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Applying a logistic regression-
clustering joint model to analyze
the causes of prolonged pre-
analytic turnaround time for urine
culture testing in hospital wards
Shuangshuang Lv1, Huan Ye2, Yuan Li1 and Jian Zhang1*
1Clinical Laboratory, Dongyang People’s Hospital, Dongyang, Zhejiang, China, 2Clinical Laboratory, The

Second People’s Hospital of Yuhuan City, Yuhuan, Zhejiang, China

Introduction: In this study, we developed and validated a logistic regression-

clustering joint model to: (1) quantify multistage workflow bottlenecks

(collection/transport/reception) in urine culture pre-TAT prolongation

(>115 min); and (2) assess the efficacy of targeted interventions derived from

model-derived insights.

Methods: Using complete workflow data obtained from 1,343 urine culture

specimens (January 2024–March 2024) collected at a tertiary hospital, we

integrated binary logistic regression analysis with K-means clustering to

quantify delay patterns. The analyzed variables included collection time, ward

type, personnel roles, and patient demographics. Post-intervention data (May

2024–July 2024, *n* = 1,456) was also analyzed to assess the impact.

Results: Analysis of the critical risk factors revealed that specimens collected

between 04:00–05:59/10:00–11:59 had 142.92-fold higher delay odds (95%

CI: 58.81–347.37). Those collected on SICU/ICU wards showed 9.98-fold

higher risk (95% CI: 5.05–19.72) than general wards. Regarding intervention

efficacy, pre-TAT overtime rates decreased by 58.6% (13.48% → 7.55%,

P < 0.01). Contamination rate decreased by 59.8% (5.67% → 2.28%, P < 0.01).

The median pre-TAT decreased by 15.9% (44 → 37 min, P < 0.01).

Discussion: The joint model effectively identified workflow bottlenecks.

Targeted interventions (dynamic transport scheduling, standardized training,

and IoT alert systems) significantly optimized pre-TAT and specimen quality,

providing a framework for improving clinical laboratory processes.

KEYWORDS

logistic regression model, urine microbial culture, pre-analytical turnaround time (pre-

TAT), medical quality control, process optimization

1 Introduction

In the field of medical laboratory testing, the timeliness of obtaining test results exerts

direct and critical impacts on clinical decision-making and patient prognosis (1–3). As a

core diagnostic method for urinary tract infections (UTIs), prolonged pre-analytical

turnaround times (pre-TATs) for urine culture have become a pressing operational

challenge. When the pre-TAT exceeds 2 h, pathogen viability significantly decreases at

room temperature. For example, a 37% reduction in the survival rate of Neisseria

gonorrhoeae has been observed under these conditions (P < 0.01) (4–6). Under these

conditions false-negative rates increase by 12.3%, which may cause misdiagnosis and
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antibiotic misuse (7–9). Moreover, contamination rates rise from

38.6% to 50.9% (P < 0.01) (10).

Although numerous optimization strategies exist for reducing

overall urine culture TAT, significant limitations persist. First,

existing research has failed to effectively decouple delay factors

across workflow stages (collection/transport/reception), resulting

in a lack of quantitative analyses of each stage’s impact. Second,

studies have insufficiently addressed the effects of context-specific

factors, such as ward operational patterns (e.g., ICU nursing

peaks) and temporal characteristics (e.g., night-shift transitions)

(11). Additionally, traditional regression models face

methodological limitations when processing high-dimensional

categorical variables (e.g., 37 ward units) (12), which hinders

precise analysis of numerous contributing factors.

To address these issues, in this study, we established dual-stage

analytical framework: Stage 1: K-means clustering is used to

analyze wards and time periods to identify groups with similar

delay patterns, such as (1) “SICU/ICU high-risk cluster” and (2)

“04:00–05:59/10:00–11:59 peak interval”; Stage 2: Binary logistic

regression is used to quantify odds ratios (ORs) for key factors to

pinpoint dominant bottlenecks prolonging pre-TAT. Although this

logistic regression-clustering joint model was successfully applied

in emergency laboratory optimization (13), its effectiveness in

multi-stage microbiology pre-TAT analysis remains unverified.

Accordingly, this study aimed to achieve two primary objectives:

(1) to develop and validate the logistic regression-clustering joint

model for quantitative analysis of multi-stage workflow bottlenecks

in urine culture pre-TAT prolongation (>115 min); (2) to evaluate

the practical effectiveness of model-derived interventions—

including dynamic transport scheduling, standardized training, and

IoT alert systems—in reducing TAT and contamination rates.

