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Introduction: Cardiovascular health is increasingly at risk due to modern 

lifestyle factors such as obesity, smoking, stress, hypertension, and sedentary 

behavior. Post-pandemic health practices and medication side effects have 

further contributed to rising cases of early heart failure, particularly among 

individuals aged 25–40 years. This highlights the need for an automated and 

interpretable framework to predict heart disease at an early stage.

Methods: In this study, body vitals acquired from a secondary dataset. Machine 

learning models including Support Vector Machine, Random Forest, Decision 

Tree, and Logistic Regression were employed for classification. Model 

performance was evaluated using accuracy, F1-score, and k-fold cross-validation.

Results: Among the tested models, the Random Forest classifier demonstrated 

superior performance with an accuracy and F1-score of 0.955. The 

interpretability is enhanced  with model predictions were explained using 

Local Interpretable Model-Agnostic Explanations (LIME) for local surrogates 

and SHAP values for global surrogates. SHAP decision plots provided clear 

insights into classification behaviour and feature contributions.

Discussion/Conclusion: The proposed interpretable machine learning 

framework successfully predicts heart disease with high accuracy while 

maintaining transparency in decision-making. With the integration of  sensor 

data with cloud-based analysis and explainable AI techniques, this study 

contributes to reducing the incidence of early heart failures and supports 

more reliable decision-making in healthcare applications.
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1 Introduction

Cardiovascular disease (CVD) has always posed a serious 

threat to human beings and remains the primary cause of death 

globally. Heart diseases can cause substantial risk to the life of a 

person and significantly impact human health and wellbeing (1). 

The World Health Organization (WHO) has reported that 18 

million persons die of CVD every year, which represents 32% of 

all deaths worldwide, of which 85% are due to heart attacks. 

The WHO has stated that more than 70% of heart diseases 

occur in developing countries (2). The World Heart Federation 

has predicted nearly 23 million CVD-related deaths by 2030, 

and the American Heart Association has reported that by 2035, 

nearly 130 million adults will contract heart diseases (3). Heart 

diseases encompass various conditions such as irregular 

heartbeats, cardiomyopathy, arrhythmia, and peripheral or 

coronary artery that affect the heart and cause a global hazard 

health with serious medical manifestations (4, 5). The crucial 

risk factors for cardiovascular diseases are tobacco use, alcohol, 

unhealthy diet, physical inactivity, obesity, high blood pressure, 

diabetes, high cholesterol, and emotional implications (6). WHO 

has been deliberately making efforts to curtail the encumbrance 

of heart diseases by implementing prevention and control 

efforts. Members of the WHO are planning to facilitate drug 

and counseling treatments for a minimum of 50% of people 

with a high risk of cardiovascular disease by the end of this year 

(7). COVID-19 is an infectious pathogen that has created an 

aberrant impact on public health worldwide. It has been 

observed that COVID-19 infection has created an independent 

risk factor for heart diseases in some patients and has caused 

severe damage to the heart muscles, leading to myocarditis or 

heart failure. Blood clots and cardiac arrhythmias are the major 

risk factors for elevated mortality risks. Many emerging pieces 

of evidence and observational studies have been reported by 

researchers to the effect patients infected with the COVID-19 

had suffered from impairment of myocardial function (8, 9) and 

cardiovascular complications (10, 11) such as myocarditis, 

arrhythmias, pericarditis, myocardial infarction, 

thromboembolism, stroke, and sudden death (12, 13). More 

than 72.3% of people, or over 5.55 billion individuals 

worldwide, have been administered a dose of COVID-19 

vaccination to protect against virus variants effectively. However, 

vaccination intake rates have substantially stagnated for several 

reasons, and one among them is vaccine hesitancy (14, 15). The 

main reason for the reluctance on the part of people to get the 

vaccines administered is the side effects associated with cardiac 

complications like myocarditis and pericarditis (16). The vaccine 

side effects are associated with a high risk of myocarditis that is 

highest in males between the ages of 16 and 24 years (17). The 

studies conducted (18) show that males who received the second 

dose of the COVID-19 vaccine had the highest rate of 

cardiovascular complications (19). The Center for Disease 

Control and Prevention (CDC) is continuously monitoring and 

conducting various surveys on patients having symptoms such 

as chest pain, palpitation, pounding heart, and shortness of 

breath and advising them to take the related medical tests for 

diagnosing myocarditis and pericarditis (20). Monitoring 

patients with a high risk of heart disease is paramount to ensure 

their wellbeing and optimize treatment outcomes. Regular health 

monitoring helps clinicians to effectively assess the patient’s 

health condition, medical adherence, and drug intake 

adjustments. Health monitoring also helps patients understand 

their health conditions, disease progression, treatments, and self- 

care health management and prevents them from having the 

risk of adverse events (21).

The Internet of Medical Things (IoMT) is a transformative 

and revolutionary technological concept in the field of 

healthcare used for amalgamating medical resources connected 

with network technologies for monitoring, predicting, and 

preventing health-related diseases (22). The prognostic potential 

of the IoMT has fascinated the healthcare industry in terms of 

facilitating real-time surveillance using smart medical devices 

connected with software applications. The IoMT captures real- 

time data on patients using wearable devices, remote monitoring 

devices, connected medical equipment, implantable medical 

devices, mobile health applications, smart home medical devices, 

and point-of-care testing devices (23). The IoMT devices play a 

vital role in health monitoring, data collection, personalized 

care, and transmission of real-time data for the decision-making 

process by healthcare providers. The communication system in 

the IoMT enables connectivity and data exchange among 

patients and healthcare providers for improving the patient’s 

health condition and enhancing overall healthcare management 

(24). The IoMT is used in this work to monitor the patient’s 

health-related risk factors for cardiovascular diseases, such as 

tobacco use, use of alcohol, diet, physical activity, obesity, high 

blood pressure, diabetes, high cholesterol, and emotional 

implications for diagnosing, monitoring, and preventing heart 

diseases. Smart medical devices track the heart rate, 

electrocardiogram (ECG), heart rhythms, heart’s electrical 

activity, blood pressure, insulin level, sleeping level, physical 

activity, and stress management (22).

The integration of IoMT technology into Artificial Intelligence 

has the potential to optimize the healthcare decision-making 

process by analyzing real-time data to develop predictive models 

(25–28). The emerging utilization of AI and machine learning 

(ML) models has the potential to revolutionize healthcare 

management by enabling automation and analyzing data from 

IoMT devices for identifying symptoms and improving decision 

outcomes (29). AI models predict disease progression, detect 

abnormalities and risk patterns, and facilitate interventions to 

avert adverse events (30). However, AI approaches are often 

called “black boxes” due to a lack of interpretability and 

accountability. The high dimensionality feature of AI techniques 

makes it tedious for humans to interpret and understand the 

decisions taken (31). Patients can face difficulty understanding 

the decisions and insights the machine learning models produce. 

Explainable AI (XAI) is considered a magic box to counteract 

the black box nature of AI models by providing optimal 

solutions with transparency in the healthcare industry (32). The 

cutting-edge XAI technology is a game changer by as it 

generates explanations, visualizations, and justifications for the 
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decision outcomes produced by AI models (33). The healthcare 

industry can utilize this trailblazing XAI model to make clinical 

decisions transparently by allowing healthcare providers and 

patients to interpret the underlying reasoning behind AI’s 

decisions. An XAI model can be used for treatment 

recommendation plans that help physicians understand and 

comprehend appropriate interventions. This improves the 

trustworthiness among healthcare providers and patients for the 

successful implementation and deployment of AI-based 

healthcare systems (34).

The purpose of this study is to develop an accurate and 

interpretable XAI framework to predict heart disease using 

input received through the IoMT sensors. This study also clearly 

understands the importance of medical parameters that provide 

transparency and consistency in the predictions. In this study, 

Section 2 describes the review of the literature on the prediction 

of heart disease on existing works. Section 3 discusses the 

materials and methods where a description of datasets, system 

architecture, and a mathematical model is added. Section 4

presents the results and Section 5 provides a discussion of the 

results. Finally, the paper concludes with a comprehensive 

conclusion section.

