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Topic modelling refers to a popular set of techniques used to discover hidden

topics that occur in a collection of documents. These topics can, for example,

be used to categorize documents or label text for further processing. One

popular topic modelling technique is Latent Dirichlet Allocation (LDA). In topic

modelling scenarios, the documents are often assumed to be in one,

centralized dataset. However, sometimes documents are held by different

parties, and contain privacy- or commercially-sensitive information that

cannot be shared. We present a novel, decentralized approach to train an LDA

model securely without having to share any information about the content of

the documents. We preserve the privacy of the individual parties using a

combination of privacy enhancing technologies. Next to the secure LDA

protocol, we introduce two new cryptographic building blocks that are of

independent interest; a way to efficiently convert between secret-shared- and

homomorphic-encrypted data as well as a method to efficiently draw a

random number from a finite set with secret weights. We show that our

decentralized, privacy preserving LDA solution has a similar accuracy

compared to an (insecure) centralised approach. With 1024-bit Paillier keys, a

topic model with 5 topics and 3000 words can be trained in around 16 h.

Furthermore, we show that the solution scales linearly in the total number of

words and the number of topics.
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1 Introduction

Topic modelling is a set of techniques that can discover abstract topics over a large set of

textual documents. This is useful when there is a lot of textual data that needs to be analyzed

and manual analysis is infeasible. Topic modelling can help to categorize and filter the data

or to find related documents. Research until now has focused on centralized datasets, where

the training data is available in one database. It is possible that certain private databases

contain valuable textual data for a topic model that data holders are unwilling to share.

There are two main reasons why data can be too sensitive to share: either commercially

sensitive, or personal information that is privacy sensitive.

An example of the latter motivation occurs in the medical domain, where information

on patients is generated by doctors in various different hospitals or other medical

institutions. Combining the textual data from these different entities is valuable for two

reasons: firstly, they often contain different types of information, which makes the input

to the topic model more diverse and the resulting topic model richer. Secondly, topic

models generally need a large amount of input, so combining inputs to train one larger

topic model would result in a better topic model. The topic model can for example be

used to categorize the textual data to enrich the structured patient data with new
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information and predict inpatient violence (1), detect virus

outbreaks at an early stage (2), or get more insight into

symptoms of certain diseases.

Privacy-Enhancing Technologies (PETs) provide a solution

that retains the advantages of big data analytics of textual

data and ensures privacy (or protects other kinds of sensitivity)

of the analyzed documents. In the context of the GDPR,

PETs contribute to data minimization—and therefore to

proportionality—and to data control. In our work, we specifically

focus on a PET called Secure Multi-Party Computation (MPC).

In a nutshell, MPC allows to perform computations on data of

multiple parties while keeping the inputs secret and only

revealing the outcome.

Our work proposes an algorithm that enables topic modelling

on distributed textual documents in a privacy-preserving way,

using two MPC techniques called homomorphic encryption and

secret sharing. This opens the door to new business cases that

require topic models over textual personal data distributed over

different entities, such as the ones previously mentioned.

1.1 Latent Dirichlet allocation

We focus on an existing algorithm called Latent Dirichlet

Allocation to train a topic model for a set of documents.

Intuitively, a topic model categorizes documents into different

topics, where each document is assigned a combination of one or

more topics. Furthermore, this gives insights into what words are

often associated with these topics. Latent Dirichlet Allocation

(LDA) is one of many topic modelling techniques. Among the

most common topic modelling techniques, LDA is the most

consistent performer over several comparison metrics, making it

the most suitable algorithm for most applications (3). In

particular, we consider LDA and use a technique called Gibbs

sampling to train the model. Gibbs sampling is an iterative

method to estimate latent distributions of a dataset based on

observations from that dataset.

This means that we iterate over all the words in all the documents

and observe what topic it most likely belongs to. With this topic, we

then update the parameters of the topic model. This is done until the

parameters converge to a stable representation of the topic model.

There are also other methods to train latent parameters, but Gibbs

sampling was chosen because it often yields relatively simple

algorithms for approximate inference in high-dimensional models

such as LDA (4, Figure 8).

1.2 Related work

Some research has already been done on privacy-preserving

Latent Dirichlet Allocation. We can distinguish two lines of

research: work that enables privacy-preserving LDA on centralized

textual data, such that the final model does not leak information

about the inputs (5), and work that enables LDA on distributed

textual data, such that the information sent throughout the

protocol does not leak information about the inputs (6–8).

Our work falls into the latter category and therefore distinguishes

itself from the work in the former category by enabling LDA on

decentralized data instead of centralized data. We present several

new secure protocols to perform each step of the LDA algorithm in

a privacy-preserving way. We now provide more explanation of the

other works in the latter category. A comparison between our work

and related work can be found in Table 1.

The first work on privacy-preserving LDA on distributed data

was published in 2010 by Yang and Nakagawa (8). Similar to us,

they use homomorphic encryption. They use a custom protocol

to draw the topics, which reveals the distributions to all parties.

Additionally, they use a slightly altered version of the LDA

algorithm, as do we. Whereas they argue the validity of their

alteration with a notion of convergence based on the number of

changes the algorithm makes, we use a more robust analysis

using the perplexity score, showing that our alteration retains the

quality and convergence rate of regular LDA.

