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Introduction: The Bridge2AI-Voice. Consortium is developing affordable and

accessible voice data to assist in the identification of vocal biomarkers of

disease in adults and children. Initial experiments were designed to establish

voice recording procedures to be used in research labs and clinical settings, as

well as in quiet environments outside of the clinic. The focus has been on

isolated vowel productions, which provide a vocal signal that is representative

of the biomechanics of the larynx within a static vocal tract. The current

experiment considers the impact of sentence productions on the

measurement of several acoustic parameters.

Methods: Voice recordings from 24 individuals representing a wide range of

typical and disordered voices were analyzed. Two CAPE-V sentences were

recorded via a head-and-torso model using (1) a research quality, clinical

standard microphone/preamplifier/audio interface and (2) smartphones and

tablets using their internal microphones and an attached external headset

microphone. Mouth-to-microphone distances and environmental noise levels

were controlled. Measures of fundamental frequency (F0) and spectral and

cepstral measures of voice quality valid for use in sentence contexts were

analyzed across recording conditions.

Results: Cepstral peak prominence (CPP) values were sensitive to microphone

type, noise, and sentence type conditions. Nevertheless, strong linear

relationships were observed across recording methods compared to the

clinical standard. Measures of F0 obtained using autocorrelation correlated

strongly across recording methods, whereas F0 measures obtained from the

CPP (CPP F0) were highly variable and poorly correlated across recording

methods and noise conditions. The L/H ratio (a measure of spectral tilt) was

significantly affected by recording condition but not background noise, and

measures of L/H ratio were also observed to correlate strongly across

recording methods and noise conditions.
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Discussion: Current findings revealed that different recording methods can

produce significantly different acoustic measures of voice with sentence-level

materials. Since microphone characteristics (e.g., frequency response; use of

noise cancellation), mouth-to-microphone distances, and background noise

conditions can have significant effects on spectral and cepstral assessment of

voice, it is essential that recording methods and conditions are explicitly

described when designing voice data collection projects and comparing

datasets as it may have an impact on voice analysis. Future investigations should

evaluate consistency of results among multiple examples of the same device.

KEYWORDS

voice analysis, acoustic analysis, mobile devices, cepstral analysis, spectral tilt,

background noise, frequency response

1 Introduction

To evaluate voice quality, clinicians assess voice production in a

variety of voice conditions: sustained vowels, reading of specific

sentences and/or use of a standardized passage, and conversational

speech. Each type of voice sample is believed to represent a

different aspect of voice production (1–3). Isolated vowels are easy

to produce and analyze because they are free from the influences

of phonetic context, intonation, and stress. On the other hand,

conversation and reading passages provide insight into how voice

quality is impacted by the presence of voiced vs. voiceless sounds,

speech timing, and transitions among phonemes. These aspects

can alter the perception of voice quality but are believed to be

more representative of voice production in a more natural context

(2, 4, 5). In addition, certain voice disorders, such as adductor

laryngeal dystonia (ADLD; a.k.a. adductor spasmodic dysphonia),

may have more severe voice quality disruption during connected

speech vs. sustained vowel productions. These disruptions are

likely due to the increased linguistic complexity and rapid

articulatory adjustments demanded by the speaking task.

Therefore, it is recommended that clinicians use both types of

voice samples in the assessment of voice disorders.

In addition to a perceptual evaluation of voice, clinicians rely on

acoustic analysis to quantify the severity of voice quality disorder by

measuring aspects related to pitch, loudness, and quality (2, 3).

Typical measurements include fundamental frequency (F0), which

is associated with the pitch of one’s voice. The amplitude of the

vocal signal influences the perceived loudness of the voice and

measurement of spectral characteristics (i.e., the distribution of

energy over time) and signal perturbation provide measures

related to voice quality. These acoustic measurements are valuable

in classifying vocal disorders and serving as treatment outcome

measures following surgical intervention and/or voice treatment.

Research has shown that the utility of acoustic measures in the

determination of the severity of vocal pathology will vary by the

nature of the voice sample. Parsa and Jamieson (3) considered the

use of jitter, shimmer, long-term average spectrum (LTAS),

harmonics to noise ratio (HNR), and linear predictive models

(including pitch amplitude and spectral flatness ratings) in their

measurement of voice quality. They determined that perturbation

measures were more reliable when measured with isolated vowels

than with connected speech and that linear predictive models were

better indicators of voice quality for both isolated vowels and

running speech. Their conclusion was that acoustic measurement

using continuous speech is most reliable when the voiced sections

of speech are separated from the unvoiced sections and pauses.

In another study, Moon et al. (2) found that the acoustic analysis

of isolated vowels and sentences resulted in different findings within

individuals and by gender. They concluded that the values obtained

in connected speech were better representations of the individual’s

speaking voice as opposed to isolated vowels. However, Gerratt

et al. (1) found that the acoustic values for the central portion of

isolated vowels and continuous speech were essentially the same.

They were careful to explain that one must control the variability

in continuous speech associated with different speech contexts and

prosodic variations. Their results suggested that isolated vowels

generate a less complicated signal to analyze, while the acoustic

variations noted in continuous speech can provide more insight

into unique aspects of speech production that may be associated

with different vocal pathologies.

Measurement of voice quality can also be affected by the type

of microphone used for data collection. Microphones capture the

voice signal and change it into an electrical signal that can be

processed digitally. The response frequency can influence the

precision of the acoustic measurement. Titze and Winholtz (6)

found that the distance and angle of the microphone in relation

to the mouth introduced variability into the recordings used for

perturbation measures. In addition, a cardioid microphone,

where acoustic information is gathered around the front of the

microphone, is preferred to an omnidirectional microphone.

Parsa et al. (7) demonstrated that the frequency response of a

microphone affected acoustic measurement of vocal parameters,

concluding that these recording variations may affect the

classification of typical vs. disordered voices.

More recent work by the Bridge2AI Voice Consortium (8, 9) has

demonstrated that low-cost headsets, smartphones, and tablets can

be used for recording typical and dysphonic voice samples when the

microphone to mouth distance is controlled, even in noisy clinic-like

environments. Though certain measurements can be significantly

affected by recording method and background noise, measurements

of F0, F0 sd, jitter, shimmer, HNR, cepstral peak prominence (CPP),

and spectral tilt taken from isolated vowel samples were found to
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correlate highly with the same measurements made with a lab quality

microphone (9). The current investigation expands our previous

analyses to include acoustic data obtained from sentence-level

materials. The voice samples used in this project were recorded on

smartphones and tablets with and without a headset microphone in

four different noise conditions. Results are compared to acoustic data

obtained from a lab quality microphone. The goal is to establish the

utility of using sentence level materials in the assessment of voice

quality obtained from smartphones and tablets.

2 Method

This study was approved by the University of South Florida

Institutional Review Board: Study #004363 Developing Standards

of Acoustic Data for Voice as a Biomarker of Health. This

experiment focuses on the sentence-level data obtained during

the data collection for recordings made on smartphones and

tablets [see Awan et al. (8, 9) for a more detailed explanation of

the data collection procedures].

2.1 Voice samples

Audio recordings from 24 individuals representing a range of

vocal severity were selected: typical voice quality (n = 6), and

mild (n = 6), moderate (n = 6), and severe (n = 6) examples of

dysphonia. The 16 adult samples (8 females and 8 males) were

obtained from the Perceptual Voice Qualities Database (10) and

an additional 8 child voices (4 females and 4 males) recorded by

the first author (S.A.). The mean age of the individual voices was

39.83 years (age range = 6–88 years) with a mean CAPE-V

severity rating of 44.98 (SD = 32.25; range = 2.5–98.67).

