients. However, traditional EVLP decision-making involves

subjectivity, and the vast and complex clinical data produced

during ex vivo perfusion—including physiological, biochemical,

imaging, and biomarker measurements—can be particularly

daunting for EVLP programs with less experience (42, 43). To

establish a comprehensive approach for surgical decision-making

using organ assessment data obtained during EVLP, Sage and

colleagues developed InsighTx, an AI-driven decision-making

tool based on the XGBoost algorithm (9). Leveraging clinical

EVLP data from 725 cases collected at Toronto General Hospital

(2008–2022), the dataset was split into training and testing

datasets (80:20), enabling InsighTx to be trained to predict post-

transplant outcomes. The InsighTx model the area under the

receiver operating characteristic curve (AUROC) was 79 ± 3%,

75 ± 4%, and 85 ± 3% in training and independent test datasets,

respectively. The model excelled in identifying transplants with

good outcomes (AUROC: 80 ± 4%) and predicting unsuitable

lungs for transplantation (AUROC: 90 ± 4%). In a retrospective

blinded study, InsighTx influenced clinical decision-making,

increasing the likelihood of transplanting suitable donor lungs

(odds ratio = 13; 95% CI: 4–45) and reducing the likelihood of

transplanting unsuitable donor lungs (odds ratio = 0.4; 95% CI:

0.16–0.98). These results have validated the safety and accuracy

of integrating AI into EVLP protocols, supporting more precise

decision-making and improving transplant outcomes. The

development of InsighTx represents a milestone in advancing

precision medicine in LTx. Future research will involve large

external datasets and prospective, multi-center trials to confirm

the study’s conclusions. Additionally, exploring the expansion of

biomarkers, implementing real-time monitoring, developing

automated data extraction technologies, and integrating these

with existing technological platforms will be key directions.

3 Post-transplant

3.1 Complications

Complications after LTx significantly impact patient outcomes

in the short and long term (44). Given the complexity of these

complications, standardized practices for identifying high-risk

patients and implementing early interventions are currently

lacking. ML technology can extract critical information from

extensive and intricate biomedical data, supporting risk

assessment, early diagnosis, and personalized treatment of

complications after LTx (Table 2).

3.1.1 Primary graft dysfunction
PGD, a severe form of acute lung injury that occurs within 72 h

following LTx, remains a leading cause of early mortality (66–68).

ML models may explore potential biomarkers, facilitate the early

identification of risk factors, predict PGD development, and

enable timely therapeutic interventions.

Ischemia-reperfusion injury (IRI) is a primary driver of early

PGD, making exploring its pathogenesis a key research focus.

Qin et al. (61) used three ML algorithms—LASSO, RF, and

support vector machine recursive feature elimination (SVM-RFE)—

to identify four key biomarkers from differentially expressed

cuproptosis-related genes: LIPT1, NFE2L2, MTF1, and NLRP3,

which are strongly associated with the pathogenesis of IRI. For

each biomarker, the AUC of the ROC curve exceeded 0.8. Gene

biomarkers associated with neutrophil extracellular traps in IRI

during LTx were explored in another study (63). Using LASSO

and RF algorithms, four candidate hub genes were screened out,

with MMP9, PADI4, and S100A12 confirmed via enzyme-linked

immunosorbent assay as upregulated post-reperfusion. These
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TABLE 2 Machine learning in post-transplant risk assessment and early diagnosis of chronic lung allograft dysfunction and other complications.

Reference Objective Dataset
description

Dataset split
(train/test)

Predictors ML
method/
model

Evaluation of
best model/

Model
performance

Top predictive
variables

Weigt et al.

(45)

Prognosis: CLAD 9 for incipient

CLAD cases and 8

for CLAD-free

controls; multicenter

Leave-one-out

cross-validation

55 differentially

expressed probe

sets (map to 40

unique candidate

genes)

SVM Accuracy: 94.1% Top 10 features

Barbosa et al.

(46)

Diagnosis: BOS 176 LTx patients;

single-center

10-fold jackknife

split-sample cross-

validation: 90%/

10%

qCT, pulmonary

function tests,

semi-quantitative

image scores, PCs,

and qCT vol diff

Multiple variable

linear regression

and SVM

Unilateral LTx: SVM-

utilizing PC from qCT:

AUC = 0.817 Bilateral

LTx: multiple variable

linear regression-

pulmonary function test:

AUC = 0.765

Unilateral LTx: PC

from qCT Bilateral

LTx: pulmonary

function test

Barbosa et al.

