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optimized RST-ML approach
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Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology Chennai,

Chennai, India

Introduction: Cardiovascular disease (CVD) is a leading global cause of death,

necessitating the development of accurate diagnostic models. This study

presents an Optimized Rough Set Theory-Machine Learning (RST-ML)

framework that integrates Multi-Criteria Decision-Making (MCDM) for effective

heart disease (HD) prediction. By utilizing RST for feature selection, the

framework minimizes dimensionality while retaining essential information.

Methods: The framework employs RST to select relevant features, followed by

the integration of nine ML classifiers into five stacked ensemble models

through correlation analysis to enhance predictive accuracy and reduce

overfitting. The Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) ranks the models, with weights assigned using the Mean

Rank Error Correction (MEREC) method. Hyperparameter tuning for the top

model, Stack-4, was conducted using GridSearchCV, identifying XGBoost (XG)

as the most effective classifier. To assess scalability and generalization, the

framework was evaluated using additional datasets, including chronic kidney

disease (CKD), obesity levels, and breast cancer. Explainable AI (XAI)

techniques were also applied to clarify feature importance and decision-

making processes.

Results: Stack-4 emerged as the highest-performing model, with XGBoost

achieving the best predictive accuracy. The application of XAI techniques

provided insights into the model’s decision-making, highlighting key features

influencing predictions.

Discussion: The findings demonstrate the effectiveness of the RST-ML

framework in improving HD prediction accuracy. The successful application to

diverse datasets indicates strong scalability and generalization potential,

making the framework a robust and scalable solution for timely diagnosis

across various health conditions.

KEYWORDS

rough set theory, machine learning, correlation analysis, stacking classifier,
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1 Introduction

CVD is a leading global cause of mortality, accounting for 17.9 million deaths

annually, as estimated by the World Health Organization (WHO). CVD encompasses

various heart and blood vessel conditions and is strongly associated with several

modifiable risk factors, including stress, poor diet, physical inactivity, smoking, and

excessive alcohol consumption. Factors such as obesity, hypertension, high cholesterol,
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and tobacco use further exacerbate its severity, emphasizing the

need for early detection and intervention (1). Artificial

Intelligence (AI) has revolutionized medical research, with ML

playing a critical role in predictive modelling for clinical

diseases (2).

AI and data mining techniques facilitate early CVD risk

prediction by analysing large-scale behavioural and clinical data,

identifying patterns associated with disease progression, and

supporting timely preventive interventions. While diagnosis may

involve imaging, predictive models using ML, support pre-

symptomatic risk assessment, enabling timely intervention (3, 4).

Traditional statistical methods, while effective under specific data

distributions, often face limitations when applied to non-linear,

high-dimensional clinical datasets. These challenges have led to

increased adoption of ML and DL techniques to improve

predictive performance in complex healthcare scenarios (5).

ML excels in handling large-scale medical data, enabling early-

stage disease prediction and reducing preventable hospitalizations.

Its application enhances healthcare policies, disease prevention,

and medical decision-making. Many studies have explored ML

techniques for cardiac disease classification (6, 7). ML based

computer aided decision support systems enhance diagnostic

accuracy and optimize treatment strategies. However, challenges

persist in feature selection and model efficiency, as medical

datasets often contain redundant and inconsistent information,

affecting predictive performance (8). Selecting the most relevant

features is crucial for enhancing model accuracy, reducing

overfitting, and improving interpretability (9).

Feature Selection methods eliminate redundant data while

retaining critical features, improving classification accuracy. RST,

introduced by Pawlak, is a powerful mathematical tool for

handling uncertainty and incomplete data. It identifies minimal

reduct sets while preserving classification accuracy, making it

highly suitable for feature selection in ML models (10, 11).

MCDM techniques aid in optimizing complex decision processes

by distinguishing the best and worst alternatives based on

multiple criteria. Decision-making frameworks, such as Fuzzy Set

Theory (FST) and RST, effectively handle uncertainty and

enhance classification accuracy (12, 13).

Despite advances in ML-based HD prediction, challenges

remain in optimizing accuracy and minimizing model

complexity. This study addresses these challenges by integrating

RST with ML and employing an MCDM-based ranking system

to enhance model performance and interpretability. RST with

Johnson’s algorithm reduces dimensionality by selecting the most

informative features, improving both accuracy and

interpretability; nine ML classifiers are evaluated and combined

into five stacked ensembles through correlation analysis; and

MCDM techniques, specifically TOPSIS with MEREC-based

weighting, rank the stacked models to identify the best-

performing approach, which is further optimized using

GridSearchCV. Unlike conventional models that rely on

individual classifiers or simple ensembles, this framework

enhances accuracy, minimizes overfitting, and improves

explainability through Shapley Additive exPlanations (SHAP) and

Local Interpretable Model-agnostic Explanations (LIME). By

integrating RST, diverse ML classifiers, and MCDM-based

ranking, this study addresses key challenges in HD prediction

and presents a scalable, robust framework with strong potential

for clinical application in early disease detection. The key

contributions of the study include,

• Employed RST to effectively eliminate redundant features and

retain only the most relevant attributes, thereby enhancing the

model’s predictive accuracy while minimizing unnecessary

complexity. This approach significantly improves HD

diagnosis by focusing on essential features.

• Utilized correlation analysis to identify diverse base learners,

constructing effective stacked ensemble models. This ensures a

robust and versatile prediction model that can handle varied

patterns in HD data, leading to enhanced model performance.

• Applied the TOPSIS technique, combined with MEREC-based

weighting, to systematically rank the performance of

stacked models.

• Fine-tuned Stack-4 using GridSearchCV, ultimately identifying

XG as the top-performing classifier. This fine-tuning process

led to superior predictive accuracy and ensured the model’s

robustness in real-world applications.

• Integrated XAI methods such as SHAP and LIME to analyse

and interpret feature importance. These techniques enhance

the transparency of the model, making it more clinically

interpretable and ensuring that healthcare professionals can

trust and effectively use the predictive model for early

HD diagnosis.

The remainder of the paper is organized as follows: Subsection 1.1

reviews related work, while 1.2 outlines the motivation and

highlights the novelty of the proposed approach. Section 2

outlines the materials and methods used in the proposed work.

Section 3 presents the research findings. Section 4 discusses the

findings and limitations, and Section 5 concludes the study and

outlines future work.

1.1 Literature review

Numerous ML methods have been developed recently for the

diagnosis of cardiac disease. Furthermore, a variety of medical

diagnostics, such as those in Radiology, Dermatology,

Hematology, and Ophthalmology, employ AI. HD is the leading

cause of death in India, with a study showing a 29.4% prevalence

among adults 45 and older. Key risk factors include age, gender,

residence, high cholesterol, diabetes, inactivity, and family

history, underscoring the need for targeted health programs and

early detection efforts (14). Additionally, effective management

has significantly improved outcomes for hemophilia patients;

however, as they age, they face increased risks of HD,

highlighting the imperative for enhanced understanding and

management of HD in this population (15).