2.2 Sentence-level stimuli

Recordings of two sentences taken from the Consensus

Auditory-Perceptual Evaluation of Voice [CAPE-V (11)] were

obtained from individuals representing a wide range of typical

and disordered voices. The first sentence, The blue spot is on the

key again is used to examine the coarticulatory influence of three

vowels (/a, i, u/) (11) and contains several voiced and unvoiced

stop plosive and fricative productions. The second sentence, We

were away a year ago, features all voiced sounds and assesses

one’s ability to maintain voicing across word productions. These

voice samples served as the vocal productions to be re-recorded

with various smartphones and tablets both directly using their

built-in microphones and with external headset microphones at

comfortable distances per device and in a variety of noise levels.

2.3 Recording test procedures

A head-and-torso (HAT) model (GRAS 45BC-12 KEMAR;

GRAS Sound Vibration USA, Beaverton, OR) was used to present

the sentence stimuli at an intensity equivalent to 67 dB C at 30 cm

(which is consistent with a normative expectation of 65–70 dB

C for a typical speaking voice). Recording levels were set to peak at

approximately −12 dB FS (full scale). Voice samples were recorded

using a research quality standard microphone/preamplifier/audio

interface (GRAS 40AF Free-Field Microphone +GRAS 26AK ½′′

Microphone Preamplifier +GRAS 12AA 2-Channel Power Module

[GRAS Sound Vibration USA, Beaverton, OR] + Focusrite Scarlett

2i2 3rd Gen USB Audio Interface [Focusrite Audio Engineering

Ltd., High Wycombe, Bucks, United Kingdom]), as well as two

smartphones (Apple iPhone 13 Pro [Model MLTQ3LL/A, iPhone

OS v. 15.2] and Google Pixel 6 [Model GB7N6, Android version

12]) and two tablets (Apple iPad [9th Generation; Model A2602;

iPad OS v. 17.3.1] and a Samsung Galaxy Tab A8 [Model SM-

X200; Android v. 13.0]). Smartphone and tablet recordings were

captured in two ways: (a) direct using the built-in tablet

microphones [capacitive microelectromechanical systems (MEMs)

condenser microphones] and (b) using an Avid AE-36 (AVID

Products, Inc., Middletown, RI) low-cost headset microphone. The

Avid AE-36 uses an electret condenser microphone that requires

approximately 5v phantom power. It is omni-directional and noise-

canceling and validated in previous work (8, 9, 12). The

justification for choosing the AVID headset microphone dealt

primarily with the ability to provide a headset microphone to

multiple recording sites for large-scale voice data collection to be

used in voice AI research. Therefore, cost, size, availability, and ease

of use with children were key considerations.

Recording distances were selected based on what were considered

as comfortable and typical use distances. For smartphone direct

recordings using the internal smartphone microphone, a smartphone

holder (Hercules DG307B, Hercules Stands) was attached to a boom

microphone stand with the smartphones positioned in a natural

position against the HAT ear and at 2.5 cm (≈1 in.) from the HAT

mouth opening at an approximate 45° offset. Tablet-direct

recordings were conducted at comfortable arm lengths at 30 and

45 cm at an angle of approximately 30 degrees from the HAT mouth

opening. For recordings using smartphones and tablets with the

Avid AE-36 headset microphone, the microphone was placed at

2.5 cm from the HAT mouth opening at an approximate 45° offset.

Microphone recordings were captured at 44.1 kHz, 16 bits using

Reaper v.6.78 (13) on a Windows 10 laptop. All tablet recordings

were similarly captured at 44.1 kHz, 16 bits using the Shure Motiv

audio recording app (Shure Incorporated, Niles, IL). Separate

recording sessions were conducted for each tested device so that

HAT mouth-to-microphone distances and angles could be

standardized. Figure 1 provides an illustration of the recording setup

for the various devices and detailed descriptions of the methodology

used for smartphone and tablet recordings with and without the use

of the headset microphone are also provided in Awan et al. (8, 9).

2.4 Frequency response characteristics

The frequency response characteristics of the Avid AE-36 headset

microphone and the built-in smartphone (iPhone 13 and Google

Pixel 6) and tablet (iPad and Samsung Galaxy Tab) microphones
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were previously reported in Awan et al. (8, 9) and assessed by

subtracting the response of a flat-response reference microphone to

a pink noise signal from each device under test (14). The Avid

microphone has been reported to be relatively flat (±3 dB) from

50 Hz to approximately 5,000 Hz, followed by a high-frequency

emphasis in the region of 8,000–10,000 Hz. Both smartphones

(iPhone 13 and Google Pixel 6) showed similar response curves with

+2–3 dB emphasis observed at approximately 2.5 kHz, followed by a

high-frequency emphasis > 7 kHz. The Samsung tablet microphone

direct was observed to have a very similar profile to the Avid

microphone, while the iPad was observed to be relatively flat from

approximately 75–10,000 Hz. No proximity effect was observed for

the smartphones, tablets, or the AVID AE-36 headset microphone.

The mean RMS dB FS noise levels of the headsets and built-in

smartphone and tablet microphones were approximated from

segments of audio silence during sound-attenuating booth

recordings. All noise levels were observed to be substantially less

than 10 dB below the sound level of the quietest phonation in the

voice sample corpus as recommended by Patel et al. (15).

2.5 Noise conditions

Recordings made in the sound-attenuating booth had an

ambient level of 44 dB C. To simulate clinical conditions,

recordings were made with added background noise obtained

from three typical examination rooms in the University of South

Florida Voice Health Center: a voice clinic office [Exam Room 1

(ER1); average ambient noise level = 54.6 dB C]; a stroboscopy

clinic room housing an Olympus (Olympus America, Center

Valley, PA) stroboscopy system [Exam Room 2 (ER2); average

noise level = 58.9 dB C]; and a stroboscopy clinic room housing a

Pentax (Pentax Medical Inc., Montvale, NJ) stroboscopy system

[Exam Room 3 (ER3); average ambient noise level = 58.0 dB C].

These recordings were collected with LED lighting and equipment

turned on (as would be present during a complete clinical voice

evaluation). Long-term average spectrum (LTAS) analyses of the

background noise recordings were conducted with ER1 showing

an increase in spectral energy due to background noise of ≈10 dB

in the 0–1,000 Hz region and an increase of ≈5–7 dB above

4,000 Hz vs. booth recording. ER2 and ER3 showed an increase in

spectral energy due to background noise of ≈15 dB in the 0–

1,000 Hz region, an increase of ≈5–7 dB above 4,000 Hz, and

peaks of ≈ + 20 dB vs. the booth recording at 1,000 Hz (ER2) and

2000 Hz (ER3) (8, 9). During voice sample recording, these

background noise samples were played simultaneously with

KEMAR voice sample playback via speakers (KEF Q100 Model

3722) positioned at 0°, 90°, 180°, and 270° at a distance of 1 m.