(47)

Diagnosis: BOS 71 patients;

multicenter

Cross-validation

one-dimensional

and two-

dimensional spaces:

90%/10% three-

dimensional space:

80%/20%

qCT functional

respiratory

imaging

parameters

SVM Accuracy: One-

dimensional-76% two-

dimensional-83% three-

dimensional-85%

Sensitivity: 73.3%

Specificity: 92.3%

One-dimensional

classification: central

and total airway

volumes at FRC Two-

dimensional

classification: right

middle lobe volume

at total lung capacity

and right upper lobe

volume at FRC

Three-dimensional

classification: Right

middle lobe volume

at total lung capacity,

right upper lobe

airway resistance at

FRC, and central

airway surface at FRC

Halloran et al.

(48)

Diagnosis: lung

transplant

rejection

209 lung transplant

recipients; 7 centers

Not applicable Not applicable Unsupervised

ML

Not applicable None reported

Halloran et al.

(49)

Diagnosis: lung

transplant

rejection

214 patients; seven

centers

Not applicable Not applicable Unsupervised

ML

Not applicable IFNG-inducible

transcripts

Cantu et al.

(50)

Diagnosis: predict

recipient PGD

risk

113 subjects; single

center

5-fold cross-

validation: split not

reported

Clinical variables,

toll-like receptor,

and nod-like

receptor signaling

pathways

DL Toll-like receptor

signaling: AUC: 0.776

Sensitivity: 0.786

Specificity: 0.706 PPV:

0.471 NPV: 0.910

Toll-like receptor

signaling

Halloran et al.

(51)

Prognosis:

establish the

impact of

molecular TCMR

on graft survival

457 TBBs and 314

mucosal biopsies; 10

centers

Not applicable Not applicable Unsupervised

ML

Not applicable Molecular TCMR

Dugger et al.

(52)

Prognosis: CLAD,

new mechanistic

biomarkers

22 CLAD cases and

27 matched controls;

single center

Leave-one-out

cross-validation

Gene expression

data in airway

brushes and TBBs

LASSO-

penalized LR

model, RF

models

RF models-AUC TBBs:

0.62 (95% CI: 0.45–0.79)

airway brushes: 0.84

(95% CI: 0.73–0.95)

Not all genes were

explicitly listed

Berra et al. (53) Prognosis:

identification and

progression of

CLAD

40 lung transplant

recipients; single

center

Leave-one-out

cross-validation

The

concentrations of

peptides from Ang

II-regulated

proteins in BAL

fluid

SVM AUC Discriminating

between CLAD and no

CLAD (stable + acute

lung allograft

dysfunction): 0.86

Predicting subsequent

CLAD development:

0.97

Combinations of the

seven peptides

Li et al. (54) Diagnosis: predict

recipients’ PGD

113 enrolled

subjects; single-

center

5-fold cross-

validation: split not

reported

6 immunology

pathways

PL None reported None reported
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TABLE 2 Continued

Reference Objective Dataset
description

Dataset split
(train/test)

Predictors ML
method/
model

Evaluation of
best model/

Model
performance

Top predictive
variables

Stefanuto et al.

(55)

Diagnosis: PGD

biomarkers

35 lung transplant

patients; single-

center

Single split: 50%/

50%

386 features SVM AUROC: 0.9 Accuracy:

0.83 Sensitivity: 0.63

Specificity: 0.94 PPV:

0.87 NPV: 0.80

Alkylated

hydrocarbons, linear

hydrocarbons, and

aldehydes

Watzenboeck

et al. (56)

Prognosis: predict

future lung

changes in lung

function

19 patients; single

center

Nested cross-

validation

Clinical metadata,

microbiome,

metabolome and

lipidome data sets

Ridge regression

models

FEV1 (30 days):

microbiome data

(Pearson r = 0.76,

p < 0.001) FEV1 (60

days): metabolome

data + clinical metadata

(Pearson r = 0.63,

p < 0.001) FEV1 (90

days): clinical metadata

(Pearson r = 0.42,

p < 0.05)

FEV1 at 30, 60 or 90

days after sample

collection

Su et al. (57) Diagnosis:

infection and

rejection

59 lung transplant

recipients; single-

center

10-fold cross-

validation: split not

reported

6 bacterial genera,

procalcitonin and

T-lymphocyte

levels

RF AUC: Event-free vs.

infection: 0.898; Event-

free vs. Rejection: 0.919;

Infection vs. rejection:

0.895

The combination of

the 6-airway

microbiota and PCT

and T lymphocyte

levels

McInnis et al.