Wang, Tong and Shi (7) propose a privacy-preserving LDA

solution using federated learning and differential privacy. Their

solution makes it possible to do local sampling, as the

intermediate values are perturbed using differential privacy

techniques. As their experiments show, this comes at a quality

cost, as the perplexity score is higher for their solution than for

regular LDA. Instead, we use homomorphic encryption to keep

all information hidden, including intermediate values.

Colin and Dupuy (6) propose a solution to decentralized LDA

with varying network topologies. They claim that their solution

attains privacy of the textual documents, but no privacy

arguments are given. In each iteration, two nodes, each holding a

number of documents, exchange (and average) their local

statistics. This is similar to sharing the matrix n
ðkÞ
m , which we

avoid in our solution for privacy reasons.

1.3 Our contributions

We present a novel solution for decentralized topic modelling

in a privacy-preserving manner using latent Dirichlet allocation.

This is the first solution that does not leak anything about the

content of the documents while at the same time maintaining

the accuracy of non-private versions of LDA. This way, we

bridge the gap between accuracy and security in distributed LDA

training by presenting a solution that is both highly accurate as

well as secure. Furthermore, we present two generic,

cryptographic building blocks of independent interest:

TABLE 1 Comparison with related work.

Paper Accuracy Speed Security

YN10 (8) Medium Low Medium: leaks probability distributions of

topics

WTS20 (7) Low Medium Medium: leaks statistics about all

information

CD16 (6) High High Low: leaks the complete document-topic

matrix

Our work High Low High: leaks just the total word count
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– Securely drawing a random number from a finite set without

revealing the drawing probabilities, as described in Sections 3.4, 3.5.

– A generic solution to efficiently convert (multiple) additively

homomorphic encrypted values to secret sharings, as

described in Sections 3.6, 4.2.

1.4 Problem setting

In this work, we consider the scenario where the documents are

not stored in a single database, but are distributed among multiple

parties that want to train a joint topic model, but do not wish to

simply share these documents with each other. Concretely, our

goal is to mimic the existing LDA algorithm in a privacy-

preserving manner while maintaining the same accuracy as the

non-private version of the algorithm.

Suppose we have M documents, document m, 1 � m � M,

containing Nm words. We consider the setting where we have

multiple parties, each having one or more (sensitive) documents.

Let K be the number of topics, and V the number of terms1 in

our vocabulary. Let a ¼ ða1; . . . ; aKÞ be the Dirichlet

hyperparameters for the topics in the topics-document distribution,

and b ¼ ðb1; . . . ; bVÞ the Dirichlet hyperparameters for the

terms in the terms-topic distribution. All these parameters are public.

During the distributed algorithm, we need to manage the secret

matrix elements n
ðkÞ
m , representing the number of words in

document m that have topic k, and n
ðtÞ
k , representing the number

of words with term t that have topic k. Note that

{n
ðkÞ
m }m[{1...M};k[{1...K} is a matrix, which will be referred to as the

document-topic matrix. Furthermore, {n
ðtÞ
k }k[{1...K};t[{1...V} will be

referred to as the topic-term matrix. The document-topic matrix

can be split into M vectors, such that each party can manage

and store only the vectors corresponding to its own documents.

For the second matrix we need a different solution to avoid

sharing sensitive data, see Section 3.

The purpose of the algorithm is to train the latent variable zm;n,

denoting the topic of the nth word of document m. In each

iteration, for each document, and for each word within that

document, a new topic is sampled for that word from a dynamic

multinomial distribution. Given the word with index i ¼ ðm; nÞ

and term t, this distribution is proportional to:

Prðzi ¼ kÞ/
n
ðtÞ
k;:i þ bt

PV
t¼1 n

ðtÞ
k;:i þ bt

�
n
ðkÞ
m;:i þ ak

PK
k¼1 n

ðkÞ
m;:i þ ak

; (1)

where n
ðtÞ
k;:i indicates the count n

ðtÞ
k , excluding the current word

with index i, and similarly n
ðkÞ
m;:i (4). The first ratio can be

roughly interpreted as the empirical probability that a word (not

the current word) with topic k has term t. The second ratio can

be roughly interpreted as the empirical weight of topic k in

document m. The hyperparameters a and b are often called

pseudo-counts (from prior belief) and contribute too.

2 Preliminaries

Our work leverages cryptographic techniques to ensure secrecy

of the documents’ contents, while still enabling us to learn from

them. There are different technologies that can be applied to

enable privacy-preserving computations. In this work we use

additively homomorphic encryption (AHE) (9, 10) and secret-

sharing (11, 12). In its basic form, both techniques represent the

messages they encrypt as integers, which is also what we follow in

this work. The key difference is that AHE can be computed by a

single party knowing the required information, while with secret

sharing all operations need to be performed by all the parties

holding the secrets. Parties can perform the linear operations on

the shares individually, but for more complex operations such as

multiplication and division, interaction is required between the

parties. Nevertheless, for non-linear operations, secret sharing often

yields more efficient solutions than AHE.

2.1 Additively homomorphic encryption

We denote the encryption of a message or plaintext m by [m].

We use the Paillier encryption scheme (9), which gives us the

operations � and � such that:

[x]� [y] ¼ [x þ y] and c� [x] ¼ [c � x];

for any public constant c, and secret messages x and y. That is,

given encryptions [x] and [y] of x and y, we can obtain an

encryption [x þ y] of the sum x þ y without decrypting the

ciphertexts. The resulting ciphertext can be decrypted to yield

the result, or be input for further encrypted operations.