2 Materials and methods

2.1 Background information

This study was conducted at a tertiary Grade A general hospital

in China with 1,700 approved beds. The clinical laboratory

obtained ISO 15189 accreditation for medical laboratory quality

and competence in 2014, with all testing processes strictly

adhering to internationally standardized operating protocols.

According to Specimen Collection and Transportation

Guidelines for Clinical Microbiological Testing and

recommendations from the Clinical and Laboratory Standards

Institute (CLSI) guidelines GP41-A7 (14), urine specimens

should be delivered to microbiology laboratories within 2 h of

collection to avoid false-negative/positive results caused by

bacterial overgrowth in vitro, death of fastidious organisms

(e.g., Neisseria gonorrhoeae), or degradation of formed elements

(leukocytes and casts) (14, 15). Based on the hospital’s logistical

constraints (including transport distance, frequency, and cold

chain coverage), this study defined the pre-analytic turnaround

time (pre-TAT) standard for urine culture as ≤115 min. This

threshold was established using dual evidence-based rationale as

follows: 1) Compliance with the CLSI GP41-A7 guidelines, which

mandate a 2-h transport limit (14); 2) Institutional workflow

validation: Empirical data from hospital logistics audits

confirmed a median transport time of 5 min (IQR: 2–8 min) for

urine specimens (2023).Thus, the integration of clinical guideline

adherence and institution-specific workflow parameters resulted

in ≤115 min being established as a scientifically validated pre-

TAT threshold. Retrospective analysis revealed that during the

first quarter of 2024, the median pre-analytical TAT for urine

cultures across all wards was 44 min (IQR 23–75), with an

overtime rate (TAT > 115 min) of 13.48% (n = 1,343). Through

process mapping, this study systematically outlined the end-to-

end workflow from specimen collection to laboratory reception

across wards (Figure 1), identifying quantifiable risk factors,

including patient demographics, ward location, collection date/

time/personnel, and reception date/ time/ personnel.

In the non-interventional retrospective analysis, all data were

anonymously extracted from the Hospital Information System

(HIS) and Laboratory Information System (LIS), excluding

patient identifiers. The study protocol was approved by the

Institutional Review Board of Dongyang People’s Hospital

(approval no. 2025-YX-048). Given the absence of patient

intervention and complete data anonymity, the IRB waived the

requirement for informed consent. The study complied with the

principles of the Declaration of Helsinki.

2.2 Research methods

2.2.1 Data collection and processing
This study adopted a retrospective cohort design; pre-

intervention data from urine culture specimens were collected on

wards between January and March 2024 (n = 1,343) and post-

intervention data from specimens were collected between May

and July 2024 (n = 1,456). Table 1 shows the basic data of the

specimens. Data were extracted from the LIS and structured

nursing Electronic Medical Records (EMR).

The inclusion criteria were: 1. Inpatient clean-catch midstream

urine, catheterized urine, or suprapubic bladder aspiration

specimens, collected as per Technical Specifications for Specimen

Collection and Transportation in Clinical Microbiology Testing

(WS/T 640—2018), including aseptic techniques and container

integrity, with laboratory quality control approval;

2. Complete documentation.

The exclusion criteria were: (1) Duplicate submissions: Only

the first specimen was retained if multiple specimens from the

same patient were submitted within 24 h; (2) Non-standard

collection: (1) Clean-catch midstream urine: Failure to clean the

urethral meatal or discard initial urine; (2) Catheterized

specimens: Non-sterile catheter kits or procedural contamination

(based on nursing records); (3) Suprapubic specimens: Turbid

aspirates or suspected skin flora contamination (per procedure

notes and laboratory feedback); (3) Process deviations: Non-

standard submissions due to emergencies, equipment failures, or

force majeure (per nursing handover records and laboratory

incident logs).
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Based on the CLSI guidelines GP41-A7 and hospital

monitoring factors, the following variables, which may affect pre-

analytical TAT, were extracted: patient age, sex, collector nurses,

collection time (hourly intervals with 24 categories), collection

date, laboratory receiver person, reception time, and reception date.

pre-TAT calculation: calculated in minutes (collection time to

laboratory reception time).

The pre-intervention/post-intervention timeout rate was

calculated as follows: timeout rate = (number of specimens at

pre-TAT > 115 min/total number of valid samples) × 100.

