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Introduction: Lead toxicity is a well-recognised environmental health issue, with

prenatal exposure posing significant risks to infants. One major pathway of

exposure to infants is maternal lead transfer during pregnancy. Therefore,

accurately characterising maternal lead levels is critical for enabling targeted

and personalised healthcare interventions. Current detection methods for lead

poisoning are based on laboratory blood tests, which are not feasible for the

screening of a wide population due to cost, accessibility, and logistical

constraints. To address this limitation, our previous research proposed a novel

machine learning (ML)-based model that predicts lead exposure levels in

pregnant women using sociodemographic data alone. However, for such

predictive models to gain broader acceptance, especially in clinical and public

health settings, transparency and interpretability are essential.

Methods: Understanding the reasoning behind the predictions of the model

is crucial to building trust and facilitating informed decision-making. In

this study, we present the first application of an explainable artificial

intelligence (XAI) framework to interpret predictions made by our ML-based

lead exposure model.

Results: Using a dataset of 200 blood samples and 12 sociodemographic features,

a Random Forest classifier was trained, achieving an accuracy of 84.52%.

Discussion: We applied two widely used XAI methods, SHAP (SHapley additive

explanations) and LIME (Local Interpretable Model-Agnostic Explanations), to

provide insight into how each input feature contributed to the model’s predictions.
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1 Introduction

Lead, a global pollutant, has been tracked in every aspect of environmental and

biological systems (1). Lead is a neurotoxin that influences human health, including

birth outcomes and child development. The global death rate linked to high Blood Lead

Level (BLL) has increased steadily by 21% (2). In 2019, lead poisoning caused more
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than 900,000 premature deaths globally (1.6% of overall deaths),

which is comparable to the number of deaths caused by

HIV/AIDs (3).

Pregnancy is a critical time for lead exposure to the mother and

foetus (4). Lead crosses the placenta freely (5) causing

complications in foetal growth. Lead can negatively impact a

range of birth outcomes, by accumulating in the placenta and

causing oxidative stress, reduced nutrient transfer, and abnormal

function (6). Poor birth outcomes are known to be linked with

poor developmental trajectories in infants, leading to long-term

impact on adult health (4). Lead toxicity causes increased risk of

kidney, cardiovascular and liver disease later in life (7). Lead

affects the developing foetus and the pregnant woman (8).

During pregnancy, lead in maternal blood can cause miscarriage,

spontaneous abortions, gestational hypertension (9), congenital

malformations, and stillbirths (8). One of the major silent killers

due to lead poisoning is pre-eclampsia, which is significantly

related to maternal ill health and mortality (10).

Children are particularly exposed to the neurotoxic effects of

lead and even small levels of lead exposure can cause serious

and, in a few cases, permanent neurological damage. Children

are not only born with lead transferred to them from their

mothers but also have greater lead exposure as their growing

bodies absorb more lead than adults do (4). UNICEF reported

that 1 in 3 children (i.e., nearly 800 million) globally have BLL at

or above 5 g/dL, a threshold that the Centres for Disease Control

and Prevention has commended to initiate action (11).

Nevertheless, there are no safe lead levels and the harmful effects

of lead appear at all levels. As a result, the economic costs

associated with childhood lead exposure are substantial (12). The

World Bank analysis reported that in 2020, the annual costs of

childhood lead exposure are estimated to be at least $50.9 billion

in the US, $55 billion in the EU, and $977 billion in low-middle-

income countries (11). On the contrary, the economic gain

accomplished by effective interventions against lead poisoning is

substantial (13). The benefits gained by effective lead toxicity

management far outweigh the costs of creating a national lead

screening, prevention, and surveillance programme. Both

UNICEF and Pure Earth have insisted countries strengthen their

healthcare systems to tackle the effects of lead poisoning (1). An

upgrade in the existing measures should involve more active lead

screening, monitoring, and reporting approaches. In the current

approach, a lab-based blood test is required to determine lead

poisoning. The limitation of this approach is that it requires an

expert medical/technical staff, blood samples and expensive

resources like atomic absorption spectrometry. As a result, this

approach is inappropriate for doing early screening in a

larger population.

