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Challenges of identification and
anonymity in time-continuous
data from medical environments

Freimut Hammer* and Thorsten Strufe

KASTEL Security Research Labs, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

In medical environments, time-continuous data, such as electrocardiographic

records, necessitates a distinct approach to anonymization due to the

paramount importance of preserving its spatio-temporal integrity for optimal

utility. A wide array of data types, characterized by their high sensitivity to the

patient’s well-being and their substantial interest to researchers, are generated.

A significant proportion of this data may be of interest to researchers beyond

the original purposes for which it was collected. This necessity underscores

the pressing need for effective anonymization methods, a challenge that

existing approaches often fail to adequately address. Robust privacy

mechanisms are essential to uphold patient rights and ensure informed

consent, particularly within the framework of the European Health Data Space.

This paper explores the challenges and opportunities inherent in developing a

novel approach to anonymize such data and devise suitable metrics to assess

the efficacy of anonymization. One promising approach is the adoption of

differential privacy to account for temporal context and correlations, making it

suitable for time-continuous data.
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1 Introduction

Patient data is defined as physiological data and metadata collected in a medical

environment. This paper concentrates on this subject, with implications that extend to

time-continuous data in general. Such data can be recorded in a variety of settings,

including hospitals, research facilities, and clinical practices. In a broader sense,

physiological data collected by wearable devices such as smartwatches can also be

considered patient data. This data encompasses information related to an individual’s

physiology, psychology, and overall health status, facilitating a unique identification.

Due to its sensitivity, such data necessitates a regulatory framework that ensures it is

handled with particular care.

The release or sharing of such data is essential for the generation of knowledge with

mutual control and replicability and is therefore fundamental to the ethics and progress

of science.

The utilization of patient data can facilitate the detection of rare diseases or serve as

realistic training material for medical professionals. Additionally, it facilitates the

training and verification of machine-learned models for medical data and enables data-

driven research in this field in general.

These objectives are often in stark contrast with the sensitivity of the data, especially in

medical environments. This underscores the necessity for a mechanism to safeguard the

individual behind the data. A mechanism that effectively anonymizes data would be an
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optimal solution, enabling straightforward sharing of data among

medical professionals or researchers, as well as its publication,

without compromising the rights of the individual to whom the

data pertains.

A distinguishing feature of numerous categories of medical

data is their time-continuous nature. The spatio-temporal

relationship within such data is of paramount importance to

their utility. An example of such data is an ECG, which can be

seen in Figures 4–6. There are plenty of different types of such

data, like SPO2 saturation, electroencephalogram, and blood

pressure. In Figure 1, two physiological signals—

photoplethysmogram (PPG) and arterial blood pressure (BP)—

are plotted over time to enable direct visual comparison of their

temporal dynamics. The data is derived from Wikimedia

Commons (1). To facilitate this comparison, both signals have

been normalized to a common scale between 0 and 1 along the

y-axis. This normalization preserves the relative shape and

timing of signal fluctuations while removing the influence of

differing absolute amplitudes and units. The blue line represents

the PPG signal, which reflects blood volume changes in the

microvascular bed of tissue, typically measured using optical

sensors. It is characterized by sharp upstrokes corresponding to

systolic blood ejection, followed by a slower decay during

diastole. The red line represents the arterial blood pressure

waveform, which reflects pressure changes within the arteries

during the cardiac cycle. It features broader peaks and lower

frequency content compared to the PPG signal. Plotting both

signals on the same normalized axis reveals their phase

relationship, morphological similarity, and temporal alignment,

features that are especially useful in multimodal cardiovascular

analysis, where understanding the interaction between pressure

and volume dynamics is critical. Although normalization

removes units (e.g., mmHg or arbitrary light absorption units), it

retains the essential temporal characteristics needed for waveform

analysis, including peak timing, rise and fall slopes, and periodicity.

Both ECG and the signals shown in Figures 1, 4–6 are time-

continuous, as they reflect physiological processes—electrical

activity, blood volume, and pressure—that evolve smoothly over

time without discrete jumps. These signals are typically sampled

at high frequencies to capture their continuous nature and

preserve critical temporal features such as waveforms and

phase relationships.

Formalizing and analyzing mechanisms to ensure privacy and

utility is crucial for sensitive applications. Existing methods such

as k-anonymity (2), t-closeness (3), and l-diversity (4) do not

provide any information-theoretic guarantees or statements

regarding the level of privacy achieved.

Implementations such as CASTLE (5, 6), which employs

k-anonymity to continuous streams of non-continuous data, and

SABRE (7), which utilizes a t-closeness-centered bucketization

approach to achieve k-anonymity, are limited in their ability to

preserve the spatio-temporal relation by compressing or

stretching the data. Other approaches that preserve spatio-

temporal relationships, like the group- and link-based approach

by Nergiz et al. (8), fail to maintain the continuity, as the

generation of representative data might not preserve the order or

the step size. A notable shortcoming of the aforementioned

approaches is the absence of formal statements about the level of

privacy achieved.

Differential privacy (DP) stands out as a notable exception,

offering a formal framework that provides robust guarantees and

quantifies the level of privacy attained (9). The application of DP

to health data has been examined by Dankar and El Emam (10).

However, their analysis does not address the specific challenges

posed by time-continuous data or the necessity of preserving

spatio-temporal dependencies. Instead, their focus lies in the

realm of categorical or numerical point-based measurements. In

contrast, Olawoyin et al. (11) introduced a bottom-up

generalization approach for temporal data. After the

generalization of the time dimension, a DP mechanism is

employed to ensure privacy along the value axis. This approach,

while preserving the spatio-temporal relation, destroys the

continuity of the data along the time axis.

This means that current approaches are not suitable for this

task, as they fail to preserve the spatio-temporal relationships

and the continuity of the data. Additionally, most fail to provide

strong formal guarantees.

The ARX anonymization framework, developed at the Charité

Berlin, is an open-source tool designed to protect sensitive data. It

implements a wide range of de-identification algorithms and risk

analysis methods (12). The ARX model has emerged as a

promising candidate for seamlessly integrating a developed

anonymization mechanism for time-continuous medical data.

Formalizing a utility that is suitable for most, if not all, kinds of

diagnoses and analyses that can be performed on the data can be

challenging, as different diagnostic or analytical tasks depend on

vastly different characteristics of the data. For instance, an ECG

can be used by a medical professional to not only inspect various

infractions by analyzing multiple parameters such as the lengths,

amplitudes, and distances between recorded waveform complexes

but also to assess ventricular depolarization by analyzing the

FIGURE 1

Time-continuous medical data example.
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electrical axis of the heart. This can be approximated by calculating

the area under the curve of the QRS complex (13).

In this paper, we explore the intricate field of anonymizing

time-continuous medical data. We emphasize the importance of

addressing this issue and highlight the limitations of current

methods. We elaborate the specific challenges a suitable

mechanism must solve, the opportunities that arise from such a

solution, and the requirements for potential quality metrics. To

the best of our knowledge, no existing approach effectively

anonymizes time-continuous medical data while preserving its

utility for diagnostic and analytical purposes, such as

investigating correlations between diagnoses and patient

characteristics. This paper introduces and formalizes candidate

metrics for utility and privacy. It also emphasizes the challenges

a potential solution must address and the opportunities that arise

from overcoming them.

2 Background

In this section, the foundation is established by formalizing the

fundamental properties required for the anonymization of time-

continuous medical data. This facilitates formal analysis of such

properties and supports the evaluation of the usefulness of

different classes of anonymization approaches, which are

addressed in Section 3.

The notation is used to define the requirements, challenges,

and opportunities for an anonymization approach targeting the

class of data defined in Definition 2.6, which preserves the

time continuity.

2.1 Notation

The date is considered part of a domain, where a point within

this domain represents a data value or attribute, as formalized in

Definition 2.1.

DEFINITION 2.1 (Data value). A value v [ D, where D is
the domain of this value, is called a data value. It is
sometimes called an attribute.

An example of a data value is the height of the patient, e.g., 183

cm, or a continuous measurement of blood pressure.

Multiple data values corresponding to the same individual or

case make up a data record, as formalized in Definition 2.2.

DEFINITION 2.2 (Data record). A tuple
d [ D1 � � � � �Dn, where Di is the domain of the ith
element and the tuple refers to exactly one individual, is
called a data record. A data record is a cross-product of
multiple data values. That is, d ¼ v1 � � � � � vn, where vi is
a data value.

The patientID, e.g., the hexadecimal ID de1dc2e6ead6, together

with two data values from the previous example, i.e., height and

continuous blood pressure, forms a simple data record.

Usually, multiple data records are processed together, forming

a database, as formalized in Definition 2.3.

DEFINITION 2.3 (Database). A set of data records
S # {t1, . . . tn} is called a database if each tj is a data record.

An example of such a database could be the following set of

patients, where each patient is a data record:

• patientID: de1dc2e6ead6

• height: 183 cm

• continuous blood pressure: , waveform .

• patientID: b1f 63e6de60d

• height: 159 cm

• weight: 93 kg

• continuous blood pressure: , waveform .

• email: johndoe@example:com

• patientID: cefddf 2267dd

• continuous blood pressure: , waveform .

Not all data records are required to contain the same types of data

values, even though it is practical for them to do so in practice.

2.2 Continuity

Continuity can be seen as a property of the generating process.