2.6 Acoustic and statistical analyses

Sentence samples obtained via the various recording methods

were analyzed using Praat (16) scripts by Heller Murray (17) and

Awan et al. (8, 9) for the following measures of vocal frequency

and quality: mean fundamental frequency (F0 Hz) computed using

FIGURE 1

Schematic of the voice sample playback and recording setup for (a) the GRAS standard microphone, (b) headset microphone recordings, and (c) tablet

recordings. In addition, the inset figure (top right) shows the smartphone positioning in relation to the mouth opening of the head and thorax (HAT)

model. For the purposes of illustration clarity, distances are not to scale.
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two methods (Method 1: CPP F0—F0 estimated from the quefrency

location of the detected cepstral peak); Method 2: F0 estimated

using the “Analyze Periodicity | To Pitch (raw autocorrelation…”

method in Praat recommended for intonation analyses); cepstral

peak prominence (CPP dB; the amplitude of the cepstral peak in

relation to a linear regression line computed though the cepstrum,

computed without voice activity detection); and the low vs. high

spectral ratio (L/H ratio in dB using a 4 kHz cutoff). The F0 floor

and ceiling range for the autocorrelation F0 tracker was set from 60

to 450 Hz to account for the wide range of expected F0s in the

voice sample corpus. Similarly, the floor and ceiling search range in

the CPP algorithm was also set from 60 to 450 Hz. These measures

were selected for analysis of continuous speech samples based on

common usage and necessity. Vocal F0 was chosen since it is,

perhaps, the most frequently used acoustic measurement of speech

samples. For measures of vocal quality, commonly used

perturbation measures (such as jitter and shimmer) are not valid in

continuous speech contexts. However, cepstral and spectral-based

measures such as the CPP and L/H ratio have been demonstrated

to be effective in characterizing vocal quality disruptions in speech

contexts. They are important components of multivariate acoustic

estimates of vocal severity such as the Cepstral Spectral Index of

Dysphonia (18, 19) (CSID; uses both CPP as the strongest

weighted factor and the L/H ratio) and the Acoustic Voice Quality

Index (4) (AVQI; uses CPP as the strongest weighted factor) and,

therefore, were applicable to the sentence samples being analyzed

in this study. As per the manufacturer’s recommendations, signal

equalization was applied to all recordings prior to analyses to

account for the characteristics of the HAT mouth speaker.

Statistical analyses were computed using JASP v. 0.19.3 (20). Due

to the large number of recording methods and conditions, separate

analyses were conducted for smartphones vs. tablets. For

smartphones, a two-way repeated measures analyses of variance

[ANOVA: five levels of recording method (GRAS Standard;

iPhone + Avid-AE36; Google Pixel + Avid AE-36; iPhone Direct;

Google Pixel Direct)]; and four levels of room condition (Booth;

ER1; ER2; ER3) were computed to assess the presence of

significant differences on the various acoustic measurements. For

tablets, a two-way repeated measures ANOVA was also computed

[seven levels of recording method (GRAS Standard; iPad + Avid-

AE36; iPad Direct at 30 cm; iPad Direct at 45 cm; Samsung + Avid

AE-36; Samsung Direct at 30 cm; Samsung Direct at 45 cm)]; and

four levels of room condition (Booth; ER1; ER2; ER3). In the

event of violations of sphericity, ANOVA results were evaluated

using Greenhouse-Geisser corrections. For each ANOVA, effect

sizes were computed using eta2 (ɳ2), with a small effect≥ 0.01, a

moderate effect≥ 0.06, and a strong effect≥ 0.14 (21). ANOVA

results with negligible effects (i.e., <small effect sizes) are not

discussed. post hoc analyses of significant ANOVAs were evaluated

using Holm-Bonferroni corrections for family-wise error and post

hoc effect sizes were evaluated using Cohen’s d (small [0.2],

medium [0.5], and large [0.8] effects) (21). Correlations between

the GRAS microphone booth recordings at 2.5 cm (considered the

“standard”) and measures obtained via different methods/

distances/ conditions were also assessed.

3 Results

3.1 Cepstral peak processing (CPP)

For “The blue spot…” sentence, separate ANOVAs were

conducted for smartphones vs. tablets. For smartphones, ANOVA

main and interaction effect results for each acoustic measure are

presented in Table 1 and mean CPP values and standard errors are

provided in Figure 2. For the measurement of CPP, significant

main effects of recording method (p < 0.001) and room condition

(p < 0.001) were observed with very strong effect sizes. In addition,

a significant and moderate effect size recording method × room

condition interaction revealed that all of the tested recording

methods produced significantly higher mean CPP (p’s range from

0.038 to <.001) than the GRAS standard in the booth condition,

though effect sizes for these comparisons tended to be small

(Cohen’s d = 0.103 to 0.23). Similar findings were observed in the

three noise conditions (ER1, ER2, and ER3) with the exception

that the iPhone direct produced significantly lower CPP values

than the GRAS standard in the ER1 condition (p = 0.001), and

both iPhone and Pixel direct produced lower CPP values than the

TABLE 1 ANOVA main and interaction effect results and eta2 (ɳ2) effect sizes for the various acoustic measures for the sentence “The blue spot is on the
key again” obtained via smartphones with and without headset microphones.

Acoustic measure Device Recording method Room condition Recording method × room condition

CPP Smartphones p < 0.001; ɳ2 = 0.282**** p < 0.001; ɳ2 = 0.444**** p < 0.001; ɳ2 = 0.070***

Tablets p < 0.001; ɳ2 = 0.532**** p < 0.001; ɳ2 = 0.191**** p < 0.001; ɳ2 = 0.033**

CPPF0 Smartphones N.S; ɳ2 = 0.015* N.S.; ɳ2 < 0.01 N.S.; ɳ2 = 0.025*

Tablets p < 0.001; ɳ2 = 0.076*** N.S.; ɳ2 < 0.01 p = 0.022; ɳ2 = 0.051**

Pitch/F0 Smartphones N.S; ɳ2 = 0.080*** p = 0.002; ɳ2 = 0.022* p = 0.001; ɳ2 = 0.020*

Tablets p < 0.001; ɳ2 = 0.273**** p < 0.001; ɳ2 = 0.064*** p < 0.001; ɳ2 = 0.082***

L/H Ratio Smartphones p < 0.001; ɳ2 = 0.966**** p < 0.001; ɳ2 < 0.01 p < 0.001; ɳ2 < 0.01

Tablets p < 0.001; ɳ2 = 0.975**** N.S.; ɳ2 < 0.01 p < 0.001; ɳ2 < 0.01

*Small effect≥ .01.

**Small-to-moderate effect≥ .03 & < .06.

***Moderate effect≥ .06.

****Strong effect≥ .14.

All ANOVAs evaluated using Greenhouse-Geisser corrections.

N.S., nonsignificant.

F0, fundamental frequency; SD, standard deviation; HNR, harmonics-to-noise ratio; CPP, cepstral peak prominence; L/H Ratio, ratio of low (<4 kHz) vs. high (>4 kHz) spectral energy.
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GRAS standard in the ER2 and ER3 conditions (p’s < 0.001). The

effect of background noise was consistent for each recording

method, with the highest CPP values observed in the booth

condition, followed by successively lower CPP values in each of the

ER1, ER2, and ER3 noise conditions. Regardless of any observed

mean differences, highly significant Pearson’s r correlations > 0.90

(p’s < 0.001) between the GRAS standard and the smartphones

with or without microphones were observed in all conditions for

all recording methods (see Table 2).