HD are globally significant, impacting mortality rates and

healthcare costs. Timely diagnosis through advanced predictive

models like ANN, feature selection methods, and MCDM

techniques can effectively reduce fatalities and treatment
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expenses. Efficient feature selection and model validation methods

highlight promising approaches, offering potential advancements

in disease prediction methodologies (16). By providing better risk

prediction using AI-based data integration approaches, AI has

greatly improved traditional risk assessment tools, such as the

Thrombolysis in Myocardial Infarction and Global Registry of

Acute Coronary Events scores (17). Decision making techniques,

particularly AHP and hybrid approaches, have been prominently

used in healthcare contexts to evaluate service quality, offering

insights and recommendations for future research directions (18).

Wearable technology monitoring of biopotential signals is

critical for HD tracking and early detection. Current developments

in wearable biosensors have enhanced precision, reproducibility,

and continuous monitoring, significantly reducing healthcare costs

(19). Emerging technologies like the FlexiPulse sensor, designed

for affordable and accurate HD monitoring, exemplify the

advancements in wearable tech. This sensor achieves over 93%

accuracy and uses ML to diagnose HD events with 98.7% accuracy

(20). Innovative hybrid DL systems have demonstrated high

accuracy in predicting HD, utilizing advanced preprocessing

techniques and optimized feature extraction methods. For instance,

a hybrid DL system achieved 99.12% accuracy across diverse

benchmark datasets (21). Furthermore, ML techniques applied to

heart failure prediction using advanced methods like XG have

shown promising results, achieving accuracies up to 86.36%,

highlighting their potential to enhance early mortality estimation

and public health outcomes (22).

Furthermore, the analysis of HD has been improved by data

mining techniques such as Recurrent Neural Network - Long

Short-Term Memory models and genetic algorithms, which

demonstrate progress if applied to clinical datasets (23). Novel ML

methods, such as those optimized with N2Genetic optimizer, have

shown superior accuracy and F1-scores in predicting coronary

artery disease, emphasizing their utility in medical decision

making. Use of ML in clinical practice extends from pre-clinical

data processing to bedside applications, although challenges like

validation in real-life settings and ethical considerations remain

critical (24). Identification of those with a higher risk of early

atherosclerosis and HD in adolescents with Major Depressive

Disorder can facilitate individualized therapies and improve

outcomes related to both cardiovascular and mental health (25).

Using ML to precisely predict HD is essential for early detection

and lowering death rates. The study compares several ML

algorithms, identifying Random Forest (RF) as the most accurate,

and underscores the potential of these technologies to improve

healthcare outcomes (26). ML techniques applied to RNA-seq data

identified significant genes linked to HD, enhancing early

prediction capabilities. The study underscores the potential for

these approaches in advancing personalized treatments and

understanding disease heterogeneity (27).

In a large population-based study, ML survival models,

developed from self-reported questionnaire data, slightly

outperformed traditional classification methods in predicting

hospitalization for ischemic HD and cardiovascular mortality,

with logistic regression being the top-performing classification

method. These models demonstrate promise as reliable tools for

screening and identifying individuals at high risk (28). Recent

healthcare research emphasizes the importance of early detection

of HD, focusing on assessing the Right Ventricle through MRI

image segmentation using ML and DL methods such as Fourier-

Convolutional Neural Networks (F-CNN), Vanilla CNN, and

ResNet. These techniques aim to improve accuracy in identifying

the right ventricle abnormalities and enhancing decision making

in HD treatment (29). Techniques like disease comorbidity

network-based temporal DL framework, which integrates disease

comorbidity networks and time-aware DL, enhance

cardiovascular risk prediction, especially in patients with mental

disorders (30).

Predictive models based on ML for assessing the risk of HD are

designed to perform consistently across various demographic

categories, such as gender and race. Techniques for mitigating

bias are crucial to address systematic biases in health data

collection and preprocessing, which can impact model

performance on different demographic sub-cohorts. These

models use electronic health records data and various ML

algorithms to ensure fairness and accuracy in HD risk prediction

across diverse populations (31). ML models, particularly RF with

Synthetic Minority Oversampling Technique (SMOTE), achieve

high accuracy (96.6%), sensitivity (90%), and specificity (100%)

in early prediction of cardiac disease using UCI heart dataset

(32). A novel multi-modal approach integrates ECG and PCG

features to predict HDs. Genetic algorithms optimize feature

subsets, and Support Vector Machine (SVM) classification

achieves an AUC of 0.936 (33).

ML plays a vital role in healthcare by leveraging extensive

datasets to predict HDs early, ensuring better detection and

treatment outcomes. Fusion models combining outputs from

multiple algorithms achieve high accuracy, reaching 93%–95% in

binary classification and 72%–75% in multiclass classification of

HD severity. This highlights their potential for early disease

identification and risk assessment in healthcare settings (34). The

“Sathvi” dataset, compiled from prevalent HD datasets, has

boosted prediction accuracy using ML classifiers like CatBoost,

achieving up to 98.11% accuracy through Cross-Validation (CV)

(35). Various ML algorithms applied to clinical and pathological

data, such as Gradient Boosting and XG, have shown that

categorical features consistently outperform numerical and

combined features, with SVM and AdaBoost achieving optimal

performance in CVD prediction (36). Predicting the risks of

CVD accurately during pregnancy is crucial for efficient

treatment. A hybrid system that combines the Sugeno Fuzzy

Inference System (S-FIS), Coefficient of Variation, and Fuzzy

Analytic Hierarchy Process (F-AHP) demonstrated high accuracy,

sensitivity, and precision, showing its potential in clinical settings

for predicting CVD during pregnancy (37).

Unlike prior models that rely heavily on individual classifiers or

lack interpretability, the proposed framework integrates RST for

efficient feature reduction, stacked ensemble learning for

enhanced robustness, and XAI techniques for improved

transparency. This holistic approach not only boosts predictive

performance but also supports clinical decision-making through

interpretability. Additionally, Table 6 provides a detailed
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quantitative comparison of our model against existing state-of-the-

art HD prediction methods, further justifying the proposed

methodological choices.

1.2 Motivation and novelty

Traditional methods for predicting HD often face challenges in

handling large volumes of data, high-dimensionality, and

uncertainty in feature selection. The motivation for the proposed

work arises from the need to improve prediction accuracy by

addressing these challenges by combining RST for feature

selection with ML techniques, and utilizing MCDM methods for

model ranking. The goal is to develop a robust framework that

enhances prediction accuracy by selecting the best-performing

model through RST-based feature selection and MCDM ranking

for HD prediction. The novelty of the proposed work lies in the

integration of advanced methodologies to address persistent

challenges in ML-based HD prediction:

1. The proposed work applies RST using Johnson’s algorithm to

reduce data dimensionality by identifying the most

informative features. This process enhances model accuracy

and interpretability by eliminating redundant attributes.

2. The framework evaluates nine diverse ML classifiers to

determine the most effective algorithms for HD prediction.

These classifiers are combined into five stacked ensembles

through correlation analysis.

3. The incorporation of MCDM techniques, specifically TOPSIS

with MEREC-based weighting, systematically ranks the

stacked models. This approach identifies the best-performing

stack for HD prediction, which is further optimized using

GridSearchCV to determine the most effective ML model.

