
EDITED BY

Lisette van van Gemert-Pijnen,

University of Twente, Netherlands

REVIEWED BY

Varsha Gouthamchand,

Maastricht University, Netherlands

Dr. Hari Gonaygunta,

University of the Cumberlands, United States

*CORRESPONDENCE

Frank Westers

frank.westers@tno.nl

RECEIVED 31 March 2025

ACCEPTED 26 May 2025

PUBLISHED 12 June 2025

CITATION

Westers F, Leder S and Tealdi L (2025)

Horizontal federated learning and assessment

of Cox models.

Front. Digit. Health 7:1603630.

doi: 10.3389/fdgth.2025.1603630

COPYRIGHT

© 2025 Westers, Leder and Tealdi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with

these terms.

Horizontal federated learning and
assessment of Cox models

Frank Westers
1*, Sam Leder

1
and Lucia Tealdi

2

1Applied Cryptography & Quantum Applications, Netherlands Institute for Applied Scientific Research

(TNO), The Hague, Netherlands, 2Data Science, Netherlands Institute for Applied Scientific Research

(TNO), The Hague, Netherlands

The Cox Proportional Hazards model is a widely used method for survival

analysis in medical research. However, training an accurate model requires

access to a sufficiently large dataset, which is often challenging due to data

fragmentation. A potential solution is to combine data from multiple medical

institutions, but privacy constraints typically prevent direct data sharing.

Federated learning offers a privacy-preserving alternative by allowing multiple

parties to collaboratively train a model without exchanging raw data. In this

work, we develop algorithms for training Cox models in a federated setting,

leveraging survival stacking to facilitate distributed learning. In addition, we

introduce a novel secure computation of Schoenfeld residuals, a key

diagnostic tool for validating the Cox model. We provide an open-source

implementation of our approach and present empirical results that

demonstrate the accuracy and benefits of federated Cox regression.
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1 Introduction

Survival modeling is a common type of data analysis; it aims to predict the time until

some event occurs based on historical data. In healthcare, this is often used to study the

influence of certain covariates - such as biomarkers or drug use - on the occurrence of

some adverse event. The Cox proportional hazard model is a common model for

survival analysis in medical research. However, researchers do not always have enough

data available to reliably fit a Cox model. Combining the data of multiple medical

centers or other parties, such as health insurance providers, would help address this

issue, but is often not possible due to privacy restrictions or legislation. This leads to

less accurate models and predictions or to potentially useful covariates being ignored.

Federated learning can be used to fit statistical models on distributed data. It allows

multiple parties to fit a model without sharing the underlying data. Only certain

statistics are shared. However, one of the requirements of federated learning is that the

loss function is separable, which is not the case for the Cox model. In this paper, we

show a solution for training a Cox model on horizontally partitioned data. Horizontal

partitioning here means hospitals have datasets with different patients, but the same

type of data on each patient. In addition, we show how to securely compute the

Schoenfeld residuals on horizontally partitioned data, which can be used to assess a

model computed using federated learning. Finally, we provide a comparison between

these methods and existing (centralized) implementations.

The organization of this paper is as follows. In Section 2 we describe the methods used:

the background of the Cox model, federated learning, the survival stacking technique,

logistic regression in a federated setting, as well as Schoenfeld residuals and our secure
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approach. Then in Section 3 we present the main results of our

research; our objective is to quantify the benefits of federated

Cox regression and compare different optimizers. Finally, in

Section 4 we discuss our results in the context of prior research,

give limitations of our work, and formulate further

research questions.

2 Methods

2.1 The Cox model

The Cox Proportional Hazards (CPH) model, introduced by

Cox in 1972 (1), is a widely used statistical method to analyze

survival data. It aims to quantify the relationship between

survival time and one or more explanatory variables, known as

covariates, without requiring strong assumptions about the

baseline hazard function. The model is particularly useful in

medical and epidemiological research to study the effect of

covariates on survival outcomes.

The Cox model expresses the hazard function, which describes

the instantaneous risk of failure at time t for an individual with a

given set of covariates, as:

l(tjZ) ¼ l0(t) � e
bZ ¼ l0(t) � e

b0Z0þb1Z1þ���þbpZp

Here Z ¼ (Z1, . . . , Zp) represents the vector of covariates and b

are the corresponding regression coefficients. l0 is the baseline

hazard function, representing the hazard when all covariates are

zero. The key feature of the Cox model is its proportional

hazards assumption: the hazard function for different individuals

is proportional over time. If a coefficient bi is positive, the

corresponding covariate Zi increases the hazard, which means a

higher risk of failure. Conversely, a negative bi implies a

protective effect, which reduces the hazard.