For tablets, significant main effects with very strong effect sizes

for recording method (p < 0.001) and room condition (p < 0.001)

were also observed (see Table 1). A significant and small-to-

moderate effect size recording method × room condition

interaction was also observed and indicated that tablets + the

Avid headset microphone resulted in significantly higher mean

CPP values vs. the GRAS standard, while recordings with tablets

direct using their internal microphones resulted in significantly

lower mean CPP values than the standard. Mean differences

between the GRAS standard and the iPad (both 30 and 45 cm

distances) and the Samsung at 45 cm were observed to have

moderate effect sizes (d’s = 0.560 to 0.654), whereas other mean

differences were classified as small effects (d’s =−0.330 to

−0.368). Similar findings were observed in all three noise

conditions (ER1, ER2, and ER3), with the highest CPP values for

each method observed in the booth condition, followed by

successively lower CPP values in each of the ER1, ER2, and ER3

noise conditions. As observed with smartphones, regardless of

recording method or condition, highly significant Pearson’s r

correlations > 0.90 (p’s < 0.001) between the GRAS standard and

the tablets with or without microphones (see Table 2).

Similar ANOVA results for both smartphones and tablets were

observed for the “We were away a year ago” sentence (see Table 3),

with the exception that overall mean CPP values for all recording

methods were observed to be higher in the all-voiced context vs.

the “…blue spot…” sentence containing voiced/unvoiced

productions with a mixture of plosive and fricative productions.

The various smartphones with and without headset microphones

were again observed to produce significantly higher CPP values

than the GRAS standard in the booth condition, and significantly

lower mean CPP values were observed with the iPad and

Samsung tablets direct. Again, regardless of any observed mean

differences in CPP between methods, all correlations between the

GRAS standard and the various smartphone and tablet recording

methods with or without microphones were highly significant

and very strong (r’s≥ 0.90; p’s < 0.001; see Table 4).

3.2 Measures of F0 (method 1: CPP F0)

For the measurement of CPP F0 in the “…blue spot…”

sentence, no significant main or interaction effects were observed

(see Table 1). However, Figure 3 shows a great deal of variability

FIGURE 2

Mean CPP (dB) values and standard errors for the various recording methods and room conditions in “The blue spot is on the key again” (top) and “We

were away a year ago” (bottom). GRAS, Gras 40AF Free-Field Microphone; AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-36 +Google Pixel

6 at 2.5 cm; IpD, iPhone 13 direct at 2.5 cm; PxD, Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0 at 2.5 cm; AvSam1, Avid AE-

36 + Samsung Galaxy Tab A8 at 2.5 cm; IpD30, iPad 9.0 direct at 30 cm; IpD45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8 direct at

30 cm; Sam45, Samsung Galaxy Tab A8 direct at 45 cm.
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in mean CPP F0 estimates depending upon recording method and

room condition. In contrast to the results for CPP, Pearson’s r

correlations between the GRAS standard and the smartphones

with or without microphones were observed to be weak-to-

moderate across conditions and recording methods (see Table 2).

Similar nonsignificant ANOVA results were observed for the

“We were away…” sentence (see Table 3). However, in the all-

voiced context, correlations between the GRAS standard and

smartphones with or without microphones were all highly

significant (p’s≤ 0.006) and much stronger than in the “We were

away…” vs. the “…blue spot …” context (see Table 4). The

weakest observed correlation (r = 0.548) with the GRAS standard

was observed for the iPhone direct in the ER1 condition. Review

of data indicated that this weaker correlation was due to four

outliers representative of increased dysphonic voice.

For CPP F0 analysis via tablet recordings of the “…blue spot…”

sentence, a significant main effect of recording method (p < 0.001),

as well as a significant interaction of recording method x room

condition (p = 0.022) were observed (see Table 1). Figure 3

shows a great deal of variability in mean CPP F0 estimates

depending upon recording method and room condition, and

substantially higher estimates of CPP F0 for the iPad direct at

45 cm in noise conditions (ER1, ER2, and ER3). Similar to the

smartphone analyses of CPP F0 in the “…blue spot…” context,

Pearson’s r correlations between the GRAS standard and the

tablets with or without microphones were again observed to be

weak-to-moderate across conditions and recording methods (see

Table 2). Similar ANOVA results were observed for the “We

were away…” sentence (see Table 3). However, in the all-voiced

context, correlations between the GRAS standard and tablets

with or without microphones were much stronger than in the

“…blue spot …” context (see Table 4). The weakest observed

correlation (r = 0.058) was observed for the iPad direct at 45 cm

in the ER2 condition. Review of data indicates that the extremely

weak correlation was due to a large number of subjects (15/24;

62.5%) who were assigned a CPP F0 value that approximated the

upper limit of the CPP search limit of 450 Hz.

3.3 Measures of F0 (method 2:
autocorrelation F0 tracker)

For smartphones, ANOVA main and interaction effect results

using the pitch/F0 autocorrelation method are presented in

Tables 1, 3 and mean pitch/F0 values and standard errors are

provided in Figure 4. For the measurement of pitch/F0 in the “…

blue spot…” sentence, no significant main effect of recording

method was observed, though the effect size was moderate

(p = 0.131; ɳ2 = 0.080; see Table 1). A significant main effect of

room condition was observed (p < 0.001), as well as a significant

interaction between recording method x room condition

(p < 0.001) with a small effect size. Figure 4 shows greater

stability in mean F0 estimates vs. those observed for CPP F0.

Following Bonferroni-Holm corrections, there was no significant

difference in autocorrelation-based F0 estimation between the

GRAS standard and any of the smartphones with or without

headset microphones in any of the conditions. Within recording

methods, the differences in mean pitch/F0s observed for the

iPhone direct in ER1 vs. ER3 was marginally significant

(p = 0.063). In contrast to the results for CPP F0, Pearson’s r

correlations between the GRAS standard and the smartphones

with or without microphones for pitch/F0 were observed to be

very strong across conditions and recording methods (see

Table 2). Similar ANOVA results were observed for the “We

were away…” sentence, with no significant difference between

the GRAS standard and any of the smartphones with or without

headset microphones and no significant differences observed

within recording methods (see Table 3). Correlations between the

GRAS standard and smartphones with or without microphones

in the all-voiced context were all highly significant (p’s≤ 0.001)

and consistently very strong across conditions and recording

methods (see Table 4).

For autocorrelation F0 analysis via tablet recordings of the “…

blue spot…” sentence, significant main effects of recording method

and room condition, as well as a significant interaction of recording

method × room condition were observed (all at p < 0.001; see

TABLE 2 Mean Pearson’s r correlations between the various recording methods and the standard (GRAS 40AF + preamplifier + focusrite 2i2 + PC) across
room conditions for selected acoustic measures of voice (all significant at p < .001) in the sentence “The blue spot is on the key again”. Correlation ranges
across conditions are provided in parentheses.