Keeping the above views in mind, it is necessary to identify the

features that contribute to maternal BLL, particularly those that

could be minimised to reduce the transfer to the developing

foetus. Previous research in this area has identified multiple

features that contribute to maternal lead exposure. It was found

that lead levels are higher in pregnant women who are more

exposed to environmental contamination. The lead levels are

higher in mothers exposed to environmental contamination,

particularly areas of high pollution and those living near lead-

based industries (3). In addition to environmental factors, there

are added sociodemographic features that directly or indirectly

contribute to elevated lead levels. Sociodemographic features such

as water, dust, soil, occupational and take-home exposure highly

contribute to lead poisoning (14–16). The use of cosmetics

additionally contributes to lead poisoning in a pregnant woman

(17). Even though research has established a relation between

lead poisoning in women and sociodemographic features (4, 18),

the magnitude to which these features affect the level of lead

poisoning remains unexplained. Hence, quantifying

sociodemographic factors and explaining the effects can help take

timely abatement measures in lead-exposed women. Henceforth,

minimise the harmful impact of lead on the developing foetus.

In this context, the “safe motherhood intervention” project is

proposed to deliver a low-cost point-of-care analytical tool. The

tool will be a computational model in the form of a mobile-

based application (app) that could predict lead levels in maternal

blood without the need for lab testing as a first instance of

finding lead exposure. The work is directed towards increasing

the understanding of the factors that contribute to lead levels in

pregnant women and the objectives of the project are: (1)

Identify a set of sociodemographic features that are lead exposure

pathways for a pregnant woman, (2) Develop an easy-to-access

and non-invasive set of questionnaires based on the identified

features, (3) Collect maternal data consisting of blood samples

and questionnaires, (4) Perform data analysis on the collected

data and find the optimal set of features that support or do not

support lead prediction modelling, (5) Estimate the underlying

function and build the computational model, while keeping the

size of the resulting model small and easy to interpret, (6)

Evaluate the built model performance in predicting the lead

toxicity level based on the set of input features, and (7) Design

and develop the mobile-based screening app with the embedded

prediction model.

The project is novel in creating a truly interdisciplinary project

and utilising the benefits of mobile technology and ML techniques.

The project aims to reach out to a larger population with the aid of

technology. In our previous work, through the collaboration

between Ulster University, UK, and the Indian universities: King

George Medical University and Era University, maternal data is

collected. Following, data analysis and feature selection, a

12-feature set was selected as an optimum set of features for

building the lead prediction model (19–21). Further details of the

obtained results from this work are described later in this paper.

In the initial work, we demonstrated the possibility of using ML

techniques for predicting lead levels in pregnant women using a set

of sociodemographic features. From our initial work, we know that

the 12-features-based lead prediction model gave the best

performance accuracy; however, we don’t know to what extent

each feature individually contributed to building the prediction

model. In this context, there is a general distrust among

stakeholders in using the ML models. These models are

considered black boxes whose results are difficult to understand

and interpret. The built lead prediction model is expected to

demonstrate transparency and explain the rationale behind the
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predictions. Therefore, it is desired that the built models can

explain the prediction made and correctly quantify the level to

which its decisions are reliable (22). The growing complexity of

ML models has led to growing scientific interest in XAI. In this

paper, we demonstrate a first attempt to use XAI to explain the

outcomes predicted by the lead prediction model. In this paper, a

web-based application is also developed as an interface to display

the outcome of ML prediction and XAI results. The interface

helps in comprehending all the results at one point

for interpretation.

2 Methodology

This section describes the previous work and XAI in brief.

2.1 Initial work

At the start of the project, sociodemographic features related to

maternal lead toxicity levels were identified through interviews

with the research and development team which included

neonatologists, gynaecologists, research nurses, biomedical

engineers and computer scientists. The sociodemographic

features included information linked to the maternal’s lifestyle

and environmental factors. An influence diagram detailing the

features that may have a direct/indirect influence on maternal

lead toxicity levels and also the foetus’s lead toxicity level is

designed (19–21). Figure 1 shows the influence diagram detailing

the set of features that affect maternal lead exposure and

consequently affect the child. The influence diagram explains the

interconnections between the features themselves and more

notably, the link with the maternal’s BLL. The diagram has

independent features (enclosed within the rectangles with thin

lines) and summary features (enclosed within the rectangles with

thick lines). It is to be noted that the independent features can

influence summary features and summary features could be

independent features in their own right. For example, in

Figure 1, the independent features, age and education are likely

to impact the subject’s industry type (a summary feature), which

consecutively can impact the subject’s occupational exposure

(a summary feature) to lead. Figure 1 additionally shows the

apparent effect of maternal lead toxicity on the developing

foetus. The lead in maternal blood impacts the baby’s weight,

height, and physical and cognitive health.

