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unlocking doors
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Introduction: In highly information-oriented society, personal authentication

technology is essential. Biometric authentication is becoming popular as a method

of personal authentication from the viewpoint of usability. In this research, in order

to realize unconscious personal authentication during daily activities, we proposed

a novel biometric authentication system using a doorknob-type electrocardiogram

(ECG) measuring device. In our previous study, it was shown that ECG obtained

with a contact-type electrode on doorknob and a capacitive-type electrode on

the floor could be used for personal identification. However, identification

performance is easily affected by noise from body movements and other factors,

due to loose contact between electrodes and the body.

Method: In this paper, we proposed to add two preprocessing techniques to the

system. Synchronized averaging process was applied to the measured ECG

waveforms. Then, data augmentation was applied to the machine learning

training data.

Results: Itwas found that synchronizedaveragingwith5consecutivewave segment

improved accuracy by 10%. It was also found that training data augmentation

improved the performance even under limited amount of ECG data.

Discussion: The results demonstrate that remarkable performance improvement

can be achieved even with short term door-knob ECG by using synchronized

averaging and data augmentation.

KEYWORDS

biometric authentication, ECG, synchronized averaging, machine learning technique,

artificial neural network, support vector machine, data augmentation

1 Introduction

In a highly information-oriented society, personal authentication technology is

essential. Biometric authentication is becoming popular as a method of personal

authentication from the viewpoint of usability. Biometric authentication is currently the

mainstream method of personal identification (1). It uses the physical and behavioral

characteristics of the user to verify his or her identity. Therefore, it is less burdensome

for the user because there is no need to carry or memorize the information, and it is

superior to conventional methods. However, there is a risk of information leakage and

the inability to change the information once it has been leaked. Among biometric

methods, personal authentication using biometric signals is considered superior in

security because it is difficult to duplicate from the outside. Electrocardiogram (ECG)
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can be used for a novel secured biometric feature (2–8). In these

previous studies, some feature parameters extracted from ECG

were analyzed by multivariate statistical analyses or traditional

classification techniques. The ECG is superior among biological

signals because its signal is relatively large and can be acquired

more easily than other biological signals.

Furthermore, heart disease is the second leading cause of death in

Japan (9). Therefore, daily healthcare at home is considered necessary.

Capacitive electrodes are effective for the unselfconscious

measurement of electrocardiograms (10, 11). The introduction of

such a system would create an environment in which ECGs can be

measured unselfconsciously and the data can be automatically

classified in households with two or more members.

We wondered if ECG could be used to unlock doors in a home

environment where such an automatic ECG measurement and

management system is installed. This would create an

environment in which doors can be unlocked unconsciously. The

system not only manages entry to rooms but also knows who is

using the room. In ECG personal identification, we have been

working on high-frequency components in ECG (HFECG)

(12–14). We have shown that the extracted individual features

give high identification performance. In these previous studies,

we have used machine learning techniques such as artificial

neural networks to deal with fluctuating features. We have also

used doorknob-type electrodes which consist of a contact-type

doorknob and capacitive-type floor electrodes (15). The signal

quality from the electrodes is far inferior to the quality of

contact-type electrodes. Therefore, basic machine learning

identification had limited performance due to noise, which is

inevitable in the practical environment of capacitive electrodes.

In this paper, as a proposal for improvement, we introduced the

synchronized averaging method used for noise reduction in the

field of EEG analysis to signal preprocessing and added a device

to expand the number of training data for machine learning to

improve performance. The same discriminators were used for

machine learning to compare the results with those of previous

studies. Verification of the discrimination accuracy suggested that

it is possible to discriminate with an accuracy of >95% even

when noise is mixed in under practical conditions, and results

that bring the system closer to practical use were obtained.

2 Method

2.1 ECG measurement

ECG data were measured from 10 healthy subjects consisting of

seven males and three females with an average age of 21.2 years in a

shielded room. The number of subjects was determined based on

the assumption of home use. Five sets of measurements were

performed for 20 s each. ECGs were recorded both with a

doorknob ECG measuring device and with disposable electrodes

for comparison. The total measurement time was approximately

10 min per person, and the subjects were in a resting state,

so the measurement could be performed while the ECG

remained steady.