2.2 Secret sharing

Secret Sharing has similar properties but works in a

fundamentally different, key-less way. Suppose we have a secret s

and wish to use this in a computation with a set of parties

P1; . . . ; Pn. The party holding the secret s can split this secret

up into a number of shares s1; . . . ; sn and send each si to party

Pi. We denote the sharing of s by hsi ¼ s1; . . . ; sn.

Each party Pi can then compute operations for a public constant

c and secret sharings hxi ¼ x1; . . . ; xn and hyi ¼ y1; . . . ; yn for

secrets x and y such that:

hxi⊞hyi ¼ hx þ yi, c � hxi ¼ hc � xi and hxi⊠hyi ¼ hx � yi:

1Term refers to the element of a vocabulary, and word refers to the element

of a document. A term has a particular meaning and can be instantiated by

several words.
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In this work, we use the Shamir secret sharing scheme (12), which is a

linear secret sharing scheme. This means we can compute the linear

additions and multiplications with a public constant without

interaction between the parties. Multiplication of two secrets is

additionally possible with communication between the parties.

3 Secure distributed LDA

In this section, we present the building blocks and algorithms

required for securely performing the distributed LDA algorithm.

To this end, we start in Section 3.1 with the required security

assumptions. After that, in Section 3.2 we explain our solution

for securely keeping track of the document-topic and topic-term

matrices. Next we describe the main algorithm for securely

performing Gibbs sampling in Section 3.3. Finally, in Sections

3.4–3.6 we respectively introduce separate building blocks for

securely drawing a new topic from secret weights, computing

encrypted integer weights and converting Paillier ciphertexts into

Shamir secret sharings.

3.1 Security model

For both techniques, we assume the semi-honest setting, where

each entity tries to learn as much information about the other

entities’ data as possible, but does follow the steps of the protocol.

For most use cases, this security model will suffice, as it is likely

that honest participation will be agreed upon within a contractual

agreement between the entities. Furthermore, since LDA already

has some inherent privacy properties (5), it is unlikely that during

execution a dishonest entity can retrieve a significant amount of

information about other entities’ documents. However, we

acknowledge this security model might not be appropriate for large-

scale deployments with many potentially dishonest entities.

3.2 Tracking the matrices

As highlighted in Section 1.4, LDA essentially manages and

updates two matrices: a document-topic matrix and a topic-term

matrix. The document-topic matrix keeps track of the topic

distribution of each document and consists of elements n
ðkÞ
m ,

representing the portion of document m belonging to topic k. The

topic-term matrix keeps track of the topic distribution of each term

in the vocabulary and consists of elements n
ðtÞ
k , representing the

portion of term t belonging to topic k over all documents.

However, these matrices are precisely the sensitive information

that completely leaks the content of the documents of a party when

simply giving it away. Therefore, we need to find a secure way to

store these matrices without (significantly) decreasing the

accuracy of the algorithm.

A crucial observation is that during the LDA algorithm, the

matrix elements n
ðkÞ
m of the document-topic matrix are only

needed by the party actually holding document m. Therefore, it

is not needed to maintain a complete, joint matrix of all the

documents, but it suffices to let each party locally maintain a

part of that matrix corresponding to only its own documents.

On the other hand, the topic-term matrix depends on the

distribution over all the documents and should therefore be

available to all the parties in an oblivious way. Maintaining this

matrix comes down to adding to, and subtracting from, the

elements in the matrix, which suggests the use of additively

homomorphic encryption for this. To avoid individual parties from

decrypting and learning the entries, we furthermore need threshold

decryption (10). This ensures that a decryption can only be done if

all the parties participate. Note that if we were to do this with

secret sharing, each party would need to keep track of the entire

matrix, which would introduce a lot of computational overhead.

3.3 Performing the algorithm

A formal description of our Secure LDA solution for securely

computing the topic-term matrix n
ðtÞ
k and the document-topic

matrix n
ðkÞ
m can be found in Algorithm 1. In Figure 1, we present

an intuitive overview of how our algorithm works. Roughly

speaking, our Secure LDA solution consists of three phases:

initialisation (blue), sampling (green) and updating (orange).

Finally, the results are decrypted in a joint decryption phase (red).

In the initialisation phase, the goal is to initialise the two matrices

with a random distribution that will be refined. To this end, all the

parties sample random topics for each word in each document, and

use these to fill in an initial (local) view on the document-topic

matrix and the topic-term matrix. Next, the parties need to build a

global view of the complete topic-term matrix. To achieve this, the

parties encrypt all the elements in their local topic-term matrix and

Algorithm 1 Protocol for performing the distributed LDA algorithm.

1. Initialisation:

(a) Each party p samples a random topic for each word of all its documents.

(b) Each party p sets the local counters n
ðtÞ
k

� �

p
and n

ðkÞ
m , for each of its

documents m.

(c) The parties encrypt n
ðtÞ
k

� �

p
, and securely aggregate them to

n
ðtÞ
k

h i

¼
P

p n
ðtÞ
k

� �

p

� �

¼
Q

p n
ðtÞ
k

� �

p

� �

.