FIGURE 1

Flow chart of urine culture samples obtained from the ward.

TABLE 1 Basic information of urine culture samples obtained on the ward.

Factor Pre-intervention (n = 1,343) Post-intervention (n = 1,456) t/χ²/Z P

Sex (F/M), n 730/613 840/616 3.16 0.08

Age, year 64.60 ± 21.34 64.83 ± 19.63 7.39 < 0.01**

Pre-TAT, min 44 (23, 75) 37 (21, 66) −4.31 < 0.01**

Classification ward pre-TAT, min

Ward cluster 1 115.5 (60–180) 53 (29–99) −5.06 < 0.01**

Ward cluster 2 44 (23–75) 37 (21–66) −4.06 < 0.01**

Ward cluster 3 37 (21–62) 33 (19–61) −2.16 0.03*

Pre-TAT at different sampling times, min

Collection time 1 169 (146–187.50) 152 (129–197) −1.56 0.12

Collection time 2 41 (22–68) 36 (20–64) −3.44 < 0.01**

Pre-TAT, pre-analytical turnaround time; Ward cluster 1, Surgical Intensive Care Unit and Intensive Care Unit; Ward cluster 2, Rehabilitation, Hematology, Oncology Surgery, Hepatobiliary

Surgery, Orthopedics, Gynecology, Emergency Observation Area, Endocrinology, Brain Surgery, Vascular Surgery, Neurology, Respiratory, Obstetrics, Ophthalmology; Ward cluster 3;

remaining wards; Collection time1, Specimen sampling time within 4:00–4:59 or 5:00–5:59 or 10:00–11:59; Collection time 2, other sampling time.

**P < 0.01.

*<0.05.
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The pre-/post-intervention contamination rates were calculated

as follows: contamination rate = (contaminated specimens/total

valid specimens) × 100%.

The contamination criteria followed the CLSI guideline

M41-A and WS/T 640—2018 revisions (15, 16): Clean-catch

midstream urine: ≥3 microbial species, each with colony

counts <10^4 CFU/ml; Catheterized/suprapubic specimens: ≥2

microbial species (excluding confirmed multidrug-resistant

infections).

2.3 Statistical analysis

Statistical analyses were performed using the R software

(version 4.1.2). Normally distributed continuous variables are

expressed as the mean ± standard deviation (x¯ ± s) and were

compared using the t-test. Non-normally distributed continuous

variables are presented as medians (Q1, Q3) and were analyzed

using the Wilcoxon rank-sum test. Categorical and ordinal

variables were summarized as counts (%), with categorical

variables were compared using the chi-square test, and ordinal

variables were analyzed using the Wilcoxon rank-sum test. For

collinearity analysis, variance inflation factor (VIF) >10 indicated

significant collinearity. After univariate analysis and collinearity

screening, the selected variables were incorporated into a logistic

regression model. To address potential small-sample bias or

separation issues, we implemented Firth’s penalized likelihood

regression to optimize logistic regression outcomes. This

approach reduces extreme OR estimation bias and enhances

parameter stability.

For high-dimensional categorical variables (37 ward units,

24 time windows), K-means clustering was employed with

silhouette scoring to determine optimal cluster numbers.

Scores approaching 1 indicate superior clustering (near −1

indicates poor separation), effectively reducing model

complexity and improving clinical actionability of the

regression results.

3 Pre-intervention data analysis

3.1 Multicollinearity assessment

Prior to modeling, VIF analysis was performed to assess

multicollinearity among the predictors, with group allocation

as the dependent variable. Reception date and reception time

window exhibited severe collinearity (VIF >10) (Table 2).

Thus, reception-related temporal variables (date and time

windows) were excluded. While the collection time window

demonstrated moderate collinearity (VIF = 9.75), it retained

statistical significance in subsequent logistic regression (OR= 142.92,

95%CI:58.81–347.37, P < 0.01) and represented a clinically actionable

monitoring factor. Thus, collection time window data was retained

for subsequent analyses. K-means clustering was applied to further

classify the 37 clinical units and 24 collection time windows based on

pre-analytical overtime rates. Cluster quality was validated through

silhouette scoring (ward clusters: 0.72; time window clusters: 0.68),

which demonstrated strong inter-cluster separation (>0.5 threshold)