Based on the identified set of features, a questionnaire form was

designed. The maternal data comprising blood samples and 18

sociodemographic features were collected from 200 pregnant

women at Era’s Lucknow Medical College and Hospital, India

(23). The blood samples were analysed and BLL per sample was

calculated. In the collected data, the BLL values ranged between

2.3 g/dL to 34.8 g/dL. The sample also contained not detected

(ND) values, which were recorded for those cases where lead was

not detected in the blood sample. The measured BLL samples

formed the output class, lead content level, and were categorised

into four labels: ND_5 (BLL values not detected or less than

5 g/dL), Between5_10 (BLL values between 5 g/dL and 10 g/dL),

Between10_15 (BLL values between 10 g/dL and 15 g/dL) and

GreaterThan15 (BLL values greater than 15 g/dL). The data was

discretised to avoid variability in the data (24, 25) resulting in

each feature having a nominal value. The built computational

model can take in a set of input features such as personal, take-

home exposure and clinical features and then can predict the

output class variable, lead content level. With this aim, the

collected data were pre-processed, and data imbalance was

handled. Following feature selection methods, a 12-feature set

(Table 1) obtained from the Boruta algorithm gave better

prediction results (k Nearest Neighbour (kNN) = 76.84%,

Decision Tree (DT) = 74.70%, and Neural Network (NN) =

73.99%) (21). All the models were built in WEKA Experimenter

(University of Waikato, Version 3.8).

2.2 Why XAI in lead toxicity prediction?

AI is more pervasive now and the need for interpretability and

transparency in AI-based systems is increasingly growing (22).

Most of the AI systems are complex and act as a black box

(26–28), leading to lower trust among clinicians and end-users.

Additionally, these systems offer limited system support in

summarising the diagnoses, as they don’t give any explanation of

the reason why a particular prediction was made (28). With

black-box AI models lacking transparency, it is essential that

these models unbox the decision made (22) and make AI

systems more explainable, transparent, and auditable.

With the use of XAI techniques, it is possible to understand

model predictions. XAI with a set of frameworks explains how

the AI model made a particular prediction (29). This can help in

developing trust and reliability in the healthcare systems,

accelerating disease diagnosis, and meeting adherence to

regulatory requirements (22). Furthermore, improving trust,

transparency, explainability and fairness can also help in

enhancing the built model performance by supporting an

understanding of its possible weaknesses. Knowing how and why

the model works and why it fails sometimes can help in

improving and optimising the models as well. The consequences

of both false positive and negative cases have an impact on

individual welfare and cannot be ignored. For example, in our

case, if the lead prediction model incorrectly suggests that a

pregnant woman has a high level of lead toxicity. This prediction

can cause a negative impact on the subject along with the

associated financial cost in further diagnoses and treatment. On

the other hand, if a potential subject having high lead toxicity is

missed by the model, the whole idea of intervention stands

invalid as a potential chance is missed for early intervention in

this case. Additionally, when we aim to take pre-emptive

measures and adjust modifiable risk factors, we should know

which factors are contributing to a high level of lead prediction

in a particular subject. For example, from our previous work

described in the previous section, we know that features detailed

in Table 1 are significant factors in accurately classifying the lead

toxicity level. However, not all the features will equally contribute
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FIGURE 1

Influence diagram showing features that impact maternal blood lead levels. Reproduced with permission from “Influence diagram of features impacting maternal BLL and toxicity exposure” by

Priyanka Chaurasia, Sally I. McClean, Abbas Ali Mahdi, Pratheepan Yogarajah, Jamal Akhtar Ansari, Shipra Kunwar and Mohammad Kaleem Ahmad, licensed under CC BY 4.0.
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to the model making a particular prediction. Therefore,

incorporating an XAI framework as an interpretability layer on

top of the lead prediction model can assist in understanding and

trusting the decision made by the model and which features

contributed more significantly to the predicted lead toxicity

levels. Based on the explainability of features, a focus could be

made on minimising the modifiable risk factors. Figure 2 details

the methodological overview of this work. The XAI layer is

added to the lead prediction model that is built from the

maternal data. The model predicts the lead level and the XAI

framework explains the predictions made. For this work, we used

two of the popular XAI frameworks, SHapley Additive

exPlanations (SHAP) [30] and Local Interpretable Model-

Agnostic Explanations (LIME) [31].