A major advantage of the Cox model is that it does not require

a specification of the baseline hazard l0(t), making it a semi-

parametric model. To estimate the coefficients b, the Cox model

maximizes the partial likelihood. Suppose we have a data set

D ¼ (Zi, ti, di), where Zi are the covariates, ti is the observed

survival time, di is the event indicator (1 if an event occurred, 0

if censored) for individual i. Then, the partial likelihood is given by:

L(b) ¼
Y

i[D;di¼1

P(i fails jR(ti))

¼
exp (Zib)

P

j[R(ti)
exp (Zjb)

Here, R(t) ¼ {ijti � t}, that is, the set of individuals still in the

study at t, or risk set. Maximizing this likelihood leads to

estimates of the b coefficients, which quantify the effect of

covariates on survival. The statistical significance of these

estimates can be assessed using hypothesis tests such as the Wald

test, p-values, or likelihood ratio test. The Schoenfeld residual test

can be used to test whether a data set satisfies the proportional

hazard assumption.

2.2 Federated learning of Cox models

One limiting factor in medical research is often the availability

of reliable patient data. In addition, these data are often restricted

to a single institution or region, resulting in datasets that may lack

diversity and generalizability. Privacy concerns and regulatory

constraints make it difficult to share sensitive health data

between institutions. These challenges have spurred research into

privacy-preserving methods that enable collaborative studies

while protecting patient confidentiality (2).

Federated Learning (FL) is one such method that allows

multiple institutions to collaboratively train a model without

sharing raw data (3). In federated learning, the data remains

decentralized, and only model updates, such as gradients, are

exchanged between institutions. The federated learning process

generally consists of three steps:

1. Each participating institution computes an update to the model

using its local data and sends this update to a

central aggregator.

2. The aggregator combines the local updates to produce a global

model update and distributes it to all participants.

3. Each institution updates its local model with the new global

update. This process is repeated until a stopping criterion

is met.

A common approach to aggregation is averaging, which is also used

in this work. For updates, we use the gradients in a gradient descent

optimization process. It is important to note that some

information, namely the gradients, is being shared with the

server. In cases where this is a problem, the server can be

replaced by a secret-sharing scheme of a form of homomorphic

encryption or differential privacy can be used.

Although federated learning appears to be a natural fit for Cox

regression — where each institution computes gradients with

respect to the partial likelihood and the gradients are averaged

for a global update — this approach is not straightforward. The

reason is that the partial likelihood in the Cox model involves

summing over all individuals in the risk set at a given time.

Since each institution only has access to its own local dataset,

this value in the partial likelihood cannot be accurately computed

locally. Naively computing it locally would effectively result in a

stratified Cox model.

To overcome this challenge, we employ a technique known as

survival stacking. The core idea is that the coefficients in the Cox

model approximate those obtained from logistic regression when

the dataset is transformed by stacking (4). Since logistic

regression has a separable loss function, it can be trained in a

federated manner. First, each party locally survival stacks its

dataset. The parties then collaboratively perform federated

logistic regression using the transformed data. The outcome is an

approximation of the Cox model. Its quality can then be assessed

using (federated) metrics.
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In the following sections, we describe the survival stacking

technique in more detail, demonstrate its implementation, and

show the process for federated Cox modeling using this approach.

2.2.1 Survival stacking

Survival stacking is a method that transforms a right-censored

survival dataset into a classification dataset. This procedure is

detailed in (4); here, we provide a brief overview.

Given a survival dataset D ¼ (Zi, ti, di), the goal is to construct

a classification dataset D0. The resulting dataset consists of a matrix

of independent variables X and a target vector y containing

boolean outcomes. The matrix X includes all covariates from D,

along with additional columns representing risk set indicators

corresponding to each event time point ti where di ¼ 1. D0 is

built iteratively, by “stacking” the risk sets at the different failure

times. More specifically, for each event time point ti where

di ¼ 1, the procedure is as follows:

1. Identify the risk set R(ti), which includes all subjects still under

observation at time ti.

2. For each subject in R(ti), add a row to D
0 that replicates their

covariates from D.

3. Set the corresponding risk set indicator to 1.

4. Update the target vector y: assign 1 to the subject who

experienced the event at ti and 0 to all others.

As an example consider the dataset:

D ¼

Covariates Times Event
x0
x1
x2

0

@

1

A,
t0 ¼ 0
t1 ¼ 1
t2 ¼ 2

0

@

1

A,
d0 ¼ 1
d1 ¼ 0
d2 ¼ 1

0

@

1

A

Since events occur at t0 and t2 (where d0 ¼ 1 and d2 ¼ 1), we

construct D0 with three columns: one for the covariate and two

for the risk set indicators. At t0, the risk set includes all subjects.

