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Introduction: Cardiovascular health is increasingly at risk due to modern
lifestyle factors such as obesity, smoking, stress, hypertension, and sedentary
behavior. Post-pandemic health practices and medication side effects have
further contributed to rising cases of early heart failure, particularly among
individuals aged 25-40 years. This highlights the need for an automated and
interpretable framework to predict heart disease at an early stage.

Methods: In this study, body vitals acquired from a secondary dataset. Machine
learning models including Support Vector Machine, Random Forest, Decision
Tree, and Logistic Regression were employed for classification. Model
performance was evaluated using accuracy, F1-score, and k-fold cross-validation.
Results: Among the tested models, the Random Forest classifier demonstrated
superior performance with an accuracy and Fl-score of 0.955. The
interpretability is enhanced with model predictions were explained using
Local Interpretable Model-Agnostic Explanations (LIME) for local surrogates
and SHAP values for global surrogates. SHAP decision plots provided clear
insights into classification behaviour and feature contributions.
Discussion/Conclusion: The proposed interpretable machine learning
framework successfully predicts heart disease with high accuracy while
maintaining transparency in decision-making. With the integration of sensor
data with cloud-based analysis and explainable Al techniques, this study
contributes to reducing the incidence of early heart failures and supports
more reliable decision-making in healthcare applications.
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1 Introduction

Cardiovascular disease (CVD) has always posed a serious
threat to human beings and remains the primary cause of death
globally. Heart diseases can cause substantial risk to the life of a
person and significantly impact human health and wellbeing (1).
The World Health Organization (WHO) has reported that 18
million persons die of CVD every year, which represents 32% of
all deaths worldwide, of which 85% are due to heart attacks.
The WHO has stated that more than 70% of heart diseases
occur in developing countries (2). The World Heart Federation
has predicted nearly 23 million CVD-related deaths by 2030,
and the American Heart Association has reported that by 2035,
nearly 130 million adults will contract heart diseases (3). Heart
diseases encompass various conditions such as irregular
heartbeats, cardiomyopathy, arrhythmia, and peripheral or
coronary artery that affect the heart and cause a global hazard
health with serious medical manifestations (4, 5). The crucial
risk factors for cardiovascular diseases are tobacco use, alcohol,
unhealthy diet, physical inactivity, obesity, high blood pressure,
diabetes, high cholesterol, and emotional implications (6). WHO
has been deliberately making efforts to curtail the encumbrance
of heart diseases by implementing prevention and control
efforts. Members of the WHO are planning to facilitate drug
and counseling treatments for a minimum of 50% of people
with a high risk of cardiovascular disease by the end of this year
(7). COVID-19 is an infectious pathogen that has created an
aberrant impact on public health worldwide. It has been
observed that COVID-19 infection has created an independent
risk factor for heart diseases in some patients and has caused
severe damage to the heart muscles, leading to myocarditis or
heart failure. Blood clots and cardiac arrhythmias are the major
risk factors for elevated mortality risks. Many emerging pieces
of evidence and observational studies have been reported by
researchers to the effect patients infected with the COVID-19
had suffered from impairment of myocardial function (8, 9) and
cardiovascular complications (10, 11) such as myocarditis,
arrhythmias, pericarditis, myocardial infarction,
thromboembolism, stroke, and sudden death (12, 13). More
than 72.3% of people, or over 5.55 billion individuals
worldwide, have been administered a dose of COVID-19
vaccination to protect against virus variants effectively. However,
vaccination intake rates have substantially stagnated for several
reasons, and one among them is vaccine hesitancy (14, 15). The
main reason for the reluctance on the part of people to get the
vaccines administered is the side effects associated with cardiac
complications like myocarditis and pericarditis (16). The vaccine
side effects are associated with a high risk of myocarditis that is
highest in males between the ages of 16 and 24 years (17). The
studies conducted (18) show that males who received the second
dose of the COVID-19 vaccine had the highest rate of
cardiovascular complications (19). The Center for Disease
Control and Prevention (CDC) is continuously monitoring and
conducting various surveys on patients having symptoms such
as chest pain, palpitation, pounding heart, and shortness of
breath and advising them to take the related medical tests for
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(20).
patients with a high risk of heart disease is paramount to ensure

diagnosing myocarditis and pericarditis Monitoring
their wellbeing and optimize treatment outcomes. Regular health
monitoring helps clinicians to effectively assess the patient’s
health

adjustments. Health monitoring also helps patients understand

condition, medical adherence, and drug intake
their health conditions, disease progression, treatments, and self-
care health management and prevents them from having the
risk of adverse events (21).