For example, the electrical activity of the heart, as measured by an

ECG, is continuous according to Definition 2.5. However, it can

also be a property of the recording process. When both the

generating and recording processes are continuous, the resulting

data value can also be considered truly continuous. As all data

recorded by a system is somehow sampled and not truly

continuous, another distinction is needed. This is provided in

Definition 2.4.

DEFINITION 2.4 (Variable and equidistant step time).
Considering m data records of possibly different recordings
di ¼ ðti, viÞ, where ti is the time and vi is the value, and
Dtn ¼ tn � tn�1 for n [ N.0.

If Dt1 ¼ Dt2 ¼ � � � ¼ Dtm, then the time component of
this data record has equidistant time steps; otherwise, it is
considered a time attribute with variable step size. For
multiple devices or recordings, the time attribute is said to
have an equidistant step size if the Dt is equal for all
devices or recordings.

Figure 2 illustrates Definition 2.4. It shows two P-waves of an

ECG: the blue curve has the same time intervals between

measurements and thus exhibits equidistant time steps, whereas

the red curve shows slight variations in the sampling rate and

thus exhibits a variable time step.

We define continuity for data records and their databases with

with a single time axis based on the e, d criterion for continuous

functions by Weierstraß and Jordan, as follows:

DEFINITION 2.5 (Continuity). Given a data record
d ¼ ðe0, e1, . . . , enÞ j ei ¼ ðti, viÞ [ T�D, where T is the
time domain and D is some value domain. D must have
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subtraction and absolute operation defined on its elements.
Additionally, the order operator has to define a total order
on all non-negative elements of the domain.1 For every
time entry of d, it holds that ti , tiþ1.

We write that d contains t, or t [T d, if t ¼ ti for some
i [ ½0, n�.

Let f :T 7! D; t 7!
vi : if t [T d
i(t) : else

�

, where i :T 7! D

is some sensible, domain- and application-specific interpolate.
The data record d is continuous if f fulfills the e, d criterion.
A database is called continuous if every record it contains
is continuous.

Figure 3 shows an example with two QRS complexes. The blue

one contains a spot, where the value jumps from 1 mV to another

at the same timepoint and includes a gap in the data, where no

sensible interpolation is possible. The other, in red, is continuous.

For most practical applications, especially the class of data

considered in this work, introduced formally in Definition 2.6,

Definition 2.5 leads to Corollary 2.1.

COROLLARY 2.1 (Practical continuity). To be considered
continuous according to Definition 2.5, a data record—and by
extension, a database—has to fulfill the following conditions:

1. The sampling rate needs to be high enough; i.e., the step size

needs to be sufficiently small.

2. A heuristic to interpolate values between every possible pair of

samples can be defined.

3. This interpolate introduces no discontinuities between

the samples.

Conditions 2 and 3 depend on the recorded process, whereas

Condition 1 depends on the recording process. This means that

someone checking the requirement can look at the recording

process and decide whether Condition 1 is fulfilled. However, for

Conditions 2 and 3, it is necessary to find a suitable interpolate

or provide proof of its absence. If Corollary 2.1 cannot be

fulfilled, the data is not considered continuous.

Two exemplary interpolates are introduced in Equations 1 and 2.

The interpolate i1 in Equation 1 holds the last valid value until a new

one is reached, whereas the interpolate i2 in Equation 2 applies linear

interpolation between two samples. i1 is not a suitable candidate for

any dataset that could potentially fulfill Corollary 2.1, as it produces

jumps into the record, thus violating Condition 3 and the e, d

criterion of Weierstraß and Jordan. In contrast, i2 does not

produce such jumps and is thus a valid candidate.

Equation 1 is well-defined for all time entries after the first

sample and is undefined for all prior time points. In contrast,

Equation 2 is well-defined for all time entries between the first

and last sample, provided that at least two samples exist;

otherwise, it is undefined.

i1 :T 7! D; t 7!
vi : if t [T d

i1(t � 1) else

�

(1)

i2 :T 7! D; t 7!
vi : if t [T d
i2(t�1)þi2(tþ1)

2
else

(

(2)

2.3 Class of data

There is a huge variety in medical time-continuous data types,

many of which share some similar properties. As the general

properties and requirements are identical, we focus on a small

subset of such data without the loss of generality. Thus, the data

used for the proposed approach in this work is that induced by a

patient monitor and formalized in Definition 2.6. Patient

FIGURE 2

Variable and equidistant step time.

FIGURE 3

Continuity.

1The operators are needed for the e, d criterion.
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monitor data is chosen due to its prevalence in both clinical setting

and research databases like MIMIC IV (14) and eICU (15).

DEFINITION 2.6 (Considered class of data). The class of
data considered in this work is a database consisting of
multiple domains, each linked by an identifier. Every
domain consists of a time dimension and a value
dimension, i.e., the domain D ¼ T�Dv. Both dimensions
have to fulfill continuity criteria according to Definition
2.5. The value dimension typically consists of a series of
real values, which are generated by events resampling a
waveform, e.g., an ECG, and sometimes represents a
numeric value, e.g., SPO2.

Many databases of this type have already been published. For

example, MIMIC IV v.3.1 contains data from 364,627 individuals

and 546,028 hospitalizations from emergency and intensive care

units (14). Another example is the PTB-XL database, which

contains 21,799 clinical 12-lead ECGs from 18,869 individuals,

each lasting 10 s. Every ECG in the PTB-XL database is

annotated by one or two cardiologists (16, 17). One example of

a database with a broader scope is eICU. It collects data from

Philips eICU monitors in multiple intensive care units across

the United States. It contains more than 200,000 admissions

(15), with information from drug admission records,

standardized care-taker notes, ventilation data, and aperiodic

vital parameters, such as pulmonary artery occlusion

pressure (18).

The data captured by a patient monitor is summarized in

Table 1, and we describe its details in the following. A patient

monitor usually displays an ECG, which records the electrical

activity in the heart as electrical potential on the orders of a few

millivolts. The ECG is measured using electrodes placed on the

skin, whose number and position may vary. Depending on the

electrode’s configuration, it is possible to have different leads,

which can sometimes be monitored simultaneously. This allows

detailed monitoring of the entire cardiac cycle. Additionally,

heart frequency (HF), measured in bpm, reflects the fluctuations

in the electrical activity of the heart using an ECG. HF should

not be confused with heart rate (HR), which measures the actual

contractions of the heart. HF is mostly identical to the pulse,

measured in bpm, and can be detected at any peripheral body

point using a pulse oximeter. This sensor also measures the

peripheral oxygen saturation (SPO2) as a percentage. Breathing

frequency (BF), expressed in 1
min

, represents the respiratory rate

and can also be estimated by an ECG. Furthermore, both non-

invasive blood pressure (NIBP) and invasive blood pressure (IBP)

can be displayed. In medical settings, both pressures are

expressed in mmHg as the unit rather than the SI unit, Pa. Both

include systolic pressure, i.e., the peak pressure during a

heartbeat, and diastolic pressure, i.e., the minimal pressure

between two heartbeats. IBP can be measured continuously,

whereas NIBP is recorded only a few times per hour.

As many of the examples in this paper are based on ECG data,

the fundamental components of a physiological ECG are described

in the following paragraph, as introduced in Kardiovaskuläre

Medizin Online (19) and Cardiovascular Medicine (20). An ECG

waveform can be split into multiple segments, which are usually

labeled P, Q, R, S, T, and sometimes U. These segments are

shown in Figure 5. First, a small “hill” appears, called the

P-wave, lasting roughly 0.1 s, followed by a horizontal line

referred to as the PQ segment. The PQ segment serves as the

reference or baseline for the ECG. The interval from the

beginning of the P-wave to the end of the PQ segment is called

the PQ interval. Afterward, a small, sharp dip labeled Q is

observed, followed by a large, sharp spike, called the R-wave.

This is followed by the S-wave, a downward deflection that is

usually slightly deeper than Q. The two downward deflections

Q and S below the baseline together with the large spike

R dominate the appearance of an ECG and are often referenced

together as the QRS complex. After S, the signal rises relatively

smoothly to the baseline and is followed by a horizontal line

called the ST segment. The beginning of this line, i.e., the point

at which the ECG returns to the baseline, is called the J

(junction) point. The ST segment is then followed by a T-wave.

After returning to the baseline, a small U-wave might appear.

The U-wave does not appear for all individuals, and its cause is

not well known. The QT interval is measured from the start of

the QRS complex to the end of the T-wave. It represents the

time from ventricular depolarization to full repolarization. As it

depends on the current heart frequency, it is usually corrected

for heart frequency, which is called the QTc interval. The

segment from the end of the T-wave to the start of the next

Q-wave is called the TP interval. These segments and waves can

be mapped onto the myocardial action potential and thus

provides insights into the various stages of the cardiac cycle.

2.4 Anonymity

Anonymity can be seen as the absence of information that

would otherwise allow the linkage of a record to an individual.

One of the main tasks of anonymization is to ensure privacy by

breaking such linkability while preserving the relationship

between the time and value domains. Additionally, correlations

between multiple domains, e.g., between blood pressure and

certain cardiovascular diseases, should also be preserved. Data

collected from a patient monitor exhibits strong inter-domain

connections and possibly correlations. For instance, an

obstruction in a tube during mechanical ventilation may be

TABLE 1 Patient monitor data types.