Recording method CPP CPPF0 Pitch/F0 L/H ratio

AvIp 0.987 (0.982–0.992) 0.297 (−0.045–0.524) 0.962 (0.962–0.963) 0.982 (0.981–0.982)

AvPx 0.987 (0.986–0.993) 0.152 (0.006–0.295) 0.961 (0.959–0.963) 0.976 (0.976–0.977)

IpD 0.974 (0.966–0.991) 0.437 (0.270–0.627) 0.951 (0.920–0.989) 0.973 (0.971–0.984)

PxD 0.985 (0.983–0.998) 0.459 (0.346–0.716) 0.978 (0.953–0.997) 0.988 (0.984–0.994)

AvIpd 0.987 (0.982–0.991) 0.231 (0.143–0.325) 0.982 (0.980–0.984) 0.985 (0.984–0.986)

AvSam 0.991 (0.986–0.995) 0.266 (0.004–0.458) 0.976 (0.972–0.980) 0.986 (0.985–0.987)

Ipd30 0.957 (0.940–0.976) −0.060 (−0.335–0.138) 0.919 (0.865–0.942) 0.970 (0.968–0.972)

Ipd45 0.909 (0.806–0.970) 0.253 (0.037–0.216) 0.862 (0.735–0.934) 0.951 (0.948–0.953)

Sam30 0.971 (0.958–0.995) 0.269 (−0.083–0.566) 0.941 (0.917–0.958) 0.950 (0.949–0.952)

Sam45 0.961 (0.934–0.990) 0.208 (0.037–0.481) 0.932 (0.881–0.972) 0.946 (0.945–0.948)

Across All Methods & Conditions 0.971 (0.806–0.998) 0.251 (−0.083–0.716) 0.946 (0.865–0.989) 0.979 (0.945–0.987)

AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-36 + Google Pixel 6 at 2.5 cm; IpD, iPhone 13 direct at 2.5 cm; PxD, Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0

at 2.5 cm; AvSam1, Avid AE-36 + Samsung Galaxy Tab A8 at 2.5 cm; Ipd30, iPad 9.0 direct at 30 cm; Ipd45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8 direct at 30 cm; Sam45,

Samsung Galaxy Tab A8 direct at 45 cm.

CPP F0, Fundamental frequency (F0) computed from the quefrency (ms) location of the cepstral peak; Pitch/F0, F0 computed via autocorrelation in the “Analyze Periodicity | To Pitch (raw

autocorrelation)…” method of Praat; CPP, cepstral peak prominence; L/H Ratio, ratio of low (<4 kHz) vs. high (>4 kHz) spectral energy.
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Table 1). Analysis of the significant interaction effect showed that

iPad direct recordings at both 30 and 45 cm resulted in

significantly lower estimates of pitch/F0 vs. the GRAS standard in

the ER1 condition only (ps < 0.001). iPad direct methods also

showed significant differences in pitch/F0 estimates between the

booth and ER1 conditions. Figure 4 shows the increased

variability in tablet direct estimates of pitch/F0. Similar to the

smartphone analyses of pitch/F0, Pearson’s r correlations between

the GRAS standard and the tablets with or without microphones

in the “…blue spot…” context were observed to be generally

very strong across conditions and recording methods (see

Table 2), with the lowest observed correlation observed for the

iPad direct at 45 cm in the ER1 condition. Similar ANOVA

results were observed for the “We were away…” sentence (see

Table 3). However, in the all-voiced context, analysis of the

significant interaction effect showed a significant difference in

pitch/F0 only between iPad direct recordings at 45 cm vs. the

GRAS standard in the ER1 condition. The iPad direct at 30 cm

showed a marginally significant difference (p = 0. 069) between

booth and ER1 pitch/F0 estimates, while the same comparison

for iPad direct at 45 cm was highly significant (p = 0.001).

Correlations between the GRAS standard and tablets with or

without microphones in the “We were away…” context were also

very strong (see Table 4), with the weakest observed correlation

observed for the iPad direct at 30 cm in the ER1 condition.

3.4 Low/high (L/H) ratio

For the analysis of L/H ratio in the “…blue spot…” sentence,

a significant strong effect of recording method was observed

(p < 0.001; see Table 1). Though significant effects of room

condition and recording method × room condition were also

observed (p < 0.001, respectively), effect sizes were negligible

(ɳ2 < 0.01). post-hoc analysis of the main effect of recording

condition showed significantly greater mean L/H ratios for the

TABLE 3 ANOVA main and interaction effect results and eta2 (ɳ2) effect sizes for the various acoustic measures for the sentence “We were away a year
ago” obtained via smartphones with and without headset microphones.

Acoustic measure Device Recording method Room condition Recording method × room condition

CPP Smartphones p < 0.001; ɳ2 = 0.263**** p < 0.001; ɳ2 = 0.397**** p < 0.001; ɳ2 = 0.064***

Tablets p < 0.001; ɳ2 = 0.510**** p < 0.001; ɳ2 = 0.188**** p < 0.001; ɳ2 = 0.044**

CPPF0 Smartphones N.S; ɳ2 < 0.01 N.S.; ɳ2 < 0.01 N.S.; ɳ2 = 0.023*

Tablets p < 0.001; ɳ2 = 0.186**** p = 0.035; ɳ2 = 0.013* p = < 0.001; ɳ2 = 0.100***

Pitch/F0 Smartphones N.S; ɳ2 = 0.099*** p < 0.001; ɳ2 = 0.026* p = 0.032; ɳ2 = 0.023*

Tablets p < 0.001; ɳ2 = 0.175**** p < 0.001; ɳ2 = 0.093*** p < 0.001; ɳ2 = 0.117***

L/H Ratio Smartphones p < 0.001; ɳ2 = 0.936**** p = 0.007; ɳ2 < 0.01 p < 0.001; ɳ2 < 0.01

Tablets p < 0.001; ɳ2 = 0.906**** p < 0.001; ɳ2 < 0.01 p < 0.001; ɳ2 < 0.01

*Small effect≥ .01.

**Small-to-moderate effect≥ .03 & < .06.

***Moderate effect≥ .06.

****Strong effect≥ .14.

All ANOVAs evaluated using Greenhouse-Geisser corrections.

N.S., nonsignificant.

F0, fundamental frequency; SD, standard deviation; HNR, harmonics-to-noise ratio; CPP, cepstral peak prominence; L/H Ratio, ratio of low (<4 kHz) vs. high (>4 kHz) spectral energy.

TABLE 4 Mean Pearson’s r correlations between the various recording methods and the standard (GRAS 40AF + preamplifier + focusrite 2i2 + PC) across
room conditions for selected acoustic measures of voice (all significant at p < .001) in the sentence “We were away a year ago”. Correlation ranges across
conditions are provided in parentheses.

Recording method CPP CPPF0 Pitch/F0 L/H ratio

AvIp 0.993 (0.987–0.996) 0.834 (0.827–0.841) 0.983 (0.978–0.985) 0.958 (0.957–0.959)

AvPx 0.994 (0.990–0.996) 0.860 (0.784–0.936) 0.974 (0.974–0.976) 0.947 (0.947–0.948)

IpD 0.984 (0.976–0.995) 0.774 (0.548–0.932) 0.990 (0.985–0.998) 0.981 (0.974–0.990)

PxD 0.992 (0.987–0.999) 0.831 (0.715–0.924) 0.994 (0.991–0.999) 0.976 (0.970–0.990)

AvIpd 0.992 (0.988–0.995) 0.851 (0.744–0.910) 0.963 (0.956–0.975) 0.974 (0.972–0.977)

AvSam 0.994 (0.989–0.997) 0.861 (0.757–0.928) 0.979 (0.972–0.990) 0.980 (0.978–0.984)

Ipd30 0.966 (0.935–0.987) 0.619 (0.571–0.689) 0.925 (0.861–0.963) 0.973 (0.947–0.987)

Ipd45 0.940 (0.870–0.987) 0.334 (0.058–0.630) 0.937 (0.886–0.962) 0.946 (0.880–0.990)

Sam30 0.985 (0.968–0.998) 0.716 (0.612–0.912) 0.963 (0.951–0.972) 0.895 (0.890–0.897)

Sam45 0.971 (0.938–0.993) 0.693 (0.526–0.789) 0.966 (0.951–0.977) 0.883 (0.879–0.886)

Across All Methods & Conditions 0.981 (0.870–0.999) 0.737 (0.058–0.936) 0.968 (0.861–0.999) 0.951v (0.879–0.990)

AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-36 + Google Pixel 6 at 2.5 cm; IpD, iPhone 13 direct at 2.5 cm; PxD, Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0

at 2.5 cm; AvSam1, Avid AE-36 + Samsung Galaxy Tab A8 at 2.5 cm; Ipd30, iPad 9.0 direct at 30 cm; Ipd45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8 direct at 30 cm; Sam45,

Samsung Galaxy Tab A8 direct at 45 cm.