Each subject is added to D
0 with the first risk set indicator set to

1. The target value is 1 for the event at t0 (subject 0) and 0 for

others:

D
0 ¼

Covariates Target
x0 1 0
x1 1 0
x2 1 0

0

@

1

A,
1
0
0

0

@

1

A

At t2, only subject 2 remains in the risk set. We add this subject to

D
0 with the second risk set indicator set to 1 and the target value set

to 1 (since subject 2 experienced the event at t2):

D
0 ¼

Covariates Target
x0 1 0
x1 1 0
x2 1 0
x2 0 1

0

B

B

@

1

C

C

A

,

1
0
0
1

0

B

B

@

1

C

C

A

For a more comprehensive explanation of survival stacking and its

theoretical justification, see (4). The main result is that applying

logistic regression to the resulting stacked dataset provides an

approximation of the Cox proportional hazards model coefficients.

2.2.2 Federated logistic regression

Federated learning of logistic regression enables multiple

parties to collaboratively train a logistic regression model without

sharing their local data. This decentralized approach preserves

privacy while allowing the computation of a global model across

distributed datasets. In the following, we outline the basic

procedure for federated logistic regression.

Consider K parties, each holding a local dataset Dk ¼ (Xk, yk),

where Xk represents the feature matrix and yk is the binary target

variable. The goal is to jointly estimate the logistic regression

parameters b by minimizing the following loss function:

L(b) ¼
X

K

k¼1

X

nk

i¼1

yki log (y
0
ki)� (1� yki) log (1� y0ki)

� �

,

where

1. nk is the number of subjects in Dk

2. yki is the ith subject in yk, i.e., the true label for ith entry in Dk.

3. y0ki is the prediction for the ith subject in Dk. This is computed

using

y0ki ¼ s(XT
kib) ¼

1

1þ e�XT
ki
b

As we can see, the loss function can be computed locally by each

party. By averaging the gradients of the local losses, we can

compute the gradient of the entire data set. The algorithm starts

with an initialization step: a central server initializes the model

parameters b(0) and shares them with all participating parties.

Next, each party k computes the gradient of the local objective

function with respect to b:

rLk(b) ¼
X

nk

i¼1

(y0ki � yki)Xki

� �

The server collects the local updates and takes a weighted average

based on the relative size of the data sets. This is the global

gradient, which is multiplied by the step size h to compute the

global update on the model.

b(tþ1) ¼ b(t) � h
X

K

k¼1

n

nk
rLk(b

(t)),

The updated model is distributed to the different parties. These

steps are repeated until convergence has been reached. There are

many different ways for the aggregator to determine the step

size. In this research, we have tested multiple optimizers, of

which the results are given in Section 3.
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2.2.3 Federated Cox regression

We can combine survival stacking with federated learning to

collaboratively fit a Cox proportional hazards model without

sharing raw data. Each participating party independently applies

survival stacking to its dataset. Subsequently, the parties engage

in a federated logistic regression procedure to fit a logistic

regression model on their stacked datasets. The resulting logistic

regression coefficients are approximations of the Cox model

coefficients. To perform survival stacking, each party must know

the time points of the failures. In some cases, these might be

considered sensitive data. A solution to this problem is to

collaboratively compute the highest time point [by sharing the

maximum time point, or using multi -party computation (5)].

Next, we split the time frame into a predetermined number of

time points. For each time point, we take the risk set at that

point and set the values to 1 for subjects who experience a

failure close to that time frame (6). This also reduces the size of

the stacked dataset, which can result in more accurate models. In

Section 3, we also demonstrate that this method effectively

estimates the Cox model coefficients in a federated setting. The

code includes the computation of several statistics, such as the

Wald statistic and p-values.

2.3 Secure Schoenfeld residuals

One of the key assumptions of the Cox model is the so-called

proportional hazards assumption. The hazard function can be

thought of as the risk of an individual having an event at a given

time. The proportional hazards assumption now states that this

hazard can be split up in two parts: the baseline and a linear

combination of the individual’s covariates, and that this baseline

is the same for all individuals. Furthermore, it is assumed that

both the covariates and the model parameters are time-invariant,

i.e., they remain the same over the entire course of the study.

Recall from Section 2.1 that the hazard for individual i is given by

l(tjZi) ¼ l0(t) � e
bZi ,

where l0(t) is the common baseline hazard, Zi are the covariates of

the individual and b are the model’s parameters.