Abbreviation Unit Name/description

ECG mV Electrocardiogram

HF bpm Heart frequency

Pulse bpm Peripheral pulse

SPO2 % Peripheral oxygen saturation

BF 1
min

Breathing frequency

NIBP Pa or mmHg Non-invasive blood pressure

IBP Pa or mmHg Invasive blood pressure
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noticeable in both peripheral oxygen saturation (SPO2) and

inspiratory pressure (Pinsp).

Even after the removal of direct identifiers, linking may of

course be possible using information about an individual from

the remaining data in a database record. Oprea et al. (21)

demonstrated that classifications on time-continuous medical

data are possible with a reasonable degree of accuracy, with a

particular focus on explainable AI (XAI). In their study, the type

of breath (spontaneous, mechanical, triggered) was classified

using the airway flow and pressure, achieving accuracies of

79.78% for spontaneous, 81.69% for mechanical, and 77.05% for

triggered breath. This automatic detection and classification can

be used to extract information about an individual that is not

directly provided, e.g., whether a patient was dependent on

mechanical ventilation. Such a classification could be used to

extract discrete information for an attack on the privacy of

the individual.

To address such risks, anonymity must first be formalized,

beginning with a clear definition of the goals. A key goal is to

limit the risk of disclosure, as defined by Samarati and Sweeney

(2) and Sweeney (22), i.e., the unintended release of explicit or

inferable information about a person.

Disclosure risk can be categorized into three levels: identity

disclosure, attribute disclosure, and r1, r2 breaches. Identity

disclosure occurs when explicit identifiers, e.g., a patient’s name

or address, are present in the database or can be inferred. This

inferability of identifiers might happen through external data

sources, which can be linked to the record.

Another form of disclosure is attribute disclosure, which occurs

when the precise value of an attribute, e.g., a patient’s diagnosis, is

disclosed to an attacker. The attacker does not need to identify the

victim’s record within the database to achieve this. For example, if

all individuals of an equivalence class of k-anonymity share the

same value for one attribute, an attacker only needs to know that

the victim must be within that equivalence class to achieve

attribute disclosure. Similarly, the value can be reconstructed for

deterministically created overlapping regions of equivalence

classes, as mentioned in Cao et al. (5).

Partial attribute disclosure can occur when the distribution of

attributes in an equivalence class does not follow the distribution

in the population closely. This means that an attacker learns a

certain value is far more (or less) likely than others for the

attribute of the victim. This was a key consideration behind the

development of l-diversity by Machanavajjhala et al. (4) and

t-closeness by Li et al. (3). In a r1, r2 breach, neither the identity

nor an attribute is disclosed to an adversary, but the belief about

the victim changes fundamentally after inspecting the data, as

shown by Evfimievski et al. (23).

The ambition of absolute disclosure prevention, i.e., achieving

anonymity through semantic security as foreshadowed by

Dalenius (24) and formalized by Goldwasser and Micali (25), is

not very useful, as this anonymity cannot be achieved when

additional data sources can be used by the attacker, as shown

by Dwork (9). Semantic security in the context of encryption,

as defined by Goldwasser and Micali (25), means that the

encryption scheme is secure if no information about the

plaintext can be learned by looking at the ciphertext. Similarly,

Dwork (9) proposed the concept of semantic security in a

privacy setting: nothing about an individual should be

learnable by looking at the results of queries on an anonymized

database. Thus, the corresponding privacy notion of e-DP, as

defined by Dwork (9), is used in this paper. The intuition is

that at most e is learnable about an individual when looking at

the protected responses to queries on the database containing

sensitive information.

2.5 Measuring utility

Utility quantifies the quality with which the target operation

can be performed on the protected data after anonymization.

More formally, it measures how good cross-attribute correlations

work on an anonymized database [cf. (26)]. The necessity for an

empirical metric for the utility was highlighted by Iyengar (27),

LeFevre et al. (28), and Wang et al. (29). Achieving “good”

utility is hard, in general, as the work to be performed on the

data is often not known beforehand. If the work is known in

advance, the institution responsible for anonymization can

simply execute this work on the unanonymized data and release

the results instead. Thus, the goal is to develop a workload-

independent metric, which works for a wide range of

applications. This requirement for the utility was already

highlighted by Brickell and Shmatikov (26).

Utility can be measured by syntactic and semantic metrics. An

example of a syntactic metric is the information loss, measured by

the amount of generalization or suppression applied, as presented

by Hammer et al. (30). Other syntactic metrics are presented by

Machanavajjhala et al. (4), which include the mean size of quasi-

identifier equivalence classes, the sum of squares of the class

sizes, and the number of generalization steps performed.

Semantic metrics can be categorized as either workload-

independent or workload-dependent. A workload-independent

metric quantifies the “harm” done to the data by the

anonymization process itself, but it does not measure the

remaining utility of the data. As already mentioned, the precise

workload is not known to the anonymizing party. Thus, it

cannot optimize against the application-specific utility.

Nevertheless, LeFevre et al. (28) proposed a workload-specific

anonymization approach that aims to optimize utility for one or

multiple classes of workloads.

This leads to a general definition of utility, as formalized in

Definition 2.7. The methods to quantify the probabilities depend

on the specific workload class; in many cases, these probabilities

cannot be determined beforehand or need manual evaluation by

a professional. Thus, approximations of these definitions will be

needed in many instances.

DEFINITION 2.7 (Utility). Given the data record e [ S of
database S and the anonymization function a :D 7! Da,
which maps a data record to the anonymized data record.
Due to the lack of an objectively correct decision, a decision
is treated as correct if it is made based on the raw data.
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Respectively, any deviation between a decision made on the
anonymized data and the decision made on the raw data is
treated as an error. Making a decision d based on e is
denoted dðeÞ. Let f be the decision-correctness function,
which returns 1 if a decision based on the raw data is the
same as the decision based on the anonymized data. Thus,

f ðd, e, aÞ ¼
1 if dðe) ¼ dða(eÞÞ
0 else

�

This leads to the definition of the utility U for a set of
decisions D

UðD, e, aÞ ¼

P

d[D f ðd, e, aÞ

jDj

Syntactic methods for privacy, such as k-anonymity (2),

l-diversity [cf. (4)], or t-closeness (3), focus on obscuring the

individual’s identity in the dataset by making it indistinguishable

from several others. In contrast, semantic methods aim to protect

the sensitive attributes themselves. For example, in the case of

differential privacy (9), this is done by adding random noise to

obscure any information that is specific to an individual in the dataset.

Similar to privacy, utility can also be defined syntactically or

semantically. For example, the information loss is syntactical,

whereas a metric that measures the accuracy of a query is

semantic. In time-continuous medical applications, the syntax-

based utility metric from Hammer et al. (30) measures

information loss as the average width of anonymized data. This is

the range of each equivalence class; it is zero for raw data and

grows with anonymization unless the value fits perfectly. The raw

data, e.g., an ECG, is recorded and treated as the ground truth.

The information loss then quantifies the new thickness of the

ECG in relation to the overall domain width. If the data is

anonymized using k-anonymity for time-continuous data, as

presented in Hammer et al. (30), the information loss is the

average width of the equivalence class divided by the domain width.

There are usually two types of privacy models for DP:

interactive and non-interactive. An interactive privacy model

allows the user to submit queries to the system, which are then

answered in a privacy-preserving manner. As the query can be

performed on both the raw and sanitized data, it enables

calculating the accuracy of each answer. The user is then given a

measure of utility along with the answer to the query based on

the sanitized data. In the non-interactive privacy model, the

system sanitizes and releases the data to the public, thus allowing

the uncontrolled execution of queries by the user post-protection.

As the releasing party does not anticipate the queries to be

performed and users do not have access to the raw data, the

accuracy cannot be calculated directly. Thus, only an exemplary

measure of the accuracy of some previously known queries could

be given to users who need access to the data. Alternatively, a

utility metric can measure the preservation of patterns and trends

in the data, which are needed to perform meaningful analyses and

derive insight. This is highly application-specific, as the relevance

of patterns depends not only on the analyzed data but also on the

questions a user wants to address through the analysis.

One could think about alternatives to the proposed Definition 2.7

and come up with syntactic utility metrics. However, these approaches

do not consider the underlying structure and meaning of the data.

While syntactic metrics are relatively easy to implement and use,

they offer limited insight into the usefulness of the anonymized

data, which is the goal of a utility metric. Thus, such metrics are

not well-suitable for the intended purpose. Definition 2.7 can only

be applied to known and formalized queries. Furthermore, the

same set of queries needs to be performed on the raw data; thus,

such a definition is only feasible for interactive models or a selected

set of benchmark queries performed before data release.

Non-interactive models have somewhat different requirements.

As the workload is not known beforehand and Definition 2.7 can

only be applied a posteriori, an alternative approach is needed for

some applications. A precise calculation of the usefulness of the

data to all possible classes of workload is not possible. As a result,

only an estimate of the usefulness of the data is possible, which is

introduced in Definition 2.8. Such a metric can also be relevant for

interactive approaches, as it provides an estimation of the utility

before executing queries, thus reducing the possibility of spending

time and resources on the work with an unsuitable database.

DEFINITION 2.8 (Heuristic utility). This definition aims to
approximate utility according to Definition 2.7. Given a
database S , D with functions Up, Uh : S 7! R, where Up is
the utility according to Definition 2.7 and Uh is the utility
using a heuristic; then, UpðxÞ � UhðxÞj8x , D.

The precise relation is often application-specific, as is the
heuristic utility itself. Uh is determined by the underlying
heuristic h; however, in general, the result must be
normalized similar to Definition 2.7; thus, UhðxÞ [ ½0, 1�.