2 Background

The foundation for the enrichment of research is based on a 

comprehensive literature survey and relevant investigation in the 

respective domain. This section focuses on several research 

methodologies and literature reviews on heart disease prediction, 

IoMT-based health monitoring, machine learning models, and 

XAI. The current research methodologies and their respective 

strengths are identified along with their limitations. Heart 

diseases are considered a potential threat to human life and a 

leading reason for morbidity and mortality. The WHO has 

outlined the critical risk factors of heart diseases such as tobacco 

use, alcohol, unhealthy diet, physical inactivity, obesity, high 

blood pressure, diabetes, high cholesterol, and emotional 

implications depicted in Figure 1. A meta-analysis reveals 

various cardiovascular complications associated with COVID-19 

and vaccinations. Figure 2 illustrates the cardiovascular disease 

complications of COVID-19 and notes the prevalence of 

myocardial injury, acute cardiac injury, arrhythmias, and heart 

failure, all of which elevates the risk of mortality.

2.1 Related works

Kumar et al. (35) analyzed the classification of heart diseases 

prediction, which involved five stages such as heart disease 

detection and diagnostics, machine learning models and 

algorithms used for healthcare, feature engineering and 

optimization techniques, evolving and advanced techniques in 

healthcare, and different applications of AI across various 

diseases and health conditions. This study analyzed the deep 

learning models for early diagnosis of heart disease prediction 

with evaluation techniques like sensitivity, specificity, and area 

under the curve (AUC). It also discusses ethical issues, dataset 

challenges, and transparency of the model. This paper clearly 

pointed out the advantages and challenges of modern 

FIGURE 1 

Heart disease risk factors.
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equipment and advanced prediction systems. Rajkumar et al. (36) 

proposed IoT-based framework and advanced and enhanced deep 

learning framework. A Hungarian heart disease dataset is used, 

which is preprocessed by a median studentized residual 

approach for reducing error values and missing data. The Harris 

Hawk Optimization (HHO) approach is applied to select the 

features during preprocessing, which are classified using 

Modified Deep Long Short-Term Memory (MDLSTM). This 

output is updated by the Improved Spotted Hyena Optimization 

(ISHO) algorithm and achieved 98.01% accuracy in 

implementation. Hammadi et al. (37) presented an updated 

framework for cardiovascular disease prediction with the hybrid 

ensemble learning method. A soft voting method is introduced. 

Class imbalance is given preference here and the model achieves 

97.4% accuracy in score 1, 83.6% accuracy in score 2, and 93% 

accuracy in score 3. This advanced technique applies ensemble 

learning for early detection of heart diseases. The Department of 

Computer Science & Engineering BRAC University in Dhaka, 

Bangladesh. Rokoni et al. (38) focused on model interpretability 

and applied one-dimensional Convolutional Neural Networks 

(1D CNNs) and logistic regression for classifying diseases. It 

achieves 80% overall accuracy, and Local Interpretable Model- 

Agnostic Explanations (LIME) provides transparency by finding 

the inHuenced features like glucose, blood pressure, and troponin.

Wang and Song (39) presented an edge-assisted IoMT 

framework for monitoring aged people having chronic diseases. 

The IoMT-based smart home monitoring model is utilized to 

access medical data and diagnose diseases for aged persons by 

continuously monitoring and communicating hastily using edge 

computing. Martinek et al. (40) used federated learning and 

blockchain technology to ensure privacy for healthcare 

monitoring. The IoMT technology used in this work employs 

sensors for health monitoring, and the sensed data are stored 

and managed using a fog-cloud-assisted network. The federated 

learning and fraud detection mechanism–enabled blockchain 

framework is used to process application workloads and validate 

the quality of service. Kumar et al. (41) proposed a novel IoMT- 

based healthcare monitoring system using rooted elliptic curve 

cryptography with Vigenere cipher (RECC-VC) for securing the 

environment. RECC-VCC enhances security, and the 

exponential K anonymity model is used for privacy protection. 

The Improved Extension Neural Network (IENN) framework is 

used to analyze the level of sensitive data, and the Gaussian 

mutated chimp optimizer is used to update the weight. 

Blockchain technology is used to store and manage transactions 

on the cloud server. Kishor and Chakraborty (42) presented an 

IoT-based health monitoring system by predicting various 

diseases such as heart disease, diabetes, breast cancer, 

dermatology, thyroid, liver disease, and surgery data using 

machine learning approaches like Decision Tree, Naïve Bayes, 

Random Forest, Support Vector Machine (SVM), Adaptive 

Boosting, Artificial Neural Network, and K-nearest 

neighborhood (KNN). Shafiq et al. (43) presented a deep 

learning framework using CNN for detecting heart disease 

symptoms by analyzing the biosensor input for detecting heart 

disorders. The PASCAL dataset is used to train the CNN model, 

and the real-time data sensed by IoT sensors are stored in the 

cloud. The sound of the heart is given as input for classifying 

whether patients are affected by heart disease. Kumar and 

Gandhi (44) introduced a three-tier IoT architecture for 

detecting heart disease. Wearable sensors are used to observe 

the patient’s health condition, and Apache HBase stores the 

patient’s monitored data in cloud computing. Apache Mahout is 

utilized to implement a logistic regression framework for heart 

FIGURE 2 

Cardiovascular complications of COVID-19.
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diseases. Panja et al. (45) utilized IoMT architecture to monitor 

and assess the health issues of infected patients and trigger an 

alert message to their clinicians and relatives. The real-time data 

collected from patients are transmitted to the cloud via edge 

devices for processing. A severity analysis of the infection is 

carried out using fuzzy logic to detect the risk status of COVID- 

19 patients effectively. Jain et al. (46) proposed point-of-care 

testing to rapidly detect infectious diseases and give spot results 

for taking early action.

IoMT devices are also used to capture the patient’s vitals for 

early detection of diseases such as malaria, inHuenza A, Ebola 

virus, Zika virus, COVID-19 virus, and dengue fever. Rezaee 

et al. (47) suggested a meta-heuristic fuzzy inference system for 

emotion recognition using the IoMT. Patients are tested by 

playing music videos to detect their emotional states. 

Electroencephalography (EEG) signals are captured before and 

after meditation. Using an optimized, innovative Gunner 

algorithm, a fuzzy inference-based classification approach is 

used to classify emotions. Krupa et al. (48) presented an IoMT- 

based deep learning framework for automatically detecting 

fetal QRS. The framework used two methods: one for detecting 

fetal QRS complex using a deep neural network and the second 

for classifying the results by acclimatizing transfer learning to 

improve accuracy. The method uses a time-frequency image as 

input for an IoT-based deep neural network in the abdominal 

ECG without removing the maternal components. Lu et al. (49) 

developed a novel IoMT-based fetal monitoring model 

incorporating an automatic fetal heart rate (FHR) rating method 

to evaluate fetal health conditions inside the uterus using digital 

cardiotocographic signals. The monitoring system uses Kreb’s 

Fischer, improved Fischer, and American College of 

Obstetricians and Gynecologists (ACOG) classifiers to detect 

and classify fetal conditions as good and bad for comparison. 

Rahmani et al. (50) used fog computing–based e-Health gateways 

by offering higher-level services for storage provisioning and data 

processing to form a geo-distributed middle layer between the 

cloud and IoT sensors. The framework uses an early warning 

score for monitoring health to facilitate energy efficiency, 

interoperability, reliability, mobility, and performance. Nandy 

et al. (51) proposed an IoMT-based intelligent agent mechanism 

to detect brain response using an electroencephalography signal. 

A bag of neural network categorizes the complex brain signals 

captured by the IoMT sensors and detects the brain responses. 

The IBoNN framework is compared with standard machine 

learning algorithms. Yadav et al. (52) presented biomarker-based 

electrochemical immuno sensors for diagnosing COVID-19 using 

the IoMT and artificial intelligence. The smart sensing technique 

is used with bioinformatics approaches for monitoring non- 

invasive SARS-COV2.

Verma et al. (53) summarized nano-integrated wearable 

biosensors and the use of 5G in the Internet of Things for 

healthcare applications. Fouad et al. (54) presented a numerical 

approach using the Gautschi model for vertebral tumor 

prediction. The IoMT technology is used for predicting tumors 

employing heuristic hock transformation for evaluating possible 

perpetual incapacity caused by tumors on Haar-like 

characteristics (HLC), logistics models (LM), conservative 

therapy method (CTM), and carbon fiber including reinforced 

materials (CFRM) approaches. Figure 3 describes the percentage 

of AI and machine learning approaches used in the healthcare 

industry. In recent years, machine learning models have 

revolutionized the diagnosis of various diseases and the 

assessment of the risk factors involved in making accurate 

decisions. According to a background study, supervised learning 

FIGURE 3 

AI and machine learning techniques used for healthcare applications.
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approaches like 35% of logistic regression, 26% of decision tree, 

and 24% of neural networks, as well as 5% of unsupervised 

learning methods like clustering and anomaly detection, have 

been used by the healthcare industry to assess the risks.