2. Iterate a fixed number of times:

(a) For each party p do

i. Party p obtains the matrix elements n
ðtÞ
k

h i

, and sets all local counters

D
ðtÞ
k

� �

p
 0.

ii. Simultaneously choose a new topic for each word n of each document m of

party p:

A. Set index i ¼ ðm; nÞ. Let t̂ be the term of word i, and let k̂ be the current topic

of word i. Party p adjusts the local counters D
ð̂tÞ

k̂

� �

p
 D

ð̂tÞ

k̂

� �

p
�1,

n
ðk̂Þ
m  n

ðk̂Þ
m � 1.

B. The parties securely sample a new topic ~k for word i with matrices n
ðtÞ
k þ D

ðtÞ
k

h i

and n
ðkÞ
m (see Section 3.5), and reveal it to party p.

C. Party p adjusts the local counters: D
ð̂tÞ
~k

� �

p
 D

ð̂tÞ
~k

� �

p
þ1, n

ð~kÞ
m  n

ð~kÞ
m þ 1.

iii. Party p encrypts the local counters D
ðtÞ
k

� �

p
, 1 � k � K , 1 � t � V , and

communicates them.

(b) The parties update the matrix elements n
ðtÞ
k

h i

, 1 � k � K , 1 � t � V , with

local counts to n
ðtÞ
k

h i

�
Q

p D
ðtÞ
k

� �

p

� �

.

3. The parties jointly decrypt the topic-term matrix n
ðtÞ
k

h i

to obtain n
ðtÞ
k .

4. The parties output n
ðtÞ
k and n

ðkÞ
m .
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combine these by sending the encrypted elements to each other and

aggregate them into a global matrix by adding the (encrypted)

matrices of all the parties element-wise.

After the initialisation, for a fixed number of iterations, the parties

perform a sampling and an updating phase. During the sampling

phase, the parties use the (secret) matrices as they are at the start of

the iteration, to compute, for each word in each document, a

probability distribution over the topics. The secure sampling

procedure ensures that the distributions remain hidden from the

parties and is outlined in Sections 3.4, 3.5. For each party, the

secure sampling procedure yields a new topic for each word in each

document. A party uses this information to update her local version

of the encrypted topic-term matrix and local document-topic matrix.

The distribution that is drawn from is proportional to Equation 1.

Note that these distributions are in an encrypted form and the actual

probabilities can thus not be seen by the parties. First, we compute the

encrypted weights for all the topics using the procedure presented in

Section 3.5. After that, we can perform a secure draw from the

encrypted weights using our novel algorithm to draw from a secret

probability distribution as presented in Section 3.4. This way, the

parties obtain for each word in each document a newly sampled

topic. During this sampling, the parties locally keep track of the

matrix updates, which means that they decrease their local counters

corresponding to the matrix elements of the old word topic by one,

and increase the counters for the new topic by one.

The second part of each iteration then consists of each party

updating its local document-topic matrix and the parties together

updating the global topic-term matrix using the locally tracked

changes. To this end, each party encrypts their local changes to

the topic-term matrix and sends this to all the other parties.

Then the parties can simply add these encrypted counters to

their encrypted topic-term matrix to get the new, consistent,

topic-term matrix. The document-topic matrix can be updated

locally by each party without any communication.

We observe that the LDA algorithm requires linear

computations, except for the computation of the probability

Prðzi ¼ kÞ and the secure draw that uses these probabilities in

the sampling step. Therefore, we perform most of the operations

for tracking the topic-term matrix using AHE, and introduce a

novel mechanism to switch between AHE and secret sharing in

Sections 3.6, 4.2 to obtain the best performance. Concretely, we

use AHE for the linear operations and only switch to (Shamir)

secret sharings for securely drawing the new topics.

Typically, convergence of an LDA algorithm is checked by

monitoring the changes in the model parameters, or monitoring how

well the model fits a separate set of documents. In the encrypted

domain, this can be quite costly to check after each iteration.

Therefore, we simply iterate a sufficiently large, fixed number of times.

3.4 Random draw with secret probabilities

An important building block of secure LDA is a method of

drawing a new topic ~k [ {1; . . . ; K}, given secret weights

wk [ N, such that

Prð~k ¼ kÞ ¼
wk

P

i wi
; 1 � k � K:

The new, randomly chosen topic will be revealed to party p, the holder

of the current document. The intuition behind our solution is to

compute cummulative weights Sk, k [ {1; . . . ; K} such that

Sk ¼
Pk

i¼1 wi. For notational convenience, we define an “extra”

weight S0 ¼ 0. Next, the parties sample a random value r in the

range {0; SK � 1} and find between which two cumulative weights

this value r lies, which then corresponds to the sampled topic. Since

r is sampled uniformly at random in the total range, the probability

of r precisely ending up between cumulative weights Sk�1 and Sk is

exactly ðSk � Sk�1Þ=SK ¼ wk=
P

i wi. This can be implemented

with only log2 K secure comparisons between r and thresholds

t ¼ Sk (with varying k) by traversing a binary tree from the root to

the leaf representing the new topic. Note that our solution assumes

that the weights are integers. In Section 3.5, we explain how we

securely transform fractional weights into integer weights.

FIGURE 1

Intuitive sketch of our algorithm.