(58)

Prognosis: CLAD

diagnosis for

phenotyping and

prognostication

88 patients; single

center

Not applicable NLML, HLML,

GGOML, RETML,

honeycombing,

CTTLC, PVVML

The Computer-

Aided Lung

Informatics for

Pathology

Evaluation and

Rating tool

Sensitivity: 0.90

Specificity: 0.71

Accuracy: 0.75 AUC:

0.851

Pulmonary vessel

volume

Zhang et al.

(59)

Diagnosis:

transplant

rejections

243 patients; gene

expression omnibus

database

10-fold cross-

validation: split not

reported

Number of genes:

RF: 442, SVM:

247, KNN: 18, DT:

313

RF, SVM, KNN,

DT

SVM: Accuracy: 0.992

Matthews correlation

coefficient: 0.984

None reported

Wijbenga et al.

(60)

Prognosis: CLAD,

biomarkers

152 lung transplant

recipients; single-

center

10-fold internal

cross-validation: 2:1

eNose sensor data

and available

known risk factors

of CLAD

Supervised ML Training set: AUC 0.94,

sensitivity 96%,

specificity 85%, accuracy

88% Validation set: AUC

0.94, sensitivity 100%,

specificity 78%, accuracy

83%

eNose sensor data,

available known risk

factors of CLAD (age,

gender, type of LTx,

time after LTx and

occurrence of any

prior acute cellular

rejection episodes)

Qin et al. (61) Diagnosis:

identification of

cuproptosis-

related biomarkers

in allograft lung

IRI

pre- and post-LTx

lung biopsy samples

and CRGs were

obtained from the

gene expression

omnibus database

and previous studies

Cross-validation

Training set: 51

ischemic vs. 51

paired reperfusion

(pre- vs. post-LTx)

samples from

GSE1,45,989

Validation set: 46

pre- vs. paired post-

LTx samples from

GSE127003

Fifteen

differentially

expressed

cuproptosis-

related genes

LASSO, SVM-

RFE, RF

AUC: NFE2L2: 0.899

NLRP3: 0.874 LIPT1:

0.799 MTF1: 0.853

NFE2L2, NLRP3,

LIPT1, and MTF1

Gouiaa et al.

(62)

Diagnosis: acute

cellular rejection

40 patients 5-fold cross-

validation: 75%/

25%

9 characteristics Taelcore (MLP) KL0.01: −138.563 KL0.1:

−15.247 KL1: −0.208

Root mean square error:

0.0385 TRUST: 0.9464

Mean square error: 0.307

None reported

Gao et al. (63) Diagnosis: explore

NET-related gene

biomarkers in IRI

Gene expression

omnibus database

LASSO: 10-fold

cross-validation;

split not reported

Thirty-eight genes LASSO and RF AUC values exceeding

0.70 for all four genes

MMP9, PADI4, and

S100A12

Michelson

et al. (64)

Diagnosis: predict

the development

of PGD grade 3

within the first

72 h of

transplantation

576 bilateral lung

recipients; single-

center

5-fold cross-

validation: 75%/

25%

11 variables LR, KNN, XGB,

and SVC

KNN: AUROC: 0.65

AUPRC: 0.45 F1: 0.62

Recipient sex-Female

(Continued)
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findings offer new perspectives on IRI and PGD potential

therapeutic targets and early identification after LTx.

Cantu et al. (50) employed a feed-forward DL model to analyze

gene expression data from donor lung tissue, with an emphasis on

Nod-like receptor and Toll-like receptor signaling pathways,

combined with clinical variables. The model showed excellent

discrimination and precision in predicting recipient PGD risk.

Peel learning (PL) for pathway-related outcome prediction is a

specialized DL method that integrates the prior relationships

among genes. It is particularly suited for gene expression studies

with small sample sizes, high dimensionality, and strong inter-

variable correlations. PL was applied in a case study by Li et al.

