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Introduction: Transcutaneous auricular vagus nerve stimulation (taVNS) has

demonstrated efficacy in alleviating stress-related symptoms, yet its underlying

neurophysiological mechanisms remain incompletely understood. In this

study, we aimed to elucidate the effects of taVNS on stress regulation by

employing self-report surveys and electroencephalography (EEG) measures.

Methods: Participants performed mental arithmetic (MA) and 2-back tasks to

induce stress, receiving either taVNS or sham stimulation in a randomized,

crossover design. Resting-state EEG was recorded at baseline and immediately

after each stress-inducing task—thereby capturing persisting taVNS-induced

changes in neural activity—and subjective stress levels were assessed

immediately before and after stimulation.

Results: The survey results showed a significant increase in perceived stress

following the tasks in the sham condition, whereas stress levels in the taVNS

condition did not significantly change. Power spectral density (PSD) analyses

revealed that theta and alpha band power in the frontal region significantly

decreased only in the sham condition, suggesting elevated stress.

Furthermore, whole-brain network analysis indicated a significant reduction in

theta band path length in the taVNS condition following both tasks, pointing

to enhanced global network efficiency that may help prevent stress escalation.

Discussion: By demonstrating distinctive EEG and behavioral differences

between taVNS and sham stimulation, this study provides a neurophysiological

basis for taVNS as a non-invasive intervention for stress regulation. Future

research involving a more diverse participant pool and optimization of taVNS

parameters will further clarify its therapeutic potential.
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1 Introduction

Stress occurs continuously in daily life and can negatively impact mental and physical

health. When stress is perceived, the autonomic nervous system (ANS) and the Locus

coeruleus (LC) become activated, potentially disrupting homeostasis and leading to

various physiological and psychological issues (1, 2). For example, stress increases the

risk of developing depression (3) and can contribute to disorders such as post-traumatic
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stress disorder (PTSD) when individuals are exposed to severe

stress (4). To treat disorders induced by stress, psychological

counseling and pharmacological treatment methods are

commonly used (5). However, due to factors such as drug

resistance, these conventional treatment methods have shown

meaningful efficacy in only about two-thirds of patients with

stress-related disorders (6, 7).

Vagus nerve stimulation (VNS) has been proposed as an

alternative therapeutic approach for alleviating symptoms in

patients for whom standard treatments are ineffective, such as in

cases involving drug resistance (8). VNS is a stimulation

technique utilizing low-level electrical currents to stimulate the

vagus nerve and has been shown to modulate both the ANS and

LC, thereby influencing stress-related neural circuits (9, 10). VNS

is a stimulation technique utilizing low-level electrical currents to

stimulate the vagus nerve, and it has been applied effectively in

treating disorders including depression (11, 12), epilepsy (13, 14),

and stroke (15, 16). Additionally, VNS has shown efficacy in

patients who respond poorly to conventional treatments (17–19).

Nevertheless, VNS is generally used selectively in severe cases, as

it requires surgical implantation of stimulation devices, such as

electrodes and generators.

Recently, transauricular VNS (taVNS) has been proposed as a

non-surgical alternative to VNS. taVNS does not require invasive

procedures and has been shown to effectively alleviate symptoms

associated with stress-related disorders, including depression and

PTSD, similarly to conventional VNS (20–22). However, because

neural mechanism underlying the beneficial effects of taVNS

remain unclear, numerous researchers have explored its effects

on brain activity using various neuroimaging techniques (23–25).

Among neuroimaging methods, electroencephalography (EEG)

is extensively used in taVNS studies due to portability and high

temporal resolution (25–29). For example, Ricci et al. (30)

reported increased delta power during 60 min of taVNS in a

resting state (30). Lee et al. (31) confirmed the neuromodulatory

effects of taVNS using resting-state EEG and proposed optimal

stimulation durations for achieving effective outcomes (31). In

addition, EEG is frequently utilized to study changes in brain

activity according to various mental states, particularly stress.