The Internet of Medical Things (IoMT) is a transformative
in the field of

healthcare used for amalgamating medical resources connected

and revolutionary technological concept
with network technologies for monitoring, predicting, and
preventing health-related diseases (22). The prognostic potential
of the IoMT has fascinated the healthcare industry in terms of
facilitating real-time surveillance using smart medical devices
connected with software applications. The IoMT captures real-
time data on patients using wearable devices, remote monitoring
devices, connected medical equipment, implantable medical
devices, mobile health applications, smart home medical devices,
and point-of-care testing devices (23). The IoMT devices play a
vital role in health monitoring, data collection, personalized
care, and transmission of real-time data for the decision-making
process by healthcare providers. The communication system in
the IoMT enables connectivity and data exchange among
patients and healthcare providers for improving the patient’s
health condition and enhancing overall healthcare management
(24). The IoMT is used in this work to monitor the patient’s
health-related risk factors for cardiovascular diseases, such as
tobacco use, use of alcohol, diet, physical activity, obesity, high
blood pressure, diabetes, high cholesterol, and emotional
implications for diagnosing, monitoring, and preventing heart
medical devices track the heart
(ECG), heart rhythms, heart’s
activity, blood pressure, insulin level, sleeping level, physical

diseases. Smart rate,

electrocardiogram electrical
activity, and stress management (22).

The integration of IoMT technology into Artificial Intelligence
has the potential to optimize the healthcare decision-making
process by analyzing real-time data to develop predictive models
(25-28). The emerging utilization of AI and machine learning
(ML) models has the potential to revolutionize healthcare
management by enabling automation and analyzing data from
IoMT devices for identifying symptoms and improving decision
outcomes (29). AI models predict disease progression, detect
abnormalities and risk patterns, and facilitate interventions to
avert adverse events (30). However, AI approaches are often
called “black boxes” due to a lack of interpretability and
accountability. The high dimensionality feature of AI techniques
makes it tedious for humans to interpret and understand the
decisions taken (31). Patients can face difficulty understanding
the decisions and insights the machine learning models produce.
Explainable AI (XAI) is considered a magic box to counteract
the black box nature of AI models by providing optimal
solutions with transparency in the healthcare industry (32). The
cutting-edge XAI technology is a game changer by as it
generates explanations, visualizations, and justifications for the
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decision outcomes produced by AI models (33). The healthcare
industry can utilize this trailblazing XAI model to make clinical
decisions transparently by allowing healthcare providers and
patients to interpret the underlying reasoning behind AI’s
An  XAI
recommendation plans that help physicians understand and
This
trustworthiness among healthcare providers and patients for the
of Al-based

decisions. model can be used for treatment

comprehend appropriate interventions. improves the

successful implementation

healthcare systems (34).

and deployment

The purpose of this study is to develop an accurate and
interpretable XAI framework to predict heart disease using
input received through the IoMT sensors. This study also clearly
understands the importance of medical parameters that provide
transparency and consistency in the predictions. In this study,
Section 2 describes the review of the literature on the prediction
of heart disease on existing works. Section 3 discusses the
materials and methods where a description of datasets, system
architecture, and a mathematical model is added. Section 4
presents the results and Section 5 provides a discussion of the
results. Finally, the paper concludes with a comprehensive
conclusion section.