CPP F0, Fundamental frequency (F0) computed from the quefrency (ms) location of the cepstral peak; Pitch/F0, F0 computed via autocorrelation in the “Analyze Periodicity | To Pitch (raw

autocorrelation)…” method of Praat; CPP, cepstral peak prominence; L/H Ratio, ratio of low (<4 kHz) vs. high (>4 kHz) spectral energy.
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GRAS standard vs. Avid + iPhone, Avid + Pixel, and Pixel direct

(p < 0.001 for all comparisons). Regardless of any observed

significant differences in mean L/H ratio, Pearson’s r

correlations between the GRAS standard and the smartphones

with or without microphones were observed to be very strong

across conditions and recording methods (see Table 2). Similar

ANOVA results were observed for the “We were away…”

sentence (see Table 3), with post-hoc analysis again showing

significantly lower L/H ratio estimates for the

smartphones + Avid headset vs. the GRAS standard. In

addition, the mean L/H ratio estimate from the iPhone direct

was observed to be significantly higher than the GRAS

standard and there was no observed significant difference

between the Pixel direct vs. the GRAS standard (see Figure 5).

Again, consistently strong Pearson’s r correlations between the

GRAS standard and the smartphones with or without

microphones were observed across conditions and recording

methods (see Table 4).

Similar findings were observed for L/H ratio analyses using

tablets with and without headset microphones. In the “…blue

spot…” sentence, the main effect of recording method was again

highly significant (p < 0.001) with a very strong effect size (see

Table 1). post-hoc analysis of the main effect of recording

condition showed significantly lower mean L/H ratios for tablets

with the Avid headset microphone as well as for the iPad direct

at 45 cm and the Samsung tablet direct at both 30 and 45 cm.

Similar results were observed for L/H ratio analyses using tablets

with and without headset microphones in the “We were away…”

context, with all recording methods (all tablets with and without

the Avid microphone at all tested distances) resulting in

significantly reduced L/H ratios vs. the standard (see Figure 5).

Regardless of observed differences in mean L/H ratios, all

recording methods correlated extremely strongly with the GRAS

standard in both the “…blue spot…” and the “We were away…”

contexts (see Tables 2, 4). Slightly lower correlations were

observed between the standard and Samsung direct measures of

L/H ratio at both 30 and 45 cm and were due to a single highly

dysphonic voice sample that was computed as having a

particularly low L/H ratio.

4 Discussion

The Bridge2AI-Voice Consortium is focused on the

development of affordable and accessible voice data to support

voice AI research. The goal is to provide a database of quality

recordings representative of typical, nondysphonic voice, as well

as voices demonstrating a variety of vocal, respiratory,

FIGURE 3

Mean CPP F0 (Hz) values and standard errors for the various recording methods in “The blue spot is on the key again” (top) and “We were away a year

ago” (bottom). GRAS, GRAS 40AF Free-Field Microphone; AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-36 +Google Pixel 6 at 2.5 cm;

IpD, iPhone 13 direct at 2.5 cm; PxD, Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0 at 2.5 cm; AvSam1, Avid AE-36 + Samsung

Galaxy Tab A8 at 2.5 cm; IpD30, iPad 9.0 direct at 30 cm; IpD45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8 direct at 30 cm;

Sam45, Samsung Galaxy Tab A8 direct at 45 cm.
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neurological, and mood disorders. An additional goal is to collect a

database of voices of children with common childhood disorders.

With these goals in mind, the data acquisition team performed a

series of experiments designed to establish recording procedures

to be used with a wide variety of typical and dysphonic voices in

research labs and clinical settings, as well as in quiet

environments outside of the clinic. This process entailed

evaluating the impact of recording devices, including low-cost

microphones, smartphones, and tablets on the measurement of

various acoustic parameters slated for use in the development of

potential vocal biomarkers of disease. Our initial experiments

have focused on isolated vowel productions, which provide a

vocal signal that is representative of the biomechanics of the

larynx within a static vocal tract. The current experiment

considers the impact of sentence productions on the

measurement of several acoustic parameters. Sentence-level

stimuli introduce the impact of both speech signal complexity,

articulator movements (i.e., tongue, jaw, lips, etc.), and rapid

variations in glottal configuration (voiced vs. unvoiced

productions) and laryngeal adjustments for pitch and loudness

on the acoustic signal. As such, how one produces a sentence

may reflect the impact of a vocal disorder on the production of

speech (1–3). Measures of voice quality acceptable for vowels

(i.e., perturbation measures such as jitter, shimmer, HNR) are

not valid in sentence-level recordings (1–5). For this reason, we

assessed the influence of recording device and noise on a set of

previously validated sentence-level measures related to vocal

pitch and quality: CPP, CPP F0, F0, and L/H ratio.

4.1 Impacts on CPP values

CPP (dB) is a well-accepted “objective measure of breathiness

and overall dysphonia” in the voice (15, 22, 23). Increased CPP

values are expected in the highly periodic voice productions of

nondysphonic speakers. In contrast, lower CPP values are

consistent with increased aperiodicity (possibly due to

irregularity in vocal fold closure patterns and/or the presence of

additive noise) that may result in the perception of hoarseness,

harshness, or breathiness (23, 24). Unlike traditional perturbation

measures such as jitter, shimmer and HNR, the CPP has been

shown to provide valid measures of dysphonia in both vowel and

sentence contexts and in voice samples representative of more

than mild dysphonia. This is because the CPP is not dependent

upon F0 tracking and the accurate identification of cycle

boundaries (18) and therefore can provide accurate estimates of

vocal quality in both sentence-level and vowel productions, as

well as in highly dysphonic voice samples. In comparison to the

FIGURE 4

Mean Pitch/F0 (Hz) values and standard errors computed via autocorrelation for the various recording methods in “The blue spot is on the key again”

(top) and “We were away a year ago” (bottom). GRAS, GRAS 40AF Free-Field Microphone; AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-

36 +Google Pixel 6 at 2.5 cm; IpD, iPhone 13 direct at 2.5 cm; PxD; Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0 at 2.5 cm; AvSam1,

Avid AE-36 + Samsung Galaxy Tab A8 at 2.5 cm; IpD30, iPad 9.0 direct at 30 cm; IpD45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8

direct at 30 cm; Sam45, Samsung Galaxy Tab A8 direct at 45 cm.
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GRAS microphone standard, statistical analyses assessing changes

in mean CPP (dB) values from the two sentences revealed higher

CPP values when smartphone and tablet recordings were made

with the headset microphone, while recordings made directly

using the built-in smartphone and tablet microphones resulted in

lower CPP values. CPP measures were observed to be quite

sensitive to background noise conditions, with the main effect of

room condition particularly prominent and consistent across

recording methods. Since the Avid AE-36 headset microphone is

noise-canceling (i.e., employing two separated microphones, with

one used to pick up the voice signal, the other [generally located

on the opposite side of the microphone housing] used to pick up

background noise, and digital algorithms used to “subtract” the

background noise from the recordings) (12), it is not surprising

that CPP values were higher for the recordings using the headset

microphone. In contrast, the built-in MEMS microphone used in

the smartphone and tablet recordings direct were more prone to

background noise interference, particularly at the larger mouth to

microphone distances used with tablet recordings. The strong

main effects of recording method observed in the analysis of

CPP clearly indicate that measured CPP values using different

recording methodologies are not necessarily interchangeable.

