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Benign and malignant vocal fold lesions can alter voice quality and lead to

significant morbidity or, in the case of malignancy, mortality. Early, noninvasive

identification of these lesions using voice as a biomarker may improve

diagnostic access and outcomes. In this study, we analyzed data from the

initial release of the Bridge2AI-Voice dataset to evaluate which acoustic

features best distinguish laryngeal cancer and benign vocal fold lesions from

other vocal pathologies and healthy voice function. Seven diagnostic cohorts

were grouped into two analyses: the first included participants with laryngeal

cancer, benign lesions, or no voice disorder; the second included those with

laryngeal cancer or benign lesions without other voice disorders, as well as

individuals with spasmodic dysphonia or vocal fold paralysis. Acoustic features

including fundamental frequency, jitter, shimmer, and harmonic-to-noise ratio

(HNR) were extracted from standardized speech recordings and compared

using nonparametric statistical methods. Among the overall sample, significant

differences were identified in HNR and fundamental frequency between

benign lesions and both healthy controls and laryngeal cancer. In cisgender

men, these distinctions were also observed, particularly in HNR and its

variability. No statistically significant differences were observed among

cisgender women, likely due to the limited sample size. These findings

suggest that HNR, particularly its variability, may hold promise as a voice-

based marker for early detection and monitoring of vocal fold lesions. Further

research with larger, more diverse populations is needed to refine these

features and validate their clinical utility.
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1 Introduction

As part of the National Institutes of Health (NIH) Bridge to Artificial Intelligence

(Bridge2AI) consortium (1), the Voice to AI project aims to develop voice as a

biomarker of health for use in clinical care. The aim is to generate a large, multi-

institutional, ethically sourced, and diverse voice database linked to multimodal health

biomarkers, thereby fueling voice AI research (1). The early collection of this data was

analyzed by students from the inaugural Voice AI Summer School, the first specialized

training program in utilizing voice data for the development of AI models (1).

Voice disorders are defined as impairments in the pitch, loudness, or quality of voice

that interfere with communication and social participation (2). These disorders may stem

from various causes, including vocal fold pathology, neurologic conditions, or functional
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voice use patterns. Individuals affected by voice disorders often

experience reduced quality of life, work-related disability, and

social isolation, particularly when vocal communication is central

to their professional roles (2, 3). While vocal fold lesions are a

common cause of voice disorders, they represent only a subset of

the broader etiologic spectrum. One of the conditions of interest

was the presence of both benign and malignant vocal fold lesions.

Benign vocal fold lesions can affect human voices and cause

morbidity, whereas malignant lesions can cause morbidity and

mortality if not treated (2). The prevalence of these conditions is

12.47% for benign lesions (4). There were 13,150 cases of

laryngeal cancer reported in 2017, with 3,710 associated deaths

(5). One of the first symptoms presented by patients with glottic

organic lesions is dysphonia (6). Such complaints require a

diagnostic process that includes visualization of the larynx and

assessment of the lesion’s morphology through video endoscopy

(6). Voice, speech, and respiratory sounds provide important

clinical insights into patients’ health status. In the age of artificial

intelligence (AI), patients’ audio recordings are being investigated

as digital biomarkers for early detection of a broad range of

conditions, including laryngeal pathology, neurological and

psychological disorders, head and neck cancers, and diabetes (7).

The main diseases that affect the vocal folds, leading to lesions,

are laryngeal cancer and benign vocal fold lesions (8). Laryngeal

cancer is a malignancy arising from the larynx, the anatomical

structure in the neck that houses the vocal folds. The vocal folds

are paired tissue bands that vibrate as air passes through them,

generating sound and enabling speech. Lesions on the vocal folds

can impair this vibration, leading to voice changes or loss of

phonation (9). Benign Vocal Fold Nodules are non-malignant

growths of abnormal tissue on the vocal cords. Common benign

lesions of the vocal folds include vocal fold nodules, polyps,

cysts, polypoid degeneration, vocal process granulomas, and

recurrent respiratory papillomatosis (10). Diagnosis typically

involves direct visualization of the vocal folds using a flexible or

rigid endoscope inserted through the nose or mouth.