2 Background

The foundation for the enrichment of research is based on a
comprehensive literature survey and relevant investigation in the
respective domain. This section focuses on several research
methodologies and literature reviews on heart disease prediction,

10.3389/fdgth.2025.1612915

IoMT-based health monitoring, machine learning models, and
XAL The current research methodologies and their respective
strengths are identified along with their limitations. Heart
diseases are considered a potential threat to human life and a
leading reason for morbidity and mortality. The WHO has
outlined the critical risk factors of heart diseases such as tobacco
use, alcohol, unhealthy diet, physical inactivity, obesity, high
blood pressure, diabetes, high cholesterol, and emotional
implications depicted in Figure 1. A meta-analysis reveals
various cardiovascular complications associated with COVID-19
and vaccinations. Figure 2 illustrates the cardiovascular disease
complications of COVID-19 and notes the prevalence of
myocardial injury, acute cardiac injury, arrhythmias, and heart

failure, all of which elevates the risk of mortality.

2.1 Related works

Kumar et al. (35) analyzed the classification of heart diseases
prediction, which involved five stages such as heart disease
detection and diagnostics, machine learning models and

algorithms wused for healthcare, feature engineering and
optimization techniques, evolving and advanced techniques in
healthcare, and different applications of AI across various
diseases and health conditions. This study analyzed the deep
learning models for early diagnosis of heart disease prediction
with evaluation techniques like sensitivity, specificity, and area
under the curve (AUC). It also discusses ethical issues, dataset
challenges, and transparency of the model. This paper clearly
pointed out the of modern

advantages and challenges

FIGURE 1
Heart disease risk factors.
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Cardiovascular Complications of COVID-19
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FIGURE 2
Cardiovascular complications of COVID-19.

equipment and advanced prediction systems. Rajkumar et al. (36)
proposed IoT-based framework and advanced and enhanced deep
learning framework. A Hungarian heart disease dataset is used,
which is preprocessed by a median studentized residual
approach for reducing error values and missing data. The Harris
Hawk Optimization (HHO) approach is applied to select the
features during preprocessing, which are classified using
Modified Deep Long Short-Term Memory (MDLSTM). This
output is updated by the Improved Spotted Hyena Optimization
(ISHO) 98.01%
implementation. Hammadi et al. (37) presented an updated

algorithm and  achieved accuracy in
framework for cardiovascular disease prediction with the hybrid
ensemble learning method. A soft voting method is introduced.
Class imbalance is given preference here and the model achieves
97.4% accuracy in score 1, 83.6% accuracy in score 2, and 93%
accuracy in score 3. This advanced technique applies ensemble
learning for early detection of heart diseases. The Department of
Computer Science & Engineering BRAC University in Dhaka,
Bangladesh. Rokoni et al. (38) focused on model interpretability
and applied one-dimensional Convolutional Neural Networks
(ID CNNs) and logistic regression for classifying diseases. It
achieves 80% overall accuracy, and Local Interpretable Model-
Agnostic Explanations (LIME) provides transparency by finding
the influenced features like glucose, blood pressure, and troponin.

Wang and Song (39) presented an edge-assisted IoMT
framework for monitoring aged people having chronic diseases.
The IoMT-based smart home monitoring model is utilized to
access medical data and diagnose diseases for aged persons by
continuously monitoring and communicating hastily using edge
computing. Martinek et al. (40) used federated learning and
blockchain healthcare

monitoring. The IoMT technology used in this work employs

technology to ensure privacy for
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sensors for health monitoring, and the sensed data are stored
and managed using a fog-cloud-assisted network. The federated
learning and fraud detection mechanism-enabled blockchain
framework is used to process application workloads and validate
the quality of service. Kumar et al. (41) proposed a novel IoMT-
based healthcare monitoring system using rooted elliptic curve
cryptography with Vigenere cipher (RECC-VC) for securing the
RECC-VCC security, and the
exponential K anonymity model is used for privacy protection.