Ribeiro et al. (55) presented a novel agnostic approach called 

LIME, which is used to provision the comprehensiveness of the 

decisions made by the banking staff by determining them with 

simple and interpretable models. The LIME model helps 

improve accuracy, transparency, and trustworthiness. This model 

can be used with complex machine learning algorithms without 

any knowledge of their working mechanisms. Lundberg and Lee 

(56) proposed a new technique, SHAPELY Additive 

exPlanations (SHAP), to interpret the existing complex machine 

learning models. The SHAP algorithm provides global and local 

interpretations to help borrowers easily understand the 

predictions made by black box techniques. SHAP can be used in 

various machine learning approaches and deep neural networks 

and effectively work with real-world datasets.

Muddamsetty et al. (57) presented an evaluation for 

understanding the outcomes of machine learning models. Thus, 

it is evident that the XAI model helps to present outcomes with 

transparency and provides solutions to black box models. 

Explanations for the clinical prediction outcome entail the 

justification of reliability and trustworthiness that can be 

achieved using XAI models (58). Onan (59) presented a 

hierarchal graph-based model for text classification of dynamic 

fusion using BERT. The framework uses seven stages for graph- 

based text classification and analysis with various benchmark 

functions. Onan (60) proposed a genetic technique combined 

with graph-based neural networks for generating augmented text 

having high dimensional feature space. The objective function is 

based on perplexity when evaluating the quality of generating 

augmented text data. Onan (61) proposed a Semantic Role 

Labeling algorithm with an Ant colony optimization approach 

for generating training data to improve the performance of the 

natural language processing (NLP) framework. The semantic 

roles are identified using semantic role labeling (SRL) for text 

augmentation to enhance the quality of training data. Onan (62) 

suggested a bidirectional convolutional recurrent neural network 

framework for semantic analysis using gated recurrent unit 

(GRU) and LSTM layers. Feature extraction is carried out by the 

bidirectional layers to reduce dimensionality and extract high- 

quality features. Onan et al. (63) presented a two-stage topic 

extract model using a word embedding approach and cluster 

analysis. The word vectors are extracted by Word2Vec, 

POS2vec, LDA2vec, and word position2vec schemes. 

A comparison of Naïve Bayes, SVM, Random Forest, and 

Logistic regression with ensemble methods is used for evaluating 

the statistical key extraction model (64). Onan et al. (65) 

presented a consensus cluster mechanism using an 

undersampling model with five supervised learning algorithms 

and three ensemble learners for imbalanced learning. Onan and 

Korukoğlu (66) utilized an ensemble model for feature selection 

with a genetic-optimized algorithm for sentimental analysis. 

Sentiment classification based on a hybrid ensemble pruning 

model with consensus clustering is utilized for text classification 

(67). Sentimental analysis for product reviews (68), online 

course evaluation (69), and mining opinions for instructors (70) 

is done using deep neural networks. Onan (71) presented a 

comparative analysis of feature engineering models using five 

base learners for text genre classification and language function 

analysis. Onan and Toçoğlu (72) suggested inverse gravity 

moment utilizing bidirectional LSTM for representing text 

documents. The LSTM framework is evaluated on the basis of 

the sarcasm identification corpus. The deep learning model is 

utilized to identify sarcasm for predicting the performance of 

sentiment analysis. Vakharia et al. (73) proposed three deep 

learning frameworks with optimized explainable artificial 

intelligence for predicting the discharge capacity of the battery. 

The jellyfish optimization algorithm is used with the XAI model 

to improve the predictive performance. Ali et al. (74) presented 

an SVM model based on four Ant Bee Colony (ABC) 

algorithms, Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Whale Optimization Algorithm 

(WAO) for tuning hyperparameters. A teaching learning–based 

optimization algorithm with a heat transfer searching model is 

used to select features and identify faults. Suthar et al. (75) and 

Vakharia et al. (76) highlighted a comparative study of feature 

ranking approaches for fault identification by using the Fisher 

score, ReliefF, Gain ratio, Wilcoxon rank, and Memetic feature 

selection model. The literature survey shows that the XAI 

framework improves prediction accuracy with interpretability 

and explainability in healthcare applications because of the 

crucial nature of the decision-making process and public health 

safety. Tables 1, 2 depict a comparison of various black box 

models used for healthcare applications.

2.2 Research questions

This study aims to answer all the following questions: 

1. How can this IoMT sensor device help predict the heart 

disease effectively?

2. Which type of machine learning or deep learning 

methodologies are most relevant for predicting heart disease 

accurately?

3. How can feature selection techniques help identify the most 

dominant parameters for prediction?

4. What are all the challenges in integrating the IoMT with real- 

time heart disease prediction and how can they be addressed?

5. Does the proposed framework apply effectively in real-time 

analysis problems for early heart disease prediction?

This work addresses the drawbacks of state-of-the-art ML-based 

techniques in achieving increased transparency, interpretability, 

and accountability with high-accuracy outcomes.

2.3 Feature selection and existing work

The IoMT integrates wearable devices with sensor technologies 

to monitor health parameters, track physical activity, and enable 
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remote patient monitoring. The literature survey focuses on two 

specific sensor categories: vital signs and motion sensors. For vital 

signs sensors, Rao et al. (104) present a non-invasive wearable 

device that accurately monitors BP without requiring invasive 

catheterization. The device utilizes capacitive wrist and/or foot 

sensors to acquire pulse waveform data, which are then processed 

using artificial neural networks to determine systolic, diastolic, 

and mean arterial pressures. A comparison with invasive arterial 

line data confirmed the device’s accuracy, making it a viable 

alternative for continuous BP monitoring in critically ill infants. 

In motion sensors, Jakob et al. (105) evaluate the effectiveness of 

wearable sensors in analyzing motion patterns in individuals with 

Parkinson’s disease. The study assesses the accuracy and reliability 

of the sensor system in detecting and quantifying motor 

symptoms associated with Parkinson’s disease, such as 

bradykinesia and shufHing gait. Wearable sensors distinguish 

Parkinson’s patients from healthy controls, showing their 

potential for clinically relevant gait assessments in Hexible 

environments. These research papers are examples of studies 

conducted on sensors used in IoMT projects. The surveyed 

literature demonstrates the significance of vital signs sensors in 

non-invasive blood pressure monitoring and the potential of 

motion sensors in analyzing motor symptoms in Parkinson’s 

disease. The following parameters mentioned in Figure 4 are 

taken into consideration while designing existing and ongoing 

IoMT systems that are positively helping to transform the IoMT 

domain through cutting-edge technology. Physiological 

parameters, biochemical parameters, electrical activity, respiratory 

parameters, motion and activity, sleep patterns, environmental 

factors, and medical adherence are the IoT devices applied for 

treatments. Some of the IoMT projects have incorporated the 

above-mentioned parameters and have made the availability of 

diagnostics more accessible, for example, Ovularing (106), 

VitalPatch (107), SmartPill (108), GlucoWear (109), MindMotion 

Pro (110), BioStampRC (111), Biotricity (112), SmartMat (113), 

PillCam (114), WAND (Wireless Artifact-free Neuromodulation 

Device) (115), Abilify MyCite (116), Embrace (117), and Insulet 

Omnipod (118).

3 Materials and methods

In this work, we propose an IoMT-based heart disease 

prediction framework based on machine learning models like 

Logistic Regression (119), SVM (120), Decision Tree (121), 

Gradient Boost (122), and Random Forest (123). Figure 5

depicts the layered architecture of the work having four layers of 

IoMT: a device layer, cloud layer, machine learning models 

layer, and Explainable AI layer. The IoMT devices capture 

patients’ vitals, and the sensed patient’s data are transferred to 

TABLE 1 Motivation for the proposed work from the review perspective.

Reference Title Advantages Research gap

Hashem et al. (77) Predicting neurological disorders linked to oral cavity 

manifestations using IoMT-based optimized neural networks

• Reduced complexity

• Oral cavity linked nervous problem 

detection rate

• Minimized the feature dimension

• Interpretability vs. accuracy trade- 

off

• Limited explanation of 

complex models

• Scalability

Zhu et al. (78) IoMT-enabled real-time blood glucose prediction with deep 

learning and edge computing

• The wearable sensor’s power and 

memory footprint are analyzed

• Prediction accuracy for three datasets

• Scalability.