Laryngologists or voice-specialized speech-language pathologists

perform this outpatient procedure. While biopsy is necessary for

definitive diagnosis of malignancy, many benign lesions are

diagnosed based on appearance and clinical context. Access to

specialized care for laryngeal visualization can be limited outside

of major urban centers with interdisciplinary voice clinics (10).

The ability to use voice as a biomarker for the early detection

and screening of these diseases has far-reaching implications for

increasing access to care for underserved populations. It would

provide a noninvasive way to screen for these potentially life-

changing conditions.

When attempting to detect the presence of vocal lesions, it is

essential to determine whether or not the participant has a

concordant vocal disorder (11). To use vocal biomarkers specific

for vocal fold lesions, understanding other vocal pathologies in

the dataset participants must be acknowledged.

The Project Aim is to examine which acoustic features best

distinguish laryngeal cancer and benign vocal cord lesions from

other vocal pathologies and healthy laryngeal function utilizing

the Bridge2AI-Voice v1.1 dataset (12). Acoustic features refer to

the measurable properties of the voice signal, including pitch,

loudness, and quality. The objective analysis of these features

plays a critical role in clinical voice assessments, providing

quantifiable data to support diagnosis and treatment planning

(13). Beginning with F0, the fundamental frequency is the

number of cycles of opening and closing the glottis within a time

frame or the frequency at which the vocal cords vibrate.

Fundamental frequency conveys pitch and intonation; variation

across sex, age groups, and mental states is expected (14).

Closely related is jitter, which is used to measure fluctuations in

fundamental frequency. Local jitter is the difference between two

consecutive periods (i.e., the length of time to complete one

sound wave cycle) divided by the mean period. Higher local jitter

percentages correspond to lower control of vocal cord vibration

and are regularly found in patients with vocal pathologies (13).

Similarly, shimmer measures fluctuations in the amplitude of

sound waves. High shimmer measurements are perceived as

breathiness and are correlated with glottal resistance, which can

be caused by lesions that interfere with vocal cord movement.

For this analysis, we extracted the mean local shimmer, which is

the mean difference in consecutive sound wave amplitudes in

decibels (dB).

Finally, the harmonic-to-noise ratio (HNR) is the ratio of the

periodic to aperiodic component in a speech signal. The periodic

component stems from regular glottal pulses during phonation,

while the aperiodic component is the noise produced from

turbulence as air flows through the glottis. A possible source of

this turbulence is the improper closing of the vocal cords (14).

We examined both the mean and the standard deviation of the

harmonic-to-noise ratio, as we felt the latter would help us

measure consistency in vocal production.

The selection of these features was based on the findings of

previous related work. For example, Dr. Tom Karlsen and

colleagues found that jitter, shimmer, and noise to harmonic

ratio were larger among laryngeal cancer patients than among

controls using post hoc Bonferroni analyses (P < 0.001) (15).

Likewise, in a study of 112 men with vocal fold leukoplakia, a

type of lesion most commonly caused by smoking – Dr. Young

Ae Kang and colleagues found higher F0 among those with

carcinoma relative to those without using an analysis of

covariance (P < 0.000) (16).

2 Methods

2.1 Dataset

The dataset used for this project was the Bridge2AI-Voice v1.0,

the initial release, provides 12,523 recordings for 306 participants

collected across five sites in North America (9).

2.2 Definition of cohorts and groupings

In exploring the potential for a biomarker of vocal cord lesions,

we had two related but different clinical objectives. First, we wished
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to identify acoustic features that could distinguish the voices of

participants with lesions from those with no vocal pathology at

all; and second, we wished to distinguish the voices of

participants with lesions and from those with other vocal

disorders. The intersection between participants in our dataset

with lesions and those with other vocal disorders [n = 6 lesion-

present participants who also had either spasmodic dysphonia or

unilateral vocal fold paralysis (UVFP)] required breaking down

the lesion cohort into participants with lesions and no other

vocal disorders for valid comparison against the spasmodic

dysphonia and UVFP cohorts. This separation allowed for a

sound examination of what acoustic features set apart vocal cord

lesions from other vocal pathologies.