Wen et al. (32) reported that theta and alpha frequency powers

in the frontal region were inversely correlated with stress levels

(32). Interestingly, theta and alpha band activity has also been

shown to vary depending on sleep stages, with anti-correlation in

REM sleep (associated with higher stress) and positive correlation

in deep sleep (associated with lower stress), suggesting their

relevance to the brain’s stress regulation mechanisms during both

wake and sleep states (33). Yan et al. reported that beta

frequency power in the frontal region was higher under stress

conditions compared to non-stress conditions (34). Additionally,

Shim et al. reported that PTSD patients showed reduced theta

network indices compared to healthy controls (35).

Dimitrakopoulos et al. (36) found decreased network indices

under high workload conditions related to low workload

conditions (36).

Although some studies have investigated taVNS-related

changes in brain activity using EEG or examined EEG changes

associated with different stress levels, there is still a relative lack

of research exploring the specific neural mechanisms and effects

of taVNS across varying stress levels. In particular, most previous

studies assessing the impact of taVNS on stress have relied on

electrocardiogram (ECG) measurements (37–39), leading to an

underrepresentation of EEG-based approaches in the literature.

Furthermore, given the correlations between stress and brain

activity, it is essential to investigate both the effects and the

underlying neural mechanisms of taVNS on stress using EEG.

Taken together, these findings suggest that EEG may be a more

suitable modality for examining how taVNS modulates stress and

brain activity.

In this study, we aimed to investigate the effects of taVNS on

stress using both survey and EEG data. To achieve this,

participants underwent either taVNS or sham stimulation

during stress-inducing tasks. Resting-state EEG was recorded

before and after each task, and self-report surveys were

administered both before and after stimulation. Subsequently,

power spectral density (PSD) and network indices were analyzed

across three frequency bands—theta (4–7 Hz), alpha (8–13 Hz),

and beta (14–30 Hz)—which have been consistently associated

with stress in previous studies. In contrast, delta and gamma

bands were not included in the analysis due to their

inconsistent or limited relevance to stress-related EEG changes

reported in the literature (40, 41).

2 Materials and methods

2.1 Participants

Fourteen healthy individuals initially participated in this study.

However, due to technical issues during data collection, only 12

participants’ data (7 males and 5 females; mean

age = 24.83 ± 2.33 years) were ultimately included in the analysis.

All participants had no history of neurological or psychiatric

conditions that could have affected the study outcomes. Prior to

the experiment, each participant was informed in detail about

the experimental procedures and provided written informed

consent. The study protocol was approved by the Institutional

Review Board (IRB) of Korea University (KUIRB-2023-0281-05).

2.2 taVNS application

In this study, we employed a portable taVNS device equipped

with two stimulation electrodes (Neurive, Co. Ltd., Gimhae,

Republic of Korea) (Figure 1). Participants received either

taVNS or sham stimulation in a randomized order, with a one-

week interval between sessions. For taVNS, the electrodes were

placed on the cymba conchae, where the vagus nerve is known

to be present, whereas for sham stimulation, the electrodes were

placed on the earlobe, which is considered devoid of vagus nerve

innervation (Figure 1) (31, 42). During stimulation, the

frequency was set to 30 Hz with a pulse width of 200 μs, and

the protocol alternated 1-minute “on” periods of stimulation
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with 1-minute “off” (rest) periods (31, 43). Stimulation intensity

was adjusted individually for each participant by gradually

increasing from level 1 to level 10 until just below the

participant’s pain threshold (taVNS: 1.74 ± 0.06 mA, sham:

1.74 ± 0.04 mA). Our exclusion criterion was participants who

reported pain even at the lowest intensity level (level 1), but no

one met this condition.

2.3 Experimental protocol

To investigate the effects of taVNS on stress, we utilized two

mental stress-inducing tasks: the 2-back task and the mental

arithmetic (MA) task (44–46). The 2-back task included a total of

600 trials. In each trial, a number from 1 to 9 was displayed at the

center of the screen for 500 ms, followed by a fixation cross for

1,500 ms (Figure 2B). Participants were instructed to press the

right arrow key if the presented number matched the one shown

two trials earlier, and the left arrow key if it did not. One-third of

the trials were target trials. The MA task consisted of 40 trials,

each involving repeated subtraction of a single-digit number from

a three-digit number (Figure 2A). In each trial, the three-digit and

single-digit numbers were displayed for 2 s, followed by a

10-second period for participants to perform repeated subtraction

and enter their answer. A 0.5 s beep was provided at the start of

every trial to maintain participants’ focus. If no answer was

submitted within 8 s, the system automatically proceeded to a rest

period, marking the trial as failed and ensuring at least 8 s of rest.