• Limited applicability

• Interpretability vs. accuracy trade- 

off

Abbas et al. (79) Secure IoMT for disease prediction empowered with transfer 

learning in healthcare 5.0, the concept and case study

• Model performance

• Generalizability

• Security

• Limited explanation of 

complex models

• Scalability

Nandy et al. (80) An intrusion detection mechanism for a secure IoMT 

framework based on swarm-neural network

• Security. High performance due 

to optimization

• Limited applicability

• Interpretability vs. accuracy trade- 

off

• Scalability

Lakhan et al. (81) Federated learning–based privacy preservation and a fraud- 

enabled blockchain IoMT system for healthcare

• Privacy preservation

• Minimum energy consumption

• Limited number of models

• Lack of external validation

• Limited scope of interpretability

Wang and Song 

(39)

An edge-assisted IoMT-based smart-home monitoring system 

for the elderly with chronic diseases

• Local medical data diagnosis and 

rapid communication

• Scalability

• Limited applicability

• Interpretability vs. accuracy trade- 

off

Zhang et al. (82) A joint deep learning and internet of medical things–driven 

framework for elderly patients

• Energy efficiency

• Sustainability

• Reliability during data transmission

• Limited to a specific set of datasets

• Does not incorporate 

interpretability techniques

• Does not incorporate 

explainability techniques

Khan and Algarni 

(83)

A healthcare monitoring system for the diagnosis of heart 

disease in the IoMT cloud environment using MSSO-ANFIS

• Better accuracy

• Improved convergence rate

• Lack of external validation

• Limited scope of interpretability

Guleria et al. (84) XAI framework for cardiovascular disease prediction using 

classification techniques

• Comprehensive evaluation,

• Large dataset

• Transparent evaluation criteria

• Lack of external validation

• Limited scope of interpretability

• Limited to a specific set of datasets
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cloud storage. The machine learning models herewith are used to 

detect and classify cardiovascular diseases and associated risk 

factors for diagnosing, monitoring, and preventing heart 

diseases. XAI techniques such as LIME (124) and SHAP (125) 

help overcome the limitations of traditional Machine Learning 

models by providing interpretable decision outcomes, thereby 

assisting both patients and clinicians.

3.1 Importance of XAI in the IoMT

The following case studies outline why XAI will prove to be a 

revolutionary change required in the IoMT.

3.1.1 Case study 1: a 26-year-old adult died due to 
cardiac arrest

A 26-year-old man collapsed suddenly at a Metro Station in 

New Delhi because of cardiac arrest. The young man was 

immediately taken to a hospital, and the physician declared that 

the person died because of chronic fat deposits in the arteries. 

The postmortem was carried out at a medical institute, which 

revealed that the visceral organs and the brain were congested, 

resulting in lung blockage. Following this incident, the 

healthcare administration raised concerns regarding the 

prevalence of abrupt cardiac deaths among young adults and 

drew attention to the presence of undiagnosed cardiovascular 

diseases. Clinicians are advised to consider the risk factors and 

causes of heart disease and to take preventive measures for early 

diagnosis and further treatments.

3.1.2 Case study 2: a 40-year-old actor’s demise 
due to massive cardiac arrest

A 40-year-old man and actor died because of a massive heart 

attack at his Mumbai residence. He took medicine, slept, and did 

not wake up. He was immediately taken to the Cooper Hospital in 

Mumbai, and the clinicians declared that the person was brought 

dead due to a massive heart attack. Clinicians worldwide are advised 

to assess the risk factors and lifestyle changes, thereby stressing 

regular health checkups that can help prevent cardiovascular diseases.

Table 3 provides an overview of the sensors described above 

and elucidates the shortcomings and advantages of these 

devices, which acted as a support to this work.

3.2 Dataset description

CVD takes the lives of around 18 million people every year and is 

the primary cause of death. The rate of accountability of death reports 

due to CVD is around 31%. A total of 80% of deaths associated with 

CVD are mainly due to heart attack and stroke. These attacks are 

observed in groups of people who are less than 70 years old. With 

this in mind, a dataset (126) has been prepared as an amalgamation 

of observations recorded from Cleveland (303), Hungarian (294), 

Switzerland (123), Long Beach, VA (200), and Stalog Dataset (270). 

After removing duplicates, the final dataset contains 918 instances 

with 11 important features for analyzing CVD diseases. The 

dependent target class is Heart Failure. The other independent 

features are Age, Sex, Chest Pain Type, ST_Slope, Cholesterol, 

Resting BP, Blood Sugar, Resting ECG, Exercise Angina, Old Peak, 

TABLE 2 Comparison of algorithms and prediction performance.

Reference Algorithms 
compared

Type of data Prediction performance

Juhola et al. (85) ANN, NB Disease symptom Accuracy: (ANN=85, NB=88)

Long et al. (86) ANN, LR Clinical and demographic data Accuracy: (ANN=0.965, LR=0.963)

Palaniappan and Awang 

(87)

ANN, DT, SVM Clinical data for cancer incidence and survival Accuracy: (ANN=0.947, DT=0.936, SVM=0.957)

Jin et al. (88) LR, RF Electronic health records Accuracy: (LR=0.663, RF=0.627)

Puyalnithi and 

Viswanatham (89)

DT, NB, RF, SVM Clinical and demographic data Sensitivity: (ANN=0.956, DT=0.958, SVM=0.971)

Forssen et al. (90) LR, RF Metabolomic data Accuracy: (LR=0.767, RF=0.732)

Tang et al. (91) ANN, LR Clinical, demographic, behavioral, and medical data Specificity: (ANN=0.928, DT=0.907, SVM=0.945)

Toshniwal et al. (92) ANN, LR Clinical and demographic data Accuracy: (ANN=0.909, LR=0.897)

Yang et al. (93) ANN, DT, LR Clinical and demographic data Accuracy: (ANN=0.909, DT=0.935, LR=0.894)

Mustaqeem et al. (94) DT, RF, SVM Image data Accuracy: (DT=0.932, RF=0.963, SVM=0.959)

Mansoor et al. (95) DT, KNN, NB Electronic health records, medical image, and gene data Accuracy: (DT=0.646, KNN=0.454, NB=0.495)

Kim et al. (96) LR, NB, SVM Gut microbiota Accuracy: (LR=0.98, NB=0.94, SVM=0.99)

Taslimitehrani et al. (97) ANN, LR, SVM Electrochemical measurements of saliva Accuracy: (ANN=80.70, LR=75.86, SVM=84.09)

Anbarasi et al. (98) DT, NB Clinical and demographic data Accuracy: (DT=99.2%, NB=96.5%)

Bhatla and Jyoti (99) ANN, DT, NB Clinical data F1-score: (ANN=80.20, LR=75.71, SVM=84.06)

Thenmozhi and Deepika 

(100)

KNN, LR, SVM Demographic, anthropometric, vital signs, diagnostic, and 

clinical laboratory measurement data

Accuracy: (KNN=79.5, LR=80.7, SVM=82.6)

Tamilarasi and Porkodi 

(101)

KNN, LR, NB, RF, SVM Demographic and clinical test result Accuracy: (KNN=0.721, LR=0.755, NB=0.762, 

RF=0.803, SVM=0.749)

Marikani and Shyamala 

(102)

ANN, LR, RF, SVM Demographic, anthropometric, diagnostic and clinical lab 

measurement data

Accuracy: (ANN=0.931, LR=0.935, RF=0.930, 

SVM=0.986)

Lu et al. (103) ANN, NB, SVM Clinical, demographic, and diagnostic data Accuracy: (ANN=86.04, NB=82.31, SVM=86.62)

ANN, artificial neural network; NB, Naïve Bayes; LR, logistic regression; DT, decision tree; RF, random forest.
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and Maximum Heart Rate (MaxHR). Some of the features are 

numeric, and some of the features are non-numeric. Table 4

provides the list of features converted to numeric data. The string 

data are transformed using the Label Encoder preprocessing 

technique with Min-Max scalar transformation. The dataset (126) 

has no missing values or class imbalance. Heart Rate, Variable 

Heart Rate, Blood Glucose Level, MaxHR, Blood Pressure, and 

ECG (Polar H10 Sensor) are measured by IoMT sensors. The other 

readings are observed in the oscilloscopes and treadmills 

(ST_Slope, Restring Angina), and some data are collected directly 

from patients and their attenders (Name, Age, Sex, etc.).