Unlike traditional models that rely on individual classifiers or

simple ensembles, this integrated approach enhances prediction

accuracy, minimizes overfitting, and offers clearer insights into

feature importance through XAI techniques such as SHAP and

LIME. By integrating RST, diverse ML classifiers, and MCDM-

based ranking, the proposed work fills a critical research gap and

presents a scalable, robust framework with strong potential for

real-world clinical implementation in early HD detection.

2 Materials and methods

This section provides a comprehensive overview of the

methodology employed in this study, detailing the dataset used,

preprocessing steps, feature selection techniques, classifier

selection, MCDM ranking, and hyperparameter tuning.

2.1 Proposed methodology

This section proposes a hybrid intelligent Optimized RST-ML

approach with MCDM-Based Ranking for the diagnosis of HD.

A standardized benchmark HD dataset (IHD) from Kaggle (38)

was used to evaluate the efficiency of the proposed work. The

dataset comprises features extracted from multiple sources,

including data from Switzerland (Sd), Hungary (Hy), Cleveland

(Cv), and V Long Beach (Lb) as shown in Equation (1).

IHD ¼ <(Cv , Hy , Sd , Lb) (1)

RST analyses the large features set (IHD) using Johnson’s algorithm

to generate the minimal subset of attributes (ORHD) to enhance the

classification ability which is shown in Equation (2)

ORHD ¼ fRST (IHD) (2)

The selected features (OHD) are pre-processed with Standardscaler,

resulting in the scaled features as shown in Equation (3). This

process ensures consistent feature scaling and mitigates the

impact of outliers.

ORpp ¼ f pp(OHD) (3)

The optimal pre-processed features (ORpp) are classified using

various ML classifiers OCL including XG, AdaBoost (AB),

Logistic Regression (LR), K- Nearest Neighbor (KNN), SVM,

Naïve Bayes (NB), Decision Tree (DT), RF, and Extra Trees

(ET). This classification process is described in Equation (4).

OCL ¼ fCL(LR, KNN , SVM, NB, DT , RF, XG, AB, ET) (4)

The classification results are evaluated using metrics such as

Sensitivity (Sn), F1-score (F1), Specificity (Sp), MCC, MAE,

accuracy (Ac), precision (Pr), and training time (Tt). These

metrics are represented by OMHD and are given in Equation (5).

OHD ¼ ORpp (OCL (MetricsAc, Pr,Sp,Sn, F1,MCC, MAE, Tt ) (5)

To improve the overall performance and robustness of the

predictive model, different stacks (Osi ) based on correlation

analysis (OCA) has been proposed as shown in Equation (6).

These stacks Osi includes multiple models, resulting in improved

accuracy, reduced overfitting, increased flexibility, enhanced

stability, and reduced model bias. These stacks Osi will be used

to evaluate the classification performance of CD.

Osi ¼ fsi (OMHD) where i [ 1 to 5 (6)

MCDM offers a robust framework for addressing complex

decision-making scenarios involving multiple classification

accuracies obtained by the different stacked models Osi , often

characterized by conflicting criteria. By integrating diverse

criteria into the decision-making process, MCDM ensures that

decisions are balanced, transparent, and justifiable. In this

context, TOPSIS is employed to evaluate and rank the stacks Osi ,

facilitating the identification of the optimal stack (OBS) for the
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accurate prediction of HD, as shown in Equation (7).

OBS ¼ fMCDM(Osi ) (7)

The classifiers in the optimal stack OBS, are refined using

GridSearchCV to optimize hyperparameters by exploring various

parameter combinations, ultimately identifying the best classifier

(OBC) for predicting HD. The corresponding equation is

provided in Equation (8). The architecture of the proposed

optimized RST-ML approch is illustrated in Figure 1.

OBC ¼ fOp(OBS) (8)

2.2 Dataset description

The Kaggle HD dataset (IHD), sourced from https://www.

kaggle.com/datasets/johnsmith88/heart-disease-dataset, was used

in this investigation (38). This dataset aggregates records from

four medical institutions: Sd , Hy , Cv , and Lb. Of the original 76

attributes, a standardized subset of 14 clinically relevant features

and a final subset of 303 complete records was selected,

primarily from the Cleveland database, which contains no

missing values, as adopted in most published studies, to ensure

comparability, yielding. This refined dataset improves

interpretability and robustness for model training and evaluation.

The output label classifies patients into two categories: 1

indicates the presence of cardiac disease, and 0 indicates its

absence. These diagnostic labels were determined through clinical

evaluation methods, including electrocardiographic results and

stress testing. The selected features encompass critical clinical

indicators such as age, blood pressure, cholesterol levels, chest

pain type, and other parameters commonly used in cardiac risk

prediction. A detailed description of these attributes in the HD

dataset is provided in Table 1.

2.3 Johnson’s algorithm

Numerous applications of RST have shown it to be effective,

including data reduction, identifying hidden trends in data,

assessing the significance of data, and creating sets of decision

rules based on data (39). To identify the most significant features

for analysis, Johnson’s Algorithm of RST is used. The Johnson’s

Algorithm also known as Johnson Reducer, uses a simplified

greedy method to find a single reduct R. Johnson (40) pointed

out that this approach typically finds a minimal-length prime

implicant. Until an ideal subset, or reduct, is found, the

algorithm iteratively chooses the most important feature that

enhances object distinguishability and updates the attribute set.

The group of sets associated with the discernibility function is

represented by Q, and the weight assigned to each set Q in Q is

provided by w(Q), which is automatically calculated from the data.

RST was chosen over modern feature selection methods for its

ability to handle uncertainty and imprecision without prior

assumptions or parameter tuning. It identifies minimal subsets of

attributes based on data dependencies, offering high

interpretability and transparency which is critical in healthcare

FIGURE 1

Overall architecture of the proposed work.
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applications. Compared to statistical or black-box techniques like

Lasso or embedded models, RST provides a rule-based,

explainable framework while preserving classification accuracy

during dimensionality reduction. This makes RST, and Johnson’s

Algorithm in particular, a robust and suitable choice for the

proposed HD prediction model. Algorithm 1 outlines the steps

involved in Johnson’s reducer of RST.

2.4 Dataset preprocessing

The significant features ORHD, obtained from Johnson’s

Algorithm of RST was preprocessed using the StandardScaler

technique to ensure uniformity in feature scales and improve

model training. StandardScaler standardizes data by subtracting

the mean and dividing by the standard deviation, as shown in

z ¼
x � �x

s

� �

(9)

where x is the original feature value, �x is the mean, and s is the

standard deviation.

This preprocessing step ensures that all features contribute equally

to the model, eliminating biases caused by differences in scale. By

enhancing convergence during training and mitigating the influence

of outliers, StandardScaler improves model performance, resulting in

more robust and reliable predictions. The dataset was divided into an

80:20 train-test split ratio, with 80% of the data allocated for training

the model and 20% reserved for testing its performance to evaluate

and identify the most effective model.

2.5 Machine learning models

This section highlights various ML algorithms, each chosen for

its unique ability to process diverse data types. ML models have

become essential tool for predicting HD due to their capability to

analyse complex datasets and uncover valuable insights.