Now, this is a very strong assumption that needs to be

validated. For this we use Schoenfeld residuals, a concept

published by David Schoenfeld in 1982 (7). Simply put, the idea

is to compare the actual covariates in the dataset with the

covariates predicted by the model. Now, the model does not

primarily seek to predict the covariate values, but at the time just

before each failure, we can compute the risk-weighted average of

the covariate over the relevant risk set and compare that to the

actual covariate. We then plot these residuals and inspect them;

if they are distributed as random noise, we conclude that the

proportional hazards assumption holds, but if there is a clear

time dependence in the residuals, we are more likely to reject

the assumption.

We have implemented the calculation of Schoenfeld residuals

in a secure multi-party computation (MPC) setting, using the

MPyC library (8). This calculation is to be performed by the

cooperating parties after the federated Cox regression. In order to

speed up the calculation as much as possible, the parties can

preprocess the data and perform precomputations in order to

simplify the actual MPC calculation as much as possible.

2.3.1 Approach
We describe our novel approach to securely compute the

Schoenfeld residuals in a federated setting. We assume that every

party has access to the trained model coefficients b, as well as

their own data. The protocol consists of four steps:

preprocessing, sharing of failure times, precomputation, and the

MPC calculation.

1. Preprocessing: each dataset contains one event per row. An

event can be either a failure or a censoring. Every row also

contains the time of the event and the individual’s covariates.

In this step, each party perturbs all of their event times by a

small random value. This is only done to ensure that there

are no duplicate times in the complete dataset. Then the

party’s data is sorted by the new perturbed event times.

2. Sharing of failure times: here the parties communicate all of the

failure times (including perturbation) in their dataset. Note that

these times are generally considered sensitive, as they might

leak some information about individuals in case of extremely

small datasets. However, the Schoenfeld residuals themselves

must be plotted against these failure times, so they are

required to be public for the protocol to be useful.

3. Precomputation: this is where most of the computational work

is done. Each party (separately) computes the following values

for each individual i:

Hi ¼ exp
X

m

j¼1

Cij � b j

 !

,

Wij ¼ Cij �Hi

where Cij is the jth covariate of individual i, and

b ¼ (b1, . . ., bm) are the coefficients of the model for each

covariate. For individual i, we call Hi the hazard, and Wij the

weight for the jth covariate. Next, let f ¼ (f1, . . ., fK) be the

vector of sorted failure times shared in the previous step and

furthermore Fp the set of failures that belong to this party p,

then let for each individual i

HVi ¼
X

{k : tk�fi}

Hj,

WVij ¼
X

{k : tk�fi}

Wij,

CVij ¼

Cij if fi [ Fp

0 if fi � Fp

8

>

<

>

:
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where t ¼ (t0, . . ., tn) are the times of the events. These values

are not very useful on their own, but rather facilitate a simpler

calculation in the last step.

4. MPC calculation: following the precomputation, this step is

straightforward. However, it happens in the encrypted

domain, meaning that none of the inputs is actually visible to

other parties. We first present the calculation without

encryption:

THi ¼
X

p[P

HV
(p)
i ,

TWij ¼
X

p[P

WV
(p)
i ,

TCij ¼
X

p[P

CV
(p)
i ,

ECij ¼
TWij

THi
,

SRij ¼ TCij � ECij

where SRij is the desired Schoenfeld for individual i and

covariate j.

Now, the secure approach involves a technique called secret

sharing, in which all parties own a “piece” of each secret value.

This means that none of them individually knows anything

about the secret (except possibly the party that secret-shared it),

but all of them together can reconstruct the secret. The

technique is based on polynomial interpolation and was

introduced by Adi Shamir in 1979 (9). The additions we do in

this protocol are very straightforward under secret sharing, so the

main bottleneck is the set of divisions that have to be performed.

This is not very complicated, although it does require many

communication rounds between the parties.

With this approach, the parties can securely validate the

federated Cox model. This is very useful, as this validation is

almost always done in practice, but doing it in the clear would

nullify the privacy enhancement of the federated training. Hence,

being able to do both parts securely makes the whole model

more valuable.

2.3.2 Evaluation
As mentioned, the standard approach in evaluation Schoenfeld

residuals is to plot them and inspect them visually. As an example,

we plot the residuals for the age covariate of the Rotterdam Tumor

Bank dataset in Figure 1, as computed by the approach described

above. We see that the residuals do not show a clear time

dependence in this case, also indicated by the fact that the fitted

line is close to the constant line through zero. This indicates that

indeed the residuals are independently and identically distributed

around zero and so the Proportional Hazards Assumption holds.

However, we note that this is often a quite subjective

measurement and is difficult to quantify exactly.

FIGURE 1

Schoenfeld residuals for the age covariate in the Rotterdam Tumor Bank dataset. The dots represent individual residuals, and the line is a smoothed

LOWESS fit.
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3 Results

3.1 Open-source implementation

We provide an open source Python implementation of the

described algorithms; see https://github.com/TNO-FL/protocols.

cox_regression.