(Table 3). The final groupings comprised: Ward Cluster 1 (High

Delay Risk): Surgical Intensive Care Unit (SICU) and Intensive Care

Unit (ICU); Ward Cluster 2 (Medium Risk): 14 departments

including Rehabilitation and Hematology (silhouette score: 0.61);

Ward Cluster 3 (Low Risk): Remaining wards (Figure 2A); Time

Window Group 1 (Peak Period): 04:00–05:59 and 10:00–11:59; Time

Window Group 2 (Routine Period); and all other time intervals

(Figure 2B). The final binary logistic regression model incorporated

10 clinically and statistically significant predictors: ward cluster (1–3),

collector identity, collection date, collection time window (sampling

times 1–2), receiver identity, and patient demographics (sex and

age). Table 4 presents the variable coding schemes and

reference categories.

TABLE 2 Collinear analysis of independent variables of the urine culture
specimens obtained from the wards.

Variable Collinearity
statistics

t P

Tolerance VIF
Age 0.97 1.03 0.36 0.73

Sex 0.98 1.02 0.93 0.35

Ward 0.97 1.03 −2.63 0.00**

Collection time window 0.10 9.75 −24.41 0.00**

Reception time window 0.10 >10 23.68 0.00**

Reception date 7.46 >10 −20.65 0.00**

Collection date 0.99 1.01 0.85 0.39

Collector identity 0.98 1.03 2.65 0.00**

Receiver identity 0.98 1.02 0.18 0.86

Dependent variable: Turnaround time before test; VIF, variance inflation factor.

**P < 0.01.

*<0.05.

TABLE 3 Validation of optimal cluster configurations using silhouette analysis.

Cluster type Entities Optimal k Rationale for silhouette score Calculated value
Ward units 37 units 3 High separation between SICU/ICU vs. general wards (Figure 2A) 0.72 (strong)

Collection time 24 windows 2 Clear dichotomy: peak (04–06/10–12) vs. non-peak (Figure 2B) 0.68 (strong)

SICU nurses 36 personnel 2 Bimodal distribution (Nurse A vs. a, Figure 3A) 0.65 (medium)

SICU time windows 15 periods 2 Peak (04–08/10–12) vs. non-peak (Figure 3B) 0.71 (strong)

ICU nurses 35 personnel 2 Clear outlier group (Nurse C vs. c, Figure 4A) 0.63 (medium)

ICU time windows 13 periods 2 Peak (04–06/10–12) vs. non-peak (Figure 4B) 0.69 (strong)

Score interpretation: >0.60: Strong cluster structure; 0.50–0.65: Medium structure; <0.50: Weak separation (not observed).
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3.2 Logistic regression analysis of factors
associated with prolonged pre-analytical
turnaround time

Multivariate logistic regression analysis identified the collection

time window as the most significant predictor of prolonged pre-TAT

(pre-TATs >115 min) for urine culture testing in hospital wards.

Specimens collected in the early morning (04:00–05:59) and peak

daytime hours (10:00–11:59) demonstrated the strongest association

with pre-TAT overages (β = 4.96, P < 0.01; OR = 142.92, 95%

CI:58.81–347.37), followed by specimens from the SICU and ICU

(β = 2.30, P < 0.01; OR = 9.98, 95%CI:5.05–19.72) (Table 5). Despite

the modest sample size in critical time windows (n = 71), Firth’s

penalized likelihood regression confirmed robust effect estimates,

yielding similarly extreme OR magnitudes (OR= 132.41, 95%

CI:54.83–334.12). This finding aligns with clinically observed

workflow disruptions, demonstrating strong model reliability for

high-risk period identification.

To identify the ward-specific contributors to pre-TAT delays,

we conducted a stratified analysis of urine culture workflows in

FIGURE 2

(A) Scatter plot of each ward according to the pre-test overtime rate. (B) Scatter plot for each collection time window by the pre-test overtime rate.
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the SICU and ICU. The key variables included the collector identity

and collection time window.

3.3 Logistic regression analysis of pre-TAT
overtime factors in the SICU and ICU

Clustering analysis was performed to classify healthcare personnel

and collection time windows in the SICU and ICU. Silhouette scores

confirmed robust cluster structures (SICU personnel: 0.65; SICU time

windows: 0.71; ICU personnel: 0.63; ICU time windows: 0.69)

(Table 3). The classifications were SICU Classifications: (1) Personnel

clusters: Nurse Group A (n = 15, silhouette = 0.62); Nurse Group a

(n = 21, silhouette = 0.67) (Figure 3A). (2) Time window clusters:

Collection Period B (Peak: 04:00–07:59 & 10:00–11:59); and

Collection Period b (Non-peak) (Figure 3B). ICU Classifications: (1)

Personnel clusters: Nurse Group C (n = 6, silhouette = 0.59); Nurse

Group c (n = 29, silhouette = 0.65) (Figure 4A). (2) Time window

clusters: Collection Period D (Peak: 04:00–05:59 & 10:00–11:59); and

Collection Period d (Non-peak) (Figure 4B).