Veugen et al. 10.3389/fdgth.2025.1610228

Frontiers in Digital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1610228
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Formally, the parties do the following for every word w in each

document:

1. The parties generate a secret random number hri,

r [ {0; . . . ; SK � 1}:

(a) They generate a secret random number hRi,

R [ {0; . . . 2‘ � 1} for sufficiently large ‘.

(b) They securely multiply hRi with hSKi, and compute the

secure truncation hri, where r ¼ bR�SK
2‘
c

2. They find h~ki, such that S~k�1 � r , S~k, by repeating log2 K

times:

(a) Party p determines the next secret threshold hti (see

below).

(b) The parties compute the secure comparison hðr , tÞi,

and reveal the outcome to p.

To see that indeed a uniformly random variable r is generated, we

count the number of R that lead to r ¼ x, for 0 � x , SK . We need

x � R�SK
2‘

, x þ 1, i.e. 2‘�x
SK
� R ,

2‘�x
SK
þ 2‘

SK
. The number of R that

satisfy this is b2
‘

SK
c, or b2

‘

SK
c þ 1. Therefore, we need

‘ � log2 SK þ k, where k is the statistical security parameter, to

assure that r is statistically indistinguishable from a uniformly

random variable.

The first threshold choice will be t ¼ KK42, each iteration

adapting the threshold following the binary search principle. This

means that if r , t, we go to the left and otherwise to the right.

As the numbers hwii are secret-shared, party p needs to generate

a secret-shared binary indicator vector hd1i . . . hdKi, such that the

threshold can be computed by hti ¼
P

ihdii � hwii. Party p is the

only party that can determine the binary indicator vector,

because it is the only party that is allowed to learn ~k.

3.5 Computing the integer weights

A key element of Algorithm 1 is the secure, random sampling

of new topics for all of the words. As explained in Section 3.3, this

is done in two steps: computing the integer weights and performing

the secure draw. This subsection will introduce the steps required

to compute the integer weights for Equation 1 given the matrices.

We assume we are given matrices [n
ðtÞ
k;:i] ¼ [n

ðtÞ
k þ D

ðtÞ
k ] and

n
ðkÞ
m;:i, the first one encrypted and the second one privately

known to party p, the holder of document m. We omit the index

:i for convenience.

To sample a new topic, first the weights have to be computed

that determine the probabilities according to Equation 1, which

we denote as PrðziÞ/ [wn
k]=[w

d
k] for simplicity. The weights

consist of numerators

[wn
k] ¼ ðn

ð̂tÞ
k þ bt̂Þ � ðn

ðkÞ
m þ akÞ

h i

;

and denominators

[wd
k] ¼

X

V

t¼1

ðn
ðtÞ
k þ btÞ � ð

X

K

k¼1

nðkÞm þ akÞ

" #

:

The encrypted numerators and denominators can easily be

computed by party p due to the additively homomorphic

property of our encryption scheme.

The only problem is that the hyperparameters a and b are not

integers, while the secret sharing scheme requires the plaintexts to

be integers. For this work, we chose symmetric priors, meaning

ai ¼ a, 1 � i � K , and bi ¼ b, 1 � i � V (see Section 5.3). We

then approximate the fractions a ¼ an

ad and b ¼ bn

bd, where an, ad ,

bn and bd are integers. Then the numerators wn
k and

denominators wd
k are converted to integers ~wn

k and ~wd
k by

multiplying both with adbd .

Eventually, we want to obtain integer weights for the secure

draw (see Section 3.4). To avoid costly secure integer divisions
~wn
k

~wd
k

, we multiply these fractions with W ¼
Q

k ~w
d
k to obtain

~wk ¼ ~wn
k �

Q

k=k ~w
d
k as follows:

1. Party p computes the encryptions

[~wn
k] ¼ [wn

k � a
dbd] ¼ ð[n

ð̂tÞ
k ]b

d

� [bn]Þa
d �n
ðkÞ
m þa

n

and

[~wd
k] ¼ [wd

k � a
dbd] ¼ ð[bn] � [V] �

QV
t¼1 [n

t
k]

bd

]Þa
n�Vþad �

P

k
n
ðkÞ
m ,

which are converted to secret sharings (see Section 3.6) for

efficiency reasons.

2. With one fan-in multiplication (13) the parties compute

hWi ¼
QK

k¼1h~w
d
ki.

3. For each ~wd
k , 1 � k � K , they jointly compute the

multiplicative inverse hð~wd
kÞ
�1i (14, Prot.4.11).

4. The parties compute h~wki ¼ h~w
n
ki � hWi � hð~w

d
kÞ
�1i, 1 � k � K .

3.6 Converting encryptions to secret-
sharings

During the execution of Algorithm 1, we need to transform the

encrypted weights [w] to Shamir secret sharings hwi to randomly

draw new topics more efficiently. Suppose we have precomputed

pairs ð[R]; hriÞ, such that R contains s more bits than w, and

r ¼ Rmod N , where N , N . w, is the modulus of the Shamir

secret sharing scheme. Then a conversion from [w] to hwi is

relatively straightforward:

1. Compute [wþ R] ¼ [w] � [R], and (jointly) decrypt it.

2. Jointly compute hwi ¼ ðwþ RÞmod N � hri.

Note that R is different from the R used earlier in Section 3.4. The

pairs could be precomputed as follows:

1. Each party i generates random number Ri that has s more bits

than w, and encrypts it.