(54) with a small cohort of lung transplant recipients, predicting

PGD post-surgery using the donors’ gene expressions within

several immunological pathways. PL showed improved prediction

accuracy compared to traditional DL methods. These combined

gene expression and ML methods offer new possibilities for the

early identification of PGD risk factors.

Michelson et al. (64) used the k-nearest neighbors (KNN) model,

leveraging donor and recipient characteristics, to predict the onset of

PGD grade 3 within the initial 72 h post-transplantation, with an

AUROC of 0.65. Stefanuto et al. (55) applied the SVM algorithm

to differentiate between severe- and lower-grade PGD by analyzing

volatile organic compounds in blind bronchial aspirate samples and

bronchoalveolar lavage (BAL) fluid collected within 6 h post-

transplantation. The study revealed that severe PGD could be

identified with an accuracy of 0.83 and an AUROC of 0.90.

However, at later time points, the model’s performance was

moderate, achieving an AUROC of 0.80. These findings offer a

scientific basis for the potential development of non-invasive,

breath-based molecular diagnostic tools for assessing PGD.

3.1.2 Airway complications

Airway complications are significantly associated with higher

mortality after LTx (69). Airway stenosis (AS) is the most

common complication, with incidence rates reported ranging from

1.6% to 32.0% in previous studies (70–74). Accurate and early

detection of AS that requires therapeutic intervention, alongside

enhanced early bronchoscopic surveillance post-LTx, may help to

alleviate the disease burden. Tian et al. (65) developed an optimal

ML model by analyzing the clinical profiles of 381 LTx recipients.

Using the RF algorithm combined with feature selection based on

the determination coefficient, the model can satisfactorily predict

AS necessitating clinical intervention following LTx (AUC= 0.760,

Brier score = 0.085). Five significant predictive features were

identified, including the postoperative 6-min walking test, patient

sex, diagnosis, type of extracorporeal membrane oxygenation

(ECMO) employed, and preoperative hormone use.

3.2 Rejection

Poorly diagnosed rejection may result in excessive or insufficient

immunosuppression (51). In transbronchial biopsies (TBBs),

histologic evaluation of T-cell-mediated rejection (TCMR) is

notably variable (75), often resulting in inconsistent diagnoses.

Molecular diagnostics have emerged as an alternative to histology.

The Molecular Microscope Diagnostic System is a proven tool

developed to evaluate heart and kidney transplant biopsies with

excellent technical reproducibility while using less tissue (76–79).

It combines unsupervised ML-derived algorithms with microarray-

based measurements. Halloran et al. (48) applied the centralized

the Molecular Microscope Diagnostic System approach to diagnose

molecular TCMR in single-piece TBBs with high surfactant

transcripts. Mucosal biopsies, which are safer and easier to obtain

than traditional TBBs, are also being explored. The molecular

assessment of the third bronchial bifurcation has proven to be a

powerful tool for evaluating lung transplant patients’ disease

status, capable of detecting rejection in previously unusable biopsy

formats. This technique holds potential utility for patients with

compromised respiratory function, where TBB is not feasible. The

rejection phenotype identified in the third bronchial bifurcation is

associated with IFNG-inducible transcripts, which are hallmarks of

rejection (49). Additionally, Halloran and colleagues (51)

conducted a study to train new ML models on larger datasets with

the goal of identifying TCMR in all TBBs and investigating the

correlation between graft loss risk and molecular TCMR. These

models revealed that molecular TCMR, regardless of biopsy type,

is a significant predictor of graft failure risk.

Advancements in technology are continuously enhancing the

efficacy and precision of rejection monitoring after LTx. For

instance, by analyzing gene expression profiling patterns of

mucosal biopsies in conjunction with clinical outcomes from

various studies, an SVM algorithm was able to distinguish

patients into different rejection responses with a Matthews

correlation coefficient of 0.984 and an overall accuracy of 0.992

(59). Additionally, Taelcore, a novel dimensionality reduction

method, effectively reduces the dimensionality of high-dimensional

TABLE 2 Continued

Reference Objective Dataset
description

Dataset split
(train/test)