Multivariate logistic regression revealed that the collection time

window significantly predicted pre-analytical TAT prolongation in

both units.

SICU: peak-period collections (04:00–07:59 and 10:00–11:59)

showed the strongest association with delays (β = 2.67, P < 0.01;

OR = 14.38, 95%CI:3.54–58.40); nurse A personnel as the

collectors was a secondary predictor (β = 1.79, P < 0.01;

OR = 5.96, 95%CI:2.78–19.94).

ICU: peak-period collections (04:00–05:59 & 10:00–11:59)

carried the highest risk (β = 4.86, P < 0.01; OR = 128.59, 95%

CI:23.43–705.63). Given the small sample size in the non-

overtime group (n = 6), Firth’s penalized likelihood regression

was performed as a sensitivity analysis, the adjusted OR was

85.40 (95% CI: 18.25–399.55), confirming its robust association

with pre-TAT delays (P < 0.001); nurse C personnel emerged as

secondary predictors (β = 3.19, P < 0.01; OR = 24.33, 95%

CI:5.18–114.13).

Complete regression coefficients and statistical details are

provided in Tables 6A,B.

4 Improvement measures

4.1 Enhancement of specimen collection
personnel

The following strategies may improve specimen collection:

1) Stratified Training Program: Develop a tiered training plan

(theory + practice) based on the Specimen Collection and

Transport Standards for Clinical Microbiological Testing (WS/

T 640—2018) (15) and CLSI guideline GP41-A7[National

Health Commission of the People’s Republic of China

(NHC), n.d.]. The key focus areas include using aseptic

techniques for clean-catch midstream urine collection (e.g.,

urethral orifice disinfection methods and the proportion of

initial urine to be discarded); sterile catheterization

procedures (e.g., WHO hand hygiene protocols and catheter

insertion depth control); and developing patient education

strategies (e.g., communication approaches for elderly or

cognitively impaired patients).

2) Monthly Quality Audits: Random selection of 10% of the urine

specimens for quality assessment (e.g., contamination rate and

label completeness), with results incorporated into the nursing

department performance evaluations.

3) Closed-Loop Management System: Establish a “specimen

quality feedback-correction-recheck” workflow within the LIS.

4) Standardized Urine Collection Kits: Providing pre-assembled

kits containing sterile gloves, disinfectant wipes, disposable

sterile urine cups, and transport tubes with boric acid

preservatives to minimize preparation time.

4.2 Enhancement of specimen collection
timing

The following approaches may improve specimen collection

timing:

1) Peak-Hour Staffing Optimization: Identify peak specimen

submission periods in major wards and dynamically allocate

TABLE 4 Assignment and variables of the overtime factor of turnaround time before the examination of urine culture specimens on the wards.

Name Meaning Assignment
Y-TAT Endpoint variable, time of specimen sampling from nurse to laboratory

receipt

Pre-TAT≤ 115 min = 0; Pre-TAT > 115min = 1

X-sex – Female = 0; Male = 1

X-age – Continuous variable in years

X-collector

identity

Specimen collection nurse categorical variable

X-collection date Month of specimen collection Categorical variables, January = 0, February = 1, March = 2

X-collection time Specimen collection time, hourly segments Specimen sampling time within 4:00–5:59 or 10:00–11:59 = 0; rest of the

period = 1

X-ward Patient’s ward Ward cluster 1 = 0; Ward cluster 2 = 1; Ward cluster 3 = 3

X-receiver identity Laboratory specimen receivers Categorical variable

Pre-TAT, pre-analytical turnaround time; Ward cluster 1, Surgical Intensive Care Unit and Intensive Care Unit; Ward cluster 2, Rehabilitation, Hematology, Oncology Surgery, Hepatobiliary

Surgery, Orthopedics, Gynecology, Emergency Observation Area, Endocrinology, Brain Surgery, Vascular Surgery, Neurology, Respiratory, Obstetrics, Ophthalmology; Ward cluster 3;

remaining wards.
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TABLE 5 Logistic analysis of factors influencing the overtime of turnaround time before testing of the urine culture specimens on the ward.