The order of the two stress-inducing tasks was counter-balanced

across participants, and the same task order was maintained for

each participant during two experimental sessions conducted one

week apart. Participants received either taVNS or sham

stimulation in a counter-balanced order to minimize potential

sequence effects between the two tasks and stimulation conditions.

Prior to any stimulation, a 3 min resting-state EEG was

recorded to capture baseline conditions (“baseline” in Figure 2C).

After each stress-inducing task, another 3 min resting-state EEG

was recorded to assess the modulatory effects of taVNS (“1st

break” and “2nd break” in Figure 2C). Although EEG data were

also collected during the two tasks (“1st task” and “2nd task” in

Figure 2C), these data were excluded from analysis due to

significant electrical interference introduced by the taVNS

stimulation. Note that previous studies have indicated that

taVNS-induced changes in EEG activity can persist from several

minutes (47) up to approximately 30 min (48) post-stimulation,

suggesting that the resting-state EEG immediately recorded after

stimulation could still reflect taVNS effects. In addition,

participants completed a self-report survey before and after

stimulation to measure subjective stress levels. This survey used a

visual analog scale ranging from 1 to 10, where higher numbers

indicate greater stress.

2.4 EEG recording and preprocessing

EEG data were recorded at a sampling rate of 1,000 Hz using 31

Ag/AgCl electrodes placed according to the international 10–20

system (Brain Products GmbH, Gilching, Germany). The

reference and ground electrodes were positioned at FCz and AFz,

respectively. Raw EEG signals were then downsampled to 200 Hz

to reduce computational load. Common average referencing and

1–50 Hz band-pass filter were applied sequentially, and then

independent component analysis (ICA) was performed to remove

ocular and muscle artifacts. As baseline-based ICA evaluation

was not applicable in our resting-state data (49), we instead

applied a conservative component removal ratio, removing

approximately one-third of the components on average

(9.54 ± 0.89 out of 31), in line with previous research (50). The

preprocessed EEG data were segmented into 5-second epochs,

and any epoch exceeding ±75 μV in amplitude was excluded

from power spectral density analysis (51). For the network

analysis, segments identified as artifacts in any single channel

were removed across all channels to maintain consistency in

channel pairing. Consequently, artifact-free epochs were used for

both PSD and network analyses. The total proportion of

excluded epochs due to artifacts was approximately 0.45%.

FIGURE 1

(A) taVNS device and (B) location of stimulation electrodes used in this study.
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2.5 PSD analysis

PSD was computed using short-time fast Fourier transform

(FFT) with a 5 s window. PSD values were calculated for three

frequency bands closely related to stress (52, 53): theta (4–7 Hz),

alpha (8–13 Hz), and beta (14–30 Hz). To evaluate taVNS-driven

stress modulation, the average PSD in each frequency band was

computed specifically for the frontal electrodes (Fp1, Fp2, F3, F4,

F7, F8), given their well-documented association with stress-

related activity (54).

2.6 Network analysis

Network analysis was performed using imaginary coherence

(iCoh) via the FieldTrip toolbox. iCoh was determined from

spectral powers estimated by FFT with a single Hanning taper,

ensuring a minimum of twenty cycles per frequency bin. While

the PSD analysis focused on frontal channels closely linked to

stress, the network analysis used all 31 electrodes to evaluate

global brain network efficiency. Specifically, iCoh values were

computed for each pair of the 31 electrodes across the theta,

alpha, and beta frequency bands. From these iCoh matrices, we

derived two global-level network indices—path length (PL) and

clustering coefficient (CC)—using graph theoretical approaches.

PL reflects the overall connectivity of the network, while CC

indicates the clustering of neighboring nodes. All network

computations were conducted using the Brain Connectivity

Toolbox (BCT) in MATLAB.