Since the lesion present with no other voice disorder cohorts

were subsets of the lesion present cohorts, thereby introducing

statistically dependent cohorts, hypothesis testing was conducted

in two groups to ensure the diagnostic cohorts within them

contained mutually independent observations. Group 1 consists

of recordings for participants with: laryngeal cancer (n = 10),

benign cord lesions (CL) (n = 13), and no voice disorder (NVD)

(n = 122). Group 2 consists of recordings for participants with:

laryngeal cancer with no other voice disorder (NOVD) (n = 6),

benign CL with NOVD (n = 11), spasmodic dysphonia with no

lesion (n = 8), and UVFP with no lesion (n = 26) (Figure 1).

2.3 Statistical analysis

Prior to comparing distributions of acoustic features among

these cohorts, basic demographic information was analyzed and

compared across the lesion-absent and lesion-present cohorts to

detect potential biases (Table 1). Continuous variables were

compared using the Python library TableOne’s (0.9.1)

implementation of the Kruskal–Wallis test. Categorical variables

were compared using Fisher’s exact test using the R Stats

package, accessed via a Python environment using rpy2 (3.5.16).

Acoustic features were extracted from recordings for the

Rainbow Passage task, a paragraph containing all phonemes in

American English commonly used as an assessment by speech

pathologists. Acoustic features for these recordings were pre-

extracted and included in the Bridge2AI dataset by default. They

were obtained using openSMILE (17) and stored in PyTorch (18)

files. Features for 180 recordings were analyzed across the 176

unique participants with a Rainbow Passage task recording. Four

participants out of the 118 represented in the NVD cohort

contributed two recordings for this task, while the remaining 172

contributed one. Because those four recordings belonged to the

largest cohort, no abnormalities were detected when analyzing

their associated acoustic features. Additionally, since there were

no objective measures to verify recording quality for each

participant, all 180 recordings were used for analysis.

Features examined for analysis were mean HNR, the standard

deviation of harmonic-to-noise ratio (HNR SD), mean local jitter,

mean local shimmer, and mean fundamental frequency. Analysis

was initially conducted collectively for all participants. First, a

Kruskal–Wallis test was used to assess differences within Group

1 and then within Group 2 for each acoustic feature. If

statistically significant differences were detected (α = 0.05),

Dunn’s test was used to compare all pairs of diagnostic cohorts

within each group. P-values were adjusted with Holm’s method

for multiple comparisons. Given the confounding influence of

sex on the normal ranges for the selected acoustic features, this

analysis was then repeated separately for cisgender men and

cisgender women. Transgender individuals were excluded from

FIGURE 1

Participant grouping by lesion type and vocal disorder diagnosis.

TABLE 1 Demographics and clinical characteristics, grouped by presence
of vocal fold lesions.

Characteristic Overall Lesion
absent

Lesion
present

P-value

n 176 153 23

Age (years), median 59.0 59.0 60.0 0.260

Weight (lbs), median 169.0 164.0 184.0 0.110

Gender Identity, n (%)

Female 110 (63.2) 97 (64.2) 13 (56.5) 0.546

Male 59 (33.9) 52 (34.4) 7 (30.5)

Non-binary or

genderqueer

2 (1.1) 2 (1.3) 0 (0.0)

Sexual orientation, n (%)

Bisexual 8 (4.6) 8 (5.3) 0 (0.0)

Heterosexual 138 (79.3) 119 (78.0) 19 (82.6)

Homosexual 7 (4.0) 6 (3.9) 1 (4.3)

Other 5 (2.9) 5 (3.3)

No answer 16 (9.2) 13 (8.6) 3 (13.0)

Race, n (%) 0.149

American Indian or

Alaska Native

1 (0.6) 1 (0.7)

Asian 7 (4.0) 7 (4.6)

Black or African

American

11 (6.3) 7 (4.6) 4 (17.4)

White 140 (80.5) 124 (82.1) 16 (69.6)

Multiracial 6 (3.4) 5 (3.3) 1 (4.3)

No answer 3 (1.7) 2 (1.3) 1 (4.3)

Other 6 (3.4) 5 (3.3) 1 (4.3)

Ethnicity, n (%) 0.794

Hispanic or Latino 17 (9.8) 16 (10.6) 1 (4.3)

Not Hispanic or Latino 148 (85.1) 127 (84.1) 21 (91.3)

No answer 9 (5.2) 8 (5.3) 1 (4.3)
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these stratified analyses because there was no way to verify whether

such individuals had received gender-affirming care affecting

vocal characteristics.