Factor Time out group
(n = 181)

Not time out
group (n = 1,162)

Univariate analysis Multivariate analysis

Pre-
TAT > 115 min

Pre-TAT≤ 115 min B P OR (CI) B P OR (CI)

Sex (F/M), n 82/99 648/514 −0.42 0.00** 0.66 (0.48–0.90) −0.27 0.32 0.77 (0.45–1.30)

Age, year 64.07 ± 1.56 64.35 ± 0.71 0.00 0.63 0.99 (0.99–1.01) −0.01 0.31 0.99 (0.98–1.01)

Number of collector

identities, n

111 428 0.00 0.00** 1.00 (1.00–1.00) 0.00 0.45 1.00 (1.00–1.00)

Number of Receiver

identities, n

46 38 0.00 0.73 1.00 (1.00–1.00) 0.00 0.17 1.00 (1.00–1.00)

Number of specimens

collected during this

period, n

– – – 0.96 – – 0.23 –

January 67 470 −0.05 0.80 0.95（0.65–1.39） −0.35 0.27 0.70 (0.38–1.32)

February 59 325 0.19 0.34 1.21（0.82–1.80） 0.21 0.52 1.23 (0.66–2.31)

Number of specimens

collected during this

period, n

– – – 0.00** – – 0.00** –

Collection time 1 68 3 5.45 0.00** 232.48 (71.99–750.79) 4.96 0.00** 142.92 (58.81–347.37)a

Number of specimens

collected in this ward, n

– – – 0.00** – – 0.00** –

Ward cluster 1 49 49 2.44 0.00** 11.43 (7.28–11.95) 2.30 0.00** 9.98 (5.05–19.72)

Ward cluster 2 43 96 1.63 0.00** 5.12 (3.36–7.79) 1.21 0.06 3.34 (1.68–6.63)

Pre-TAT, pre-analytical turnaround time; Collection time 1, specimen sampling time within 4:00–5:59 or 10:00–11:59; Ward cluster 1, Surgical Intensive Care Unit and Intensive Care Unit; Ward cluster 2, Rehabilitation, Hematology, Oncology Surgery, Hepatobiliary

Surgery, Orthopedics, Gynecology, Emergency Observation Area, Endocrinology, Brain Surgery, Vascular Surgery, Neurology, Respiratory, Obstetrics, Ophthalmology; B, regression coefficient; OR, odds ratio; CI, confidence interval.
aFirth’s penalized likelihood regression confirmed the extreme OR magnitude (OR = 132.41, 95% CI:54.83–334.12, P < 0.001).

**P < 0.01.

* < 0.05.
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dedicated transport personnel (≥1 per ward per shift) via

scheduling software.

2) Aseptic Transport Upgrades: Replace traditional open urine cups

with closed sterile transport devices (e.g., BD Urine Monovette®).

During low-demand periods (e.g., midday/night shifts),

pneumatic tube system (PTS) transport should be prioritized.

3) Pre-TAT Alert Module: Integrate a “specimen timeout warning

system” into the LIS to automatically notify the relevant nurses

when the pre-TAT exceeds 90 min.

4) Daily Pre-TAT Compliance Reports: Generate ward-specific

pre-TAT compliance rate reports and discuss results during

morning shift handovers.

5) Refrigerated Temporary Storage: Install 2–8°C refrigerators in

ward specimen holding stations for samples when delayed

transport is unavoidable.

5 Pre-analytical TAT and
contamination rate outcomes

Following the implementation of quality improvement

interventions, significant reductions in the pre-analytical

workflow metrics were observed. The median pre-TAT time for

urine culture processing significantly decreased from 44 min

(IQR: 23–75 min) to 37 min (IQR: 21–66 min) (Z = 4.31,

FIGURE 3

(A) Scatter plot of SICU collected nurses by pre-test overtime rate. (B) Scatter plot of SICU collection time by the pre-test overtime rate.
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P < 0.01). The overall pre-analytical timeout rate decreased from

13.48% to 7.55% (χ² = 26.30, P < 0.01), determined using the

Wilcoxon rank-sum test. Stratified analyses revealed pronounced

improvements in SICU and ICU sample rates.

In the SICU, the timeout rate decreased by 58.88% (50.00% vs.