The implementation includes modules for survival stacking,

Schoenfeld residuals, and some generic utilities. The main

functionality - the training of the distributed Cox model -

happens in a client-server model. In simplified terms, the parties

(each having a dataset) are separate clients, and the server only

facilitates the protocol. The clients all perform an optimization

step on their data, send it to the server, who then aggregates

these steps to update the global model accordingly, and sends the

updated model back to each of the clients. For example, each

hospital would run the client and configure the URL of the

server, which is usually run by an independent third party. The

implementation details and recommended usage are also

described in the repository.

3.2 Experiments

In this section, we present various experiments conducted to

evaluate the performance of the proposed algorithm. By

comparing our approach to established reference

implementations, we can better quantify any inaccuracies

introduced by survival stacking relative to directly applying a

Cox model. In Section 3.2.1 we compare different optimizers

against a reference implementation, then in Section 3.2.2 we

analyze the impact of survival stacking. Next, Section 3.2.3

motivates the applicability by demonstrating both separate and

collaborative models, and finally Section 3.2.4 presents the

accuracy of both survival stacking and federated learning in the

context of the Cox model.

3.2.1 Comparison of optimizers

We begin by comparing the effectiveness of different

optimization methods for fitting a logistic regression model on

stacked data. Survival stacking significantly increases the size of

the dataset, resulting in a high proportion of zero values in the

risk set indicator columns. Furthermore, the target vector

contains very few positive labels, leading to a sparse dataset with

a highly imbalanced class distribution. As a consequence, a

model that sets all coefficients to zero already achieves a high

accuracy score. To assess the performance of our approach, we

therefore compare it against the coxph implementation in the

lifelines software package (10). We compare with a

reference implementation, instead of using scores like a C-index

or calibration plots, as evaluating the accuracy of a Cox model

purely through numerical metrics is challenging and often

requires contextual and domain knowledge. By comparing our

approach to established reference implementations, we can better

quantify any inaccuracies introduced by survival stacking relative

to directly applying a Cox model.

The results of our evaluation on two datasets are presented in

Tables 1 and 2. Each experiment was repeated 10 times until

convergence and the results were subsequently averaged.

The findings indicate that both the Adam optimizer and the

Newton–Raphson method converge to values close to the

reference Cox parameters. Adam requires a greater number of

communication rounds, whereas Newton–Raphson involves

transmitting the Hessian matrix, which can be large. The choice

between these methods thus represents a trade-off between the

frequency and the size of communication. This trade-off largely

depends on the size of the Hessian matrix, which is primarily

influenced by the number of time bins used in the analysis.

3.2.2 Accuracy of survival stacking
We also evaluate the accuracy of our survival stacking

approach, first in a centralized setting and then in a federated

one. Rather than evaluating our implementation using

independent measures, we benchmark our results against

reference implementations in lifelines and R.

A key factor influencing the accuracy of survival stacking is the

number of time bins used. In the original stacking approach, a new

stack was added for each failure event. However, this strategy can

lead to excessively large models, which is impractical, particularly

in the context of federated learning. To address this issue, we

employ time binning, as described in Section 2.2.3. We therefore

evaluate the performance of survival stacking across different

numbers of time bins. The results for various datasets are

presented in Tables 3 and 4.

We see that more time bins lead to better results, up to a

certain value. Introducing more time bins beyond that point

leads to a more sparse dataset, without adding much more

information. For both the Rotterdam and Colon dataset, the

optimal number of time bins was 100. The optimal number of

bins also depends on the size of the dataset. Interestingly, time-

TABLE 1 The outcomes for several solvers on the Rotterdam Tumor Bank dataset.

Solver age grade node pgr er meno hormon

Lifelines (10) 0.0184 0.3772 0.0881 �0.0004 �0.0001 �0.0369 �0.0388

Gradient Descent �0.0388 �0.7026 0.0883 �0.0013 �0.0006 0.4068 �0.0023

Momentum �0.0303 �0.7117 0.1086 �0.2274 �0.2481 0.2179 0.1404

Adam 0.0185 0.3807 0.0936 �0.0004 �0.0001 �0.0298 �0.0699

Newton Cholesky 0.0184 0.3780 0.0928 �0.0004 0.0000 �0.0313 �0.0632

Lifelines is the reference implementation. The other rows are obtained by fitting logistic regression on a central stacked dataset with 50 time bins. For gradient descent and momentum ran

100:000 iterations with lr ¼ 0:001 and v ¼ 0:9. For Adam, we used 50.000 iterations and (lr, b1 , b2) ¼ (0:001, 0:9, 0:999). Newton–Raphson converged in less than 25 rounds.
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binning can result in models closer to the reference Cox model

than the original stacking method.