Statistical tests were conducted in Python (3.10.14) using SciPy

(1.13.1) (19) for Kruskal–Wallis tests and Scikit-postdocs (0.9.0)

(20) for Dunn’s tests.

3 Results

Table 1 indicates no statistically significant differences in age,

weight, gender identity, sexual orientation, race, or ethnicity

between participants with and without a lesion. However, the

lesion-present cohort included 12.8% more African Americans

than the lesion-absent cohort. In addition, the median

weight for the lesion-present cohort was 20 pounds higher than

that for the lesion-absent group. Overall, the dataset is

predominantly composed of white, heterosexual, and

female individuals.

For the analysis representing all 176 participants, statistically

significant differences were found between the benign CL and

NVD cohorts in their distributions of mean HNR (p = 0.019),

HNR SD (p = 0.028), and fundamental frequency (p = 0.012).

Additionally, differences were found between benign CL and

laryngeal cancer for HNR SD (p = 0.028). Results for all Group 1

pairwise comparisons for the unstratified data are shown in

Table 2. No statistically significant differences for local jitter and

shimmer were found within Group 1, and no statistically

significant differences were found within Group 2 for all acoustic

features examined.

The number of recordings for each diagnostic cohort, stratified

by diagnostic cohort, is shown in Table 3. The analysis, which

consisted only of cisgender men (Table 4), revealed statistically

significant differences between the benign CL and NVD cohorts

for mean HNR (p = 0.004) and HNR standard deviation

(p = 0.002). Moreover, differences were once again detected

between benign CL and laryngeal cancer in their respective

distributions of HNR SD (p = 0.027). The initial Kruskal–Wallis

test indicated statistically significant differences within Group 2

for HNR SD (p = 0.03), but this was not supported by the post-

hoc Dunn’s test; the smallest adjusted p-value was 0.055,

produced from the laryngeal cancer NOVD and benign CL

NOVD comparison. Differences were not detected among

distributions for any other features.

No statistically significant differences were found among

cisgender women for all acoustic features examined.

4 Discussion

Our preliminary analysis of the Bridge2AI-Voice dataset

shows early promise that there are vocal features that can

act as a biomarker for vocal fold lesions. Other recent studies

have shown links between benign and malignant vocal fold

lesions using principal component analysis (PCA), suggesting

the utility of the PCA method in the identification of

vibrational alterations in the acoustic characteristics of voice

affected by lesions (21). Interestingly, Liu et al.’s PCA analysis

highlighted an underlying acoustic difference between multiple

conditions, such as Reinke’s edema, polyps, cysts, and

leukoplakia (21).

Despite the relatively small sample size, we detected statistically

significant differences in acoustic features within our Group 1

cohort. Notably, the differences were most pronounced between

the benign C.L. cohort and the NVD cohort.

Of particular interest is the difference in HNR SD between

benign and malignant lesion groups, which suggests that HNR

SD may be a useful measure for monitoring lesion progression

and detecting laryngeal cancer at an early stage. This is a finding

that will be interesting to test with larger datasets, and future

studies can potentially leverage this to explain this relationship

further. However, no statistically meaningful differences were

found within Group 2, indicating that distinguishing lesions from

other vocal pathologies may be more challenging.

TABLE 3 Number of recordings for cisgender men and women, by
diagnostic cohort.

Diagnostic
group

# Cisgender
women recordings

# Cisgender men
recordings

Laryngeal cancer 6 4

Benign CL 7 6

No voice disorder 77 36

Laryngeal cancer

(NOVD)

2 4

Benign CL (NOVD) 6 5

Spasmodic

Dysphonia + no lesion

6 2

UVFP + no lesion 17 9

TABLE 4 Dunn’s test results for group 1 pairings with only cisgender
male participants.