3.3 System architecture

Figure 6 provides an overview of interfacing the ML algorithms 

discussed in this section with XAI. In terms of monitoring and 

managing cardiovascular health, IoMT devices play an important 

role in the use of advanced transformation techniques. These 

devices increase power connectivity, analyze data, and monitor 

remotely, providing advanced care for cardiac patients and 

improving patient health. There are many IoMT devices for 

monitoring the heart behavior of patients, such as remote ECG 

monitors, wearable heart rate monitors, pacemakers, BP monitors, 

temperature monitors, and medication dispensers. These devices 

help healthcare professionals to monitor patients continuously. 

They can personalize treatment plans, and they can easily predict 

previous symptoms and take immediate action.

Machine learning techniques play a substantial role in identifying 

heart diseases with the help of IoMT devices. Data are collected from 

IoMT sensor devices, and ML algorithms understand the data, detect 

anomalies, and produce solutions for accurate heart diagnosis. Many 

ML algorithms can be applied to train the model to analyze data and 

recognize patterns. A large volume of data can be processed by ML 

algorithms from IoMT sensor devices, such as blood pressure 

measurements, ECG reading results, and heart rate information. 

ML algorithms like decision trees, Random Forest, SVM, and 

Logistic Regression are applied here with IoMT devices.

AI algorithms suggest transparent and interpretable 

explanations for making decisions or predictions. Traditional AI 

algorithms work as black boxes and produce results with less 

transparency. When we use explainable AI, it produces an 

understanding of the reasoning behind its results. Data are 

collected from IoMT devices and sent for preprocessing, followed 

by model selection and training. After training the data, feature 

analysis is done, and during local interpretability, explainable AI 

uses LIME to understand how specific features contribute to 

identifying the heart disease. As global interpretability, SHAPLEY 

helps explainable AI analyze overall behavior and features and 

their relationship to the decision-making process. Model-agnostic 

interpretability independently understands the prediction process 

and aims to apply it to any algorithm. The results can finally be 

visualized so that appropriate decisions can be made.

3.4 Mathematical modeling

3.4.1 Random Forest
Random Forest (127) is an ensemble technique of a machine 

learning algorithm applied for classification and regression 

problems. The ensemble combines many models to make 

predictions accurately. To make an accurate prediction, a Random 

FIGURE 4 

Target features of IoMT sensors.
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Forest combines many decision trees (128). Forest refers to a 

collection of decision trees. Every tree is made independently by a 

subset of the training data and its input features. Selecting data and 

features randomly reduces the overfitting problem and creates 

diversity among each tree. Random forest considers the majority 

vote from different samples of the decision trees for classification 

FIGURE 5 

Layered architecture diagram of proposed work. Created using Draw.io.
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and regression tasks. Bagging or bootstrap and boosting are the two 

types of ensemble methods. Bagging depends on majority voting by 

creating many training subsets from the training sample with 

replacements. Boosting refers to joining weak and strong data by 

making sequential models to produce the highest accuracy. When 

the amount of data in the training set is n, then with replacement 

“n,” data are sampled at random as a bootstrap sample. This helps 

to grow the tree with training data. When there are “m” input 

variables, v , m is chosen so that “v” variables are taken at 

random from “m.” The value “v” is constant when the tree grows 

to the maximum extent. Many subtrees made by the parameters 

are formed in the forest. When the forest is completely trained for 

classification, it is traversed across all the subtrees (129). The 

classification result from each tree is taken as a vote. The maximum 

vote is considered a new instance. The generalization error (PE�) 

for the Random Forest is given by Equation 1.

PE� ¼ Px,y mf X, Yð Þð Þ , 0 (1) 

Here, mf ðX, YÞ is a margin function that measures the average 

number of votes from ðX, YÞ exceeding any other class. X refers to 

the prediction variable and Y refers to the classification task. “I” 

denotes the indicator function. The expected value for the margin 

function of a random forest is indicated as Equation 2.

R ¼ EX,Y mf X, Yð Þð Þ (2) 

A Random Forest’s average strength and the base classifiers’ mean 

correlation are joined as generalization errors. If r represents the 

mean rate of correlation, the generalization error value for the 

upper bound is given by Equation 3.

PE� � rð1� s2Þ=s2 (3) 

TABLE 3 Comparison of wearable and ingestible health devices.

Sl. 
no.

Type Application Parameters Advantages Merits Demerits

1 Ovularing (106) Wearable Women’s health Ovulation monitoring Accurate fertility tracking Limited compatibility with other 

devices

2 VitalPatch (107) Wearable Healthcare Vital signs monitoring Real-time health monitoring Requires regular battery 

replacement

3 SmartPill (108) Ingestible Healthcare Drug delivery 

monitoring

Non-invasive medication 

tracking

Possibility of device malfunction

4 GlucoWear (109) Wearable Diabetes care Continuous glucose 

monitoring

Improved glucose 

management

Calibration requirements for 

accuracy

5 Bio Stamp RC 

(110)

Wearable Research Motion analysis Long-term data collection Limited sensor placement options

6 Biotricity (111) Wearable Cardiology ECG monitoring Real-time cardiac monitoring Relatively high cost for consumer 

use

7 Mind motion pro 

(112)

Bio-feedback 

devices

Various rehabilitation 

applications

Muscle activity, EMG Provides real-time feedback 

for muscle control

Relies on accurate sensor 

placement and signal quality

8 SmartMat (113) Wearable Fitness Yoga and exercise 

tracking

Precise posture and 

movement analysis

Limited battery life

9 PillCam (114) Ingestible Medical imaging Gastrointestinal 

imaging

Non-invasive imaging of the 

digestive system

Limited imaging capabilities 

compared with MRI

10 WAND (115) Implantable Neurology Deep brain stimulation Effective treatment for 

neurological disorders

Invasive surgical procedure for 

implantation

11 Abilify MyCite 

(116)

Ingestible Mental health Medication adherence Monitors medication 

ingestion

Limited availability and regulatory 

approval

12 Empatica 

Embrace (117)

Wearable Epilepsy Seizure detection Alerts caregivers during 

seizures

Some false alarms and limitations 

in accuracy

13 Insulet Omnipod 

(118)

Wearable Diabetes care Insulin delivery Tubeless insulin pump system Initial setup and learning curve 

for users

TABLE 4 Feature conversation details of the dataset.

Sl. 
no

Features Types Numeric 
change

Transformation

1 Chest pain 

type

ATA 1 Label encoder and min- 

max scalar

NYP 2

ASA 3

TA 4

2 ST_Slope Up 1 Label encoder and min- 

max scalar

Down 0

Down 

zero

�1

3 Resting ECG Normal 0 Label encoder and min- 

max scalar

Abnormal 1

4 Sex Male 1 Label encoder and min- 

max scalar

Female 0

5 Exercise 

angina

Yes 1 Label encoder and min- 

max scalar

No 0

NYP, non-anginal pain; TA, typical angina.
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To achieve better accuracy in a Random Forest, the subtrees of 

decision trees must be consistent and diverse. Random Forest is 

very efficient in detecting outliers. It is scalable, robust, and handles 

missing data without imputation.

3.4.2 Local Interpretable Model-Agnostic 

Explanations
LIME (130) is a post-hoc model-agnostic framework for any 

black box machine learning model’s judgment for all instances 

(55). LIME creates new data from the nearest neighborhood and 

finds the predictions of these new samples with the help of a 

black box model. LIME’s explanation depends on monitoring 

the classifier model’s behavior based on local surrogate models. 

The LIME algorithm follows three steps to train a 

surrogate model.

1. Select a few data instances as x [ R
d, representing the reason 

for an opaque recommender model f predicting the feature 

vector x for the probability f ðxÞ. LIME expects the data to 

be converted into an interpretable picture like a binary 

vector x0 [ {0, 1}d0 representing the available/non- 

available components.

2. Create a new dataset Z of perturbed data z0 [ {0, 1}d0 by taking 

non-zero elements of x0 at random. The labels must be 

identified for this new set of data elements in Z in the 

closest area of x0. To obtain the labels for the new data, the 

FIGURE 6 

Interfacing ML algorithms with XAI. Creating using Microsoft Visio.
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perturbed samples z0 [ {0, 1}d0 are transformed back into the 

original form z [ R
d. The opaque model f is then examined 

for each instance f ðzÞ. Because the perturbed samples z0 are 

randomly generated, there might be z samples that are closer 

or farther away from the original instance x for weighing. 