The doorknob-type electrocardiograph consists of a doorknob

electrode and two floor electrodes as shown in Figure 1. The

doorknob electrode is a contact electrode that consists of a gold-

plated copper foil affixed to a doorknob. The floor electrodes are

capacitive electrodes insulated with 0.07 mm polyvinyl chloride

(PVC) film attached to both sides of the copper foil, and a voltage

follower is attached to the back of the electrode to reduce the output

impedance. A copper foil was used to ensure flexibility and

conductivity to fit the shape of the sole, while PVC film was

employed because of its dielectric constant, thickness, and flexibility

to ensure sufficient capacitance with the living body. The floor

electrodes were placed on a urethane mat to improve adhesion to

the floor electrodes to ensure close contact between the electrode

and the sole. Flexible electrodes allow for better adhesion to the

plantar surface and stable measurement.

Doorknob ECG was recorded in a standing position, with the

doorknob electrode connected to the negative input terminal, the

floor electrode on the left foot side connected to the positive input

terminal, and the floor electrode on the right foot side connected to

the ground, as in limb lead II. As shown in Figure 2, the subject was

instructed to hold the doorknob electrode with his right hand and

to stand on the floor electrodes with his socks on so that he is in a

posture simulating the motion of opening a door. Measurements

with disposable electrodes were performed with limb lead II using

the wrist and ankle simultaneously. Two signal grounds were

FIGURE 1

Floor electrode.

FIGURE 2

Measurement system configuration.

Kawamura and Kyoso 10.3389/fdgth.2025.1585431

Frontiers in Digital Health 02 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1585431
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


separated from each other so that the ground for limb lead II

connected directly to the body does not have any effect on the

doorknob ECG. The measurement environment and conditions are

shown in Figure 2 and Table 1. The measuring instrument used was

the AB-610J manufactured by Nihon Kohden Corporation. The

results of the measurement waveforms using the disposable

electrodes are referred to as “Dispo,” and the results of the

measurement waveforms using the doorknob-type

electrocardiograph are referred to as “Door.”

Additional measurements were performed on 7 subjects

consisting of five males and two females selected from the 10

subjects mentioned earlier on other days under the same

conditions. These data were used for reproducibility evaluation.

The system was trained using the data of the first 10 people, and

these data were then used as test data to evaluate the performance.

All the measurements were performed with careful ethical

consideration and approval by the Medical Ethics Committee of

Tokyo City University.

2.2 ECG preprocessing

2.2.1 Outline
Figure 3 shows the overall processing flow. As shown in the figure,

200 samples of themeasuredECGwaveformwere cut out based on the

peak on the R wave. Then, synchronized averaging was performed on

the extracted ECG waveforms, and appropriate extensions were

applied to the obtained waveforms to create training data. For the

training data, the waveforms averaged 1 or 2 of wave segments were

used for data expansion. Using this waveform data, machine

learning was performed to classify subjects.

2.2.2 Beat-by-beat HFECG extraction

The extraction flow of the high-frequency ECG is shown in

Figure 4. Segmentation parameters were determined by

preliminary experiments and previous studies (12–14) so that the

high-frequency ECG corresponding to the QRS wave could be

covered in any subject. Filter 1 and Filter 2 were used to obtain

ECG and HFECG, respectively. A total of 200 samples were

extracted from the HFECGs after Filter 2. The digital filter is an

IIR filter with Butterworth characteristics. The wave segment

consists of 75 samples before the R wave peak is detected by

Filter 1 as the range into which the main waveform enters and

125 samples after it is detected (12). This resulted in a 0.2 s

extracted around the QRS wave of a single heartbeat waveform.

The filter conditions are shown in Table 2. Waveform samples

were used as personal features input to the discriminator.

2.2.3 Noise reduction by synchronized averaging
In usability-oriented ECG measurements such as doorknob

electrodes, the contact between the skin surface and the electrode

is uncertain. It results in unavoidable noise contamination, which

has a negative impact on discrimination performance.

As a method to remove noise while preserving waveform

characteristics, this study proposes the application of

synchronized averaging, which is also used in evoked brain

potential measurements (16). Synchronized averaging is a

method used mainly when the target waveform in a signal is

weak or when the signal is polluted by noise that has the same

frequency component. Consecutive signals are cut out at the

same timing and then added and averaged. This has the

TABLE 1 Measurement parameters.