Definition 2.8 can use semantic or syntactic heuristics.

Promising approaches for the approximation of utility include

metrics such as accuracy, precision, and recall of a query, mean

relative error (MRE), and the preservation of patterns.

The MRE is commonly defined for recorded values y and the

predicted or, in our case, sanitized values ŷ:

MRE(y, ŷ) ¼
1

N

X

N�1

i¼0

jyi � ŷij

jyij

For non-continuous data, accuracy and other relevance metrics,

like precision and recall, are relatively straightforward to

calculate. In the following, all necessary metrics required to adapt

the MRE for use with continuous data are introduced. This

adaptation could then be used to define accuracy, precision,

recall, or other candidate metrics for utility.

One challenge is the quantification of distances between

continuous data values, e.g., between curves. A possible candidate

for such a metric is the Hausdorff distance dh(X, Y). Intuitively, it

measures how much two subsets of a metric space X and Y must

be thickened to fully contain the other (31). As an example,
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consider the domain of ECGs, defined over time � voltage. Let there

be two ECGs, E1 and E2, then dh(E1, E2) is the minimal e such that

making E1 wider by e contains E2, and vice versa. This can lead to

very large values in the case of misaligned or otherwise transformed

subsets, even when the general shapes are similar.

The Gromov–Hausdorff distance expands upon the concept of

the Hausdorff distance by iterating over all possible isometric

embeddings of two subsets into a common third space, which

allows for transformations of the subsets (31). In the context of

the ECG example from the Hausdorff distance, both E1 and E2

would be transformed into a common isometric embedding. E1

and E2 could be rotated or shifted. Afterward, the Hausdorff

distance is calculated on these embedded E1 and E2. The

Gromov–Hausdorff distance is defined as the infimum of these

calculated Hausdorff distances over all possible embeddings.

So far, we only measure the distance between two subsets,

without considering the general shape and other properties. This

can be done when using the Fréchet distance, which calculates

the similarity of two curves (32). Intuitively, one can imagine a

dog and its owner, connected via a leash. The dog walks along

curve C1 and its owner along C2; both can independently walk

forward or stop, but neither can go back. The shortest possible

leash length that allows both to reach the end of their curve is

the Fréchet distance (33). This quantifies the similarity of curves.

Both the Hausdorff and Fréchet distances measure similarity,

or better the lack thereof, and thus their measurements carry

semantic meaning. However, they approach this from different

perspectives: while the Hausdorff distance measures the

proximity between sets in a metric space, the Fréchet distance

measures the similarity of shape and trend between curves or

trajectories. Thus, the latter is far more suitable for the intended

application. However, calculating the Fréchet distance is

computationally expensive. Alt and Godau (32) mentioned the

runtime for an exact calculation with two polygons with p and q

segments as O(pq log pq). Even the approximate version

presented by Eiter and Mannila (33) has a runtime of ′(pq).

The Fréchet distance is still prone to producing high

measurements due to misalignments or other transformation-

induced errors. One could investigate the possibility of extending it

similarly to the Gromov–Hausdorff distance, i.e., by taking the

minimum overall isometric embeddings for all Fréchet distances.

Still, a small number of spikes or valleys, which do not match

from one curve to the other, can drastically inflate the result. This

can be addressed by detecting such erroneous regions and

omitting them up to a certain threshold. Then, the Fréchet

distance can be calculated independently on each of the resulting

segments, with the results combined to form a final similarity

score. The detection of such regions and the calculation of the

corresponding threshold for omission could be performed using an

approximation for the geometric edit distance, similar to the one

proposed by Andoni and Onak (34), in a sliding window manner

or through shape matching based on the skeleton of the shape

using the edit distance, as introduced by Klein et al. (35). While

the approximation by Andoni and Onak (34) operates in near-

linear time, it is only intended for strings. An approximation of

the geometric edit distance is still somewhat expensive with

O(n log n) (36). The shape matching variant by Klein et al. (35) is

even more expensive. Thus, both the Fréchet distance and the Edit

distance are computationally expensive.

For comparisons among multiple pairs of curves, both the basic

Fréchet distance and its proposed extensions require

normalization. An intuitive way to normalize for a given set of

curve pairs is to calculate the sum of all distances and divide

each distance by this sum.

Suitable candidate metrics to quantify the distance between

trajectories along time are identified by Su et al. (37). This paper

evaluates and categorizes multiple metrics for trajectories. It

identifies three of them as spatio-temporal and continuous metrics.

These metrics are suitable candidates for the challenges presented

in this paper. Besides the Fréchet distance, the spatio-temporal

Euclidean distance measure (STED), as proposed by Nanni and

Pedreschi (38), was evaluated by Su et al. (37). STED quantifies the

Euclidean distance between the curves along time, normalized by

their length. However, this metric does not consider the shape of

the curves or potential alignment or transformation issues.

In the following, we formalize one approach rigorously as an

example. For this, it is assumed that the answer to a query for

interactive anonymization, e.g., DP, is made based on the recorded

data, and the sanitization is applied afterward. This means that

both a query without anonymization and one with it applied

contain the same set of curves; however, in the case of DP, the

later set has added some carefully tuned noise to each curve.

In situations where this assumption is not given, the following

calculation would only hold on the intersection of the sanitized

and unsanitized queries. One could then provide accuracy as a

tuple of this result and the number of curves that are missing in

one of the sets.

To define the MRE for interactive approaches on time-

continuous data, first, the difference between the curves is

formalized according to Definition 2.9.

DEFINITION 2.9 (Curve difference). Given a query q, the
database S, the anonymization function a, and the Fréchet
distance Fðx, yÞ. Additionally, let Gðx, yÞ be the
transformation analog to the one proposed for the Gromov–
Hausdorff distance, which transforms x as close to y as
possible. Let Eðx, y, t, vÞ be the mapping, which was
informally introduced in the previous paragraph. It corrects2

smaller regions of a mismatch from both curves x and y, with
a maximum size of v, up to a given threshold t, using the edit
distance. This leads to the definition of the difference between
two curves:

dðc1, c2, t, vÞ ¼ FðGðEðc1, c2, t, vÞ, c2Þ, c2Þ

A norm j � j on curves has to be formalized to be able to adapt

the MRE to time-continuous medical data. This is done in

2Removes, inserts, or changes the value.
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Definition 2.10. The fast Fourier transformation (FFT) maps curves

to frequency space, decomposing complex waves into a structured

vector of frequencies. Applying a p-norm to this vector provides a

stable, mathematically consistent curve norm. Other norms could

also be used; the given definition is just one candidate.

DEFINITION 2.10 (Curve norm). First, the FFT is used to
map the curve to a vector of its frequencies. Afterward, the
p-norm for some 2 � p , 1 is applied. If FFT(c) is the
function that maps a given curve to the vector of its
frequencies, then the curve norm is

jcj ¼ jFFTðcÞjp

This allows defining the MRE for time-continuous data

according to Definition 2.11.

DEFINITION 2.11 (Time-continuous MRE). Instead of
cj ¼ a(ci), ci ¼a cj is used as a notation. The results of a
query are noted as R1 ¼ q(S) and R2 ¼ a(q(S)).
A normalization term for the summation is needed:

NR1 ,R2
¼

X

c1[R1 ,c2[R2 : c1¼ac2

dðc1, c2, t, vÞ

This is used to define the normalized time-continuous MRE:

MREðR1, R2, t, vÞ ¼
1

NR1 ,R2

�
X

c1[R1 ,c2[R2 : c1¼ac2

dðc1, c2, t, vÞ

jc1j

The components used to define the MRE on curves can also be

used for accuracy, precision, and recall.

A potential approach to reduce computational complexity is to

map the data into a lower-dimensional space; this is similar to

SABRE-AK how uses the Hilbert space-filling curve to

approximate nearest neighbors in a multidimensional feature

space (7).

All these candidate metrics do not consider the semantic

importance of missing or artificially introduced features. For

example, for some metrics, many small changes might lead to a

similar utility score, as if only a single large change, which

impacts the deduced knowledge, would occur. Thus, a semantic

metric should be considered, preferably one that considers

application-specific requirements.

2.6 Measuring privacy

Besides utility, privacy is another important property of an

anonymization mechanism. It quantifies the level of security an

individual in the database achieves. Definition 2.12 considers not

only reidentification but also the general risk an individual faces

by being part of a database. According to Dwork (9), privacy is

quantifies by what can be learned about an individual through

data analysis, or more precisely the lack thereof. This privacy

loss, e.g., with DP, is usually represented as a function of the

privacy budget e and the number of allowed queries to the data a.

DEFINITION 2.12 (Privacy (9)). For some e and a, the
probability of making a decision based on any attribute of
the database S and an individual i is quantified by
Pre,a(x, i) [ [0, 1]. Let the database S n i be the same as S,
but i is not included. The privacy level is

Pe,aði, SÞ ¼
Pre,aðS n i, iÞ

Pre,aðS, iÞ

When looking at Definition 2.12, one can note that removing

the individual of interest cannot add information about them to

the dataset. Therefore, Pre,a(S, i) 	 Pre,a(S n i, i); thus, the privacy

Pe,a(i, S) � 1. The closer the P is to 1, the less information can

be gained about an individual by analyzing the data. Quantifying

such probabilities remains an application-specific open task.

Now, all basic concepts and necessary notations for time-

continuous anonymization have been introduced. Thus, these can

be used in the following section to deduce relevant properties

and analyze them formally for multiple classes of mechanisms.