2.7 Statistical analysis

As the data did not meet the assumptions of normality, non-

parametric statistical methods were employed. To investigate

taVNS-related changes in self-reported stress, Wilcoxon signed-

rank tests were performed to compare pre- and post-stimulation

survey scores. Additionally, the Friedman test was used to assess

potential differences across baseline, the 1st break, and the 2nd

break for both PSD and network indices. When significant

effects were identified, post-hoc analyses were conducted using

Wilcoxon signed-rank tests with false discovery rate (FDR)

correction applied to account for multiple comparisons.

Additionally, to complement the p-values and address concerns

related to statistical power, we computed Wilcoxon effect sizes

[r = |Z|/N; small: 0.1, medium: 0.3, large: 0.5] (55, 56).

3 Results

3.1 Stress level changes

Figure 3 illustrates both the individual and average changes in

stress levels before and after stimulation for each condition, based

FIGURE 2

Experimental scheme illustrating (A) mental arithmetic task, (B) 2-back task and (C) the overall experimental paradigm. Stimulation was administered

during each task, and resting-state EEG data were collected at baseline, the 1st break, and the 2nd break.
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on the self-report survey. In the sham condition, the mean stress

level increased significantly after performing the task compared

to before (r = 0.63, |Z| = 2.20, p < 0.05): seven participants

reported increased stress levels, four showed no change, and one

reported a decrease. In the taVNS condition, although the mean

stress level also increased after the task, the change did not reach

statistical significance (r = 0.52, |Z| = 1.80, p > 0.05): five

participants reported increased stress, six reported no change,

and one reported decreased stress. Note that there were no

statistically significant differences in behavioral performance

between taVNS and sham conditions for either task: MA

accuracy (sham: 79.67 ± 3.11% vs. taVNS: 81.17 ± 3.72%) and

average time required for one subtraction calculation (sham:

2.57 ± 0.22 s vs. taVNS: 2.61 ± 0.19 s); 2-back accuracy (sham:

83.36 ± 5.73% vs. taVNS: 83.26 ± 5.39%) and reaction time

(sham: 658 ± 78 ms vs. taVNS: 648 ± 78 ms).

3.2 PSD modulation

Figure 4 presents the average PSD changes for the three

frequency bands (theta, alpha, and beta) in the frontal region,

categorized by stimulation conditions. In the sham condition,

theta and alpha PSDs decreased significantly from the 1st break

to the 2nd break (theta: r = 0.86, |Z| = 2.98, p < 0.01, alpha:

r = 0.79, |Z| = 2.75, p < 0.05), suggesting increased stress level,

whereas no significant changes were observed in the taVNS

condition. Neither the sham nor the taVNS condition showed

significant changes in the beta band.

3.3 Network indices modulation

Figure 5 shows the average changes in path length (PL) and

clustering coefficient (CC) for the three frequency bands across

the whole brain under each stimulation condition. In the taVNS

condition, PL in the theta band decreased significantly at the 2nd

break compared to baseline (r = 0.77, |Z| = 2.67, p < 0.05),

indicating enhanced global network efficiency. By contrast, no

significant changes were found in the sham condition. Regarding

CC, neither condition showed significant changes across any of

the frequency bands.

4 Discussion

In this study, we investigated the effects of taVNS on stress using

self-report surveys and resting-state EEG recordings immediately

following stimulation, capturing taVNS-induced neural changes.

The survey results indicated a significant increase in stress levels in

the sham condition after the task, whereas no statistically

significant difference was observed in the taVNS condition. This

finding was further supported by the PSD results, which showed a

significant reduction in theta and alpha power at the 2nd break

compared to the 1st break only in the sham condition, indicating

a significant in stress level. Additionally, path length (PL) in the

theta band was significantly reduced at the 2nd break compared to

baseline under the taVNS condition, meaning enhanced network

efficiency. These findings are consistent with previous studies

demonstrating the stress-regulating effects of taVNS through ECG-

based measures (37, 38, 57, 58), suggesting its potential efficacy in

stress modulation. Therefore, our results suggest neurological

evidence that taVNS can help modulate or suppress stress responses.