Parameters

Sampling frequency 1,000 Hz

High pass filter cutoff frequency 0.08 Hz

Low pass filter cutoff frequency 300 Hz

Hum filter cutoff frequency 50 Hz

Gain 60 dB

Resolution 16 bit

Input voltage range ±5 V

FIGURE 3

Overall ECG processing flow.
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advantage of noise reduction and target waveform enhancement.

This process improves the signal-to-noise ratio by a factor of
ffiffiffi

n
p

because it makes the signal enhanced by n times and

uncorrelated signal enhanced by
ffiffiffi

n
p

times. In this paper, the

technique is used to enhance HFECG and suppress the noise

such as motion artifacts and external electromagnetic interference.

More than 100 beats of averaged HFECG segments were

obtained from each measurement. The HFECG segments were

divided into 70% training datasets and 30% test datasets for

machine learning–based discrimination block. During machine

learning, 70 training data and 30 test data were randomly

obtained from this data set.

Synchronized averaging is performed with successive 2–5 beats

of HFECGs, considering the availability in practical use. Among

the current methods used to open locks, opening a lock with a

key takes only a few seconds. Since the minimum heart rate for a

healthy person is approximately 60 beats per minute, the

measurement of 5 beats is completed within approximately 5 s,

which is an acceptable waiting time for the user. In our proposal,

synchronized averaging was performed with 2–5 consecutive

beats of the HFECG, as shown in Figure 5.

2.2.4 Training data preparation

The registration process must be required for the

authentication system. However, the time taken for the

registration is limited due to the usability of the system. This

means that an insufficient amount of training data must be used

for machine learning. This may degrade the identification

performance. Furthermore, the application of synchronized

averaging also reduces the amount of data. In this paper, the

data expansion block generates artificial HFECGs to obtain a

sufficient amount of training data.

In machine classification, the artificially created data are added

to the training data to improve the performance with a small

amount of original training data. In image recognition, flip,

rotation, and zooming in and out are used to create artificial

data. In one-dimensional data, a mixture of other data or noise

is often used for data augmentation (17). These techniques allow

for more data to be learned, so that the system achieves

satisfactory performance under a limited amount of training data.

In this paper, data augmentation was performed by mixing

randomly selected HFECG segments. Data sources are non-

averaged, twice averaged, and three times averaged HFECG

segments. Averaging calculation is the same as test data as shown

in Figure 5. In the training data augmentation tests, three

patterns of data augmentations are tested as shown in Table 3. In

the evaluations, three times averaged data were used for test data.

2.3 Identification performed by machine
learning technique

In this paper, we focused on machine learning as a classifier.

We compared a three-layered neural network and a support

vector machine. These two methods are widely used for

classification and show sufficient performance. In this paper, we

FIGURE 4

HFECG extraction flow.

TABLE 2 Filter settings.

Filters Cutoff frequency Order

Filter 1 High pass filter 0.5 Hz 4

Low pass filter 150 Hz 12

Filter 2 High pass filter 40 Hz 4

Low pass filter 150 Hz 12
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used these machine learning methods to compare with previous

studies (12–14). The system parameters are shown in Tables 4

and 5. Hyperparameters were determined by preliminary

analysis. Neural network is hereinafter referred to as NN.

Support vector machine is referred to as SVM. An HFECG

segment, that is, 200 samples of amplitudes, is applied to the

classifier as an input. One of the persons is selected from the

registered subjects as an output of the classifier.

2.4 Evaluation

Identification performance was evaluated using accuracy.

The confusion matrix as shown in Table 6 is widely used to

evaluate classification performance. Accuracy is calculated by the

equation below.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN

For comparison with the previous study, the same evaluation

methods were used to evaluate. In this paper, performance was

tested in the registered persons. Therefore, FAR and FRR were

not calculated. In each condition, 10 cycles of identification

processes with randomly chosen HFECG segments were

performed, and the average value of accuracy was used for

comparison. This number of identification cycles was determined

by considering the total number of HFECG segments extracted

TABLE 3 Training dataset configuration for training data
augmentation test.