SHAP is an XAI method to explain individual predictions.

SHAP explains the individual prediction by computing the

contribution of each feature in making the prediction. It

computes SHAP values, which are used to determine the impact

of each feature on the prediction made (30). SHAP values

provide details for each instance, and how a particular feature

distributes the prediction results (output) among the features.

A SHAP value helps to quantify a feature’s contribution towards

the prediction made (30). For a given instance, the built ML

model predicts the output and the SHAP explains that the

features with a positive SHAP value contributed more towards a

particular prediction and the negative values do the opposite.

SHAP values (n, m), denote the average contribution of each

feature to the prediction made by the model, where n is the

number of samples and m is the feature matrix (30). LIME is an

XAI method to provide local model interpretability. The local

aspect in LIME means that it is used to explain individual

predictions of a ML model. LIME amends a single data instance

by tweaking the feature values and examines the resulting impact

on the output (31).

3 Results

This section describes the built models and the explanation of

lead toxicity prediction.

3.1 Lead prediction modelling

For using the XAI framework, we rebuilt the models in Python

using the 12-feature dataset and four class labels. In the collected

dataset of 200 samples, the output class variable, lead content

level, has a varying number of instances for each of the class

categories: ND_5 (105), Between5_10 (52), Between10_15 (14),

and GreaterThan15 (29). The collected dataset is imbalanced and

this imbalance in the class sizes can affect the outcome of some

of the classification algorithms, usually with a bias towards the

majority class (i.e., the class which has a higher number of

instances in the dataset) (32). To avoid this bias and handle

imbalance, the dataset is resampled. The aim of rebalancing the

data is to let the model classify the new observation solely based

on the robustness of the algorithm and the merits of the features.

The Synthetic Minority Over-Sampling Technique (SMOTE) is

applied to the data. The application of SMOTE led to 420

samples in total, with nearly 105 instances of each class. An 80/

20 sample split was done, dividing a dataset into two subsets,

TABLE 1 Significant features obtained by applying the Boruta algorithm to
the four-label dataset (21).

Feature Details

Age Age of the mother: lessThanEqual30, gretaerThan30

Lipstick Use of lipstick: Yes, No

Kohl Use of kohl: Yes, No

Sindoor Use of sindoor: Yes, No

Education Highest education level

Water source Source of water: ground, reverse osmosis (RO), tap water

Utensils Type of utensils used: steel, aluminium, ceramic

Take-home exposure Lead exposure due to family member/s working in lead-

based industries

Occupational

exposure

Housewife, office

Pica symptoms Calcium deficiency, iron deficiency

Gastrointestinal Anorexia, constipation, pain abdomen

Non-specific Headache, lethargy, tiredness

FIGURE 2

XAI framework for automated lead toxicity prediction model.
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with 80% of the data (336 instances) used for training and 20% of

the data (84 instances) used for testing the model. In our previous

work, a range of popular classification algorithms were evaluated

for their suitability in the lead prediction task. Six different

classification algorithms NN, kNN, DT, Adaptive Boosting,

Support Vector Machine, and Classification and Regression Trees

were applied, out of which NN, kNN, and DT gave better

prediction results. Therefore, in this work, these three

classification algorithms were used. In addition to this, we also

applied a Random Forest (RF) classification algorithm to the

dataset. Table 2 details the performance of the classification

algorithms applied to the rebalanced dataset. From the results, it

is observed that the RF-based algorithm gave the best prediction

result (84.52%) on the test data. The hyperparameters used for

the RF-based model are max_features = 4 and n_estimators = 200.

3.2 Explaining lead prediction model

The best model obtained from the lead prediction modelling is

the RF-based model with a 12-feature set, with an accuracy of

84.52%. Therefore, we demonstrate the explainability of the RF-

based model in predicting the outcome of the test data using

SHAP and LIME frameworks.