20.56%; χ² = 19.58, P < 0.01), and the pre-TAT of urine cultures

collected by nursing staff was reduced from 180 (126–223) min pre-

intervention to55 (20–130)minpost-intervention (Z =−3.98,P < 0.001).

In the ICU, the timeout rate decreased by 74.11% (30.90% vs.

8.00%; χ² = 21.58, P < 0.01), with the pre-TAT of nursing-collected

urine cultures decreasing from 152 (119–179) min to 117 (76–161)

min (Z =−4.82, P < 0.001).

Concurrently, the overall contamination rate for urine

cultures across wards decreased by 59.79%, dropping from 5.67%

to 2.28% (χ² = 13.11, P < 0.01). The detailed results are presented

in Table 7.

FIGURE 4

(A) Scatter plot of ICU collected nurses by pre-test overtime rate. (B) Scatter plot of ICU collection time by the pre-test overtime rate.
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TABLE 6A Logistic analysis of factors for the overtime of turnaround time before testing the urine culture specimens in SICU.

Factors of SICU Time out group (n = 67) Not time out group (n= 9) Multivariate analysis

Pre-TAT > 115 min Pre-TAT≤ 115 min B P OR (CI)
Number of collection nurses A, n 34 6 1.79 0.00** 5.96 (2.78–19.94)

Number of collections B, n 33 3 2.67 0.00** 14.38 (3.54–58.40)

Pre-TAT, pre-analytical turnaround time; Collection nurses A, 15 specimen sampling personnel in the ICU; Collection time B, Specimen sampling times within 4:00–7:59 or 10:00–11:59 or

13:00–13:59.

**P < 0.01.

TABLE 6B Logistic analysis of factors influencing the overtime of turnaround time before the testing of the urine culture specimens in ICU.

Factors of ICU Time out group (n= 58) Not time out group (n= 6) Multivariate analysis

Pre-TAT > 115 min Pre-TAT≤ 115 min B P OR (CI)
Number of collection nurses C, n 25 4 3.19 0.00** 24.33 (5.18–114.13)

Number of collection time D, n 33 2 4.86 0.00** 128.59 (23.43–71.63)a

Pre-TAT, pre-analytical turnaround time; Collect nurses C, 6 specimen sampling personnel in the ICU; Collection time D, Specimen sampling time within 4:00–5:59 or 10:00–11:59.
aFirth’s penalized likelihood regression confirmed the extreme OR magnitude (OR = 85.40, 95%CI: 18.25–399.55, P < 0.001).

**P < 0.01.

TABLE 7 Comparison of Pre-TAT and overtime of the urine culture tests in the ward before and after intervention.

Factor Pre-intervention (n= 1,343) Post-intervention (n= 1,456) Z/χ² p

Pre-
TAT>115 min

Pre-
TAT≤ 115 min

Timeout
ratio, %

Pre-
TAT>115 min

Pre-
TAT≤ 115 min

Timeout
ratio, %

Pre-TAT, min 44 (23, 75) 37 (21, 66) −4.31 < 0.01**

Contamination rate of

urine culture, %

5.67% 2.28% 13.11 < 0.01**

Number of urine culture

specimens across all

wards, n

181 1,162 13.48 110 1,346 7.55 26.30 < 0.01**

Number of urine culture

specimens collected at

collection time 1, n

68 3 95.77 37 8 82.22 5.89 0.02*

Number of urine culture

specimens in the SICU

ward, n

49 49 50 22 85 20.56 19.58 < 0.01**

Number of specimens

collected by SICU time

period B, n

33 3 91.67 18 7 72 4.16 0.04*

Number of specimens

collected by SICU nurses

A, n

34 6 85 5 12 29.4 17.06 < 0.01**

Pre-TAT for SICU

collection A, min

180 (126, 223) 55 (20, 130) −3.98 < 0.01**

Number of urine culture

specimens in the ICU

ward, n

43 96 30.9 10 115 8 21.58 < 0.01**

Number of specimens

collected in the ICU time

period D, n

33 2 94.3 6 7 46.2 14.42 < 0.01**

Number of specimens

collected by ICU nurses

C, n

25 4 86.2 1 21 4.5 33.38 < 0.01**

Pre-TAT for ICU

collection C, min

152 (119, 179) 117 (76, 161) −4.82 < 0.01**

Pre-TAT, pre-analytical turnaround time; Collection time 1, Specimen sampling times within 4:00–5:59 or 10:00–11:59; Collection time B, Specimen sampling times within 4:00–7:59 or 10:00–