LR offers simplicity and interpretability for binary classification

(41) but assumes linear relationships, which can limit its

performance on complex data. KNN, a non-parametric method

based on proximity (42), is intuitive but sensitive to noise and suffers

in high-dimensional spaces. SVM provides robust classification in

high-dimensional settings (43), yet is computationally intensive and

requires careful kernel tuning. NB, though efficient (44), relies on the

unrealistic assumption of feature independence. DT, valued for their

transparency (45), are prone to overfitting; hence, ensemble

approaches were used to improve generalization. These limitations

were addressed using feature scaling, selection, and cross-validation.

To enhance performance and mitigate overfitting, ensemble

models including RF, AB, XG, and ET were incorporated. RF

reduces variance through bagging (46) but at the cost of

interpretability. XG, known for its high accuracy, incorporates

L1/L2 regularization (47) but requires extensive tuning. AB

adapts to misclassified instances for improved robustness (48),

though it is sensitive to noisy labels. ET increases diversity via

random splits (49), but excessive randomness may cause

instability in small datasets. Each model contributed unique

strengths across varying data complexities, allowing a

comprehensive evaluation of HD risk prediction (50, 51).

2.6 Classifier selection and stacking strategy

The classifiers for stacking were chosen based on Pearson

correlation analysis to ensure diversity and complementarity. Five

distinct stacks were created, each with specific combinations of

classifiers designed to optimize performance. Stack-1 (Hybrid

Stack) combines LR, KNN, and SVM, which are highly

correlated and offer similar performance. Stack-2 (Tree and

Probabilistic Stack) integrates NB, DT, and RF, with NB adding

TABLE 1 Detailed attribute description of the heart disease dataset.

Feature Description Range Type

Age Patient’s age in completed years. 29–77 Numeric

Sex Patient’s gender (male = 1, female = 0). 0, 1 Nominal

Cp Type of chest pain: 1 = Typical angina,

2 = Atypical angina, 3 = Non-anginal pain,

4 = Asymptomatic.

1–4 Nominal

Trestbps Resting blood pressure in mmHg at the time of

admission to the hospital.

94–200 Numeric

Chol Serum cholesterol in mg/dl. 126–564 Numeric

Fbs Fasting blood sugar > 120 mg/dl (1 = Yes,

0 = No).

0, 1 Nominal

Restecg Resting electrocardiogram results: 0 = Normal,

1 = ST-T wave abnormality (e.g., T-wave

inversion or ST elevation/depression > 0.05

mV), 2 = Left ventricular hypertrophy by Estes’

criteria.

0–2 Nominal

Thalach Maximum heart rate achieved. 71–202 Numeric

Exang Exercise-induced angina (0 = No, 1 = Yes) 0, 1 Nominal

Oldpeak ST depression induced by exercise relative to

rest.

0–6.2 Numeric

Slope Slope of the peak exercise ST segment:

1 = Upsloping, 2 = Flat, 3 = Downsloping.

1–3 Nominal

Ca Number of major vessels (0–3) colored by

fluoroscopy.

0–4 Numeric

Thal Status of the heart: 3 = Normal, 6 = Fixed

defect, 7 = Reversible defect.

3, 6, 7 Nominal

Target HD diagnosis: 0 = No disease, 1 = Presence of

disease

0–1 Nominal

Algorithm 1 Johnson’s Algorithm for finding reducts RST.

Input: Information table or Decision Table, I ¼ (U , A)

Output: REDA # A of all reducts of A

Step 1: Initialize the reduct set R as an empty set

R ¼ ;

Step 2: Find the attribute a that maximizes the sum of weights
P

w(Q), where the

sum is taken over all sets Q in Q that contain a.

a ¼ argmaxa[Attributes
X

Q [ Q
a [ Q

w(Q)

Step 3: Add attribute a to R to maximize the weight sum

R ¼ R < {a}

Step 4: Remove all sets Q from Q that contain a to avoid redundant calculation.

Q ¼ Q� { Qj a [ Q}

Step 5: If Q ¼ ;, return R. If not, return to step 2.
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diversity due to its lower correlation with tree models. Stack-3

(Boosted Stack) includes XG, AB, and ET, which are highly

correlated to strengthen combined effect, with AB providing

unique performance benefits. Stack-4 (Advanced Tree-Based

Stack) leverages the high correlations among DT, RF, XG, AB,

and ET, maintaining robustness. Stack-5 (Unified Stack)

incorporates all nine models to cover a wide range of correlations

and performance traits. This stacking approach enhances

performance by combining multiple classifiers, allowing the

meta-model to improve predictions by learning which base

models are most reliable in specific scenarios. Correlation

analysis ensures the base model’s errors are sufficiently diverse,

maximizing the benefits of stacking. The strategy significantly

improves prediction accuracy and generalization by leveraging

the complementary strengths of various classifiers, thus

enhancing the overall model’s robustness.

2.6.1 Correlation analysis

Correlation analysis, denoted as OCA, measures the linear

relationship between predictions from different classifiers to

ensure diversity in stacking. The proposed work utilizes Pearson

correlation to identify and group classifiers based on their

performance similarity, aiming to balance diversity and

complementarity in each OSi for optimal performance. The

procedure for correlation analysis is detailed in Algorithm 2.

2.6.2 Stacked classifier
Stacking, or stacked classifiers (52), is an ensemble learning

technique that combines several Base Classifiers (BC) through a

Meta-Classifier (MC) to improve performance. This approach

trains multiple models on the same data and uses their

predictions as inputs for a meta-model, which leverages the

strengths of each model while mitigating its weaknesses. The

principle is that no single algorithm is optimal for all problems.

If {h1, h2, . . . , hn} are base classifiers and H is the meta-

classifier, the final prediction ŷ is given by Equation (10)

H (h1(x), h2(x), . . . , hn (x)) (10)

where x is the input feature vector.

In the proposed work, different stacks OSi is employed to

identify the best prediction model for predicting HD. Figure 2

illustrates each phase of the OSi , detailing the process from base

model training to final predictions.

The Algorithm 3 provided below outlines the sequential steps

involved in combining the predictions of multiple base models to

produce the final output.

2.7 MCDM ranking

To refine the selection of the best-performing stack OBS, a

MCDM approach is implemented, addressing the challenge of

repeated accuracy values across stacked classifiers OSi . By

incorporating multiple evaluation metrics including Sn, F1, Sp,

MCC, MAE, Ac, Pr and Tt, a comprehensive and balanced

assessment is ensured. MCDM enables a detailed comparison across

these criteria, fostering robust and well-informed decision-making.

Although AUC is a commonly used and intuitive metric in

healthcare for measuring a model’s ability to discriminate between

classes, it captures only one dimension of performance. The

proposed work employs MCDM ranking to evaluate models

across multiple metrics simultaneously, including

Acc, Pr, Rc, F1, MCC, MAE and Tt. This approach provides a

comprehensive evaluation framework that accounts for various

aspects of model performance, reflecting the complex trade-offs

often encountered in clinical decision-making. For example, a

model with a high AUC might have suboptimal recall or precision,

which could have important implications in patient diagnosis

or treatment.

To facilitate understanding among healthcare professionals, the

MCDM rankings was presented alongside detailed explanations of

each contributing metric, thereby ensuring transparent and

actionable insights that extend beyond the scope of AUC alone.