3.2.1 Summary of feature importance
First, a set of global plots is shown to visualise the overall

contribution of a feature over the entire data and how these

features influence the output of the built lead prediction model.

The global effect of the 12 features is shown in Figure 3 through

a summary bar plot. In this plot, the 12 features are evaluated by

their average absolute SHAP value; hence if the feature has a

positive or a negative influence on prediction does not matter.

The features are ranked from the highest to lowest impact on the

TABLE 2 Average prediction accuracies, precision, recall and F1-score
obtained for different classification algorithms.

Algorithm Results

Class label Precision Recall F1-score

NN ND_5 0.70 0.76 0.73

Between5_10 0.83 0.48 0.61

Between10_15 0.95 0.95 0.95

GreaterThan15 0.68 0.90 0.78

Average prediction accuracy = 77.38%

kNN ND_5 0.65 0.71 0.68

Between5_10 0.85 0.52 0.65

Between10_15 0.87 0.95 0.91

GreaterThan15 0.72 0.86 0.78

Average prediction accuracy = 76.19%

DT ND_5 0.80 0.57 0.67

Between5_10 0.67 0.67 0.67

Between10_15 1.00 0.95 0.98

GreaterThan15 0.71 0.95 0.82

Average prediction accuracy = 78.57%

RF ND_5 0.77 0.81 0.79

Between5_10 0.93 0.67 0.78

Between10_15 1.00 0.95 0.98

GreaterThan15 0.74 0.95 0.83

Average prediction accuracy = 84.52%

FIGURE 3

Summary bar plot showing important variables, indicating the magnitude of each feature in the prediction of the class labels in all the instances of the

test data.
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prediction. The summary bar plot indicates the average impact

(magnitude) of each feature in the prediction of the class labels.

From the summary bar plot in Figure 3, it is found that the pica

symptoms, water, and take-home exposure are the top three

features that have the most predictive power.

Existing literature indicates that pica symptoms significantly

contribute to lead toxicity. Iron deficiency frequently coexists with

lead intoxication and anaemia is a usual symptom of lead

poisoning (33). This is observed in our case as well, iron and

calcium deficiency resulted in higher levels of lead

(GreaterThan15, in our case) as can be seen from Figure 3. The

second important feature in determining the class labels is the

water source in Figure 3. Water is the source of baseline exposure

to lead poisoning (15, 34, 35), and signifies lead exposure

pathways to the population at large. The third important feature

Take-home exposure. It is found in the existing literature that

women are exposed to lead by handling or washing their family

members’ lead-contaminated clothes (36). Few of the jobs have

potentially high exposure to lead. In our previous work (21), the

data analysis indicated that pregnant women whose family

members worked in auto repair, auto driving, construction,

painting, plastic manufacturing, polishing, pipe fitting, soldering,

battery manufacturing and repairing had higher lead

concentrations due to take-home exposure. It was found that

certain combinations of jobs reflected very high lead take-home

exposure in pregnant women. This included Polishing_Soldering

(mean BLL = 19.7 g/dL), Painting_Furniture (mean BLL =

11.05 g/dL), and Construction_Painting_Plastic_Polishing (mean

BLL = 12.6 g/dL).

Another global plot, the beeswarm summary plot is shown in

Figure 4 for each class label ND_5, Between5_10, Between10_15,

and GreaterThan15. The little dots on the plot in Figure 4

correspond to an individual data instance (a single observation).

The horizontal axis represents the SHAP value, and the colour of

FIGURE 4

Beeswarm summary plots of representative SHAP values for the 12 features in our model, from most significant to the least significant one (top to

bottom) for each of the class: ND_5, Between5_10, Between10_15 and GreaterThan15.
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the dots indicates if that observation has a lower (green dots) or

higher (blue dots) SHAP value than other observations. The

x-axis shows the positive or negative influence of the feature on

the predicted class label. The SHAP values toward the left have a

“negative” effect and SHAP values toward the right have a

“positive” effect on the output class label. In the top left figure in

Figure 4, it is observed that the lower SHAP value for pica

symptoms (green dots) results in the model classifying the

observation as class label ND_5. In the bottom right figure, a

higher SHAP value of pica symptoms results in the model

classifying the observation as class label GreaterThan15. This

indicates that the subjects having no pica symptoms have low

lead exposure (ND_5), whereas those having pica symptoms have

a high lead toxicity level (GreaterThan15). Hence, by using the

SAHP global plot, we have the visibility of what are the top

significant feature out of 12 features.