Predictors ML
method/
model

Evaluation of
best model/

Model
performance

Top predictive
variables

Tian et al. (65) Prognosis: AS 381 LTx patients;

single center

Bootstrapping 15 variables LR, DT, KNN,

NB, SVM,

GBRM, RF, XGB

RF AUC: 0.760 Brier

score: 0.085 Sensitivity:

0.782 Specificity: 0.689

PPV: 0.252 NPV: 0.965

Postoperative 6-min

walking test,

diagnosis, sex, ECMO

type, and

preoperative

hormone use
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datasets by integrating topological data analysis (80) and ML

autoencoders (81), and excels at preserving the topological

structure of the data. After being combined with MLP, the

method achieved an accuracy of 90% in predicting the risk of

acute cellular rejection after LTx (62). Su et al. (57) conducted

16S rRNA gene sequencing to analyze the airway microbiota

from 181 sputum samples from 59 lung transplant recipients.

The RF model, incorporating procalcitonin and T-lymphocyte

levels, effectively discriminated between clinically stable recipients

and those experiencing acute rejection and infection. These

findings indicate that airway microbiota could serve as a

potential biomarker to distinguish between acute rejection and

infection following LTx, providing a non-invasive tool for post-

LTx monitoring.

3.3 Chronic lung allograft dysfunction

CLAD remains a major cause of complications and mortality

following LTx, affecting approximately 50% of recipients as early

as four years post-transplant (82, 83). The primary phenotype of

CLAD is bronchiolitis obliterans syndrome (BOS), which

clinically manifests as physiologic airflow obstruction. Currently,

there are no effective therapies that can prevent or reverse the

confirmed CLAD (84), highlighting the importance of early

detection to improve treatment outcomes.

Recent studies have demonstrated the potential of ML

approaches for the early identification and risk stratification of

CLAD and BOS, ultimately informing timely and personalized

interventions in post-transplant care. As summarized in Table 2,

several studies have explored diverse ML methodologies to

enhance clinical decision-making. Two studies investigated the

application of SVM in utilizing baseline quantitative CT metrics

for the early diagnosis of BOS and predicting its eventual onset

(46, 47). Both hierarchical clustering and SVM enable the correct

classification of BAL fluid samples into CLAD-free and incipient

CLAD categories (94.1% and 82.3%, respectively), supporting the

potential of the transcriptome of BAL cell pellets as a biomarker

for CLAD risk stratification (45). Another study further

highlighted the value of SVM in distinguishing between CLAD

from stable and acute lung allograft dysfunction patients at the

time of bronchoscopy and predicting future CLAD development

with precision (53). Additionally, RF models based on gene

expression data from airway brushings outperformed traditional

transbronchial biopsy samples, effectively distinguishing between

CLAD and non-CLAD samples (52). McInnis et al. (58) used the

Computer-Aided Lung Informatics for Pathology Evaluation and

Rating tool, a validated ML algorithm for quantitatively analyzing

lung texture on CT images automatically, to conclude that

pulmonary vessel volume, a biomarker without direct visual

correlation, is the strongest predictor for both CLAD phenotype

classification and survival. Watzenboeck et al. (56) trained ridge

regression models to predict short-term (30-day) changes in

FEV1 after LTx using microbiome data. These insights are

crucial for the early diagnosis of post-transplant lung function

decline and timely intervention, which may prevent or delay the

progression of CLAD. Wijbenga et al. (60) applied partial least

squares discriminant analysis to reduce the dimensionality of

electronic nose (eNose) sensor data, and evaluated its diagnostic

value across CLAD phenotypes and stages. The eNose accurately

discriminated between restrictive allograft syndrome and BOS.

However, its discriminative ability was more limited for other

CLAD phenotypes and CLAD stages.

3.4 Survival

Survival prediction is crucial in medicine, particularly amid

organ shortages (85). Traditional statistical methods have several

limitations, including assuming linear relationships between

variables, relying on subjective variable selection, struggling with

multicollinearity, and strict assumptions regarding data

distribution (86–89). In contrast, ML can integrate diverse factors

related to the recipient, donor, and transplantation process,

providing a profound insight of the key influencing patient

survival (90). Table 3 provides an overview of ML studies in

survival prediction, detailing the types of ML tools evaluated and

their performance metrics. Delen et al. (91) employed ML models

combined with sensitivity analysis to identify a consolidated set of

predictive variables, which were subsequently used to develop the

Cox survival model for thoracic transplantation. Additionally, they

applied the k-means clustering algorithm to classify patients into

three risk groups, confirming significant differences among these

groups through Kaplan–Meier survival analysis. Moro et al. (92)