Therefore, normative data for measures, such as CPP, must be

evaluated with knowledge of both the recording methodology

used and the background noise conditions by which the data

were collected. Clearly, both normative and dysphonic

expectations for mean CPP may differ substantially from

published norms if very different recording methodologies and

room conditions are used. However, the strong correlations for

both sentences (mean r’s = 0.971 and 0.981) between the CPP

values obtained with the GRAS recording method and all other

recording methods indicate that all of the recording

methodologies tested in this study were able to track the wide

range of voice qualities and types assembled in the 24-voice

typical and dysphonic voice corpus. In addition, the strong linear

relationships observed between the various recording

methodologies and the GRAS standard indicate that measures

from one method (e.g., smartphone direct) may be transformed

to that of another method (e.g., GRAS standard) using linear

predictive formulae. In practice, the results of this and previous

studies (8, 9) indicate that recording methodologies such as those

used in this study may be effective in group comparisons (e.g.,

typical vs., disordered) or to track pre- vs. post-treatment

outcome, as long as the same recording methodology is used in

similar recording conditions.

Differences in CPP measurements were noted across sentences,

with higher mean CPP values observed in the “We were away” vs.

the “blue spot” sentence. This finding is due to differences in the

phonetic context of the sentences. The first sentence “The blue

spot is on the key again” contains speech sounds that are not

FIGURE 5

Mean L/H ratio (dB) values and standard errors computed for the various recording methods in “The blue spot is on the key again” (top) and “We were

away a year ago” (bottom). GRAS, GRAS 40AF Free-Field Microphone; AvIp, Avid AE-36 + iPhone 13 Pro at 2.5 cm; AvPx, Avid AE-36 +Google Pixel 6 at

2.5 cm; IpD, iPhone 13 direct at 2.5 cm; PxD, Google Pixel 6 direct at 2.5 cm; AvIpd1, Avid AE-36 +iPad 9.0 at 2.5 cm; AvSam1, Avid AE-36 + Samsung

Galaxy Tab A8 at 2.5 cm; IpD30, iPad9.0 direct at 30 cm; IpD45, iPad 9.0 direct at 45 cm; Sam30, Samsung Galaxy Tab A8 direct at 30 cm; Sam45,

Samsung Galaxy Tab A8 direct at 45 cm.
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voiced, like the /sp/ in “spot” or the /k/ in “key”. On the other

hand, “We were away” contains only voiced sounds and vowels,

so the abrupt voiced to or from unvoiced transitions in speech

sound productions are mitigated (4). The differences in sentence

construction are designed to elicit different aspects of voice

quality (11). However, separate normative and dysphonic

expectations will be expected for different sentences and

associated phonetic contexts. Therefore, group comparisons or

within-subject treatment outcomes comparisons regarding CPP

must be evaluated using the same sentence.

4.2 Measurement of F0 (Hz)

A commonly used acoustic measure in voice evaluation is F0,

which is a measure of the number of vocal fold cycles of

vibration per second and is generally perceived as the pitch of a

voice. This study employed two different methods to track F0 in

the sentence context. The first, CPP F0, was the F0 determined

from the quefrency location (in ms) of the observed cepstral

peak, while the second method was the autocorrelation method

recommended in Praat for use in tracking intonation patterns.

While a number of previous studies have reported that measures

of F0 are fairly robust to variations in recording methodology

and to the effects of background noise (9, 25, 26), the results of

this study indicate that this assumption is not necessarily true in

sentence contexts. The results of this study indicate that the

method of F0 estimation can have a substantial effect on the

accuracy of F0 measures and may be affected by both recording

methodology, background noise condition, and speech context. In

particular, F0 tracking using the cepstrum (CPP F0) was

detrimentally affected by recording methodology, with the iPad

at a 45 cm mouth-to-microphone distance showing extreme

deviations in F0 estimation vs. the GRAS standard, particularly in

the ER1, ER2 and ER3 clinic room noise conditions. It is unclear

as to why this deviation was primarily restricted to the iPad

methodology. Due to available funding, multiple versions of the

iPad were not able to be tested. Therefore, it may be possible

that this finding was due to some potential characteristic unique

to our tested model.

Though nonsignificant, all methods showed a strong effect of

room condition on CPP F0, with variability in F0 estimation

observed between all room conditions across methods. Perhaps

more troubling is the observation that the observed correlations

between the various smartphone and tablet recording

methodologies vs. the GRAS standard were consistently weak in

the “blue spot” sentence (mean r = 0.251), indicating a weak

relationship between that the CPP F0 estimates from the GRAS

standard vs. similar estimates measured via these other methods.

While correlations improved considerably in the “We were

away…” context (mean r = 0.737), these observations indicate that

F0 estimation from the cepstrum is highly susceptible to noise,

both from room condition background noise and from noise

inherent within dysphonic voice samples themselves. In these

cases, the selected CPP is affected by increased amplitude noise

and is not necessarily reflective of underlying periodic energy

concentrated in the F0 and harmonics. It is possible that the

influence of recording-related noise is nonlinear across varying levels

of dysphonia (18) and, as observed in this study, the influence of

recording methodology and/or room condition background noise

may be more detrimental when it interacts with voice signals that

are already highly degraded by severe levels of dysphonia.

Though significant recording method × room condition

interactions were observed in both sentence contexts for

smartphones and tablets, the second method of F0 tracking using

autocorrelation was observed to be much more robust to

recording methodology and room condition vs. CPP F0.

Autocorrelation is a measure of the degree of correlation of a

signal between two successive time intervals (the original signal

vs. a lagged version) and determines how similar sequential data

points are over time. Highly periodic voice signals will show high

autocorrelation peaks vs. low autocorrelation peaks in highly

dysphonic and/or noisy signals. As in CPP F0, iPad direct

recordings (at both 30 and 45 cm) resulted in significantly lower

estimates of pitch/F0 vs. the GRAS standard in the ER1

condition as well as increased variability in F0 estimation

between room conditions. This increased variability was evident

in all tablet conditions (both iPad and Samsung) when

recordings were made directly using the built-in MEMS

microphones at 30 and 45 cm, as well as in smartphone direct

recordings (see Figure 4). We speculate that these findings, i.e.,

those illustrating that recording methodology and room

condition can have, in certain cases, a significant effect on F0
estimation, differ from previous reports (9, 23, 24) due to the

type of voice sample elicited. The previous studies which had

reported on the robustness of F0 estimation to recording

methodology and background noise had all used sustained vowel

samples in which there is relative consistency in pitch and

loudness and a target of continuous phonation. Such contexts

make it much easier for algorithms to track F0 vs. speech

samples in which rapid variations in pitch, loudness, and voiced

vs. unvoiced transitions naturally occur. Fortunately, and in

contrast to CPP F0 measures, F0 estimates via autocorrelation

were observed to consistently correlate very strongly with the

GRAS standard, regardless of recording methodology, room

condition, or sentence context (“blue spot…” mean r = 0.946;

“We were away…” mean r = 0.968), indicating that

autocorrelation F0 estimates from the smartphone and tablet

methods were highly predictive of similar estimates from the

GRAS standard.