3.2.3 Benefit of federated learning
In this experiment, we evaluate the advantages of federated

learning over training a Cox model locally. We use the colon

dataset (11) and split the dataset uniformly at random, so that

every party has nearly the same number of data points. To

ensure robustness, we repeat the experiment 10 times with

different splits. The results are in Table 5. Examples are also

shown in Figure 2, which presents partial results visually.

In Table 5, we assess the benefits of federated learning in terms

of model accuracy, by performing a comprehensive comparison.

This table presents the accuracy loss of the federated models

alongside that of individually trained models. To ensure a fair

comparison, each pair of federated and individual models

(corresponding to the same row and number of parties) is

trained on identical data partitions.

We measure the accuracy of a model by comparing it to the

ideal central Cox model (trained on all of the combined data)

and take the accuracy loss to be the Manhattan distance between

the coefficients of both models. That is, let b� ¼ (b�
1 , . . ., b

�
m) be

the optimal coefficients of the central Cox model, and consider

some other model with coefficients b ¼ (b1, . . ., bm), then we

define that model’s accuracy loss as

X

m

i¼1

jbi � b�
i j:

TABLE 2 The outcomes for several solvers on the Colon dataset.

Solver sex age obstruct perfor adhere nodes surg

Lifelines (10) �0.1512 �0.0041 0.2209 0.2107 0.2603 0.0872 0.2717

Gradient Descent �0.0392 �0.6952 0.0880 �0.0013 �0.0003 0.4120 0.0228

Momentum �0.4718 �0.0650 �0.2323 0.0090 0.2597 0.0583 0.0774

Adam �0.1465 �0.0043 0.2214 0.2162 0.2713 0.0945 0.2762

Newton Cholesky �0.1425 �0.0042 0.2198 0.2108 0.2708 0.0961 0.2752

Lifelines is the reference implementation. The other rows are obtained by fitting logistic regression on a central stacked dataset with 50 time bins. For gradient descent and momentum ran

100:000 iterations with lr ¼ 0:001 and v ¼ 0:9. For Adam, we used 50.000 iterations and (lr, b1 , b2) ¼ (0:001, 0:9, 0:999). Newton–Raphson converged in less than 25 rounds.

TABLE 3 The results for the Rotterdam Tumor Bank dataset in a central setting for different number of bins.

# bins age grade node pgr er meno hormon Distance

Lifelines (10) 0.0184 0.3772 0.0881 �0.0004 �0.0001 �0.0369 �0.0388

1 0.0186 0.4127 0.1887 �0.0004 0.0002 0.0581 �0.6878 0.6646

10 0.0184 0.3926 0.1113 �0.0004 0.0000 0.0009 �0.1718 0.1411

25 0.0186 0.3832 0.0974 �0.0004 0.0000 �0.0276 �0.0939 0.0569

50 0.0184 0.3780 0.0928 �0.0004 0.0000 �0.0313 �0.0632 0.0255

75 0.0185 0.3761 0.0914 �0.0004 �0.0001 �0.0355 �0.0603 0.0218

100 0.0182 0.3740 0.0903 �0.0004 �0.0001 �0.0323 �0.0555 0.0178

300 0.0181 0.3704 0.0883 �0.0004 �0.0001 �0.0342 �0.0509 0.0141

400 0.0180 0.3693 0.0879 �0.0004 �0.0001 �0.0331 �0.0507 0.0148

500 0.0179 0.3684 0.0876 �0.0004 �0.0001 �0.0328 �0.0512 0.0158

The distance is the Euclidean distance from the reference implementation.

TABLE 4 The results for the colon dataset in a central setting for different number of bins.

# bins age grade node pgr er meno hormon Distance

Lifelines (10) �0.1512 �0.0041 0.2209 0.2107 0.2603 0.0872 0.2717 0.0000

1 �0.1027 �0.0055 0.2131 0.2545 0.4824 0.1818 0.4012 0.2817

10 �0.1347 �0.0044 0.2212 0.2452 0.2883 0.1203 0.3074 0.0680

25 �0.1350 �0.0044 0.2235 0.1996 0.2783 0.1026 0.2803 0.0320

50 �0.1431 �0.0042 0.2224 0.2043 0.2651 0.0966 0.2768 0.0157

75 �0.1445 �0.0041 0.2205 0.2051 0.2670 0.0946 0.2754 0.0138

100 �0.1452 �0.0040 0.2215 0.2079 0.2658 0.0937 0.2759 0.0116

200 �0.1465 �0.0040 0.2185 0.2171 0.2679 0.0936 0.2792 0.0150

300 �0.1470 �0.0040 0.2186 0.2187 0.2721 0.0942 0.2813 0.0192

400 �0.1473 �0.0041 0.2166 0.2223 0.2733 0.0947 0.2845 0.0236

500 �0.1476 �0.0041 0.2168 0.2248 0.2752 0.0953 0.2860 0.0269

No binning �0.1473 �0.0041 0.2179 0.1932 0.2542 0.0860 0.2646 0.0205

The distance is the Euclidean distance from the reference implementation.
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A lower value corresponds to a better approximation of the optimal