3 Applying syntactic mechanisms to
medical data

With the definitions from Section 2 and the intended

application proposed in Section 1, we can now derive

requirements for any anonymization mechanism intended for

time-continuous medical data. Section 3.1 presents some general

threats to privacy and a more detailed look into potential attacks

specific to time-continuous data. The requirements are

formalized to properties of the mechanisms and investigated in

Section 3.2. These are then used to define some properties of

anonymization mechanisms, which are investigated and proven

for multiple classes of mechanisms in Section 3.3. This provides

a strong formal set of properties such a mechanism must fulfill.

3.1 Threats to anonymity

This section discusses some general types of attacks on privacy

and some specific to time-continuous data. There are multiple

types of privacy threats. Reidentification is a general attack vector

for anonymized data, achievable through linking or background

knowledge attacks. This applies not only to time-continuous

medical scenarios.

Figure 4 shows multiple cycles of an ECG from a patient with a

pacemaker. The data is taken from Wikimedia Commons (39) and

adapted to include a spike before the Q-wave.
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The ECG in Figure 4 looks rather similar to the optimal one,

i.e., a typical physiological ECG in Figure 5, with most of the

differences attributable to physiological and interpersonal

variations. However, the additional spikes before the Q-waves are

identifiable as a pacemaker with ventricular stimulation. Even

without this spike, an attacker with background knowledge about

their victim could identify the ECG or, at least, narrow down the

set of potential targets.

Moss (40) explained how the biological sex of a patient can be

determined using the ECG, which reflects the morphology of the

heart. Thus, the R-wave can be used to classify ECGs by sex, as

done by Nolin-Lapalme et al. (41). This can be done without any

background knowledge about the target. If background

knowledge is present, even more attack vectors become viable.

For example, an attacker knows that their victim has a

pacemaker implanted and suffers from a decreased cardiac

output and feels constantly exhausted; this leads to an S–T ratio

close to one or larger.

Additionally, an inference attack can be performed to

statistically deduct behavioral information about an individual;

again, this works for most types of data. Such an attack can be

used to infer the value of an attribute or the membership of the

victim to the database (42).

In the context of time-continuous medical data, reidentification

could be performed by correlating different detected events or

through longitudinal analysis linking multiple treatments to

datasets. This enables temporal or treatment event linkage. As an

example, database S with multiple records di is given. Some

records might belong to the same person using the

aforementioned approaches, and an attacker might be able to

link those records and potentially reidentify the individual.

In the following, a record i belonging to person Pj will now be

labeled as diPj . The first time-continuous data-specific approach

allows correlating different detected events.

The attacker has to detect events in the record. An event is not

necessarily a complex medical diagnosis but potentially something

like a recurring spike in the data or the QRS part of an ECG.

An assumption is that the time spans between similar

recurring events can be used to identify an individual across

multiple data records. In the simplest case, D1 � D2 for two

detected events in d1Pj and d2Pj . Of course, more complex

patterns of D values can occur, which might not fully match.

Even with some uncertainty, a linkage might still be possible.

Thus, this temporal linkage via correlation of D t for events

presents a viable attack vector.

Figure 5 shows an exemplary ECG curve. It is based on the data

from Commons (43), but a U-wave was added under the

assumption that if a U-wave occurs it is usually 25% of the

T-wave in amplitude (19).

In this example, Dti is the difference between the two R-waves

of the ECG. If the attacker can find the same Dt in another record,

they can link those records together. Additionally, such a linkage

can be verified or narrowed down, especially if multiple

candidates for the linkage exist, using specific features. The

existence of the U-wave, which does not occur for every person,

would be good verification for the linkage.

In other words, for a database of ECGs S containing ECG e [ S

and given a reference ECG ea known to belong to the victim, an

attacker narrows down the set of potential ECGs linked to the

victim. This is done by creating the set E ¼ {ei jDti ¼ Dta þ eD},

where Dt is the previously defined difference between events and

eD is a tolerance, which allows some error to account for

sampling variances, rounding, or potential perturbation. From

these candidate ECGs, E is the subset containing the verification

feature; here, the U-wave is assumed to belong to the victim.

This subset is Ev ¼ {ei j ei has U-wave}. Depending on the chosen

events and verification features, this could pose a potent

attack vector.

The second time-continuous data-specific approach works

similarly to the first one but detects more complex events to

construct a characteristic treatment or illness pattern for a

patient. This will most likely work best for more severe illnesses,

with more individualized treatments, but could be combined

with the first approach to work on more standard treatments.

FIGURE 4

Example—ECG reidentification.

FIGURE 5

Example—Dt linking.
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Here, the attacker detects and classifies the events t11 , . . . , t1i
for record 1 and t21 , . . . , t2j for record 2. In the best case, these

sequences would match; more realistically, a metric like the edit

distance must be used to determine their similarity. This allows

an attacker to link multiple records together via event-based

linkage and potentially track or even reidentify an individual.

Figure 6 shows four cycles of an ECG. The data is based on

Commons (43). It shows four markers named t1–t4, each

highlighting a single event.

t1 marks a particularly low Q-wave, which could be an

indicator for a myocardial infarction, also named Q-wave

infarction (44). The second marker t2 highlights a particularly

shallow S-wave, as the ST complex is still facing upward; this can

be seen as a non-pathological finding but is a notable event

nevertheless. The highlighted event of t3 is the lack of the

U-wave; all cycles before and after show a significant U-wave,

which is notable in itself, but its lack in just one cycle provides a

strong event for identification. During the last cycle, t4 points at

a shallow R-wave, thus hinting at a previous myocardial

infarction (13).

The sequence of these events could be used to form a signature

for the patient, which is named s ¼ titiþ1 . . . tn. Linkage of

multiple ECGs to a single known patient could then be

performed by calculating the edit distance between the signatures

of the ECGs and assuming them to belong to the same patient

up to a certain threshold.

The feasibility of this attack vector still has to be shown and a

reasonable threshold has to be found. To do this, a well-known set

of events must be recognizable, which ideally should be automated.

Additionally, time patterns can be recognizable for a specific

individual if only local noise is applied on the time axis. This

means that the patterns are only slightly perturbed; thus, the

rough date and distances between events stay intact. This could

serve both as an identifier and a sensitive attribute, depending on

the event and pattern.

Another possible way to infer knowledge specific to an

individual from the data would be to detect certain events across

multiple types of data, e.g., ECG and HF. These events are then

aligned, as the detected cause for the event will happen roughly

simultaneously for all types. This can lead to a restriction of the

plausible parameters along the time axis and thus result in a

breach of privacy for the time axis or at least increase the

chances of other linking attacks.

Furthermore, biometric integration using the medical data, i.e.,

the use of recorded curves as a biometric identifier, could be used.

The mapping of an ECG to the cardiac cycle of a person is a

suitable example, as it can be used to infer characteristics about

one’s cardiac parameters.

The possibility of this mapping has been demonstrated and

proven successful for the authentication of users in a lab

environment (45, 46). Morphological features of an identifiable

in the ECG of an individual, as proposed for sex-specific

differences by Moss (40), have been successfully implemented in

a classifier by Attia et al. (47).

Similarly, detection mechanisms can be used to reduce the

time-continuous data to discrete data. The detection of breathing

cycles and breath classification provide a good example. This

allows for the inference of breathing frequency and a diagnosis,

which could be used in a linking attack. The feasibility of

automatic detection and classification of breath types has been

demonstrated by Oprea et al. (21).

Depending on the chosen noise and anonymized data, some

noise might be removable, or at least the noise level could be

reduced; this is particularly true if biological boundaries are not

considered when applying the noise.

A wide range of potential attack vectors exist for time-

continuous medical data. Some have already proven feasible,

while others are introduced in this paper, requiring further

investigation into their implementation and feasibility.

3.2 Requirements of time-continuous
medical data

Time-continuous medical data comes with specific

requirements w.r.t. anonymization. In the following, the

requirements, which can be derived from the sanitized data

alone, i.e., without inspecting the inner workings of the

mechanism, are presented. To remain usable for diagnostic and

research applications, the data should remain continuous and

differentiable across all axes. High jumps within the data must

not be introduced by any anonymization, as this will be

implausible for any attacker with application-specific knowledge

and thus potentially render the anonymization less powerful. The

precise height of an implausible jump in the data is highly

application- and data-specific and open for discussion. The

sampling characteristics should be preserved. That is, any

trajectory with a variable sampling rate should not be sampled

with equidistant step size after anonymization. The opposite

direction will most likely not be achieved, but the mean sampling

rate should be preserved. For any curve, the order of the data

points and the continuity of the data must be preserved. All

FIGURE 6

Example—event sequence linking.
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mechanisms have to provide strong, formal privacy guarantees with

a quantifiable level of protection and utility.

There are several classes of anonymization mechanisms, which

are referenced later in this section and shortly introduced in the

following. Additionally, the most important requirements for

time-continuous medical data are evaluated. They have been

compared to one another in a non-medical environment by

Murthy et al. (48). The evaluated classes include generalization,

suppression, masking, swapping, distortion, and perturbation. All

these classes are syntactic protection methods. For some more

promising classes of mechanisms, the properties forming the

requirements are evaluated formally in Section 3.3.