2. Each party i computes ri ¼ Ri mod N , and generates a secret

sharing hrii for it.

3. Each party i sends each other party a share of hrii, together

with [Ri].

4. The parties compute [R] ¼ [
P

Ri] ¼
Q

i [Ri], and

hri ¼
P

ihrii.

We have r ¼ Rmod N , because

r ¼ ð
P

i riÞmod N ¼ ð
P

i RiÞmod N , and R ¼
P

i Ri. It is not

necessary that all parties generate a random number; it is

sufficient that at least t þ 1 parties do.
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4 Optimisations

During the development of the protocol, we came up with

several optimisations to improve the performance. The

optimisations that we implemented are described below.

Additional optimisations, that were not implemented due to time

constraints, can be found in the Appendix A.

4.1 Parallelisation of secure samplings

We combine the sampling of all new topics of one party [step

2(a)iiB], such that we can parallelise each step of the binary search

(see Section 3.4), and drastically reduce the number of

communication rounds. This means that the probabilities from

Equation 1 are not recomputed after each single topic sampling,

but only when during one iteration all words of all documents of

a certain party have been assigned a new topic. This version,

which we will refer to as batched LDA, enables us to execute all

secure comparisons at the same level of the binary tree (see

Section 3.4) in parallel, and significantly reduce the total number

of communication rounds. The disadvantage is that the drawing

probabilities are not constantly adjusted, which might lead to

accuracy loss, see Section 5.4.1.

4.2 Multiple conversions

We have multiple conversions that can be efficiently combined

into one protocol. Suppose we have weights w1; . . . ; wv, and

corresponding pairs ð[Ri]; hriiÞ, 1 � i � v, such that

v � ðsþ dlog2 we þ dlog2 ne þ 1Þ , dlog2 Ne, where dlog2 we is an

upper bound on the bit size of the weights, dlog2 ne is the bit size

of number of parties n and dlog2 Ne the bit size of the encryption

modulus. Then the v conversions can be combined as follows.

1. [C] ¼ [wv þ Rv] ¼ [wv] � [Rv]

2. For i ¼ v� 1 to 1 do [C] ¼ [C]2
sþdlog2 weþdlog2 neþ1

� [wi] � [Ri]

C ¼
Pv

i¼1ðwi þ RiÞ � 2
ði�1Þðsþdlog2 weþdlog2 neþ1Þ

� �

3. The parties jointly decrypt C and split it into C1; . . . ; Cv, each

component consisting of sþ dlog2 we þ dlog2 ne þ 1 bits.

Ci ¼ wi þ Rif g

4. For each i, 1 � i � v, the parties compute

hwii ¼ Ci mod N � hrii.

This reduces the number of decryptions by a factor v, at the cost of

some extra multiplications that combined are comparable to one

decryption effort. To further reduce the number of secure

additions each party could pack v random numbers before

encrypting them when precomputing ð[R]; hriÞ pairs [see

Section 3.6], which also reduces the communication effort.

5 Evaluation

5.1 Security

Because topic sampling is performed in a secure, but joint way,

the parties learn the total number of words in all documents of a

single party. However, nobody learns the sampling probabilities,

and only the document holder learns the new topics (of the

words in his documents). Our solution is secure in the semi-

honest model, i.e., parties are expected to exactly follow the

protocol steps, but are allowed to compute with any data that is

received during execution in an attempt to gain additional

insights in other parties’ data.

As we use standard building blocks, such as secure comparison

and random number generation, of the MPyC platform, which is

known to be secure in the semi-honest model, our computations

with secret-sharings are secure too. Similarly, Paillier is known to

be semantically secure, and since we use threshold decryption,

encrypted information will never fall in strange hands.

Therefore, we only need to investigate the conversions from

encryptions to secret-sharings, as described in Section 3.6.

Because the numbers R contain s more bits than the weights,

where s is the statistical security parameter, we know that the

sum wþ R is statistically indistinguishable from a large random

number, and can be safely revealed. Furthermore, as each party i

generates its own Ri and ri, the sums
P

i Ri and
P

i ri can be

considered as secret random numbers.

5.2 Implementation

We have implemented our secure LDA approach in Python

3.8. For the homomorphic encryption functionalities, we have

used the Paillier implementation available in the TNO MPC

Lab (15). This implementation is based on the distributed

Paillier solution presented in (10). For the functionalities based

on secret sharing, we have used the MPyC framework (16).

This framework implements a number of functionalities based

on Shamir secret sharing. We performed all of our experiments

with three parties, but stress that our implementation also

works for more parties.

5.3 Experimental setup

For our experiments, we used the Amazon reviews dataset

presented by Ni, Li and McAuley (17). In total, this dataset

consists of over 200 million reviews. However, we only used the

first 150 entries. Furthermore, we split these 150 entries into

three separate datasets of 50 documents for the three different

parties. In total, this results in a vocabulary length of V ¼ 1492

terms and a total number of 2,965 words in the distributed

corpus. For the experiments, we used 5, 10, 20, 30, 40 and 50

documents per party. As the number of words is not the same

for every document, we compared the number of words over all

documents for the actual experiments, which is 16, 406, 873,

1549, 2,197 and 2,965 respectively. Furthermore, we chose the

symmetric priors a ¼ b ¼ 1
K
. This corresponds to the default

parameter choices in the scikit-learn implementation of LDA.