applied a survival tree algorithm to analyze recipient and donor

data, identifying six key predictors: recipient age, post-transplant

recipient ventilator and reintubation, duration of hospitalization

from transplant to discharge, double LTx, and donor

cytomegalovirus status. Tian et al. (93) found that the RSF model

was more accurate than the Cox regression model in predicting

overall survival for LTx patients. Based on variable importance,

the final RSF model selected 16 factors, identifying postoperative

ECMO duration as the most valuable variable. The RSF model

demonstrated excellent performance, with an integrated Brier score

of 0.130 (95% CI: 0.106–0.154) and an integrated area under the

curve of 0.879 (95% CI: 0.832–0.921).

Personalized and precise survival predictions are essential for

guiding clinical decision-making and further improving

postoperative survival in lung transplant patients. However, many

ML models, particularly those using complex algorithms, are

criticized for their “black-box”, where the decision-making

processes remain opaque. Thus, Amini et al. (95) proposed an

explanatory analytics framework to identify the key factors

influencing long-term survival following LTx. Using the UNOS

dataset, several ML algorithms were employed for classification,

including GBT, RF, decision trees (DT), logistic regression (LR),

SVM, KNN, and artificial neural networks (ANN). Among these,

the RF model outperformed all others in almost all metrics

(accuracy: 77.92%, specificity: 79.58%, sensitivity: 76.26%, and

AUC: 79%). To provide interpretability for the best-performing

model, the SHapley Additive exPlanations (SHAP) algorithm was

used, revealing that FEV1 and Hepatitis B surface antibody were
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key predictors of long-term survival. Lung transplant researchers

have not well examined these factors.

With respect to the impact of specific factors on LTx outcomes,

Jiao et al. (96) used the XGBoost model to select and rank 20

variables, identifying pulmonary artery pressure change during

ECMO as a key determinant of post-LT survival. Melnyk et al.

(97) utilized elastic net regression to examine the effects of

perioperative blood product transfusion, identifying 11 significant

predictors associated with increased short-term morbidity and

mortality following LTx. Chao et al. (98) focused on defining and

evaluating EVLP radiographic findings, demonstrating that first-

hour consolidation and infiltrate lung scores were predictive of

transplant suitability and outcomes. Collectively, these studies

underscore the importance of assessing and managing specific

physiological and treatment-related factors to enhance LTx

success and optimize patient outcomes.

ML models can also be employed to predict graft survival,

which can better inform organ allocation and donor-recipient

matching. Oztekin et al. (94) proposed an integrated data-mining

methodology that utilized three different variable selection

methods to identify a comprehensive set of factors, which were

then employed to develop Cox regression models. The predictive

models’ performance ranged from 79% to 86% for NN, from

78% to 86% for LR, and from 71% to 79% for DT. This

approach also revealed previously unknown patterns and

relationships among the predictor variables.

TABLE 3 Machine learning in patient and graft survival prediction.

Reference Objective Dataset
description

Dataset
split
(train/
test)

Predictors ML
method/
model

Evaluation of
best model/

Model
performance

Top predictive
variables

Oztekin et al.

(94)

Prognosis: predict the

graft survival for

heart-lung

transplantation

patients

16,604 cases;

UNOS database

10-fold cross-

validation:

split not

reported

283 variables Prediction

models (NN,

DT, and LR)

and Cox

regression

modeling

Accuracy NN: 79% to

86%; LR: 78% to 86%;

DT: 71% to 79%

Sternotomy_Tcr;

Angina_Cad;

Pulm_Inf_Don;

Func_Stat_Tcr;

Death_Circum_Don; Age;

Cig_Use

Delen et al.

(91)

Prognosis: predict the

survival time and

determine risk groups

of thoracic recipients

106,398 records;

UNOS dataset

10-fold cross-

validation:

split not

reported

372 cleansed

independent

variables and one

dependent variable

SVM, ANN

and DT

SVM: Mean square

error: 0.023 R2: 0.879

14 significant variables

with prognostic value

Amini et al.