Specifically, the TOPSIS method is used for ranking the stacks,

and the MEREC method is employed for objective criteria weighting.

2.7.1 MEREC weighting method
The MEREC method, introduced by Keshavarz-Ghorabaee

et al., calculates criteria weights by evaluating the influence of

each criterion on the performance of alternatives (53). This

method assigns higher weights to criteria with a more significant

impact, ensuring an objective weighting process. The steps of

MEREC are outlined in Algorithm 4:

Algorithm 2 Grouping ML models as Stacks based on OCA.

Input: RST – ML metrics (OMHD)

Output: Different stacks (OSi )

Step 1: Imputation of Performance metrics as matrix

X ¼ Mij , where 1 � i � 9 & 1 � j � 8

where i represents model and j represents performance metrics.

Step 2: Compute Correlation Coefficients

Step 2.1: Covariance Calculation

Cov(Xi , Xj) ¼

Pn
k¼1 (Xik � Xi)(X jk � Xj)

n� 1

Step 2.2: Variance Calculation

Var (Xi) ¼

Pn
k¼1 (Xik � Xi)

2

n� 1

Var (Xj) ¼

Pn
k¼1 (X jk � Xj)

2

n� 1

Step 2.3: Pearson Correlation Coefficient

rij ¼
Cov(Xi , Xj)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var (Xi)� Var (Xj)
p

Step 3: Compute Correlation Matrix

CM ¼ Cij , where 1 � i � 8 & 1 � j � 8

Step 3.1: Interpretation

Step 3.1 (a): High Positive Correlation (0 , c � 1)

Step 3.1 (b): Zero Correlation (c ¼ 0)

Step 3.1 (c): Negative Correlation (�1 � r , 0)

Step 4: Group Classifiers into stacks based on Correlation

OSi , where 1 � i � 5
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2.7.2 TOPSIS alternative assessment

Once the criteria weights (wr) are determined using MEREC,

the stacks OSi are ranked using the TOPSIS method. Developed

by Hwang and Yoon in 1981, TOPSIS evaluates alternatives

based on their proximity to an ideal solution (positive ideal) and

FIGURE 2

Overview of stacking classifier.

Algorithm 3 Performance evaluation of Stacking classifiers.

Input: RST preprocessed dataset (ORpp)

Output: Performance of Stacked classifiers (OSiMHD
)

Step 1: Data Imputation

X ¼ ORpp

Step 2: Split Dataset

XS ¼ (Xtrain , Xtest , ytrain , ytest ) ¼ S(X, y, 0:2, RS ¼ 42)

Step 3: Define Stacks

Step 3.1. Stack 1 – Hybrid Stack

BC1 ¼ {LRORpp
, KNNORpp

, SVMORpp
}; MC1 ¼ Mmeta, 1

Step 3.2. Stack 2 – Boosted Stack

BC2 ¼ { NBORpp
, DTORpp

, RFORpp
}; MC2 ¼ Mmeta, 2

Step 3.3. Stack 3 – Tree and Probabilistic stack

BC3 ¼ {XGORpp
, ABORpp

, ETORpp
}; MC3 ¼ Mmeta, 3

Step 3.4. Stack 4 – Advanced tree-based stack

BC4 ¼ { DTORpp
, RFORpp

, XGORpp
, ABORpp

, ETORpp
}; MC4 ¼ Mmeta, 4

Step 3.5. Stack 5 – Unified stack

BC5 ¼ {LRORpp
, KNNORpp

, SVMORpp
, NBORpp

, DTORpp
, RFORpp

, XGORpp
, ABORpp

, ETORpp
};

MC5 ¼ Mmeta, 5

Step 4: Train and evaluate each stack Si (i ¼ 1 to 5)

Step 4.1: BC

Ŷtrain, i ¼ [CLi,j(Xtrain) for j in BCi]; Ŷtest, i ¼ [CLi,j(Xtest ) for j in BCi]

Step 4.2: Combine predictions from BC

Xmeta, train, i ¼ Ŷtrain, i ; Xmeta, test, i ¼ Ŷtest, i

Step 4.3: Train MC

Mmeta, i : fit (Xmeta, train, i , ytrain)

Step 4.4: Predict using MC

Ŷmeta, i ¼ Mmeta, i : predict (Xmeta, train, i)

Step 5: Performance evaluation

SiMHD ¼ fYmeta, i(Metrics Acc, Pr,Rc,F1,MCC, MAE, Tt)

Algorithm 4 MCDM Criteria weight calculation.

Input: SiMHD
as Decision matrix (dm)

Output: Criteria weight (wr)

Step 1: Establish the Principal dm

dm ¼ [str] ¼
s11 . . . s1r
. . . . . . . . .

st1 . . . str

2

4

3

5 , where 1 � t � m ,

1 � r � n

Step 2: Normalization of dm

Ntr ¼
min xtr
xtr

, if r is a beniteficial creria

Ntr ¼
xtr

max xtr
, if r is a non� beniteficial creria

Step 3: Determine the Alternative’s Overall Performance (Pt )

Pt ¼ ln 1þ
1

m

X

r

jln (ntr)j

 ! !

Step 4: Re-evaluate the performance of each Pt by excluding the impact of each

criterion.

P0
tr ¼ ln 1þ

1

m

X

l,l=r

jln (ntr)j

 ! !

Step 5: Calculate Absolute Deviations (Ad)

Adr ¼
X

t

jP0
tr � Pt j

Step 6: Determine Criteria Weights (wr)

wr ¼
Adr
P

r
Adr
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their distance from a worst-case scenario (negative ideal) (54). This

ensures that the chosen Stack OBS exhibits optimal performance

across all criteria. The steps of TOPSIS, are outlined in

Algorithm 5:

2.8 Gridsearchcv for hyperparameter tuning

To identify best classifier OBC for HD prediction, the top-

performing stack OBS, determined through MCDM-TOPSIS

ranking, undergoes hyperparameter optimization using

GridSearchCV (55). GridSearchCV systematically explores

predefined hyperparameter ranges for each classifier within OBS,

optimizing parameters such as learning rate, tree depth, and

regularization strength. Leveraging CV, it evaluates parameter

combinations to balance overfitting and underfitting, ensuring

robust model performance. Each classifier in OBS is fine-tuned

individually, and the one achieving the highest validation score

post-tuning is selected as OBC . This comprehensive process

ensures that the best-performing classifier is identified,

optimized, and validated, resulting in a reliable and accurate

predictive model for HD prediction. The detailed process of

ranking and optimization of stacked classifiers using MCDM-

TOPSIS and GridSearchCV is provided in Figure 3.

2.9 Statistical Analysis

The model’s performance is assessed using various standard

metrics, including Ac, Pr, Sn, Sp, F1, MCC, MAE and Tt. To

compare the performance across different classifiers, statistical

tests such as paired t-tests and Wilcoxon signed-rank tests

are applied.

3 Research findings

This section presents the key findings of the study, including

RST-based feature selection using Johnson’s algorithm,

evaluations of ML models OCL , performance analysis of stacked

models OSi , MCDM-TOPSIS ranking, and GridSearchCV

optimization of the top ranked stack OBS.