All experiments have been run on a single server running an

Intel Broadwell CPU at 2.1 GHz with 4 cores and 32 GB RAM.

The parties communicated via (local) HTTPS connections.
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5.4 Performance

We evaluate the performance of our solution in terms of

accuracy and runtime.

5.4.1 Accuracy
In order to evaluate the accuracy of our secure LDA

solution, we compare its results to the results obtained when

performing a regular LDA implementation without any

encryption or secret sharing. We compare both using the

perplexity metric. This metric is standard in language modelling

and is defined as
Q

m p1=Nm . Here, N ¼
P

m Nm is the total

number of words, and pm is the predictive likelihood of all words

in document m (4). Perplexity is an objective metric that

essentially computes the geometric mean of the log-likelihood

per word in a set of observed documents. Lower perplexity

scores imply a model that describes the dataset better. We have

implemented and compared three versions of LDA:

– Standard LDA: this is a standard implementation of LDA

without the use of encryption and updating the matrices after

each word topic generation.

– Batching LDA: this version also does not use encryption, but

implements a batched version of LDA, updating the matrices

only once at the end of each pass through the entire corpus.

– Secure LDA: this is the solution presented in this work. It

implements a privacy-preserving batched version of the

LDA algorithm.

By comparing the standard- and batching versions of LDA, we can

measure the impact of the adaptation we made to the algorithm. By

then comparing the batching- and the secure variants, we can

furthermore measure the accuracy of our privacy-

preserving solution.

We let all three variants run for 100 iterations with two topics

and 50 documents per party, which results in a total of 2965 words

distributed over the parties. The results of this experiment can be

found in Figure 2. We ran all versions for five times and present

the average results.

As can be seen, the standard version of LDA converges

faster than the batching- and secure variants. Furthermore, we

see that by updating the weights after every word, the standard

version generates a slightly better model. However, the

differences do not seem to be significant. Finally, we observe that

the secure variant shows behaviour similar to the batched

plaintext variant, which strongly suggests that the use of

encryption and secret sharing does not reduce the accuracy of

the algorithm.

5.4.2 Runtime
To see the influence of the input size and the desired

complexity of the model to train, we ran benchmarks varying

both the total number of words in all the documents, and the

number of topics to model. We separately measured the runtime

of the pre-processing step for the ciphertext conversions and

performing one iteration of the secure LDA algorithm. For all

benchmarks, we used a 1024-bit Paillier key2 for the

homomorphic encryptions and a 64-bit field size for the Shamir

secret shares. All parameter combinations have been tested five

times and averaged.

First, we present the results for a varying number of topics for

the preprocessing phase and the iteration phase in Figures 3a,b

respectively. As can be seen, the amount of work for the

preprocessing phase is linear in both the number N of words and

the number K of topics, which is as expected as the number of

tuples required per iteration is N � K � 2. For the iterations, the

general trend for an increasing number of topics is also linear with

slightly steeper increases from 2 to 3, 4 to 5 and 8 to 9. This is

explained by the fact that for the secure drawing, the number of

intervals is extended by dummies to reach a power of two (either

21, 22, 23, or 24 in these experiments), which incurs an extra step

in the binary search (see Appendix A.3 to avoid this). Other than

that, the amount of work scales linearly in the number of topics.

Second, to see the influence of the input size, we also plotted

the runtimes in Figure 4 against an increasing number of words

over all parties. As expected, the preprocessing phase again

shows a linear increase in the number of words. However, the

runtime of one iteration seems to grow slightly faster than linear

which might seem surprising at first as the algorithm description

does not suggest exponential increase as the number of words

grows. This behaviour is explained by the way we batch

conversions in Section 4.2. Namely, a fixed number of weights

can be converted at once, depending on the size of the Paillier

modulus. As long as the number of conversions that need to be

performed fits in the same number of decryptions, the runtime

of an iteration grows linearly. However, if more decryptions are

required in this step, the increase in runtime grows faster.

FIGURE 2

Perplexity traces of three LDA variants.

2From a security perspective, a 2048-bit key would have been preferable, but

our primal goal was to investigate input scalability.
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5.5 Comparison to prior work

As explained in Section 1.2, there are three works that

also consider decentralized, privacy-preserving LDA. In

Table 1, we highlight the most important differences between

our works and these related works. Due to the lack of

comparable runtime measurements in these works it is hard to

compare our work in that regard. Instead, we turn to a

conceptual comparison.

In terms of accuracy, it is unclear how the altered algorithm of

(8) impacts the accuracy exactly since they do not provide metrics

such as perplexity. We do know that their convergence notion

influences the resulting model accuracy to some extend.

Furthermore, they leak the probability distributions for the topics

in every round, which is a privacy risk as this reveals

information about other parties’ data. Our solution keeps

Prðzi ¼ kÞ secret throughout the entire protocol. Furthermore,

they do not provide a security argument for their solution,

which we do.

Due to the use of differential privacy, (7) is not able to match

the accuracy of non-private LDA like we are able to do using MPC.

Furthermore, this is a weaker security guarantee and might still

leak some (statistical) information about the data of the other

parties. This solution is, however, faster than our solution.

FIGURE 3

Benchmark of secure LDA in the number of topics. (a) Preprocessing. (b) Iteration.