Evaluation Training
dataset ID

Source data (number
of segments)

Effect of the amount of

training dataset

3avg-70TD Three-time averaged (70)

2,3avg-140TD Twice averaged (70) + three

times averaged (70)

1,2,3avg-210TD Non-averaging (70) + twice

averaged (70) + three times

averaged (70)

Effect of averaging for

training dataset

3avg-70TD Three-time averaged (70)

2avg-70TD Twice averaged (70)

1avg-70TD Non-averaging (70)

Effect of the combinations of

averaged data for training

dataset

1,2avg-140TD Non-averaging (70) + twice

averaged (70)

1,3avg-140TD Non-averaging (70) + three

times averaged (70)

2,3avg-140TD Twice averaged (70) + three

times averaged (70)

FIGURE 5

Synchronized averaging with consecutive HFECG segments.

TABLE 4 NN parameters.

Hyperparameters

Input layer size 200

Hidden layer size 100

Activation function ReLU

Output layer size 10,7

Activation function sigmoid

Batch size 16

Epoch 200

Optimization method Adam(lr = 0.001)

TABLE 5 SVM parameters.

Hyperparameters

C 1

Kernel Linear
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from the measured ECGs and the number of HFECG segments

used for training and identification.

3 Result

3.1 Performance evaluation by
synchronized averaging

The usefulness of the synchronized averaging for noise

reduction is evaluated. The relationship between the number of

the data for averaging and accuracy was calculated. The numbers

are changed from 1, which is non-averaging, to 5. Averaging is

applied to both training data and test data.

Figure 6 shows the relationship between the number of data

used for synchronized averaging and accuracy for 10 subjects.

This is the change in accuracy when the average number of

averaging was varied from 1 to 5: “1” on the horizontal axis

means no averaging. The averaged accuracies are shown in

Table 7 for comparative discussion. In Figure 6 and Table 7, two

types of electrodes and two types of discriminators are

compared. The averaged accuracies were calculated with the

results of all the individual subjects. We checked how much bias

is found between subjects by using a confusion matrix. Table 8

shows a confusion matrix sample. No remarkable performance

bias was found as a check result.

3.2 Diversity and augmentation in training
dataset

In this experiment, the effect of diversity and augmentation in

training datasets on identification performance was evaluated. We

used various training data sets by mixing synthesized HFECG

segments that were synchronized averaging up to three times.

The evaluation was performed using only a doorknob ECG from

10 subjects.

TABLE 6 Confusion matrix.

Confusion
matrix

Predicted

Positive Negative

True Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

FIGURE 6

Performance improvement by synchronized averaging.

TABLE 7 Accuracies in different electrodes, classification method, and
number of data averaged.

Number of times 1 2 3 4 5

Dispo NN 91.3% 96.4% 98.0% 97.8% 98.6%

Dispo SVM 89.8% 96.8% 99.1% 99.3% 99.2%

Door NN 89.7% 95.4% 97.4% 97.4% 98.5%

Door SVM 87.8% 95.2% 97.2% 98.2% 99.6%

TABLE 8 Confusion matrix example.

Confusion matrix

Door NN 5
averaged

Prediction

0 1 2 3 4 5 6 7 8 9

True 0 28 0 0 0 0 2 0 0 0 0

1 0 30 0 0 0 0 0 0 0 0

2 0 0 29 0 0 0 0 0 0 1

3 0 0 0 30 0 0 0 0 0 0

4 0 0 0 1 29 0 0 0 0 0

5 2 0 0 0 0 28 0 0 0 0

6 0 0 0 0 0 0 30 0 0 0

7 0 0 0 0 0 0 0 30 0 0

8 0 0 0 0 0 0 0 0 30 0

9 0 0 0 0 0 0 0 0 0 30
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Performance change in training data size is evaluated as the

first step. The identification was performed by varying the

number of training data from 70, 140, and 210. The contribution

of synchronized averaging in training data is evaluated for the

next step. The number of synchronized averaging of the training

data was changed to 3, 2, and 1 in keeping the number of the

training data to 70. Finally, the performance with three training

datasets which are composed of HFECGs averaged using

different numbers of wave segments is tested. The size of each

training dataset is 140 wave segments. A test dataset for each

subject was composed of thirty averaged HFECGs. Each HFECG

was averaged with three consecutive HFECGs.

Figures 7–9 and Tables 9–11 show the effect of training data

extension with synchronized averaging data. The source wave

segments are from original and two or three times averaged data.