environment. enhances
The Improved Extension Neural Network (IENN) framework is
used to analyze the level of sensitive data, and the Gaussian
mutated chimp optimizer is used to update the weight.
Blockchain technology is used to store and manage transactions
on the cloud server. Kishor and Chakraborty (42) presented an
IoT-based health monitoring system by predicting various
heart diabetes,
dermatology, thyroid, liver disease, and surgery data using

diseases such as disease, breast cancer,
machine learning approaches like Decision Tree, Naive Bayes,
Random Forest, Support Vector Machine (SVM), Adaptive
Boosting,  Artificial Neural Network, and K-nearest
neighborhood (KNN). Shafiq et al. (43) presented a deep
learning framework using CNN for detecting heart disease
symptoms by analyzing the biosensor input for detecting heart
disorders. The PASCAL dataset is used to train the CNN model,
and the real-time data sensed by IoT sensors are stored in the
cloud. The sound of the heart is given as input for classifying
whether patients are affected by heart disease. Kumar and
Gandhi (44)

detecting heart disease. Wearable sensors are used to observe

introduced a three-tier IoT architecture for
the patient’s health condition, and Apache HBase stores the

patient’s monitored data in cloud computing. Apache Mahout is
utilized to implement a logistic regression framework for heart
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diseases. Panja et al. (45) utilized IoMT architecture to monitor
and assess the health issues of infected patients and trigger an
alert message to their clinicians and relatives. The real-time data
collected from patients are transmitted to the cloud via edge
devices for processing. A severity analysis of the infection is
carried out using fuzzy logic to detect the risk status of COVID-
19 patients effectively. Jain et al. (46) proposed point-of-care
testing to rapidly detect infectious diseases and give spot results
for taking early action.

IoMT devices are also used to capture the patient’s vitals for
early detection of diseases such as malaria, influenza A, Ebola
virus, Zika virus, COVID-19 virus, and dengue fever. Rezaee
et al. (47) suggested a meta-heuristic fuzzy inference system for
emotion recognition using the IoMT. Patients are tested by
detect  their
Electroencephalography (EEG) signals are captured before and

playing music videos to emotional  states.
after meditation. Using an optimized, innovative Gunner
algorithm, a fuzzy inference-based classification approach is
used to classify emotions. Krupa et al. (48) presented an IoMT-
based deep learning framework for automatically detecting
fetal QRS. The framework used two methods: one for detecting
fetal QRS complex using a deep neural network and the second
for classifying the results by acclimatizing transfer learning to
improve accuracy. The method uses a time-frequency image as
input for an IoT-based deep neural network in the abdominal
ECG without removing the maternal components. Lu et al. (49)
IoMT-based fetal

incorporating an automatic fetal heart rate (FHR) rating method

developed a novel monitoring model

to evaluate fetal health conditions inside the uterus using digital
cardiotocographic signals. The monitoring system uses Kreb’s
Fischer, and American

improved  Fischer, College of

Obstetricians and Gynecologists (ACOG) classifiers to detect

10.3389/fdgth.2025.1612915

and classify fetal conditions as good and bad for comparison.
Rahmani et al. (50) used fog computing-based e-Health gateways
by offering higher-level services for storage provisioning and data
processing to form a geo-distributed middle layer between the
cloud and IoT sensors. The framework uses an early warning
score for monitoring health to facilitate energy efficiency,
interoperability, reliability, mobility, and performance. Nandy
et al. (51) proposed an IoMT-based intelligent agent mechanism
to detect brain response using an electroencephalography signal.
A bag of neural network categorizes the complex brain signals
captured by the IoMT sensors and detects the brain responses.
The IBoNN framework is compared with standard machine
learning algorithms. Yadav et al. (52) presented biomarker-based
electrochemical immuno sensors for diagnosing COVID-19 using
the IoMT and artificial intelligence. The smart sensing technique
is used with bioinformatics approaches for monitoring non-
invasive SARS-COV2.