3.2.2 Individual interpretation

Next, we show how each of the 12 features contributed to

predicting a particular output class for a given observation. Here

we show four typical examples to illustrate the interpretability of

the RF-based model for each of the output class labels: ND_5,

Between5_10, Between10_15, and GreaterThan15, using SHAP

and LIME frameworks.

The force plot offers a good summary of the prediction made.

The base SHAP values for the class labels are ND_5 = 0.2506,

Between5_10 = 0.2469, Between10_15 = 0.2486, and

GreaterThan15 = 0.2539, which are the baseline for each of these

class predictions. Figure 5a shows the force plot for the given

data instance and the predicted class is “ND_5.” The features

that are important in making the prediction for the given

observation are shown in blue and red in Figure 5a. The blue

represents those features that pushed the model to score lower

and the red represents those features that pushed the model to

score higher. Features that have significantly contributed to

making the prediction are situated closer to the dividing

boundary between blue and red, and the size of the contribution

is denoted by the size of the bar. For the given observation, the

prediction score is adjusted based on the SHAP value of each

feature. In Figure 5a, the force plot starts with 0.2506 as a base

value and then the joint effects of all the features push the value

in a positive direction, giving the final value of 0.48.

The final value of 0.48 corresponds to the prediction score made

for the given observation and the prediction corresponds to the

class ND_5.

The output by applying LIME is a list of explanations, showing

the contribution of each feature of the given observation. Figure 5b

shows the model interpretability for the given observation using

LIME. The values of each feature for the given observation are

summarised in Figure 5b as a table (far right). The middle figure

in Figure 5b shows the list of features that positively and

negatively contribute to the prediction of class ND_5. The

features on the right side of the vertical line positively

contributes to predicting ND_5, whereas the feature on the left

side of the vertical line negatively contributes to predicting Not

ND_5. The figure on the left side of Figure 5b shows the

prediction probabilities for each class. The output class label is

assigned as ND_5 based on the highest probability value.

FIGURE 5

Example of the output class ND_5: (a) Interpretation of model prediction results based on SHAP, (b) Explanation provided by the LIME model.
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Most of the studies using XAI commonly use only force plot

for showing the local interpretability. In this paper, we

additionally use the decision plot for understanding and

interpreting the predictions made by the model. Both the force

plot and the decision plot are effective in explaining the model’s

prediction. Nevertheless, the decision plot is more efficient than

the force plot. A large number of features can be shown on

decision plot. This is useful in those case when a large number

of features significantly contribute to the final prediction score.

Figure 6 shows the decision plot created for the same given

observation shown in Figure 5, for which the predicted output

class is ND_5. In the plot, the straight vertical line shows

the base value (0.2506) and the coloured line deviating from the

straight vertical line is the final prediction. Starting from the

base, the prediction line indicates how the SHAP values of each

feature add on to reach the final prediction score at the top of

the plot.

Similarly, we show SHAP and LIME plots for the other

predicted class labels. Figures 7, 8 show the explanation for a

given data observation for which the model predicted the class

label as Between5_10. Figures 9, 10 show the explanation for a

given data instance for which the model predicted the class label

as Between10_15. Figures 11, 12 show the explanation for a

given data instance for which the model predicted the class label

as GreaterThan15.

To compile all the results in one place, we also developed a

Streamlit-based web interface. Streamlit is a Python library to

create interactive web applications. Figure 13 shows the

developed web interface showing results for an input instance for

which the predicted class is very high level (GreaterThan15) and

the explanation of the outcome using the force and decision

plots. The interface can be useful in interpreting the results

obtained without knowing the backend code. A non-technical

user can enter the input values to the model through this

interface and get the prediction result and explanations without

manually running the backend code.