This weight is measured as PxðzÞ to evaluate the closeness 

between the data x and z.

3. Using this newly weighted data Z and the labels created by f ðzÞ, 

a new model g [ G is trained, where G refers to models such as 

decision trees, linear models, and so on. The interpretable and 

explanatory surrogate model jðxÞ of the new data g is then used 

to explain f ðxÞ as shown in Equation 4.

j xð Þ ¼ g [ G arg min Lðf , g, PxÞ þVðgÞð Þ (4) 

Here, L is the loss function, which measures how g follows the 

behavior of f in the nearest neighborhood of x. Minimizing this 

loss function ensures that the behavior of g aligns with the 

behavior of f indicated by Px. The complexity of the model 

VðgÞ must be kept low. When gðz0Þ is represented as a linear 

function, gðz0Þ ¼ wTz0 þ w0, the equation 5 becomes a linear 

regression problem to evaluate w and w0.

Lðf , w0, PxÞ ¼
X

z,z0[Z

PxðzÞ f ðzÞ � ðw0 þ wTz0Þ
� �2

(5) 

The advantages of LIME are that it is easy to implement, 

completely fast in terms of computational techniques, and 

easy to work with in tabular data, text, and images.

3.4.3 SHAPELY Additive exPlanations
The SHAP (124) method improves computational time, and 

tree-based methods improve explanation precision. The main 

goal of SHAP is to form perturbations to simulate the features 

that are not present and to use the linear local model to 

approximate the prediction changes as given in LIME. It ignores 

retraining the model without the feature of interest. Local 

explanations can be combined to describe the model’s global 

performance. Local and global explanations are reliable with 

each other as they follow the same basic methods. SHAP uses 

agnostic explainer KernelSHAP and model-specific explainers 

such as TreeSHAP for tree-based models, DeepSHAP for deep 

models, and LinearSHAP for linear models.

SHAP produces SHAPELY values, which express model 

predictions as linear combinations of binary variables. This 

framework explains how each covariate contributes when fixed 

in the model. The prediction f ðxÞ, using sðx0Þ, for a linear 

model for the binary values y0 [ {0, 1}M with the elements 

;i [ R, is given by Equation 6.

sðy0Þ ¼ ;0 þ
XM

i¼1

;iy
0
i (6) 

Here, M is a variable for explanations which is shown in Equation 7.

Fiðf , zÞ ¼
X

y0#z0

ðjy0j!ðM � jy0j � 1Þ!Þ

M!
[fxðy

0Þ � fxðy
0
iÞ] (7) 

where f is the model of this method, z is the variable, and z0 are the 

selected variables. The value fxðy0Þ � fxðy0i denotes, for every 

prediction, the SHAPELY values from its mean value of the ith 

Algorithm 1 Algorithm for heart disease prediction.

Input: x ¼ [
Pn

i¼0 In ; 

xtrform ¼ label:encoderðxÞ; 

y ytrain , ytest ; 

x xtrain , xtest ; 

n samplesofimages; 

TRUEP  TruePositive; 

TRUEN  TrueNegative; 

FALSEP  FalsePositive; 

FALSEN  FalseNegative; 

Features a, b; 

Accuracy: TRUEPþTRUEN

TRUEPþTRUENþFALSEPþFALSEN
; 

Precision: TRUEP

TRUEPþFALSEP
; 

Recall: TRUEP

TRUEPþFALSEN
; 

F1-score: 2�TRUEP

2�TRUEPþFALSEPþFALSEN
; 

Activation: max [Accu, Prec, Reca, F1 � Sco, Sensi, Speci]; 

while yis= 0 do  

if xtest is Potable do   

accu TRUEPþTRUEN

TRUEPþTRUENþFALSEPþFALSEN
;   

Preci TRUEP

TRUEPþFALSEP
;   

reca TRUEP

TRUEPþFALSEN
;   

f 1-sco 2�TRUEP

2�TRUEPþFALSEPþFALSEN
;   

Sensi TRUEP

TRUEPþFALSEN
;   

Speci FALSEP

FALSEPþTRUEN
;  

end  

else   

xtest is Not Potable 

accu TRUEPþTRUEN

TRUEPþTRUENþFALSEPþFALSEN
; 

Preci TRUEP

TRUEPþFALSEP
; 

reca TRUEP

TRUEPþFALSEN
; 

f 1-sco 2�TRUEP

2�TRUEPþFALSEPþFALSEN
; 

Sensi TRUEP

TRUEPþFALSEN
; 

Speci FALSEP

FALSEPþTRUEN
;

Algorithm 2 Algorithm for explainable AI.

Input: x ¼ [
Pcn

i¼1 xnð1� xnÞ]; 

y ytrain , ytest ; 

x xtrain , xtest ; 

k No of samples; 

cf  Complexityfunction; 

r local surrogate regressor; 

L Loss function; 

d Permutations; 

d< D; 

E Number of players; 

v value function of the players; 

while Y = Local do  

if Predictproba is local then   

LðxÞ  Loss function;   

exp uðÞk ¼ Lðr, cf , pkÞ þ vðcf Þ;        

.Decision Explained with Local Surrogates (LIME)  

else   

Predictproba is global  

uðyÞ  Costfunction;  

exp uðvÞ ¼
P

d,Ei jdj!ðE� jdj � 1Þ!=E!�ðvðE< i� VðpÞÞÞ;        

.Decision Explained with Global Surrogates (SHAPELY) 

end
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variable. Local accuracy results from the explainable model are 

equal to those of the basic models. The missing nature of the 

SHAPELY values has features that were not added as the first 

input without any effect. Consistency of the model changes with 

reliance on a single feature, and related characteristics cannot be 

reduced independently of other factors. The advantage of SHAP 

is that it predicts an instance disseminated among the feature 

values. The limitations are its slow computational time, high 

computational complexity, and problems with explanation 

instability similar to LIME.

3.5 Algorithm

This section describes two algorithms, one for the heart risk 

evaluation through Algorithm 1 and the other for explaining 

heart failure through the Algorithm 2. These two algorithms 

comprehensively analyze and explain the risk of Heart Failure as 

a complete solution. In Algorithm 1, the performance metrics 

such as accuracy, precision, recall, sensitivity, specificity, and 

F1-score are evaluated. During the testing phase, when xtest 

becomes 1, the heart failure alarm will be activated. Otherwise, 

the result indicates that the function of the heart is normal. In 

Algorithm 2, the model with local surrogates explains the 

appropriate decision after heart failure when the prediction is 

local. In case the probability of the prediction is global, 

explainability is achieved in global surrogates.

3.6 Environment-based attribute access 
control algorithm

The dataset under consideration must be protected and 

authenticated. Hence, rigorous data access control permissions 

must be set in the cloud to access it properly. A secure 

environment-based attribute access control system is required in 

this context to protect unauthorized access to the data in the cloud. 

The model is divided into two categories: static and dynamic. Users 

with the lowest role, such as those looking for recommendations, 

access information in a static environment. This audience will only 

be permitted to obtain legal information; no other transactions will 

be permitted. In a dynamic state, different parameters are 

measured and recorded at various instances of time. Thus, many 

data acquisition and update cycles are a series of transactions 

carried out in the cloud in big time. These states only allow special 

users such as clinicians and administrators.

The development of a digital identity is the first step. The key 

used in the digital identity protects and guarantees a transmission 

between the server and the client, and the key is pk. The user 

shares its digital account identity and the symmetric key ek, and 

the corresponding data information can be obtained by 

decrypting the key pk. Various functions used in the algorithm, 

such as IssueRole, revokeIssueRole, and partialExtension, help the 

framework achieve a secured space to function. After the digital 

identity is authenticated and a role is identified, the model can 

access the framework accordingly. Each of the entity’s 

transactions is considered along with its authorization. Therefore, 

a secure environment for the fuzzy framework is achieved.

4 Results

4.1 Experimental setup

The 11 parameters that determine the failure of the heart are 

acquired from various sources across various countries and used in 

this work. These parameters have a strong inHuence on determining 

heart failure in real time. Most of these parameters are embedded 

with IoMT sensors, which can be integrated through information 

fusion in cloud platforms. Later, these data are classified by cloud 

machine learning models and transformed into a valid dataset. One 

such dataset is used in this work for experimental analysis. Because 

the problem is binary, the experimentation is done with machine 

learning models such as SVM, Logistic Regression, Decision Tree, 

and Random Forest. The explanation of this dataset is provided by 

LIME and SHAPELY values. The classification probability of the 

random forest model is evaluated due to its high classification 

accuracy with various explanations for clarity.