In Figures 7–9 and Tables 9–11, different configurations of

training datasets were used as shown in Table 3. Figure 7 and

Table 9 show the effect of the number of training data. Figure 8

FIGURE 7

Performance in training data augmentation experiment.

FIGURE 8

Performance with and without synchronized averaging.
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and Table 10 show the effect of the composition of the training

data. Figure 9 and Table 11 show the effect of synchronized

averaging in training data.

3.3 Reproducibility evaluation with different
day’s data

The classifier already trained was evaluated by applying ECG

data measured on a different day as test data. Newly measured

ECGs from the same 7 subjects in 10 subjects used in the

previous evaluations were used for this evaluation. Figure 10

corresponds to Figure 6. In this evaluation, a doorknob ECG was

only used. Figures 11–13 correspond to Figures 7–9, respectively.

4 Discussion

4.1 Performance evaluation by
synchronized averaging

Figure 6 shows that synchronized averaging is effective in

improving performance even in two times of averaging. This

effect depends on the number of data segments for averaging.

Figure 6 also shows that the accuracies in the single heartbeat

waveforms were >90% in doorknob electrodes. However, in

averaging five HFECG segments, the performance improved to

<98% in accuracy. As shown in Table 7, the best performance for

doorknob electrodes was 99.6% when using SVM with five times

averaging. In this condition, SVM performance was better than

that of NN. The reason may come from the classification process

in SVM. When SVM determines the boundary to separate

groups, it finds the optimal border where the margin between

the group’s data is maximized. Synchronized averaging reduces

noise in the waveform, that is, it reduces the variation of data

within a group. Therefore, increased margins by averaging

improves performance. It is considered in reproducible situations

such as this evaluation, and SVM may show superior

performance to NN.

As shown in Figure 6 and Table 7, it is found that the system

performance on SVM with five HFECG segments for averaging

achieves the same identification accuracy with a doorknob

FIGURE 9

Performance in training data diversity evaluation.

TABLE 9 Accuracy in training data augmentation experiment.

Dataset ID NN NN SD SVM SVM SD

3avg-70TD 97.4% 0.675% 97.2% 0.878%

2,3avg-140TD 98.2% 0.572% 98.0% 0.597%

1,2,3avg-210TD 98.3% 0.903% 97.9% 0.526%

TABLE 10 Accuracy with and without synchronized averaging.

Dataset ID NN NN SD SVM SVM SD

3avg-70TD 97.4% 0.675% 97.2% 0.878%

2avg-70TD 98.2% 0.572% 98.0% 0.597%

1avg-70TD 96.9% 0.872% 96.9% 1.284%

TABLE 11 Accuracy in training data diversity evaluation.

Dataset ID NN NN SD SVM SVM SD

1,2avg-140TD 97.9% 0.668% 97.8% 0.653%

1,3avg-140TD 98.2% 0.689% 97.6% 0.656%

2,3avg-140TD 98.2% 0.572% 98.0% 0.597%
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electrode as with a disposable electrode. Accuracy of 99.6% is a

practical performance for biometric authentication systems.

When this level of security is required, it takes approximately 5 s

for each identification. If the level can be relaxed to 95%, the

average of two beats is sufficient. Identification time can be

shortened to approximately 2 s. It is practical considering the

balance between the performance required and the time that can

be spent on measurement.

A sample confusion matrix is shown in Table 8. The confusion

matrix for Door NN when averaging five times. The distribution

was similar under other conditions. This table shows that there is

no bias in the differences in values due to other evaluation indices.

4.2 Diversity and augmentation in training
dataset

Figure 7 shows that the discrimination accuracy was improved

by increasing the training data. It also shows that an additional 70

training data with different synchronized averaging counts

compensates for the missing features. It is considered that a well-

trained classifier leads to improved accuracy. In NN, although

the average accuracy at 210 training data sets is not improved by

an additional 70 datasets, the standard deviation is larger. This is

due to overlearning caused by adding non-averaged noisy data to

training data.

Figure 8 shows the influence of noise on training data. The best

accuracy was obtained by 2avg-70TD. This result is believed to be

due to the best balance between diversity and low noise. In 3avg-

70TD, it was considered that diversity in the training data set

was lost by averaging. In 1avg-70TD, it was considered that the

noise component in the training data was too large to capture

the features necessary for classification.