Acoustic feature Pairing p-value

Mean HNR Laryngeal cancer, benign C.L. 0.192

Mean HNR Laryngeal cancer, no voice disorder 0.512

Mean HNR Benign C.L., no voice disorder 0.004

Standard deviation HNR Laryngeal cancer, benign C.L. 0.027

Standard deviation HNR Laryngeal cancer, no voice disorder 0.863

Standard deviation HNR Benign C.L., no voice disorder 0.002

Bolded values indicate statistical significance at the p < 0.05 level.

TABLE 2 Dunn’s test results group 1 pairings (unstratified data).

Acoustic feature Pairing p-value

Mean HNR Laryngeal cancer, benign C.L. 0.095

Mean HNR Laryngeal cancer, no voice disorder 0.914

Mean HNR Benign C.L., no voice disorder 0.019

Standard deviation HNR Laryngeal cancer, benign C.L. 0.028

Standard deviation HNR Laryngeal cancer, no voice disorder 0.256

Standard deviation HNR Benign C.L., no voice disorder 0.028

Mean F0 Laryngeal cancer, benign C.L. 0.335

Mean F0 Laryngeal cancer, no voice disorder 0.429

Mean F0 Benign C.L., no voice disorder 0.012

Bolded values indicate statistical significance at the p < 0.05 level.
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The primary limitations of this study were the small sample

size and participants’ incomplete lesion histories. Despite these

limitations, the study provides valuable insights into the potential

for voice biomarkers to serve as early indicators of vocal

fold lesions.

The most striking barrier for our selected features to be

considered for a biomarker of vocal cord lesions is that, when we

stratified our data by sex, we found no statistically significant

differences among women for Groups 1 or 2. The power of these

statistical tests was, of course, limited by the small sample sizes

in some of these cohorts, most noticeably when comparing

against the 2 cisgender women participants in the laryngeal

cancer + no other vocal disorder cohort, as shown in Table 4.

Even so, the fact that no differences were detected among either

group for cisgender women suggests we should broaden our

search to additional acoustic features. For cisgender men,

differences were only found when comparing distributions for

mean and SD HNR. Differences were found among benign CL

and no voice disorder for both as well as between benign CL and

laryngeal cancer for SD HNR, which aligns with the results

for the unstratified data. Another notable finding is that even

though the results of the Kruskal–Wallis test indicated

significance differences within group 2 for cisgender men when

comparing SD HNR, the post-hoc analysis did not back that

up, though we did approach significance for the benign C.L.

(NOVD) + laryngeal cancer (NOVD) comparison (p = 0.055).

Additionally, voice disorders arising from a broader range of

laryngeal diseases, such as spasmodic dysphonia, vocal fold

paralysis, and functional dysphonia, carry significant morbidity

and impair communication and quality of life (22). Recent

advances in artificial intelligence have enabled voice recordings to

distinguish between different laryngeal pathologies with

increasing accuracy. Studies have shown that convolutional

neural networks and deep learning models trained on

spectrogram representations can classify laryngeal diseases,

including early laryngeal cancer, with promising results using

standard microphone recordings or even smartphone-captured

voice samples (23). These approaches offer a noninvasive,

scalable, and accessible method to augment current diagnostic

workflows and may serve as effective screening tools for

laryngeal malignancy in primary care and underserved settings.

As AI protocols mature and datasets grow more diverse, their

integration into clinical voice screening may become an

important complement to traditional laryngoscopy.

While a definitive diagnosis still requires visualization, a

validated AI-based voice screening tool could serve as a triage

mechanism. It could identify individuals with subtle voice

changes who may not otherwise seek care, especially in primary

care or telehealth settings. Such a tool could prompt earlier

referrals to voice specialists, help prioritize urgent cases, and

reduce diagnostic delays. Unlike the human ear, which may not

reliably distinguish between subtle pathologic changes, an AI

model can offer consistent and scalable voice analysis across

diverse populations.

Future studies should focus on increasing sample sizes and

incorporating more nuanced data, such as lesion sizes.

Additionally, the sex of participants played a role in the results,

which should be considered in future recruitment efforts to

prevent biased datasets. Further research should continue to

explore different types of benign and malignant lesions by

voice feature.
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