For both smartphones and tablets, the strength of the

correlations between both CPP F0 and autocorrelation F0
estimates from the GRAS standard vs. the smartphone and tablet

conditions were stronger for the “We were away” sentence than

the “blue spot” sentence. Because, in this study, CPP F0 was

measured without any application of voicing activity detection

(VAD), CPP estimates were obtained not just from voiced

portions of the voice signals, but also from both unvoiced and

highly dysphonic segments, and it is probably the spurious F0
estimates from these segments that resulted in the increased

variability in CPP F0 estimation observed in the “blue spot”

sentence. For this experiment, VAD was not applied in the
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cepstral analyses because VAD can inadvertently remove dysphonic

segments that are actually the focus of the analysis. Therefore, the

“We were away…” sentence, which is comprised of relatively

continuous voicing without the intrusion of voiced to unvoiced

transitions, provided CPP F0 estimates that were not as variable.

F0 estimates using autocorrelation only provide F0 estimates for

autocorrelation peaks that occur above a predetermined threshold

that is used for voiced vs. unvoiced decision making. Therefore,

autocorrelation F0 tracking will generally not provide F0
estimates for clearly unvoiced segments or highly dysphonic

segments of a voice sample, resulting in less variability in F0
estimation. Users of these types of analyses should recognize the

strengths and limitations of these various methods. CPP is a

highly effective measure of noise in the voice signal (both

inherent in the voice signal and from external sources) which

results in a strong measure of dysphonia but will result in

increased variability in F0 estimation with increased noise levels.

On the other hand, autocorrelation will produce less variability

in F0 estimation in both voiced and unvoiced contexts, but at the

expense of potentially removing data segments that may be

reflective of the dysphonia that we actually want to measure. It is

notable that the use of a headset microphone tends to reduce

variability in F0 estimates in both CPP F0 and autocorrelation F0
estimation since the detrimental effects of room condition

background noise are reduced vs. use of the smartphone or tablet

microphones direct.

4.3 Usefulness of low/high ratios

The last measure that was tested was L/H ratio [low vs. high

spectral energy using a 4 kHz cutoff (27)]. It is frequently used

along with cepstral measures (like CPP) as a measure of spectral

tilt. Researchers have shown that individuals that present with

breathy voices or increased vocal tension often demonstrate a

lower L/H ratio (24, 27) due to the presence of increased high

frequency energy from additive noise (e.g., from air escape

between the vocal folds) and/or enhanced high frequency energy

due to pressed phonation.

Results indicated that the L/H ratio was affected by recording

condition, but not room condition background noise. These

findings suggest that it is a good complement to the information

provided by CPP. In the “blue spot” sentence, L/H ratio results

were significantly influenced by recording method, with recordings

made with the Avid headset microphone and the smartphones

resulting in measures of L/H ratio that were significantly lower

than the GRAS standard and the smartphone direct recordings.

Similar findings were noted with the measurements from the “We

were away” sentence, with the exception of the iPhone direct

recordings where the L/H ratios were higher. The frequency

response of the microphones in these devices seems to be a

contributory factor to the variability in these measurements.

Microphones such as the Avid AE-36 and the built-in microphone

used in the Samsung tablet which have a high frequency emphasis

will tend to produce recordings that have lower L/H ratios vs. those

that have either a flatter response or have balanced regions of

emphasis (i.e., regions of frequency emphasis both below and above

the 4 kHz cutoff used in the L./H ratio calculation) (see Figure 5).

Differences across various recording methods could easily be

adjusted with corrective equalization by adjusting the spectral

characteristics of the recording with the microphone being used

(e.g., smartphone or tablet with or without headset microphone) to

better match a standard (e.g., the flat frequency response GRAS

40AF Free-Field Microphone used as the standard in this study).

The ability to correct these measurements to the standard is

further supported by their strong correlations with the GRAS

standard (mean r’s > 0.90; see Tables 2, 4), with all methods

correlating well with the GRAS standard.

5 Limitations and conclusions

There are several limitations to this study. First, the cepstral

peak and F0 tracking floor and ceiling parameters were fixed at

60 to 450 Hz for all samples and recording methods used in this

study. This allowed for the isolation of the effects of recording

method and background noise. However, manipulation of

analysis parameters for different voice samples and different

conditions may have resulted in improved analysis results (e.g.,

for F0 tracking) for certain recording methods. Second, while the

consistency of frequency response for multiple Avid AE-36

microphones has been reported (8, 9), we were unable to test

multiple versions of the smartphones and tablets used in this

study to note consistency of frequency response and recording

quality. It is possible that the highly variable F0 tracking results

for the iPad direct at 45 cm (see Figures 3, 4), as well as the

particularly low L/H ratio results for the Samsung Galaxy Tab 8

(see Figure 5) may not be characteristic of other similar model

tablets. Though potentially expensive, future studies that examine

acoustic estimates of voice obtained from smartphone and/or

tablet recordings should evaluate consistency of results among

multiple examples of the same device.

The current findings illustrate that different recording methods

can produce significantly different acoustic analysis results for the

voice quality measures used in sentence analysis. Microphone

characteristics (e.g., frequency response; use of noise cancellation),

mouth-to-microphone distances, and background noise conditions

all can have significant effects on acoustic results using sentence-

level materials. However, in the cases of CPP, Pitch/F0 estimation

via autocorrelation, and L/H ratio, different recording methods

were observed to be highly correlated with the GRAS standard (in

most cases, r’s substantially greater than 0.90). As such, all

recording methods (smartphones and tablets, with and without

headset microphones) were able to track the acoustic expectations

observed in the highly diverse typical to highly dysphonic voice

samples used in this study. The greatest variability in acoustic

measurement results was observed in the use of tablets direct (i.e.,

using their built-in MEMS microphones) at increased mouth-to-

microphone distances. While convenient, recording directly into a

tablet at increased mouth-to-microphone distances of 30 to 45 cm

allows background noise to substantially affect recording quality

and acoustic estimates of voice, with decreased measures of CPP
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and highly variable measures of CPP F0 observed vs. the booth

condition. In contrast, recordings using close mouth-to-

microphone distances (e.g., smartphones direct or preferably with

a headset microphone at a short mouth-to-microphone distance,

such as the 2.5 cm in this study) reduce the detrimental effects of

background noise and potential reverberation, resulting in higher

CPP estimates and a tendency for less variability in F0 tracking.

Therefore, when recording conditions or available funding does

not allow for voice recordings to be collected via instrumentation

that meet established guidelines [e.g., Patel et al. (15)], mobile

devices such as smartphones and tablets, ideally with attached

headset microphones, may be used to provide acoustic measures

for documenting the presence of dysphonia.

Researchers should always describe their data collection protocols

when comparing datasets, as well as when releasing an audio dataset,

to allow accurate interpretation of data. It is important to recognize

that this project focused on the assessment of spectral and cepstral

analyses of sentence-level materials. There are other vocal or

acoustic biomarkers that go beyond these traditional acoustic

features. For example, linguistic or paralinguistic biomarkers may

not be as sensitive to recording conditions. Further work is needed

to compare accuracy of other speech, linguistic and paralinguistic

biomarkers in different recording conditions.
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