Through PSD analysis, we found that theta and alpha power

decreased significantly at the 2nd break compared to the 1st

break in the sham condition only. Previous studies have reported

reductions in theta and alpha PSD alongside increases in beta

PSD under elevated stress (52, 54, 59). While our results are

consistent with these findings in terms of theta and alpha bands,

they do not exhibit the same pattern in the beta band. One

possible explanation is the difference in data used for analysis:

previous studies showing elevated beta PSD during higher stress

typically analyzed data recorded during stress-inducing tasks

(54), whereas our study focused on resting-state EEG recorded

before and after stress tasks. Another reason may be the

neurophysiological trait that theta and alpha band activity is

FIGURE 3

Changes in individual and averaged stress levels before and after two stress-inducing tasks for taVNS and sham conditions based on the self-report

survey (*p < 0.05). Each bar graph represents the mean and standard error value.
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more prominently observed in resting-state conditions (60, 61).

Consequently, the selective changes seen in these bands can

provide reasonable evidence of taVNS effect on stress, given the

nature of our EEG data collection.

Moreover, we observed a significant decrease in theta PL under

the taVNS condition in the 2nd break compared to baseline. For

instance, Shim et al. reported lower theta PL in healthy subjects

compared to patients with PTSD (35), implying that stress might

reduce overall brain network efficiency. Consistent with this,

other studies have found that CC and small-worldness were

lower in high-workload conditions than in low-workload

conditions (36), suggesting that stressful situations negatively

impact brain network function. Consequently, our finding of

reduced PL under taVNS during a stressed condition implies that

taVNS may enhance network efficiency and potentially help

prevent further increase in stress.

FIGURE 4

Changes in average PSD of each of the three frequency bands (theta, alpha, and beta) according to the stimulation condition in the frontal region

(*p < 0.05, **p < 0.01). Each bar graph represents the mean and standard error value.

FIGURE 5

Changes in network indices (PL and CC) across the three frequency bands according to stimulation condition (*p < 0.05). Each bar graph represents

the mean and standard error value.
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An important observation is that the most prominent changes

in PSD and network indices were identified at the 2nd break.

Because participants underwent two distinct tasks over 40 min by

the time of the 2nd break—compared to only one 20-minute

task at the 1st break—the 2nd break induced higher stress levels.

In the PSD results, significant reductions in theta and alpha

bands were found in the sham condition at the 2nd break

compared to the 1st break. These findings suggest that effects of

taVNS on stress may become more evident under higher

stress levels.

While our study presents neurophysiological evidence

supporting the stress-regulating effects of taVNS, the participant

pool was primarily composed of individuals in their early to

mid-20 s, which may limit the generalizability of our findings.

Furthermore, the limited number of participants remains a

concern even though we presented effect sizes to enhance the

reliability of our results. Future research should include a larger

and more diverse sample to validate the broader applicability of

taVNS and to further optimize stimulation parameters (e.g.,

duration, frequency, and pulse width) as well as the design of the

sham condition (e.g., sham target location) used as a control

group for maximizing its impact on stress regulation. In addition,

although the stress-regulating effect of taVNS observed in this

study may contribute to stress management in patients with

stress-related disorders, our findings were derived from healthy

participants only. Given that the effect sizes of significant EEG

outcomes were large, it is reasonable to assume potential clinical

relevance. However, clinical significance was not directly

evaluated in this study. Therefore, further studies involving more

diverse populations—including different age groups and

individuals with clinical conditions—are needed to confirm the

generalizability and establish the clinical applicability of taVNS.

5 Conclusion

This study investigated the effects of transcutaneous auricular

vagus nerve stimulation (taVNS) on stress regulation using EEG

measures and self-report surveys. The self-report data revealed a

significant increase in stress levels under the sham condition, but

not under taVNS. Additionally, both power spectral density

(PSD) and network-based EEG indices indicated that taVNS may

effectively mitigate rising stress levels and enhance brain

connectivity. Although these findings underscore the potential of

taVNS for stress modulation and neuromodulation, further

research is needed to refine our understanding. Future studies

should include more diverse participant groups and optimization

of taVNS parameters. Such efforts will provide deeper insight

into the mechanisms underlying stress-regulating effects of

taVNS and enhance its potential clinical or practical applications.
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