Generalization replaces the existing values with semantically

consistent values. It works rather intuitively for most numeric

domains, as generalization to a range domain is intuitive for

most applications. For categorical domains, a domain

generalization hierarchy is needed, which can become unfeasible

for large domains and potentially impossible if the domain has

cardinality 1 and no inherent hierarchic structure. Such

mechanisms are not well suited for the tasks of anonymizing

time-continuous medical data, as they fail to preserve continuity

and the sampling characteristics. Additionally, the order of the

data values is not preserved for such mechanisms. This is proven

in Proofs 3.1.a and 3.2.a. Furthermore, generalization-based

mechanisms like k-anonymity fail to provide strong formal

guarantees. To our knowledge, there does not exist a

generalization-based mechanism with formal, quantifiable

guarantees comparable to, e.g., DP.

Suppression, i.e., the deletion of certain data, can be used to

completely deny the usage of sensitive data. This can conceal

sensitive attributes or tuples from both an attacker and a valid

user. This may be a good solution if one or few records pose a

very high risk of identifying an individual, as the omission of

this individual can reduce the noise needed to achieve a

sufficient privacy level and thus improve the utility of the

anonymized data. For example, if a very rare disease is not of

interest to the research question, it might be a good idea to

suppress the records with this disease, as protecting them would

most likely require large amounts of noise and would increase

the information loss unnecessarily. This is also true for attributes

of a database. That is, the removal of less relevant attributes from

all records can improve utility by making the anonymization

easier on the remaining database. Suppression of records alone

does not provide privacy for those records that are released, but

it does not affect the continuity and order of the data values, as

the data itself is not changed. If attributes are suppressed, this

can improve the privacy of all individuals, without affecting

other attributes. Thus, such mechanisms are not suitable as a

standalone solution.

Masking, according to Murthy et al. (48), provides similar

protection to generalization and shares the same problems w.r.t.

the introduced requirements. It is similar to suppression, but

only parts of the data are made unusable. That is, a fraction of

each attribute is replaced by a placeholder. For example, zip

codes 52070 and 52062 are replaced by 520XX. This also

highlights the similarity to generalization in some cases, as the

two zip codes could also be generalized to 520*, where * is a

wildcard character. It is easier to apply; for instance, no domain

generalization hierarchy is needed to increase data protection.

Additionally, each record can be masked individually and

independently. Not every part of the data carries the same

amount of information; for example, some regions are of high

interest to identify the biological sex, as highlighted by Moss

(40). Depending on the data and record, these regions vary

significantly and are also likely to be interesting to the researcher.

Thus, removing them is either not possible, as they would need

to be identified first, or not purposeful, as these regions are the

reason for releasing the data in the first place. Similar to

generalization, masking does not preserve continuity and order,

and to our knowledge, no approach provides strong formal

privacy guarantees, with a quantifiable level of protection.

Another approach is swapping, which rearranges the values in

each column randomly, as described by Murthy et al. (48). This

works entirely independent of the type of data and without

much overhead. This is easy to implement and preserves

continuity and order, as the data itself is not changed. It fails to

provide strong formal guarantees. The successful usage of a

swapping-based approach is unlikely because the correlations

across multiple domains, e.g., between ECG and diagnosis, must

be preserved to maintain the usefulness of the data.

A remaining class includes distortion-based mechanisms.

These mechanisms change the value of an attribute to something

else, either by adding some noise Vr to the value Vd ¼ Vu þ Vr ,

also called perturbation, or, for an explicit identifier, through a

hash function (48). The latter allows for a unique reidentification

within the anonymized database while not giving away the

explicit identifier.

It is the most promising class for the intended purpose of this

paper. Such mechanisms preserve continuity and can preserve the

order if certain bounds are guaranteed. Perturbation is a special

form of distortion and works by adding noise to the data values

to ensure privacy. If such a mechanism-based approach is used,

the noise must be bounded, with the bounds given by the type of

data that is anonymized. For example, the noise applied to an

ECG can never be in the range of full volts and seconds, as this

would make it unusable. For the detection of myocardial

infarctions, differences in elevation 	 0:1 mV and 80ms width are

used for the diagnosis (49, 50). Thus, the applied noise should be

substantially lower. Additionally, the added noise is not

independent for each point, as highlighted by Cao et al. (51).

Therefore, the context of the curve must be considered when

adding noise. Perturbation does preserve the continuity of the data.

The preservation of the order is not guaranteed unless the noise is

sufficiently bounded. This is proven in Proofs 3.1.b and 3.2.b.

The two perturbed ECG plots in Figures 7 and 8 illustrate the

privacy–utility tradeoff in time-continuous data and problems

arising when applying perturbation-based approaches to such

data. The data segment is loosely based on ExCard Research

(52). Figure 7 adds noise only to the value axis, while Figure 8

adds noise to both time and value axes. In both figures, the red

curve is the original, the blue curve has a small amount of added

noise, and the brown curve has a larger amount of noise added.
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Laplacian noise with an absolute maximum of 0.5 s, 1.9 mV

perturbation and a mean perturbation of 0.289 s, 0.75 mV is

added to the low-noise version. For the high-noise version, up to

1.5 s, 9.5 mV is added, and on average, each sample is perturbed

by 1.05 S, 2.86 mV.

Even when perturbing both axes, the slight distorted shape of

the signal in the blue curve retains its fundamental diagnostic

features and temporal order. In contrast to this, the highly

perturbed version—displayed in blue—is usable in Figure 8. The

order is retained, but the characteristically raised T-wave is

drastically damped in this example. Still, the elevated T-wave

visible hints at signs of subacute myocardial infarction, even

though it is an unusual shape, potentially obscuring. For the

version in Figure 8, the ECG becomes completely unusable, as

the order is destroyed and no meaningful insight can be drawn

from the remaining data. The highly perturbed version in

Figure 8 lead to a change in the order of the samples. This

example highlights that an independent, pointwise application of

perturbation is not useful for such data.

Multiple perturbation-based approaches exist that provide

strong formal guarantees, e.g., DP. It is based on carefully adding

crafted noise to the data to distort it as much as needed to fulfill

the privacy guarantees. That is, the approach must stay within

the budget of leaked information, thus reducing the risk to each

individual to a quantifiable amount. This can be done both

interactively and non-interactively. To our knowledge, there is no

DP-based approach that focuses on time-continuous data,

especially in a medical environment, even though the risk of

privacy leakage through time-continuous data was identified and

quantified by Cao et al. (51) as temporal privacy leakage. The

properties of DP are formally evaluated in Proofs 3.1.c and 3.2.c.

Alternative approaches like PrivECG (41), which employs a

GAN to improve the privacy of an ECG w.r.t. the classifiable of

the biological sex, are promising but fall short of formally

quantifying the level of privacy. The only privacy metrics

evaluated against this approach are chosen accuracy metrics of a

classifier with and without PrivECG in place. While this provides

good initial intuition, it makes no statement about the

information-theoretic level of privacy, as DP would, and only

considers one specific classifier.

In summary, a mechanism addressing the anonymization of

time-continuous medical data must preserve continuity and

order. Where possible, the step-size characteristics should be

preserved. Spatio-temporal correlation is of high importance to

most analyses and must therefore be preserved. Such a

mechanism must provide a strong formal foundation and a

quantifiable level of privacy. None of the syntactic approaches

provide such guarantees. Thus, a DP-based approach seems to be

the most promising candidate, even though it introduces

potentially fake data.

3.3 Properties of anonymization
mechanisms for time-continuous medical
data

This subsection defines some properties of anonymization

mechanisms that are relevant for time-continuous medical data

and proves whether these properties hold for certain classes

of mechanisms.

If the requirements for continuity are fulfilled, a dataset is

continuous according to Definition 2.5; this property should also

hold after applying anonymization. This might be true for some

classes of anonymization approaches, while others might fail to

provide such a guarantee, as proposed in Theorem 3.1.

THEOREM 3.1 (Continuity preservation of time-
continuous anonymization). Some classes of anonymization
algorithms are inherently safe w.r.t. the continuity, as
defined in Definition 2.5 and Corollary 2.1, while others
might lose the continuity through anonymization. The
proof of this theorem follows from Theorems 3.1.a and 3.1.b
and could be extended to other classes.

FIGURE 7

ECG perturbation—value axis.

FIGURE 8

ECG perturbation—time and value axes.
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The intuition behind Theorem 3.1.a and the corresponding

proof is that the generalization of a time-continuous domain is

not necessarily an endomorphism. That is, the domain after the

anonymization can differ from that of the raw data. This can

cause a loss of continuity, as shown in the following.

THEOREM 3.1.a (Continuity preservation of time-
continuous generalization). Generalization-based
approaches are not inherently safe w.r.t. preserving the
continuity of the anonymized data.

PROOF OF THEOREM 3.1.a. Given a domain D, its
generalized domain Dg , and the anonymization function
g :D 7! Dg . If a dataset in D is continuous according to
Definition 2.5, there must exist the subtraction 
�
,
absolute j 
 j, and order 
 , 
 operator on its values,
and the last has to define a total order on all non-negative
elements of the domain. Additionally, there exists the
interpolate f , as defined in Definition 2.5, such that, for
every point in the time domain, there is a mapping to some
value in D.

For Dg , these operators must also exist; otherwise,
Definition 2.5 is not fulfillable. This is not necessarily the
case for every generalized domain.

There indeed exists such a domain that D is continuous,
and after applying g, the continuity is lost. This means that
Dg is not continuous according to Definition 2.5.