3.1 Experimental setup

The experiments were conducted using ROSETTA for RST

feature selection, Python for ML model development, and

MATLAB for MCDM-TOPSIS ranking. The model training and

optimization were performed in Google Colab, a cloud-based

Jupyter notebook environment, utilizing PyTorch for ML

implementation. The system used for training was equipped with

a 12th Gen Intel Core i3-1215U processor (1.20 GHz) and 8 GB

RAM, ensuring efficient data processing and optimal

performance for HD prediction.

3.2 Correlation heat map of HD dataset

Figure 4 displays a heat map which presents a correlation

matrix of the features in the HD dataset. The correlations

between feature pairs are shown visually in this depiction, where

the color intensity corresponds to the direction and strength of

the correlation coefficients. This heat map serves as a valuable

tool for exploring and understanding the intricate relationships

between different features in the dataset, guiding subsequent data

preprocessing and modeling steps.

3.3 Feature selection using rough set theory

Feature selection in this study was carried out using RST, which

utilizes the concept of reducts to identify the most important

features. The aim of this process was to reduce the

dimensionality of the dataset while preserving the critical

attributes needed to predict HD. To achieve this, Johnson’s

algorithm is applied within the ROSETTA software, a widely

recognized method in RST for identifying the minimal set of

features that maintain the decision-making capability of the

dataset. The original dataset contained 14 features, but after

applying RST-based feature selection, only three features namely,

Age, resting blood pressure and serum cholesterol was selected.

Algorithm 5 Ranking Alternatives based on TOPSIS.

Input: SiMHD
as Decision matrix (dm)

Output: Rank r

Step 1: Establish dm

dm ¼ [str] ¼
s11 . . . s1r
. . . . . . . . .

st1 . . . str

2

4

3

5 , where 1 � t � m ,

1 � r � n

Step 2: Normalizing dm (Ndm) with Vector Normalization

rtr ¼
xtr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

t¼1 x
2
tr

p

Step 2: Compute the weighted Ndm.

utr ¼ rtr � wr , where 1 � t � m , 1 � r � n

U ¼
u11 . . . u1n
. . . . . . . . .

um1 . . . umn

2

4

3

5

Step 3: Identify the positive (Aþ) and negative (A�) ideal solutions.

Aþ¼{(max utr j r [ R), min vtr j r [ R0}
A�¼{(min utr j r [ R), max vtr j r [ R0}

Step 4: Calculate separation measures of positive (Sþt ) and negative (S�t ) ideal

solutions.

Sþt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

t¼1

(utr � uþr )
2

s

S�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

t¼1

(utr � u�r )
2

s

Step 5: Determine the relative closeness from the ideal Solution (Ct )

Ct ¼
S�t

(S�t þ Sþt )

Step 6: Rank (r) the alternatives according to preference order.
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FIGURE 3

Ranking and optimization of stacked classifiers using MCDM-TOPSIS and gridSearchCV.

FIGURE 4

Correlation matrix heatmap of the HD dataset.
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This reduction in features simplifies the model, improves

computational efficiency, and lowers the risk of overfitting, while

maintaining the essential predictive power. These selected

features were then used for model training and evaluation,

ensuring that the model focused on the most influential variables

for accurate HD prediction.

3.4 Model performance evaluation for HD
prediction using Ml

After selecting the most significant features through RST, the

dataset was preprocessed and used to train several ML models,

OCL . The performance of these models is presented in Table 2

which provide valuable insights for further model enhancement

through techniques like hyperparameter tuning and stacking.

3.5 Enhancing HD prediction through
stacking

To improve HD prediction accuracy, stacked ensemble learning

was applied. The base learners for these stacking models were

carefully selected through Pearson correlation analysis OCA,

ensuring a balance between diversity and complementarity.

Figure 5 presents the Pearson Correlation Matrix, illustrating

performance relationships across models, while Table 3 shows

the results of stacking classifiers that combine multiple ML models.

3.6 MCDM –TOPSIS approach

The results from the stacking models in Table 3 shows that

Stack-2 to Stack-5 exhibit very similar performance across most

metrics, while Stack-1 has lower performance across all metric.

The TOPSIS-based MCDM technique was employed to identify

the top-performing stack. Table 3 serves as the primary decision

for the analysis. Weights were assigned to each criterion using

the MEREC method, which measures the impact of removing a

criterion on overall performance. This approach ensures that the

weight assignment reflects the significance of each criterion in

the decision-making process. The criteria weights determined by

the MEREC approach are shown in Table 4.

These weights were then incorporated into the weighted

normalization process, forming the foundation for the subsequent

TOPSIS steps. The results of the TOPSIS analysis, depicted in

Figure 6, reveal that Stack-4 stands out as the optimal model,

achieving the highest score of 0.8933. This score reflects its superior

predictive performance and robustness compared to the other stacks.

3.7 Hyperparameter tuning and
performance evaluation of stack 4

To find the best ML classifier, OBC , from Stack – 4,

GridSearchCV is utilized to tune hyperparameters. This method

systematically explores various combinations and uses CV to

evaluate performance. By identifying the optimal

hyperparameters, GridSearchCV ensures selection of the best-

performing ML model. The results of this comprehensive

evaluation are presented in Table 5.

Figure 7 presents a detailed comparison of the metrics across

the models in Stack-4, underscoring the effectiveness in

identifying the top classifier. It shows that XG is the highest-

performing model among other models in Stack 4.

3.8 Statistical and practical evaluation of
model performance

To assess the statistical significance of performance differences

between the models, paired t-tests and Wilcoxon Signed-Rank tests

was conducted. The results revealed no statistically significant

differences, with all p-values being greater than 0.05. While

trends were observed, such as a p-value of 0.09097 for the

comparison between DT and XG, these were not strong enough

to reject the null hypothesis. From a practical standpoint, XG

excelled in terms of Ac, F1, MCC, and MAE. Moreover, XG

demonstrated an impressive Tt of just 0.04 s, considerably faster

than other models. Although the statistical tests showed no

significant differences between the models, the superior

performance of XG, coupled with its fast Tt , makes it the ideal

choice for this task. Therefore, the final model selection is

influenced by performance metrics and the practical

considerations such as training efficiency and ease of

interpretation, with XG standing out as the optimal model.

TABLE 2 Results of ML models.

S. No. Model Ac Pr Sp Sn F1 MCC MAE Tt

1 LR 0.62 0.65 0.64 0.60 0.63 0.24 0.38 3.28

2 KNN 0.90 0.93 0.92 0.88 0.91 0.81 0.10 0.16

3 SVM 0.61 0.66 0.69 0.54 0.59 0.23 0.39 0.31

4 NB 0.63 0.68 0.69 0.58 0.63 0.27 0.37 0.04

5 DT 0.98 0.98 0.97 0.98 0.98 0.95 0.02 0.37

6 RF 0.98 0.98 0.97 0.98 0.98 0.95 0.02 13.3

7 XG 0.92 0.89 0.87 0.97 0.93 0.85 0.08 2.16

8 AB 0.73 0.74 0.71 0.75 0.75 0.46 0.27 4.56

9 ET 0.98 0.98 0.97 0.98 0.98 0.95 0.02 7.03
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3.9 Interpretability of the prediction model
using SHAP and LIME

After selecting XG as the best model for HD prediction, SHAP

and LIME is used for model interpretability to ensure its decisions

are based on the right features. SHAP’s summary, dependence, and

force plots highlight key features and their impact on

predictions, while LIME’s bar plots provide detailed explanations

for individual predictions, especially in edge cases. These

techniques help validate the model’s behaviour, ensuring it aligns

with domain knowledge and can be trusted for real-

world applications.