model. We opt for this approach since we wish to assess how well

we can fit a Cox model in a federated setting. Therefore, we

compare with a reference implementation, instead of using scores

like a C-index or calibration plots. Additionally, evaluating the

accuracy of a Cox model purely through numerical metrics is

challenging and often requires contextual and domain knowledge.

Our findings show that federated models consistently yield

results significantly closer to those of the central Cox model than

their individually trained counterparts. Although some variance

is observed, primarily due to randomness in data partitioning,

the accuracy loss in the individual models is approximately 5 to

8 times greater than that of the corresponding federated models.

Moreover, for both federated and individual models, accuracy

loss increases with the number of parties. This is likely due to

the fixed size of the total dataset: as n increases, the data

available to each individual party decreases, making it more

challenging to fit accurate models. However, in a real-world

scenario, adding more parties would typically contribute

additional data rather than merely redistributing a fixed dataset.

TABLE 5 Comparison in accuracy loss for federated and individual models.

Exp. n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

Fed. Ind. Fed. Ind. Fed. Ind. Fed. Ind.

1 0.086692 0.508615 0.186127 0.763789 0.301681 1.298265 0.367590 1.793961

2 0.085923 0.253846 0.090872 0.750492 0.233104 1.333657 0.221824 1.318142

3 0.105217 0.925193 0.150346 1.014060 0.118710 1.258620 0.197675 1.339609

4 0.094011 0.861348 0.183629 1.191052 0.396855 1.530512 0.318490 1.325883

5 0.074628 0.912278 0.213943 1.117565 0.229633 1.535407 0.269670 5.035956

6 0.085935 0.607380 0.192031 0.696788 0.228756 1.167630 0.243405 1.397925

7 0.094830 0.513158 0.242559 1.691819 0.174044 1.454943 0.450566 1.888442

8 0.082531 0.698606 0.206044 1.099592 0.162499 1.337512 0.320388 1.318446

9 0.085296 0.373202 0.214295 1.094962 0.306755 1.179061 0.551078 4.566361

10 0.097963 0.783727 0.142877 0.875390 0.317852 1.532268 0.353232 4.702105

avg. 0.089302 0.643735 0.182272 1.029550 0.246988 1.362787 0.329391 2.468683

Each row displays results of a different experiment with randomly split data. For 2 � n � 5 parties, both models are compared to the ideal case of the central Cox model, and the accuracy loss is

measured as the Manhattan distance of the model’s parameters to those of the ideal model. A lower value therefore means a better approximation of the ideal model. The last row contains the

average of the experiments. The colon dataset was again used.

FIGURE 2

Comparison between the central Cox model and the models trained only on an individual parties’ data (n ¼ 4 parties).
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As a result, we expect that increasing the number of parties in

practice would enhance model quality by incorporating more

diverse information.

Furthermore, Figure 2 shows a particular example to illustrate

the difference between the models. We see that in this case the

individual parties’ best models are quite inaccurate and in most

cases not comparable to the ideal centralized model. For instance,

the model trained by Party 2 overestimates the coefficients for the

covariates sex, obstruct, and perfor, while underestimating the

coefficient for surg. Consequently, this misestimate leads to over-

and underestimation of the effects of these covariates on survival

probabilities, resulting in less reliable predictions. This highlights

that models trained on a limited subset of the data generally

perform significantly worse than those trained on the complete

dataset. This demonstrates the clear benefits of collaborative

approaches such as federated learning, which enable improved

model performance without requiring data centralization.

3.2.4 Accuracy of federated Cox regression

We now evaluate the accuracy of the federated Cox regression

model. Survival stacking and data federation can both lead to

inaccuracies in the outcome model. Here we assess this loss in

accuracy, by testing it on the colon dataset with 25 bins.

Figure 3 presents the results of the central Cox model and the

central logistic regression model, both of which assume a fully

centralized setting where all data is aggregated in a single location.