Let D be the domain of an ECG. That is, the domain of
each data point is T�Q, where the unit of the second
element of the tuple is mV. Both seconds and rational
numbers have a straightforward subtraction, absolute, and
order operation. Additionally, both can be interpolated, e.g.,
using Equation 2, such that the domains are
indeed continuous.

Let g map each data entry, that is, every curve, to the
corresponding diagnosis. Then, the value part of the
generalized domain, called Ig for Illnesses generalized, is a
nominal. While it could be the ICD-Coding, the following
simplification is used for the sake of readability:

Ig ¼ {Myacadric Infarction ðMI),

Cardiac Arrhythmia ðCAÞ,

Other Illness ðOIÞ, HealthyðHÞ}

Then, the generalized domain is Dg ¼ Tg � Ig , where Tg is
the generalization of the time domain, e.g., up to a day. In
such a case, there exists no interpolate between values nor
is there a meaningful subtraction or absolute operator in Ig ,
as these are nominal values. Thus, the e, d criterion,
according to Definition 2.5, is not fulfillable, and Dg is not
continuous, even though the non-anonymized domain D

has this property. Therefore, generalization-based
approaches are not inherently safe w.r.t. the preservation of
the continuity of the anonymized data.

Intuitively, Theorem 3.1.b means that perturbation does not

change the domain of the data. This is rather straightforward, as

adding some noise to data of this domain cannot change the

domain but only the data value. Thus, continuity will always

be preserved.

THEOREM 3.1.b (Continuity preservation of time-
continuous perturbation). In contrast to Theorem 3.1.a, the
anonymization mapping of a perturbation-based approach
is the endomorphism p :D 7! D with domain D, as
anonymization only applies some form of noise to the data.

PROOF OF THEOREM 3.1.b. As the domain is continuous
before anonymization and does not change through the
mechanism, the dataset remains continuous after applying
p. If dataset d from D is continuous, the perturbed dataset
dp, which is produced by applying p to every element of the
dataset, is also continuous. This is because continuity is an
attribute of the domain, which has not changed. Thus,
perturbation is inherently continuity preserving w.r.t.
Definition 2.5.

As an example of semantic approaches, differential privacy is

investigated. For the properties of preservation of continuity and

order, it does not matter if the approach is interactive or non-

interactive, as the mechanisms that provide privacy are the same.

In interactive differential privacy, a user of the mechanism

submits a query, and a custom-tailored response is given to that

query, which represents the database w.r.t. the statistical

properties, adheres to the privacy budget, and tries to answer the

query as well as possible. Thus, some carefully crafted noise is

added to some subset of the database; the amount of noise might

vary depending on the attribute. That is, for a query interested in

heart-related issues, adding larger amounts of noise to the age

might be acceptable, while the ECG values are less perturbed.

For the non-interactive variant, the amount of noise is decided

beforehand and the database is released as a whole. This can lead

to different distributions and levels of noise, but the general

mechanism is the same and thus both variants can be

investigated together. It should be noted that DP, as described in

Theorem 3.1.c, means the application of DP to time-continuous

data that each time entry is treated independently. This comes

with certain privacy implications, as demonstrated by Cao

et al. (51).

Similar to perturbation-based approaches, Theorem 3.1.c can

be explained intuitively by the fact that the domain itself is not

changed by anonymization. This kind of noise is not important

for the preservation of continuity.

THEOREM 3.1.c (Continuity preservation of differential
privacy). Similar to Theorem 3.1.b, anonymization
mapping of a differential privacy-based approach is
endomorphism p :D 7! D with domain D, as
anonymization applies carefully crafted noise to the data.

PROOF OF THEOREM 3.1.c. Proof 3.1.b also applies to
Theorem 3.1.c, as both classes of privacy mechanisms have
an endomorphism as their anonymization, and this is the
only prerequisite for this proof. Thus, DP is inherently
continuity preserving w.r.t. Definition 2.5.
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For many applications, especially in a medical environment,

time serves as more than just a means of ordering data points. It

functions as a continuous axis, which contributes to the joint

meaning of the data. For example, the spacing between

measurements carries additional information regarding the level

of trust one can have within a given segment in the curve; thus,

Definition 2.4 is needed.

A generalization along the time axis would lead not only to

information loss due to reduced precision regarding the time

value but also possibly to loss of information about the local

sampling rate. Such an approach still preserves the ordering of

the data. A perturbation-based approach will threaten not only

the precision and local sampling rate but also the ordering. Thus,

further restrictions are needed for the intended usage to ensure

that the order is preserved. For example, a bound could be

introduced to the level of noise, which is applied to the time

axis. The ordering property is investigated in Theorem 3.2.

THEOREM 3.2 (Order of time-continuous anonymization).
Some classes of anonymizing algorithms pose a threat to the
order of time-continuous data, whereas others are inherently
safe in this regard. The proof follows from Theorems 3.2.a
and 3.2.b and could be extended to other classes.

THEOREM 3.2.a (Order of time-continuous generalization).
Generalization-based approaches are inherently safe w.r.t. the
order of time-continuous data.

PROOF OF THEOREM 3.2.a. Given the records
di ¼ ðti, viÞ 	t and diþ1 ¼ ðtiþ1, viþ1Þ, where 	t is the
total order w.r.t. the time entry. Then, a generalization-
based approach might group together records
di, diþ1, . . . , dj with di 	t diþ1 	t . . . 	t dj into the non-
overlapping generalizations g1 ¼ ðtg1 , vg1Þ and
dk, dkþ1, . . . , dl with dk 	t dkþ1 	t � � � 	t dl to
g2 ¼ ðtg2 , vg2Þ. Any generalization based on the closeness of
the time value would lead to g1 	t g2 if and only if
dj 	t dk and g2 	t g1 otherwise, thus preserving the ordering.

Intuitively, if too much noise is added to the time axis, some

samples might be swapped. Thus, the order is not preserved; this

is visualized by an example in Figure 9 and is formalized in

Theorem 3.2.b and Proof 3.2.b.

THEOREM 3.2.b (Order of time-continuous perturbation).
Perturbation-based approaches are not inherently safe w.r.t.
the order of time-continuous data.

PROOF OF THEOREM 3.2.b. Given the records di and dk
and the corresponding perturbation values pi and pk, where
pj ¼ ðt pj , v pjÞ produced by the perturbation mechanism.
Then, the perturbed data points are d0i and d0k with
d0j ¼ dj þ pj ¼ ðtj þ t pj , vj þ v pjÞ. If ti . tk and
t pk . ðti � tkÞ þ t pi , then tk þ t pk . ti þ t pi . Thus, di 	t dk
holds, but the data gets perturbed such that d0k 	t d

0
i holds.

That is, the ordering is not preserved.

As Theorem 3.2.b highlights the threat to the order of the data,

any perturbation-based approach intended for time-continuous

data has to employ a process of adding noise to the data

designed with this safety in mind to preserve the order of time-

continuous data. That is, the added noise p has to be sufficiently

bounded to preserve the order.

THEOREM 3.2.c (Order of differential privacy). Differential
privacy-based approaches are not inherently safe w.r.t. the
order of time-continuous data.

PROOF OF THEOREM 3.2.c. Similar to continuity, the
order property of DP can also be proven by referencing the
perturbation-based approaches. This is the case, as the
proof only depends on the mechanism adding noise along
both the value and time axes, with no hard guarantee for
the amount of noise being added on a single point. Thus,
by extension of Proof 3.2.b, the ordering is not preserved.

Similar to perturbation-based approaches in general, Theorem

3.2.c shows the threat to the data order. Adding noise along both

axes can lead to a loss of order; thus, a carefully crafted

mechanism for time-continuous data has to be designed with

this safety in mind to preserve the order of time-continuous data

for DP.

The intrinsic dependency on time-continuous data implies that

any approach aiming to anonymize such data should not only

preserve the ordering, as shown using Theorem 3.2, but also the

continuityas defined in Definition 2.5, and possibly the

characteristics of the step time, as defined in Definition 2.4.

4 State of the art

Samarati and Sweeney (2) proposed the distinction between

explicit identifiers, quasi-identifiers, and sensitive attributes and

the mitigation of certain privacy attacks using k-anonymity. It

aims to reduce this risk by grouping together k data records and

FIGURE 9

Order perturbation example.
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generalizing the quasi-identifiers (2, 22). T-closeness reduces this

risk of distribution attacks by introducing a constraint that forces

the distribution of sensitive attributes within a grouping to be at

most t apart from the population distribution (3). This makes

the usage of l-diversity, as proposed by Machanavajjhala et al.

(4), obsolete, as pointed out by Li et al. (3).

CASTLE introduces an anonymization scheme based on

k-anonymity for continuous streams of discrete data, see Cao

et al. (5, 6). This was adapted to a t-closeness first approach with

SABRE by Cao et al. (7). Both approaches fail to preserve the

continuity of the data. All approaches based on k-anonymity

share the same basic problem: There is no way to mathematically

determine which attribute is a quasi-identifier and which is a

non-identifying sensitive attribute (26). This leads to a lack of

provable privacy, making them unsuitable for time-continuous

medical data. Information-theoretic approaches like DP (9)

achieve this formal level of anonymization and do not build

upon a vague definition of quasi-identifiers.

Cao et al. (51) demonstrated that point-by-point

anonymization with DP, which is common, poses the risk of

information leakage through temporal correlations between

values. This was formalized as the temporal privacy leakage. The

attack vector was viable in the performed experiments and thus

posed the risk to one’s privacy via spatio-temporal or

continuous data.