4.2 Results

4.2.1 Preprocessing

The dataset is preprocessed to convert the data types into a 

unified format, which makes it suitable for the classification 

problem. The statistical analysis of the various features of 

interest is tested with the correlation matrix shown in Figure 7. 

The features that have a higher correlation as per the correlation 

map are Exercise-Induced Angina, Chest Pain Type, and Age. 

Preprocessing equations

1. Missing value imputation

Let X ¼ {x1, x2, . . . , xn} be a feature vector with missing 

entries.

xi ¼
xi if xi is not missing
�x if xi is missing

�
(11) 

where �x ¼ 1
n0

Pn0

j¼1 xj is the mean of observed values and n0 is 

the number of non-missing entries. Mean imputation replaces 

missing values with the average of the available values in 

the feature.

2. Label encoding

Let a categorical variable C [ {c1, c2, . . . , ck} be 

transformed into integer labels as Equation 12.

LabelðciÞ ¼ li , where li [ {0, 1, . . . , k� 1} (12) 

Each distinct category ci is mapped to a unique integer li. This 

method is commonly used when categories have no 

intrinsic ordering.
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3. Standardization of binary target class

Given a binary target variable y [ {0, 1}, standardization is 

defined as Equation 13.

ystd ¼
y� my

sy
(13) 

where

my ¼ E[y] ¼ p, sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p

Assuming y ≏ BernoulliðpÞ, the mean my and standard 

deviation sy are computed to transform y into a zero-mean, 

unit-variance variable suitable for certain learning models.

4.2.2 Machine learning models
The target attribute Heart Disease is a binary classifier where “1” 

indicates heart failure and “0” indicates no failure. Because the 

problem is binary, we apply machine learning models such as 

SVM, Logistic Regression, Decision Tree, Random Forest, 

AdaBoost, and Gradient Boosting Classifier Algorithm. Model 

parameters and specifications of various methods are specified in 

Table 5. The model parameters of the Random Forest are slightly 

higher than that of the other models with respect to AUC. The 

results obtained in this work have only a thin difference in the 

metric values measured across various machine learning models 

since the dataset is free from missing values or class imbalance. 

The cost function of Logistic Regression (Equation 8), Gradient 

Boost (Equation 9) AdaBoost (Equation 10) are highlighted. The 

metric evaluation is presented in Table 6. There are essential 

FIGURE 7 

Correlation matrix of various features.
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metrics such as sensitivity and specificity, which estimate the true 

positive rate TPR, true negative rate TNR, false positive rate FPR, 

and false negative rate FNR. These parameters calculate the 

reliability of the model. The explanation of a machine learning 

model is based on reliability and performance. Table 7 presents 

these metrics with corresponding values for each machine 

learning model.

4.2.3 Tenfold classification
Table 8 illustrates the results from 10-fold validation without 

preprocessing using a Python IDE. Without the application of 

preprocessing, the results provide accuracy, which is 

comparatively less than the original 70-30 train-test evaluation. 

The model has already been optimized with the highest levels of 

TABLE 7 Sensitivity and specificity analysis of the various machine 
learning models.

Method Sensitivity Specificity

SVM (132) 0.89 0.89

Logistic Regression (131) 0.875 0.875

Decision Tree (133) 0.962 0.961

Random Forest (127) 0.955 0.955

Gradient Boost (134) 0.935 0.935

TABLE 8 Classification report of the various machine learning models for 10-fold.

Method Accuracy Precision Recall F1-score AUC

SVM (132) 0.844 0.844 0.844 0.844 0.904

Logistic Regression (131) 0.861 0.860 0.860 0.861 0.924

Decision Tree (133) 0.792 0.792 0.794 0.792 0.778

Random Forest (127) 0.859 0.859 0.859 0.859 0.920

AdaBoost (135) 0.781 0.781 0.782 0.781 0.780

Gradient Boost (134) 0.874 0.873 0.873 0.874 0.928

TABLE 6 Classification report of the various machine learning models.

Method Accuracy Precision Recall F1-score MCC ROC

SVM (132) 0.89 0.89 0.89 0.89 0.777 0.94

Logistic Regression (131) 0.875 0.875 0.875 0.874 0.746 0.933

Decision Tree (133) 0.961 0.962 0.961 0.961 0.922 0.991

Random Forest (127) 0.955 0.955 0.955 0.955 0.910 0.994

Gradient Boost (134) 0.935 0.935 0.935 0.935 0.868 0.985

TABLE 5 Model parameters and specifications.

Model Hyperparameters Time 
complexity

Cost function

Logistic Regression 

(131)

Solver, penalty (optional) 2–3 s
eaþbx

1þ eaþbx
(8) 

SVM (132) C Gamma Kernel size 2–3 s [WðaÞ ¼
P

i ai � 1
2

P
i,j yiyjaiajfðxiÞ � fðxjÞ]

Decision Tree (133) Gini, max depth, minSamples, features 2–3 s • Find best split s� in all variables that maximize impurity decrease

• Label the currentNode with the best-split variable and its value

• Divide the available learning data L into Ll and Lr

• Create nodes tl and tr that contain data Ll and Lr , respectively

• Repeat with currentNode ¼ tl and data Ll

• Repeat with currentNode ¼ tr and data Lr

Random Forest (127) max_depth Min_sample_split 

Max_leaf_nodes Min_samples_leaf 

N_estimators Max_sample (bootstrap 

sample) Max_features

2–3 s • There are M number of trees instead of only one tree

• There are p number of variables in each tree instead of k, where p � k and k 

is the total number of variables

• Each tree is built using eN number of samples, where eN is 63.2% of the total 

number of samples N

Gradient Boost (134) Maximum iterations Learning rate Maximum 

depth Or maximum leaf nodes

2–3 s

MSE ¼
1

N

XN

i¼1

ðyi � ŷiÞ
2 (9) 

AdaBoost (135) Number of estimations Learning rate 2–3 s

Exponential Loss ¼
XN

i¼1

expð�yi � ŷiÞ (10) 

Kailasanathan et al.                                                                                                                                                 10.3389/fdgth.2025.1612915 

Frontiers in Digital Health 16 frontiersin.org



accuracy through preprocessing techniques. The preprocessed 

values are already tabulated in Table 6.

4.2.4 Explainable AI models

The Random Forest model is selected to explain the LIME and 

SHAPELY models of the XAI. The LIME model explains the local 

surrogates and estimates which features are positive (increase) and 

which are negative toward the prediction of the target class. This 

model is used in a local surrogate for a particular dataset instance. 

This application also determines the feature weights and 

prediction score for each classifier in accordance with a 

specific instance.

SHAPELY uses various models based on the explainer 

suggested by Random Forest. It provides the testpatch, which 

distributes features in the global surrogates. Then, SHAPELY 

uses plots like summary plot, which provides the order of the 

features that determine the magnitude of the output. It also 

provides the dependency plot, which explains the dependency 

between the two variables of interest in global surrogacy. The 

decision plot of SHAPELY provides the decision on a particular 

instance and explains the rationale behind the classification with 

the feature impact analysis.

The first model discussed for explainability is the partial 

dependency plot (PDP). This plot shows the relationship 

between the two contributing features through linear 

relationship estimation through LASSO. The correlation between 

the two attributes is represented by the PDP. The plot between 

the MaxHR with the target feature Heart Disease is presented by 

the PDP plot in Figure 8. The LIME model predicts the 

behavior of an instance in the local surrogacy and explains 

the relationship between the target attribute and the rest of the 

features in the dataset. This also estimates the attribute weights, 

which features provide a positive relationship to the target 

prediction, and which features provide a negative response. 