TABLE 3 Performance evaluation of the stacking classifiers.

Model Ac Pr Sp Sn F1 MCC MAE Tt

Stack – 1 0.75 0.74 0.79 0.70 0.76 0.49 0.25 0.17

Stack – 2 0.98 0.96 1.00 0.96 0.98 0.96 0.02 1.33

Stack – 3 0.98 0.96 1.00 0.96 0.98 0.96 0.02 1.83

Stack – 4 0.98 0.96 1.00 0.96 0.98 0.96 0.02 0.59

Stack – 5 0.98 0.96 1.00 0.96 0.98 0.96 0.02 3.16

FIGURE 5

Pearson correlation matrix of the performance metrics.

TABLE 4 Criteria Weights determined by the MEREC Method.

Method Ac Pr Sp Sn F1 MCC MAE Tt

MEREC 0.0669 0.0683 0.0732 0.0574 0.0695 0.0496 0.2264 0.3685
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3.9.1 SHAP interpretation

The SHAP summary plot in Figure 8 provides a concise

overview of feature importance across all data points. It ranks

features by their influence on the model’s predictions for HD

risk, with “chol” as the most impactful, followed by “age” and

“trestbps”. Each point represents a sample, with the x-axis

showing the SHAP value, indicating the feature’s contribution to

risk: positive values increase risk, while negative values decrease

it. The color gradient reflects feature values, highlighting trends

like higher cholesterol levels being strongly associated with

increased risk.

Figure 9 reveals a clear negative correlation between cholesterol

levels and their impact on model predictions. As cholesterol values

increase along the x-axis, their corresponding SHAP values

generally decrease on the y-axis, indicating that higher

cholesterol levels contribute more strongly to predicting HD risk.

Lower cholesterol values tend to have positive SHAP values,

suggesting they decrease HD risk, while higher cholesterol values

generally have negative SHAP values, indicating increased risk.

The vertical spread of points at each cholesterol level and the

variation in colours further emphasizes that the relationship

between cholesterol and HD prediction is complex and

moderated by other factors in the model.

SHAP force plot explains the contribution of each feature to a

single prediction. It highlights how each feature contributes

positively or negatively to the model’s prediction, allowing users

to understand why a particular instance is classified as “high

risk” or “low risk” for HD. The force plot shows the aggregated

contribution of each feature towards the model’s final prediction,

which is crucial for interpreting individual predictions. Figure 10

explains a single prediction, showing how the model’s base value

of 0.5 is adjusted to a final output of −2.65 by three feature

contributions. The blue segments represent features lowering the

HD risk, with their cumulative effect resulting in a low-risk

prediction. This plot provides a clear, quantitative breakdown of

how each feature impacts the final prediction.

3.9.2 LIME interpretation

LIME offers a local explanation for a single prediction, showing

the importance of features for that specific prediction. In bar plots,

features are ranked according to their contribution to the

prediction, which can be particularly useful in understanding the

reasons behind misclassifications. Figure 11 highlights the

contributions of three features to a specific HD prediction. Age

has the strongest negative impact (−0.2462), significantly

reducing risk, followed by blood pressure with a moderate

negative effect (−0.1243). Cholesterol contributes slightly

positively (+0.0786), marginally increasing risk. The normalized

feature ranges and impact magnitudes (−0.25 to 0.05) collectively

point to a low-risk classification, offering a clear, interpretable

explanation for this individual prediction.

3.10 Performance evaluation of proposed
model with state-of-the-art models

A comprehensive comparison of state-of-the-art techniques for

HD prediction is presented, highlighting their methodologies,

strengths, limitations, and accuracies. These approaches range

from traditional ML models to advanced hybrid techniques, with

a particular focus on feature selection strategies and dataset

utilization. Notably, the proposed Optimized RST-ML model

demonstrates superior accuracy, combining RST, ML, stacked

ensemble, and MCDM. This hybridized approach, which has not

been previously proposed for HD prediction in the literature,

offers a novel and robust solution for HD detection and clinical

decision-making. The detailed comparison of these techniques is

provided in Table 6.

3.11 Proposed model validation with
different open source datasets

The proposed Optimized RST-ML approach with MCDM-

based ranking was evaluated across multiple open-source datasets

to validate its efficiency in HD prediction. The datasets utilized

for validation include the Obesity Levels dataset, Breast Cancer

FIGURE 6

Performance score of TOPSIS.

TABLE 5 Performance metrics of ML models in STACK- 4 tuned with gridSearchCV.

Model Ac Pr Sp Sn F1 MCC MAE Tt

DT 0.9773 0.9756 0.9816 0.9724 0.9786 0.9544 0.0227 0.003

RF 0.9773 0.9756 0.9816 0.9724 0.9786 0.9544 0.0227 0.19

XG 0.9870 0.9760 1.00 0.9724 0.9879 0.9742 0.0129 0.04

AB 0.7825 0.7892 0.8037 0.7586 0.7964 0.5630 0.2175 4.56

ET 0.9773 0.9756 0.9816 0.9724 0.9786 0.9544 0.0227 7.03

The bold values highlight the best results, obtained by XG, across each evaluation metric.
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FIGURE 7

Metrics-wise performance comparison of stack-4 models.

FIGURE 8

SHAP summary plot.
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FIGURE 9

SHAP dependence plot for cholesterol.

FIGURE 10

SHAP force plot for a single prediction.

FIGURE 11

LIME bar plot for individual prediction.
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Wisconsin Diagnostic dataset, and CKD dataset. These datasets

were chosen due to their varying characteristics, allowing for a

comprehensive assessment of the proposed method’s robustness.

The Obesity Levels dataset (56) comprises 2,111 records

collected from Mexico, Peru, and Colombia. It includes 17

attributes related to eating habits and physical activities, classifying

individuals into different obesity levels. A significant portion

(77%) of this dataset was synthetically generated using the

SMOTE technique, while the remaining 23% was collected directly

from users via a web platform. The dataset provides a real-world

scenario with categorical, binary, and continuous features, making

it a challenging yet valuable resource for obesity classification.

The Breast Cancer Wisconsin Diagnostic dataset (57) contains

569 instances and 30 real-valued features extracted from digitized

images of fine needle aspirates of breast masses. These features

describe the characteristics of cell nuclei and are used to classify

tumors as benign or malignant. The dataset does not contain

missing values, making it suitable for evaluating the classification

accuracy of various ML models.

The CKD dataset (58) consists of 400 records and 25 features,

including critical health indicators such as red blood cell count,

white blood cell count, and blood pressure levels. The target

variable, “classification,” indicates whether a patient has CKD or

not. The dataset required preprocessing due to missing values,

and all rows containing NaNs were removed as per standard data

cleaning protocols. This dataset is particularly relevant to the

study due to its medical nature and direct implications for HD

prediction. The performance of the proposed method was

validated using these datasets by evaluating key performance

metrics. The results are presented in the Table 7.