(95)

Prognosis: the

impactful factors for a

patient’s lung

transplant’s

prolonged survival

13,080 patients;

UNOS dataset

10-fold cross-

validation:

split not

reported

171 variables GBT, RF, DT,

KNN, ANN,

SVM, LR

RF Accuracy: 77.92%

Specificity: 79.58%

Sensitivity: 76.26%

AUC: 79%

Recipient CMV by IGG

test results at

transplantation

Jiao et al. (96) Prognosis: identify

the association of

pulmonary artery

pressure change

during ECMO and

post-LT survival

208 recipients;

Chinese Lung

Transplantation

Registry

None

reported

20 variables XGboost None reported ΔmPAP (35 mmHg)

Tian et al. (93) Prognosis: predict

overall survival

504 patients;

single center

Single split:

70%/30%

4 recipient factors, 1

donor factor, 4

transplant procedural

factors, and 13

posttransplant

factors

RSF An integrated area

under the curve: 0.879

(95% CI: 0.832–0.921)

An integrated Brier

score: 0.130 (95% CI:

0.106–0.154)

Postoperative ECMO time

Melnyk et al.

(97)

Prognosis: identify

the relationship

between blood

product transfusion

and short-term

morbidity and

mortality following

LTx

369 patients;

single center

5-fold cross-

validation:

split not

reported

Preoperative

recipient

characteristics,

procedural variables,

perioperative blood

product transfusions,

and donor

characteristics

Elastic net

regression

Average accuracy: 76.5%

Sensitivity: 80%

Specificity: 69%

Balanced accuracy: 74%

11 significant predictors

of composite morbidity, 3

protective predictors

against composite

morbidity

Chao et al.

(98)

Prognosis: define and

evaluate EVLP

radiographic findings

and their association

with lung transplant

outcomes

113 EVLP cases;

single-center

Single split:

75%/25%

All radiographic lung

scores from both

time points and

tabular EVLP

parameters regularly

taken clinically

XGBoost AUROC: 80.7% ± 2.0% First-hour consolidation

and infiltrate lung scores

Moro et al.

(92)

Prognosis: survival

post-LT at 1, 5 and 10

years

27,296 lung

transplant

patients; UNOS

dataset

10-fold cross-

validation:

70%/30%

47 significant

variables associated

with mortality

Survival tree C-index: 0.653 6 significant factors
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3.5 Quality of life

Traditionally, most lung transplant referral guidelines have

emphasized anticipated survival benefits. However, the primary

motivation for patients to undergo LTx is the expectation of

better health-related quality of life (99). LTx typically has a

dramatic impact on a patient’s health-related quality of life (100).

Therefore, it is crucial to assess patient satisfaction regarding

quality of life, considering multiple dimensions such as physical

functioning, mental health, and social functioning for the

postoperative clinical management of adult LTx recipients

(101–103). Oztekin et al. (104) developed a hybrid feature

selection methodology utilizing genetic algorithms (GA), aimed

at achieving high classification accuracy of analytic models for

predicting quality of life in LTx patients. They developed and

successfully applied three decision analytic models—GA-SVM,

GA-ANN, and GA-KNN—to address the feature selection.

Among these, the GA-SVM model demonstrated superior

performance. Furthermore, this study identified that recipient-

cytomegalovirus IgG test results, simultaneous lung, and

transplant type were key predictors of post-transplant health-

related quality of life.

Although most LTx recipients experience improved lung

function post-surgery, many may still encounter unexpected

symptoms, such as dyspnea, exertional fatigue, and muscle pain.

These symptoms can limit their ability to carry out daily

activities and consequently have a negative impact on their

overall quality of life (105, 106). In an observational cross-

sectional study, Braccioni et al. (107) used a Forest-Tree ML

approach to analyze the associations between symptom severity

and cardiopulmonary exercise testing parameters. The study

revealed several key correlations: the dyspnea score was

significantly correlated with both minute ventilation at peak

exercise and maximum power output; the muscle effort score was

significantly correlated with breathing reserve as a percentage of

maximal voluntary ventilation; and the muscle pain score showed

significant correlations with oxygen uptake, arterial bicarbonate

concentration at rest, and the minute ventilation/carbon dioxide

production slope. These findings may inform the development of

personalized symptom management and exercise rehabilitation

programs for LTx recipients, ultimately improving their quality

of life.

4 Discussion

Although numerous studies have demonstrated the immense

potential of AI and ML in LTx, several challenges remain.