According to an instance depicted in Figure 9, class 0, which is 

no disease, has a 2% probability, and class 1, which is the Heart 

Disease, has a 98% probability of occurrence. This notebook 

model explains the list of the features that inHuence the target 

attribute. Figure 10 shows the Pyplot, which describes the 

features that have a positive relationship towards the target, such 

as 1_slope, Chest Pain Type, Age, Cholesterol, Blood Sugar, 

Exercise Angina, Sex, and MaxHR. The features with a negative 

relationship to the target, like Old Peak and Blood Sugar, are 

also explained. Using linear relationships, LIME thus explains 

the relationship between the target attribute and the rest of the 

attributes in a particular row instance. This also estimates the 

feature weight, nature, and significance of that particular local 

surrogacy. The SHAPELY explainer provides local and global 

surrogate explanations for the local instance and the complete 

dataset, respectively. It uses various plots to describe each 

FIGURE 8 

Partial dependency plot between the MaxHR and heart disease.
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feature’s significance in determining the target’s magnitude. The 

plots that are depicted in this work include 

• Force plot

• Test patch

• Dependency plot

• Summary plot

• Decision plot

The force plot explains an instance in the local surrogacy and tells 

how the feature values take a range between minimum and 

maximum, with the perception of a corresponding instance. It 

shows how the features contribute to the model prediction for 

a specific observation, as shown in Figure 11. The prediction 

score for this model is 0.98. The red-colored features increase 

the prediction score, and the blue-colored features decrease the 

prediction score. The features closer to this dividing region 

have the highest impact on the model prediction for that 

particular instance. In this instance, the parameter Cholesterol 

is for increasing the prediction score and 1_slope for 

decreasing the prediction. The classic test patch provides the 

overall distribution of features and shows how they can help 

predict the target. This global surrogate model explains the 

entire dataset regarding what features contribute to the 

prediction of heart failure through a double-colored area. The 

red color shows chances for Heart Failure, and the blue shows 

normal output. The classy test patch is described in Figure 12. 

In this plot, the features closer to the dividing boundary are 

also highly important in predicting the model. The summary 

FIGURE 9 

LIME explainer explanation for heart disease prediction with NoteBook.

FIGURE 10 

LIME explainer explanation using PyPlot for feature significance.
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plot lists various features in the dataset and sorts them based on 

the order of significance in determining the magnitude of the 

output. Cholesterol, Maximum Heart Rate, Blood Pressure, 

Age, and Chest Pain Type have the order of significance in 

determining the target value, respectively. The features and 

their corresponding weight importance are shown in Figure 13. 

Figure 14 depicts the summary plot with feature concentration. 

The target value, Heart Failure, is distributed from 0 to 

1. Various features like 1_slope, Chest Pain Type, Exercise 

Angina, Old Peak, and Cholesterol are plotted as per the order 

of significance in determining the output magnitude. The red- 

colored region shows a high impact, and the blue-colored 

region shows a low impact in predicting the target attribute. 

The SHAPELY decision plot is illustrated in Figure 15. This is 

a global surrogate model, where the dependency between the 

target class and the cholesterol is plotted in the graph in 

Figure 15. PDP also looks similar to the dependency plot of 

SHAPELY, but SHAPELY provides granular outputs that can 

be increased or minimized. The second point is that PDP is 

only a plot, but a dependency plot is a variable-like result. 

Taking the average value per variable is like plotting variable 

importance against the SHAP value, which will look like a 

PDP graph.

5 Discussion

This section deals with the comparative analysis of various 

machine learning algorithms that are used in this work. This 

work also deals with how the features contribute to the results 

in the SHAPELY explainer. The comparative analysis of the 

various machine learning algorithms is presented in Figure 16. 

The ratio of rightly predicted data to the total observations 

determines the accuracy of the model. The ratio of the rightly 

predicted positive data to the total analyzed positives fixes the 

precision. The ratio of the rightly predicted positive data to all 

actual positives is a recall metric. F1-score defines the harmonic 

mean of both precision and recall. The Random Forest model, 

which has a higher accuracy of 0.955 and F1-score of 0.955, was 

selected for explanation by XAI applications. The second-best 

values for accuracy and F1-score are recorded in the Gradient 

Boost model with values of 0.935 and 0.935 with a precision of 

0.997. Logistic Regression and SVM have accuracy values of 

0.875 and 0.875. All these models only have marginal differences 

in the values of parameters between them. The Decision Tree 

model recorded a highest accuracy of 0.961, but the AUC was 

the highest for random forest, which is 0.994. Thus, this model 

is selected for XAI implementation.

FIGURE 11 

SHAPELY explainer explanation for heart disease with a force plot.

FIGURE 12 

SHAPELY explainer explanation for heart disease with a classic test patch.
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The 10-fold validation is also presented in Figure 17. These 

results show reduced accuracy levels with the lack of standard 

preprocessing techniques. Despite the reduced accuracy levels, 

Gradient Boosting and Random Forest algorithms perform much 

better than the rest of the models. The SHAPELY decision plots 

are presented in Figures 18, 19. These decision plots are 

extremely important in determining why an instance is classified 

as normal or abnormal (Heart Failure). In this local instance, the 

values of 1_slope, ECG Peak, and Exercise Angina are high. The 

value of cholesterol is also high, and the Chest Pain Type is 

Recorded as Type 3. All these feature values correspond to the 

heart disease classification into 1, which means a risk indication 

of Heart Failure. In the case of Figure 19, all the feature values 

are normal, and the instance is classified into the normal 

category. Thus, the decision plot of SHAPELY values provides a 

detailed explanation regarding how an instance is classified on the 

basis of various values of the features available.

5.1 Challenges

This work has the following challenges (not limited to), which are 

required to be addressed in the future. The sensors may go out of order 

and hence can provide false alarms to the cloud and database. The 

electronic faults may induce false alarms regarding heart failure. 

The medical data are subjected to be private. Explaining may 

compromise the privacy and integrity of the individual medical 

data. Medical data stored in the cloud are vulnerable to attacks if no 

security mechanisms are provided. If the medical record is stored in 

a blockchain model, it is extremely difficult to access and explain 

the same with the XAI model. The reliability of the explanation and 

privacy need to be enhanced by Federated Learning. Training and 

demonstration are required for medical practitioners to handle data 

from wearable sensors and the cloud.

5.2 Contributions of the paper

The essential contributions of this paper helps identify the 

complete purpose of this research. This paper provides a complete 

illustration of all the sections of IoMT-enabled XAI infrastructure. 

It also discusses various IoMT applications and case studies 

related to heart failure in detail. This paper works with a dataset 

with all the vital parameters required for heart failure prediction. 

It provides solutions for the explanation of heart failure through 

local and global surrogates with the explanations of LIME and 

SHAPELY. This study discusses various state-of-the-art IoMT 

sensors with practical applicability in medical applications with a 

discussion of advantages and disadvantages.

5.3 Future work

Improvements can be made to this study by applying many 

advanced techniques. The application of 6G may improve the 

FIGURE 13 

SHAPELY explanation for heart disease with a summary plot.
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FIGURE 15 

SHAPELY explanation for heart disease with a decision plot.

FIGURE 14 

SHAPELY explanation for heart disease with a summary plot.
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FIGURE 17 

Comparative analysis of the parameters of ML models with 10-fold.

FIGURE 16 

Comparative analysis of the hyperparameters of ML models.
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FIGURE 19 

SHAPELY explainer decision plot for normal chest pain.

FIGURE 18 

SHAPELY explainer decision plot for heart failure prediction.
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connectivity and network-related issues associated with wearable 

sensors. Application of Federated Learning would improve the 

privacy, reliability, and safety of medical data. Meta-verse 

applications can enhance IoMT sensor support and provide real- 

time solutions to heart problems. Industry 5.0 can enhance the 

quality of service of the proposed system with a human-centric 

man–machine interface. Web 3.0 standards can provide better 

semantics, security, and reliability in cloud service.

6 Conclusion

Early detection of heart failure is the most desirable and need- 

of-the-hour application, as the number of cardiac arrest cases 

increases day by day. A healthy life cycle, clean habits, and a 

peaceful life are the real medicines to overcome heart disease. 

Clinical efforts are merely supplementary but not primary in 

nature in addressing the issues related to heart failure. The IoMT 

integrated Heart Failure prediction model discussed in this study 

is extremely useful in this stressful modern-day life. The IoMT 

sensors can control and monitor most of the parameters relevant 

to heart failure at the primary level. XAI provides excellent 

support to this system by indicating what body parameters 

inHuence the heart failure condition through various models that 

show the significance of the features for the prediction of the 

target. The probability of prediction of the Random Forest model 

is used by LIME, the local explainer, and SHAPELY, the global 

explainer, for explaining models related to heart failure 

prediction. This model is a whistleblower to many such systems 

developed to make human life longer, better, and safer.
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