Verma et al. (53) summarized nano-integrated wearable
biosensors and the use of 5G in the Internet of Things for
healthcare applications. Fouad et al. (54) presented a numerical
approach using the Gautschi model for vertebral tumor
prediction. The IoMT technology is used for predicting tumors
employing heuristic hock transformation for evaluating possible

Haar-like
conservative

perpetual  incapacity tumors on
(HLC), (LM),

therapy method (CTM), and carbon fiber including reinforced

caused by

characteristics logistics models
materials (CFRM) approaches. Figure 3 describes the percentage
of AI and machine learning approaches used in the healthcare
industry. In recent years, machine learning models have
revolutionized the diagnosis of various diseases and the
assessment of the risk factors involved in making accurate

decisions. According to a background study, supervised learning

FIGURE 3
Al and machine learning techniques used for healthcare applications.

Al & ML in Healthcare Applications

M Logistic regression: 35%
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approaches like 35% of logistic regression, 26% of decision tree,
and 24% of neural networks, as well as 5% of unsupervised
learning methods like clustering and anomaly detection, have
been used by the healthcare industry to assess the risks.

Ribeiro et al. (55) presented a novel agnostic approach called
LIME, which is used to provision the comprehensiveness of the
decisions made by the banking staff by determining them with
simple and interpretable models. The LIME model helps
improve accuracy, transparency, and trustworthiness. This model
can be used with complex machine learning algorithms without
any knowledge of their working mechanisms. Lundberg and Lee
SHAPELY  Additive
exPlanations (SHAP), to interpret the existing complex machine

(56) proposed a new technique,
learning models. The SHAP algorithm provides global and local

interpretations to help borrowers easily understand the
predictions made by black box techniques. SHAP can be used in
various machine learning approaches and deep neural networks
and effectively work with real-world datasets.

Muddamsetty et al.

understanding the outcomes of machine learning models. Thus,

(57) presented an evaluation for

it is evident that the XAI model helps to present outcomes with
transparency and provides solutions to black box models.
Explanations for the clinical prediction outcome entail the
justification of reliability and trustworthiness that can be
achieved using XAI models (58). Onan (59) presented a
hierarchal graph-based model for text classification of dynamic
fusion using BERT. The framework uses seven stages for graph-
based text classification and analysis with various benchmark
functions. Onan (60) proposed a genetic technique combined
with graph-based neural networks for generating augmented text
having high dimensional feature space. The objective function is
based on perplexity when evaluating the quality of generating
augmented text data. Onan (61) proposed a Semantic Role
Labeling algorithm with an Ant colony optimization approach
for generating training data to improve the performance of the
natural language processing (NLP) framework. The semantic
roles are identified using semantic role labeling (SRL) for text
augmentation to enhance the quality of training data. Onan (62)
suggested a bidirectional convolutional recurrent neural network
framework for semantic analysis using gated recurrent unit
(GRU) and LSTM layers. Feature extraction is carried out by the
bidirectional layers to reduce dimensionality and extract high-
quality features. Onan et al. (63) presented a two-stage topic
extract model using a word embedding approach and cluster
are extracted by Word2Vec,
and word position2vec

analysis. The word vectors
POS2vec, LDA2vec,
A comparison of Naive Bayes, SVM, Random Forest, and

schemes.

Logistic regression with ensemble methods is used for evaluating
the statistical key extraction model (64). Onan et al. (65)
presented a consensus cluster mechanism using an
undersampling model with five supervised learning algorithms
and three ensemble learners for imbalanced learning. Onan and
Korukoglu (66) utilized an ensemble model for feature selection
with a genetic-optimized algorithm for sentimental analysis.
Sentiment classification based on a hybrid ensemble pruning

model with consensus clustering is utilized for text classification
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(67). Sentimental analysis for product reviews (68), online
course evaluation (69), and mining opinions for instructors (70)
is done using deep neural networks. Onan (71) presented a
comparative analysis of feature engineering models using five
base learners for text genre classification and language function
analysis. Onan and Togoglu (72) suggested inverse gravity
moment utilizing bidirectional LSTM for representing text
documents. The LSTM framework is evaluated on the basis of
the sarcasm identification corpus. The deep learning model is
utilized to identify sarcasm for predicting the performance of
sentiment analysis. Vakharia et al. (73) proposed three deep
learning frameworks with optimized explainable artificial
intelligence for predicting the discharge capacity of the battery.
The jellyfish optimization algorithm is used with the XAI model
to improve the predictive performance. Ali et al. (74) presented
an SVM model based on four Ant Bee Colony (ABC)
algorithms, Algorithm  (GA),
Optimization (PSO), and Whale Optimization Algorithm