Nergiz et al. (8) presented an approach for anonymization of

trajectories, which preserves the spatio-temporal relation. It

employs a group-and-link approach and anonymizes the data by

releasing a representative constructed by choosing a random

representation point in each group. While this approach

preserves the spatio-temporal relation and order of the points by

grouping non-overlapping areas of points, it does not preserve

the data truth, as the representative might look nothing like any

of the trajectories it represents because each representation point

is generated independently and randomly. This can also cause

large jumps in the representative, which threatens the continuity

of the data.

Dankar and El Emam (10) reviewed the specific requirements

for applying DP to health data, stipulating that it should be

efficient, provide strong privacy guarantees, and exhibit

adaptability. For the interactive approach, it should facilitate a

wide range and a large number of queries. In the non-interactive

case, special requirements are presented, as medical professionals

and biomedical researchers like to “look at the data”; that is,

explorative research is requested. As it is usually not their main

task, many try to avoid changes in the processes and tools they

have become used to, as they do not have the time to put much

effort into changing and adapting them. A good utility for a

wide range of queries is possible. This also holds for a non-

interactive approach. However, besides the technical difficulties, a

significant challenge lies in the social factor of a heterogeneous

user group, which is reluctant to technical changes.

Olawoyin et al. (11) presented a novel approach for

anonymizing spatio-temporal patient data. This approach aims to

protect the temporal attributes, with a five-level temporal

hierarchy and temporal representative points, while applying DP

with Laplacian noise to the spatial attributes. The spatio-

temporal relation is preserved by means of temporal

representative points. Due to the very coarse generalization in the

temporal hierarchy, this is not suitable for continuous

trajectories. For instance, the order of data points

becomes ambiguous.

A k-anonymity-based mechanism with t-closeness for time-

continuous medical data was developed and successfully

evaluated by Hammer et al. (30). This mechanism uses the

Fréchet distance to calculate the similarity between curves and

the information loss as a utility metric. The data is optionally

split along the time axis. This reduces the computational load

drastically while having a positive impact on the utility of the

evaluated datasets. It falls short of providing strong formal

guarantees for privacy, as it is based on k-anonymity.

A novel method to provide privacy for ECGs employing

generative adversarial networks (GANs) is proposed by Nolin-

Lapalme et al. (41). This method aims to prevent the

reidentification of biological sex based on the publication of the

ECG. To achieve this, it is shown that a 12-electrode clinical

ECG is indeed suitable to distinguish sex.

According to Becker (53), the R-wave is the most salient feature

to classify an ECG according to sex. This morphological distinction

of the heart is further explained by Moss (40).

Additionally, the rising interest in ECG data, especially

for biometric authentication by Melzi et al. (54) and data

sharing by Flanagin et al. (55), was highlighted by Nolin-

Lapalme et al. (41). There already exist large ECG databases

such as PhysioNet/CinC (56), PTB-XL (16), and large-scale

medical databases like MIMIC IV (14), which enable the

development and testing of such an approach without having to

measure the records beforehand.

Especially, with the rise of artificial intelligence applications in

recent years, the threats to one’s privacy are also rising, especially in

a medical environment (57). The viability of such an attack has

already been described by Attia et al. (47), who used a CNN to

determine the biological sex and age. It resulted in a 90.4%

accuracy for the sex classification and an average error of

6:9+ 5:6 years for the age.

PrivECG, a CNN similar to that developed by Attia et al. (47),

forms the basis of the evaluation of the approach of Nolin-

Lapalme et al. (41). PrivECG aims to limit the classifyability of

ECGs, thus increasing privacy. The original version of PrivECG

resulted in a sex prediction accuracy of 0:686+ 0:012 vs. the

original 0:882+ 0:022. This was further improved by PrivECG

l, resulting in a sex prediction accuracy of only 0:529+ 0:014

after sanitation, practically making the prediction impossible.

There are some limitations to PrivECG. Nolin-Lapalme et al.

(41) noted that an interaction between diseases and sex can

exist, meaning a prediction of a disease could lead to an

accurate prediction of the sex. Similarly, other attributes, which

might be encoded in the ECG like age or ethnicity, remain

unaffected by PrivECG (41). Additionally, it should be

noted that no quantification of the achieved privacy level, like

the case when using DP, can be given with PrivECG. The

evaluation only compares the accuracy of one specific CNN on
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the original and sanitized databases. This might not generalize to

other attack vectors and is certainly not based on any

information-theoretic guarantees.

Furthermore, there are no remarks on general privacy, e.g., the

risk of reidentification or linking attacks. PrivECG only aims at

preventing sex classification of an ECG. Nolin-Lapalme et al.

(41) described many metrics for the use in their algorithm and

its evaluation. They proposed some general metrics, like the

F1-score, i.e., the harmonic mean of the precision and recall, or

the root mean square error. They also suggested using the

Fréchet distance (32) as a measure of the difference between

ECGs before and after sanitation. However, they did not evaluate

this idea further.

The Fréchet distance was used as a similarity metric for

different time-continuous medical datasets by Hammer et al.

(30). Additionally, a few ECG-specific metrics of similarity were

introduced, e.g., the average mean difference from the baseline or

the average standard variation in R-wave amplitude for a single

ECG cycle (41). However, further research on the viability of

these metrics is needed to asses their usefulness.

Kaissis et al. (58) evaluated the application of privacy-

preserving mechanisms to medical data, especially medical image

data. They highlight that current approaches are often

insufficient and risk patient privacy, making collaboration or

sharing of data challenging. The increasing utilization of data,

especially using AI in areas like medical image processing, can

provide large benefits to medical professionals and patients. To

achieve these benefits without sacrificing one’s privacy, suitable

privacy mechanisms are needed. DP is identified as a

suitable candidate.

It is noted that the specifics of DP implementation for medical

image data remain unclear (58). Qayyum et al. (59) provided an

overview of the need for privacy and security in medical data

settings and proposed some well-known solutions. They

identified multiple approaches to ensure safety, clarify prediction

causality, and reduce the risk of certain attack types.

Additionally, DP is identified as one of the most promising

candidates to provide privacy in medical data sharing and

machine learning applications (59). While this paper does not

address medical data-specific issues with DP, it does reference

Beaulieu-Jones et al. (60) as an example of privacy-preserving

machine learning in a medical environment.

Beaulieu-Jones et al. (60) presented an application of DP with

cyclical weight transfer to the eICU database (15) and the Cancer

Genome Atlas (TCGA) (61). From neither database, time-

continuous data is used.

Beaulieu-Jones et al. (60) showed that integrating DP into the

training of a machine learning model in a medical environment

is feasible. However, it was limited to discrete data, meaning that

their developed process cannot be applied directly to time-

continuous data.

In summary, many anonymization approaches exist, most of

which are not suitable for continuous or medical data. Some

might be extendable to fit the specific needs, but none seem

acceptable as is.

5 Conclusion

The spatio-temporal structure of continuous medical data is

essential for its utility, especially in diagnostic and predictive

applications. However, existing anonymization approaches that

aim to preserve this structure often fall short when applied to

time-continuous data.

In this work, we discussed the precise requirements for

anonymizing such data and evaluated different classes of

mechanisms with respect to these requirements (Section 3.2). We

also elaborated on a set of necessary properties for any

anonymization technique in this domain (Section 3.3),

highlighting the challenges of meeting strict privacy standards

while maintaining clinical utility.

Medical data imposes particularly stringent demands on

anonymization due to both the sensitivity of the information

and the high risk to individuals in the event of a privacy

breach. Unlike domains where damages can be mitigated post-

breach, e.g., financial restitution in a banking scenario, medical

data, once leaked, cannot be retracted. Consequently,

anonymization mechanisms must rely on strong formal

foundations capable of supporting provable and quantifiable

privacy guarantees.

A key challenge in this context is the privacy–utility tradeoff.

While a higher level of privacy provides stronger protection

against misuse and inference attacks, it often comes at the cost of

reduced data utility. This is particularly problematic in medical

domains where diagnostic accuracy or model performance can be

critically dependent on subtle temporal patterns in the data.

Moreover, utility metrics tend to be domain-specific; for instance,

a metric suited to evaluating ECG data for sinoatrial node

disorders might be inadequate for myocardial infarction

detection. Therefore, any useful anonymization scheme must

strike a careful balance between minimizing information loss and

ensuring robust privacy guarantees.

Importantly, insufficient privacy is not only problematic in

cases of outright data breaches—it can also compromise

individuals’ rights even when data is accessed by authorized

parties. The trust patients place in medical professionals does not

necessarily extend to insurers or third-party entities. Thus, any

anonymization method must respect contextual integrity and

consent-based data sharing.

To address these challenges, we advocate for a version of DP

adapted specifically to time-continuous medical data. By

incorporating temporal correlation handling, as highlighted in

(51), and preserving order and continuity (Theorems 3.1.c, 3.2.c),

such a mechanism could offer a principled approach to

managing the privacy–utility tradeoff. Specifically, the noise

addition process must be context-aware—i.e., informed by

preceding and subsequent data points—to minimize the impact

on utility while preserving privacy.

The development of such an adapted DP mechanism holds

great promise. It could facilitate secure sharing of medical

datasets beyond the originating institution, enable more effective

training and validation of AI models, and ultimately lead to
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better clinical outcomes. A robust anonymization framework that

respects both patient privacy and the needs of medical research

has the potential to unlock significant progress—ethically, legally,

and scientifically.
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