11:59; Collection time D, Specimen sampling times within 4:00–5:59 or 10:00–11:59 or 13:00–13:59; Collect nurses A, Fifteen sampling nurses with high urine culture overtime rates in the

SICU; Collect nurses C, Six sampling nurses with high urine culture overtime rates in the ICU; Timeout rate = (number of specimens at pre-TAT > 115 min/total number of valid

samples) × 100%; Contamination rate = (number of contaminated specimens/total number of valid specimens sent for testing) *100%, and the criteria for determining contaminated

specimens: Bacteria ≥3 in clean mid-stream urine specimens with colony counts <104CFU/ml for each microorganism; Bacteria ≥2 in catheterization or cystocentesis specimens (except

for definitive multidrug-resistant bacterial infections).

**P < 0.01.

*<0.05.
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6 Discussion

6.1 Key findings and clinical implications

As a cornerstone diagnostic technique for UTIs, urine culture

testing efficacy is significantly compromised by prolonged pre-

TATs. Our logistic regression-clustering joint model

systematically quantified two dominant bottlenecks: temporal

patterns (specimens collected during 04:00–05:59 and 10:00–

11:59 exhibited extreme delay risk; OR = 142.92, 95% CI: 58.81–

347.37), which is primarily attributable to nursing workload

conflicts (e.g., shift transitions, medication rounds) (17); and

ward-specific workflows (SICU/ICU samples showed 9.98-fold

higher delay odds compared with those of general wards; 95%

CI: 5.05–19.72), due to competing clinical priorities (e.g.,

ventilator adjustments) and inexperience in specimen handling.

6.2 Intervention efficacy and workflow
optimization

Model-derived targeted interventions achieved significant

improvements: dynamic resource allocation, in which peak-hour

staffing optimization reduced pre-TAT overtimes by 14.15

percentage points (95.77%→82.22%, P = 0.02). Standardized

training resulted in a decrease in the median pre-TAT by 69.4%

(180→55 min, P < 0.01) in SICUs and 23.0% (152→117 min,

P < 0.01) in ICUs. Moreover, in IoT-enabled systems, smart alerts

and refrigerated storage reduced contamination rates by 59.8%

(5.67%→2.28%, P < 0.01). These align with lean management

principles validated in Korean laboratories (18, 19), enhancing

operational efficiency and diagnostic reliability.

6.3 Generalizability and uncontrolled
confounders

While interventions reduced pre-TAT overtimes by 43.9%,

three contextual factors require consideration: workflow

heterogeneity, unmeasured confounders, EMR downtimes, and

resource disparities. Regarding workflow heterogeneity, manual

transport systems may respond differently to IoT alert systems

than automated pneumatic networks. Unmeasured confounders,

nursing task saturation during peak hours potentially delays

specimen labeling. Moreover, EMR downtimes (0.3% of

collections) artificially prolong recorded TAT (20, 21). Finally,

due to resource disparities, hospitals lacking cold-chain

infrastructure may achieve smaller contamination reductions.

6.4 Limitations and future research
directions

The limitations of this study include its single-center design

(pre-/post-intervention n = 1,343/1,456), which limits

generalizability to resource-constrained settings; the extreme OR

for peak periods (OR = 142.92, n = 71) requires cautious

interpretation despite robustness checks via Firth’s bias-correction;

and its retrospective nature, which prevented controlling for

environmental variables (e.g., transport temperature/humidity).

Additionally, we only focused on temporal/personnel factors,

omitting systemic issues, like EMR interoperability.

6.5 Future research prospectives

Future studies should employ multicenter prospective designs

with IoT environmental sensors; develop dynamic risk-prediction

models incorporating real-time workload metrics; and validate

interventions across various hospital tiers (primary care vs.

tertiary hospitals).

7 Conclusion

The logistic regression-clustering joint model effectively

identified critical pre-analytical bottlenecks, which can inform

the development of targeted interventions. Implementation of

dynamic shift scheduling (peak hours: 04:00–05:59 & 10:00–

11:59), Intelligent early warning system systems, and

standardized protocols significantly reduced pre-TAT overtimes

by 43.9% and contamination rates by 59.8%. Hospitals should

integrate these evidence-based strategies with real-time TAT

dashboards for sustainable quality improvement.
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