Figure 9 shows that the combination of data with different

numbers of synchronized averaging did not have a significant

impact on accuracy. It suggests that the number of training data

had a greater impact on accuracy than the composition of the

training data.

These results demonstrate that a larger amount of training data is

suitable for identification by using data augmentation in NN.

Furthermore, it is suggested that an appropriate amount of noise

in the training data is suitable for improving identification accuracy.

4.3 Reproducibility evaluation with different
day’s data

Figure 10 shows the results using HFECGs measured on

different days for the test data. Figure 10 shows the same trend

as Figure 6, with accuracy improving as the averaging count

increases. As shown in Figure 6, SVM gives better performance

than NN for ECG measured on the same day. However, NN

shows similar or better performance especially in 5 times

averaging. This can be explained by the training and

identification process in NN and SVM. In different day

measurements, waveforms such as amplitude may change. This is

due to differences in the thickness of the socks worn and the

amount of perspiration at the time of measurement. It is mainly

affected by the amplitude change, in SVM, the rigidly fixed

border between groups may not give the correct answer. On the

other hand, NN suppresses the effect of amplitude change

because it acquires waveform characteristics during the learning

process. Figure 10 also shows that noise reduction by

synchronized averaging is useful for both methods.

As a comparison between Figure 11 and Figure 7, NN shows a

similar trend of increasing accuracy as the amount of training data

FIGURE 10

Performance improvement by synchronized averaging in reproducibility experiment.
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increases. This fact shows that data augmentation also improves

performance even for the data on different days. Figures 12 and

13 show that higher accuracies were obtained with noisy training

data. The fact demonstrates that diversity is important only for

NN training. Augmentation of the training data in NN would be

useful for identifying data from different days. In contrast,

comparing performance between the same day and a different

day, identification using SVM did not show significant

improvement in all datasets. Two major reasons are considered

to explain this result. The first is that the training in SVM may

be optimized in all the training data conditions. The second is

that the SVM classification process is not robust to

waveform change.

These results show that NN gives better performance than

SVM in identifying different day’s ECGs. In this condition, it is

found that data augmentation is important for performance

FIGURE 11

Performance with various combinations of training data in reproducibility experiment.

FIGURE 12

Performance with and without synchronized averaging in reproducibility experiment.
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improvement. In training data preparation, diversity should be

ensured by mixing non-averaged and averaged data.

5 Conclusion

In this paper, we proposed preprocessing methods to improve

performance for the purpose of a feasible personal identification

system using electrocardiograms measured at doorknob

electrodes. The methods employed were synchronized averaging

application to HFECG wave segment and data augmentation for

training data.

The results on synchronized averaging show that this technique

is effective for performance improvement. In the same day’s data,

SVM and synchronized averaging achieved 99% accuracy for 10

subjects even with doorknob electrodes. This performance is

approximately 10% better than the previous method without

averaging. However, this result is not practical because

measurements for authentication are usually performed on

different days. In the next evaluation on reproducibility, the

performance was approximately 95%. It is 4% inferior to the first

result. However, it is 6% better than the performance of the

previous method. The balance between usability and security

level can be selected by setting the number for averaging. It also

depends on the number of registrants.

The results on data augmentation show that data expansion by

adding averaged data is effective not only for performance but also

for saving registration time. In NN, the mixture of noisy HFECG to

training data is effective for performance improvement.

Considering the acquisition time, 50 s of ECG is required for 140

sets of training data which gives sufficient performance. The

proposed method enabled us to realize to reduce measurement

time. This performance is considered acceptable for real-world

applications. The results using different day’s ECGs show that

data augmentation is effective only for NN and that NN gives

better performance than SVM. It is sufficient performance in

practical use because accuracy exceeds 95%. In our evaluations, it

was shown that optimized machine learning was obtained by

using 140 training data sets. It is also important for the training

dataset to include raw waveforms polluted by a certain level of

noise for better performance.

It is shown that our proposed system is practical not only for

performance but also for usability. It can be concluded that the

proposed doorknob identification system has sufficient

performance as a practical biometric authentication system. In

future work, other machine learning techniques such as deep

learning can be used to improve performance (18). Furthermore,

it is also expected that performance can be further improved by

combining it with other biometric technologies such as

fingerprints or photoplethysmography.
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