The proposed approach achieved outstanding performance. The

Obesity Levels dataset, the model attained 95.51% accuracy,

demonstrating its effectiveness in handling synthetic and real-world

data. The Breast Cancer Wisconsin dataset yielded 98.33% accuracy,

indicating the model’s ability to distinguish between benign and

malignant tumors. Finally, for the CKD dataset, the model achieved

an accuracy of 96.49%, proving its capability in medical diagnostics.

These results highlight the effectiveness of the proposed Optimized

RST-ML approach in various domains, particularly in medical and

health-related datasets, showcasing its potential for real-world

applications in disease prediction and classification.

4 Discussion

The proposed work demonstrates the potential of a stacked

ensemble model combined with RST for accurate and

interpretable prediction of HD risk. Several important

methodological choices and limitations are discussed below,

alongside directions for future research.

The adoption of RST for feature selection over modern feature

selection techniques due to its inherent ability to handle

uncertainty and imprecision without requiring prior data

assumptions or parameter tuning. Unlike statistical or embedded

methods such as Lasso, RST identifies minimal attribute subsets

(reducts) based on data dependencies, thereby preserving

classification accuracy while offering high interpretability and

transparency which is critical in healthcare applications. Compared

to statistical or black-box techniques like Lasso or embedded

models, RST provides a rule-based, explainable framework while

preserving classification accuracy during dimensionality reduction.

This makes RST, and Johnson’s Algorithm in particular, a robust

and suitable choice for the proposed Optimized RST-ML model.

TABLE 6 Comparison of the proposed model with state-of-the-art models for HD prediction.

S.
No.

Reference Technique Advantages Limitations/future work Accuracy
(%)

1 Narayanana (32) RF with SMOTE High accuracy, sensitivity, and specificity

in cardiac disease prediction using UCI

heart dataset.

Focused only on the UCI dataset;

more diverse datasets should be

evaluated.

96.6

2 Ma et al. (20) FlexiPulse sensor with ML Accurate and affordable wearable tech for

HD monitoring; uses ML for diagnostics

Needs large-scale validation for real-

world implementation.

98.7

3 Kanagarathinam et al.

(35)

Hybrid dataset with CatBoost Achieved high accuracy using CV on the

“Sathvi” dataset

Limited exploration of alternative

classifiers and datasets.

98.11

4 Faizal et al. (22) XG for heart failure prediction Promising results for early mortality

estimation and public health enhancement

Limited accuracy; opportunities

exist to improve generalizability and

robustness.

86.36

5 Li et al. (33) Fusion models for CVD severity

prediction

High accuracy in binary and multiclass

classification, leveraging outputs from

multiple algorithms.

Requires scalability and validation

with larger datasets.

93–95 (binary);

72–75

(multiclass)

6 Proposed Optimized

RST-ML Model

Integrating RST for feature selection

with diverse ML classifiers and

MCDM techniques.

Efficient feature selection with RST and

enhanced accuracy through MCDM-based

ranking (TOPSIS).

Needs validation on broader

datasets and real-world clinical

scenarios.

98.70

TABLE 7 Performance comparison of the proposed method on
different datasets.

Parameters Obesity
levels

Breast cancer
Wisconsin

Chronic
kidney disease

Ac(%) 95.51 98.33 96.49

Pr 0.94 0.98 0.95

Sn 0.95 0.99 0.95

F1 0.94 0.98 0.95

MCC 0.93 0.97 0.92

MAE 0.09 0.03 0.03

Tt (s) 0.23 0.06 0.12
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To ensure the robustness of the ensemble learning framework,

each base model in the best-performing stack, Stack 4, was

independently optimized using GridSearchCV. However, due to

computational constraints and the complexity of hierarchical

model tuning, hyperparameter optimization was not extended to

the other stacked ensembles. Fine-tuning the final stacked models

could potentially enhance predictive performance and may also

influence the outcomes of the MCDM-TOPSIS ranking

procedure used for model selection. Future work will investigate

this possibility to assess whether ensemble-level optimization

yields improved or different performance rankings.

Although the current analysis is limited to clinical datasets, the

growing importance of non-invasive and wearable sensor data in

cardiovascular health monitoring is recognized. Real-time data

streams from such technologies could significantly enrich early

detection and personalized risk stratification. Future research will

incorporate these emerging data sources to enhance the clinical

relevance and dynamic applicability of the proposed framework.

Furthermore, Country-level validation could offer deeper

insights into model generalisability, as differences in population

health indicators, healthcare systems, and risk factor distributions

across countries may affect performance. Due to the limited

availability of complete records, such validation was not feasible

in the proposed work. Future work will consider larger, more

balanced international datasets to assess cross-regional robustness

and identify potential biases in predictive accuracy.

In summary, this study lays the foundation for a scalable and

explainable HD prediction model. By integrating RST-based

feature selection, ensemble learning, and multi-criteria decision-

making, the study provide a comprehensive and transparent

approach that balances accuracy, interpretability, and clinical

relevance. Future research will focus on enhancing

generalisability, leveraging wearable health data, and refining

ensemble tuning to further strengthen the utility of the proposed

model in diverse healthcare settings.

5 Conclusion and future work

This study proposed a hybrid framework that integrates RST

for feature selection, ensemble ML through stacking, and MCDM

using the TOPSIS technique to enhance classification

performance in HD prediction. By employing Johnson’s

algorithm, the model effectively reduced dimensionality by

preserving critical features. Multiple ML classifiers were trained

and evaluated, and their strengths were assessed through five

stacking configurations (Stack-1 to Stack-5). Pearson correlation

analysis was used to ensure synergy among base learners in each

stack, minimizing redundancy and maximizing learning diversity.

To identify the best-performing ensemble, a structured

decision-making strategy was employed using the TOPSIS

method, supported by MEREC-based weighting for objective

criteria evaluation. Among the evaluated stacks, Stack-4

comprising advanced tree-based classifiers achieved the highest

performance. Stack-4 was fine-tuned using GridSearchCV, with

XG emerging as the best-performing model, achieving an

accuracy of 98.70% and 100% precision, thereby demonstrating

its effectiveness in high-stakes medical diagnostic tasks. To

ensure interpretability, XAI techniques were utilized to analyse

feature contributions and model behaviour, offering transparent

insights crucial for clinical decision-making.

The framework was validated not only on the HD dataset but

also across diverse domains using publicly available datasets such

as Obesity Levels, Breast Cancer Wisconsin, and CKD. The

consistently high performance across all datasets demonstrates

the model’s generalizability and adaptability. This highlights the

strength of integrating RST, ML, and MCDM into a single

unified diagnostic framework, which is relatively unexplored in

current medical AI applications.

Future research will focus on validating the framework using

large-scale, real-world clinical data to assess its robustness and

scalability. Furthermore, integrating non-invasive and wearable

sensor data holds potential to enhance personalized monitoring

and early detection. Lastly, although classical ML algorithms

were used in this study, future work can explore DL integration

with RST to improve feature learning and prediction

performance in complex, high-dimensional datasets. Together,

these directions aim to strengthen the clinical applicability and

generalisability of the proposed model across diverse

healthcare settings.
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