4 Discussion

In our initial work, with 12 features, the model was able to

predict the lead toxicity levels. The built ML-based lead

prediction model is a black box. The model can tell the lead

toxicity level as low (ND_5), mild (Between5_10), high

(Between10_15) and very high (GreaterThan15) for a given

observation. However, if we want to reduce the impact of lead

toxicity levels, we should be able to tell which features are highly

contributing to the predicted lead levels in a particular subject.

From the built model, we cannot make out to what extent each

of these 12 features has contributed towards making a particular

prediction. It is likely that not all the 12 features will equally

contribute to the lead toxicity level. If we consider all the 12

features, it would be difficult to reduce the effect of all the 12

features and this may not be an effective approach. Therefore, if

we know the most important features to focus on, it would be

easier to reduce the risk of lead toxicity.

For the acceptance of AI in healthcare, these black-box models

need to have transparency and explain the reasons for the

predictions made. The XAI framework provides the medium for

understanding the decisions made. Explaining the decisions

made by the model will increase the trust and reliability of the

built model. In our case, the end user of the lead screening tool

is going to be healthcare professionals with usually a non-

technical background. They should be able to understand the

FIGURE 6

Example of SHAP decision plot for the output class ND_5.
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predictions made and interpret them. In this context, the work

presented in this paper used the XAI framework to explain the

model prediction and interpret the results. Using XAI, the

prediction made by the model can be interpreted for decision-

making, thus making the model equitable in real-world contexts.

In this paper, with the use of XAI, we are able to add an

explanation to the prediction made. This is particularly

important when we want to investigate modifiable risk factors

that could be mitigated to reduce the effects of lead poisoning.

Figure 3 indicated that the model picks pica symptoms as the

FIGURE 8

Example of SHAP decision plot for the output class Between5_10.

FIGURE 7

Example of the output class Between5_10: (a) Interpretation of model prediction results based on SHAP, (b) Explanation provided by the LIME model.
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top feature in determining the lead toxicity levels. This

interpretation can be validated by analysing individual data

points shown in Figure 4. For example, in Figure 4, for the

class ND_5 if the pica symptoms value is low (green dots), the

model predicts lower toxicity i.e., ND_5. On the other hand,

for the class label GreaterThan15, if the pica symptoms value is

high (blue dots), the model predicts very high lead toxicity i.e.,

GreaterThan15. Likewise, individual explanations can help in

FIGURE 9

Example of the output class Between10_15: (a) Interpretation of model prediction results based on SHAP, (b) Explanation provided by the LIME model.

FIGURE 10

Example of SHAP decision plot for the output class Between10_15.
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understanding why the model made specific predictions for a

subject. The force plot gives insight and provides the

magnitude of each feature contribution in making the

prediction. For example, in Figure 11, for the given

observation, the model has predicted GreaterThan15 toxicity

level. The force plot gives the reason for this prediction. From

Figure 11, it can be seen that pica symptoms, take-home

exposure and water are the main reasons for this prediction.

These factors can be worked upon to reduce the exposure in

this particular subject.

FIGURE 11

Example of the output class GreaterThan15: (a) Interpretation of model prediction results based on SHAP, (b) Explanation provided by the LIME model.

FIGURE 12

Example of SHAP decision plot for the output class “GreaterThan15.”
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5 Conclusion

Lead poisoning is very much preventable with effective

screening and prevention programmes. Early identification of

lead poisoning in the pregnant woman can help in reducing the

harmful effects on the developing foetus. In our previous work,

we were able to demonstrate the usability of the ML model in

doing lead toxicity prediction based on sociodemographic

features. Using XAI, the prediction made by the model can be

interpreted for decision-making, thus making the model

equitable in real-world contexts. In this work, with the use of the

XAI framework, we were able to add the explainability layer to

the built model. The XAI framework is applied to the RF black-

box model to understand the decisions made by the model.

With the limited data of 200 samples, the work demonstrated the

possibility of using easy-to-collect and non-invasive

sociodemographic features for lead prediction modelling. The work

is significant because we are applying ML techniques to explain and

predict lead toxicity, which is determined mostly by using the

traditional approach of lab testing. It demonstrates how lead

toxicity prediction can be taken out of the lab and explored in a

larger population with the limited resources available. Backed up by

more data, in future, the work can be extended to provide greater

speed and precision along with insights that can help healthcare

providers plan and deliver care in the context of lead poisoning.
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