Figure 2 provides a conceptual summary of the key barriers—

related to dataset, model interpretability, and real-world

implementation—and the potential strategies to address them,

enabled by interdisciplinary collaboration.

4.1 Dataset quality and reliability

The performance of AI and ML models largely depends on

access to large-scale, high-quality datasets (108). However, due to

the need to protect patient privacy and ensure data security, data

sharing among different medical institutions is restricted, which

complicates the acquisition of sufficient post-LTx data, especially

for rare complications or long-term follow-up data. Addressing

these issues will require:

• Establishing cross-institutional data-sharing protocols and

building a healthcare big data platform. Through techniques

such as anonymization and encryption, data security and

FIGURE 2

Enabling real-world AI in healthcare: challenges, strategies, and interdisciplinary collaboration.
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privacy can be preserved while simultaneously enhancing data

sharing and quality control.

• Employing advanced ML techniques, such as oversampling or

undersampling, or the development of new algorithms to

handle imbalanced data (109).

• Adopting multi-center, prospective clinical trials to

systematically and standardize data collection, along with

rigorous data cleaning and validation processes.

These efforts are essential to improve data quality and reliability,

facilitating the development of more accurate ML models.

4.2 Trust and interpretability

In ML, a “black-box model” refers to a model with an opaque

relationship between input data and output results, characterized

by complex and unexplainability algorithms (110, 111). In the

medical field, where precise and reliable decision-making is

essential, the opacity and unexplainability in AI models make it

difficult for clinicians to understand the decision-making logic,

thus undermining their trust in model predictions. Especially in

auxiliary diagnosis requiring subjective judgment, this lack of

trust may limit the model’s applicability and acceptance in

clinical practice. Furthermore, regulatory authorities may find it

challenging to assess and monitor the performance and safety of

these models, potentially leading to regulatory gaps and

inadequacies, and raising ethical and legal concerns. Transparent

model design must be prioritized to meet both clinical and

regulatory expectations. To overcome these issues:

• Explainable AI such as SHAP can help clarify how specific

features contribute to predictions, assisting clinicians in

improving their decision-making processes (112).

• Case-Based Reasoning can use visual reasoning or visual

explanations to help medical experts understand why cases are

similar by visualizing shared patient characteristics, thereby

enhancing the acceptance and applicability of AI models in

clinical practice (113).

In medical AI systems, clinical validation is the most critical

requirement for translating algorithmic outputs into real-world

decision-making.

4.3 Real-world clinical practice

The global scarcity of medical resources makes the demand for

AI applications in healthcare widespread and urgent. The efficient

computational capabilities of AI can assist physicians in diagnosis

and decision-making, allocate medical resources rationally, and

promote the personalization and precision of healthcare services

(114). AI systems must undergo broader testing and prospective

evaluation in real-world clinical practice to ensure their accuracy,

safety, and practicality (115). Successful integration of AI models

into clinical workflows requires overcoming sociotechnical

challenges, including:

• Training and educating users—including physicians and

patients—to ensure they can effectively utilize AI and have

confidence in its decisions.

• Continuously monitoring AI systems’ emerging behaviors and

user responses in complex sociotechnical environments after

the deployment (116).

• Establishing a robust governance structure and regulatory

framework to ensure the safety and efficacy of AI, addressing

issues of transparency, responsibility, accountability, as well as

clear guidelines regarding data ownership and usage rights.

Through these comprehensive measures, we can better harness AI

technology to enhance the quality and accessibility of

healthcare services.

5 Conclusion

In summary, the application of AI and ML in the field of LTx

encompasses several key aspects, from pre-transplant organ

allocation and donor assessment to post-transplant clinical

outcome prediction and diagnosis of postoperative complications.

These technologies can analyze and understand the complex

relationships among variables, enhancing prediction accuracy.

Existing research has demonstrated the potential of ML in

clinical applications for LTx, but it remains in the early stages of

development. Currently, several barriers persist, including

insufficient standardization and structuring of data, a lack of

multicenter prospective clinical trials, physicians’ distrust of ML,

and ethical and regulatory issues. Addressing these challenges

requires interdisciplinary collaboration among clinical experts,

technology developers, and policymakers to facilitate the

successful deployment and scaling of AI and ML in the

healthcare sector.
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