Alongside these, it shows the outcomes of the federated Cox

regression for varying numbers of participating parties. Note that

the central Cox model is the same as in Figure 2. However, while

Figure 2 examines individual Cox models trained by a single party

on a fraction of the complete dataset (with a fixed number of

parties, n ¼ 4), here we evaluate federated models trained across all

n parties, where 2 � n � 5.

This figure indicates that the federated models closely approximate

the centrally trained Cox model. Furthermore, the sources of error

introduced by survival stacking and federated learning do not

necessarily compound. For example, for the covariate sex, the central

logistic regression model overestimates the coefficient relative to the

central Cox regression model, whereas the federated regression model

underestimates it relative to the central logistic regression model.

This interaction results in a slight improvement in the overall

estimation. The p-values give an indication of the error.

Our results demonstrate that federated models produce

significantly more accurate predictions than models trained

independently by individual parties. These findings underscore

the benefits of collaborative model training, particularly in

scenarios where direct data sharing is not feasible. Federated

learning thus presents a viable approach for improving Cox

model accuracy while preserving data privacy.

4 Discussion

4.1 Related work

The Cox model has been extensively studied in the scientific

community [see, e.g., (12) for an overview], and several

FIGURE 3

Comparison between the central (ideal) model, the model with survival stacking, and models trained by federated learning with 2 � n � 5 parties.
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approaches have been proposed for fitting a Cox model in a

federated setting using privacy-preserving methods. Some

studies employ statistical learning techniques (6, 13, 14),

while others utilize secure multi-party computation (MPC)

(15) or related cryptographic techniques (16). Furthermore,

the combination of survival stacking with federated

learning has been explored in previous work, often in

conjunction with custom classifiers rather than logistic

regression (17–19).

However, many of these existing solutions involve sharing

time-to-event information between participating institutions.

In our approach, we treat time as a privacy-sensitive variable

during the learning phase and ensure that it is not shared.

Some alternative methods also avoid sharing time, but instead

report only model performance metrics such as the

concordance index (c-index). Our findings indicate that

multiple distinct models can yield the same c-index, and

furthermore, the c-index is not a reliable performance metric

in all scenarios (20). To address this limitation, we compare

models trained using our distributed approach against known

models from the centralized setting.

Furthermore, we incorporate statistical significance testing

through p-value computation and implement a commonly used

diagnostic tool in medical research: Schoenfeld residuals. To the

best of our knowledge, this is the first study to compute

Schoenfeld residuals on distributed data.

4.2 Performance

While our proposed approach yields very significant privacy

and security benefits, this comes at the cost of computational

complexity. It is clear that these privacy-preserving methods

(in this case federated learning and MPC) introduce some

additional overhead, both in computational effort and

communication time, compared to a centralized approach.

That being said, federated learning does not introduce a large

amount of overhead, as the protocol only requires parties to

communicate relatively small updates to the model, and the

dominating computation is still calculating these updates

(which is required regardless of federated learning). MPC

introduces comparatively more overhead, but arguably this is

still manageable. Specifically because the computation in

question (that of Schoenfeld residuals) is not extremely

complex. Furthermore, we see in general that training a model

such as the Cox Proportional Hazards Model is not a time-

constrained task; often there is quite some time available

and it is not vital for the training process to complete in

seconds. In this way, the additional overhead is not as

destructive as it is in some other applications. Finally, we

argue that this drawback does not weigh up against the benefit

of added privacy, specifically because we are considering

sensitive patient data. In fact, using a central model is

theoretically better than using a federated model, but the latter

is practically much better than not collaborating with data at all.

4.3 Further research

Our approach focuses on horizontally partitioned data, where

each individual is associated with a single party that has access

to all covariates for that individual. In contrast, vertically

partitioned data refers to a setting in which all parties have

records for the same individuals but possess only a subset of the

covariates. Horizontal partitioning is more straightforward to

implement in a federated learning framework, as each party can

independently evaluate individuals and observe their respective

events. In a vertically partitioned setting, however, no single

party has access to both the outcome events and the full set of

covariates, making model training significantly more complex.

Additionally, survival stacking is also requires communication

between the parties. The complexity and development of

vertically federated Cox regression using survival stacking

remains an open research problem.

In this study, we provide model assessment by incorporating

p-values and Schoenfeld residuals in the code. However, in the

evaluation of medical models, additional validation techniques,

such as calibration plots, are commonly used in practice.

Implementing these methods in a privacy-preserving manner

could further improve the applicability and robustness of

our approach.

Additionally, the number of time bins is a critical parameter in

survival stacking, directly influencing model accuracy. Selecting an

appropriate number of bins is essential for reliable estimation.

Developing methods to determine the optimal number of bins

prior to model training would be a valuable extension to this

work, improving both efficiency and predictive performance.
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