FIGURE 4

Benchmark results of secure LDA in the number of words. (a) Preprocessing. (b) Iteration.
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Finally, in (6) an approach is used where statistical

information about the documents of the parties is shared in

every round. This way, they are able to learn models with high

accuracy and obtain a high performance at the cost of very low

security guarantees as this essentially comes down to sharing

your document-topic matrix.

All in all, our solution is very secure and accurate, at the cost of

a lower performance. However, our solution scales linearly in both

the number of words and the number of topics, which makes it

scalable in practice.

6 Conclusions

In this work, we have presented and evaluated a

fundamentally new approach to securely perform an LDA

algorithm on a set of documents distributed amongst several,

untrusting parties. Compared to earlier solutions, our solution

provides stronger secrecy as we keep almost everything secret,

including the topic weights. The only thing leaked in our

solution is the total number of words over all documents of a

party. Furthermore, we minimize the risk of leakage as the data

is protected using cryptographic assumptions instead of

statistical techniques like differential privacy, which might

accidentally still leak some information. Furthermore, we show

that the accuracy of our approach is similar to non-secure

variants of the LDA algorithm.

Finally, we show that our solution scales nearly linear in the

number of topics and the number of words. All in all, this makes

it an attractive solution in practice, even for larger datasets.
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Appendix A. Optimizations

We describe a few optional optimisations that were not

implemented due to time constraints.

A.1 Use of oblivious RAM

Another promising solution for securely storing and accessing

the topic-term matrix is by oblivious RAM (18, 19). In the semi-

honest model, a more efficient solution is to store the matrix

entries somewhere, e.g. in the cloud, in an homomorphically

encrypted way. Each party can query and modify entries, without

the other parties noticing it.

A.2 Avoid indicator vectors

To avoid generating indicator vectors and computing a secure

inner product for each new threshold, we could decide to postpone

the conversions. Given the encrypted weights, party p can first add

the proper weights to determine the next threshold. Only then the

encrypted threshold is converted to a secret-sharing. This does not

increase the number of conversions. The transforming of fractional

to integer weights might become more intensive though.

Given our parallel approach of combining all drawings of one

party, we could compute all weights as follows:

1. [Nk] ¼
QV

t¼1 [n
ðtÞ
k þ bt]

2. [N] ¼ [
Q

k Nk] {secure product}

3. [vk] ¼ [N � N�1k ] {secure product and secure inverse}

Given [vk], where vk /
1
Nk
, the weights for each term t can be

computed as [w
ðtÞ
k ] ¼ ðn

ðtÞ
k þ btÞ � vk

h i

with one secure product.

Using the local matrix n
ðkÞ
m , these weights can be adjusted locally

to document m, to cope with the factor n
ðkÞ
m þak

PK

k¼1
n
ðkÞ
m þak

. This

adjustment comes down to the exponentiation [~wk] ¼ w
ðtÞ
k

h iv
ðkÞ
m

,

where v
ðkÞ
m ¼ ðn

ðkÞ
m þ akÞ �

PK
k¼1ðn

ðkÞ
m þ akÞ

� ��1
�
QM
m¼1

PK
k¼1 n

ðkÞ
m þ ak

� �

.

To generate a secret random number r, given term t and

document m, the encryption
Q

k [~wk] needs to be converted to a

secret-sharing. During each iteration step of the binary search,

the proper weights [~wk] can be accumulated by party p to obtain

the new threshold, which can then be converted to a secret-

sharing for the secure comparison.

A.3 Number of topics not a power of
two

If the number K of topics is a power of two, the binary search

can be easily performed. If 2l�1 , K , 2l, then the number of

iterations (l or l� 1) of the binary search would disturb the

uniform distribution of the randomly chosen topic. An easy way

to fix this is to add 2l � K dummy values, such that the number

of iterations is always l. However, this takes more secure

comparisons than strictly necessary. We describe a way to avoid

these additional secure comparisons without leaking information.

1. Party p randomly chooses 2l � K different dummy indices

di [ {1; . . . ; 2l}, 1 � i � 2l � K , such that

d1 , d2 , . . . d2l�K . See argumentation below how this

should be done.

2. k 1; u 1 {Initialise counters}

3. For i ¼ 1 to 2l do: {Compute new weights vi}

If du ¼ i then vi ¼ 0; u uþ 1 else vi ¼ wk; k kþ 1

4. The parties perform a binary search with weights vi,

1 � i � 2l:

– If there is only one non-dummy index remaining, party p

ends the binary search.

– In each iteration, party p constructs an indicator vector of

length K (ignoring the dummy weights).

We need K to be even to avoid information leakage. E.g., for

K ¼ 3 the index 2 will never be selected after one iteration,

irrespective of the chosen dummy index. This means that party p

has to first choose one special dummy in case K is odd that

should not lead to skipping iterations (in Step 4). The question

remains how the 2l � K random dummy indices (in Step 1)

should be chosen, assuming K is even.

We order the K indices in K=2 pairs of consecutive

numbers. We choose ð2l � KÞ=2 random positions out of

these K=2 pairs. We add two dummies to each chosen pair,

just before each element of the pair. In this way, each of the K

indices will have an identical probability of being chosen

after l (no dummies in the pair) or l� 1 (dummies in the

pair) rounds.
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