(WAO) for tuning hyperparameters. A teaching learning-based

Genetic Particle  Swarm

optimization algorithm with a heat transfer searching model is
used to select features and identify faults. Suthar et al. (75) and
Vakharia et al. (76) highlighted a comparative study of feature
ranking approaches for fault identification by using the Fisher
score, ReliefF, Gain ratio, Wilcoxon rank, and Memetic feature
selection model. The literature survey shows that the XAI
framework improves prediction accuracy with interpretability
and explainability in healthcare applications because of the
crucial nature of the decision-making process and public health
safety. Tables 1, 2 depict a comparison of various black box
models used for healthcare applications.

2.2 Research questions

This study aims to answer all the following questions:

1. How can this IoMT sensor device help predict the heart
disease effectively?

2. Which type
methodologies are most relevant for predicting heart disease

of machine learning or deep learning
accurately?

3. How can feature selection techniques help identify the most
dominant parameters for prediction?

4. What are all the challenges in integrating the IoMT with real-
time heart disease prediction and how can they be addressed?

5. Does the proposed framework apply effectively in real-time

analysis problems for early heart disease prediction?

This work addresses the drawbacks of state-of-the-art ML-based
techniques in achieving increased transparency, interpretability,
and accountability with high-accuracy outcomes.

2.3 Feature selection and existing work

The IoMT integrates wearable devices with sensor technologies
to monitor health parameters, track physical activity, and enable
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TABLE 1 Motivation for the proposed work from the review perspective.

10.3389/fdgth.2025.1612915

‘ Title Advantages Research gap

Hashem et al. (77) | Predicting neurological disorders linked to oral cavity
manifestations using IoMT-based optimized neural networks

Zhu et al. (78) IoMT-enabled real-time blood glucose prediction with deep

learning and edge computing

Abbas et al. (79) Secure IoMT for disease prediction empowered with transfer

learning in healthcare 5.0, the concept and case study

Nandy et al. (80) | An intrusion detection mechanism for a secure IoMT

framework based on swarm-neural network

Lakhan et al. (81) | Federated learning-based privacy preservation and a fraud-
enabled blockchain IoMT system for healthcare

Wang and Song An edge-assisted IoMT-based smart-home monitoring system
(39) for the elderly with chronic diseases

Zhang et al. (82) | A joint deep learning and internet of medical things—driven

framework for elderly patients

Khan and Algarni | A healthcare monitoring system for the diagnosis of heart
(83) disease in the IoMT cloud environment using MSSO-ANFIS

Guleria et al. (84) | XAI framework for cardiovascular disease prediction using
classification techniques

remote patient monitoring. The literature survey focuses on two
specific sensor categories: vital signs and motion sensors. For vital
signs sensors, Rao et al. (104) present a non-invasive wearable
device that accurately monitors BP without requiring invasive
catheterization. The device utilizes capacitive wrist and/or foot
sensors to acquire pulse waveform data, which are then processed
using artificial neural networks to determine systolic, diastolic,
and mean arterial pressures. A comparison with invasive arterial
line data confirmed the device’s accuracy, making it a viable
alternative for continuous BP monitoring in critically ill infants.
In motion sensors, Jakob et al. (105) evaluate the effectiveness of
wearable sensors in analyzing motion patterns in individuals with
Parkinson’s disease. The study assesses the accuracy and reliability
of the sensor system in detecting and quantifying motor
symptoms associated with Parkinson’s disease, such as
bradykinesia and shuffling gait. Wearable sensors distinguish
Parkinson’s patients from healthy controls, showing their
potential for clinically relevant gait assessments in flexible
environments. These research papers are examples of studies
conducted on sensors used in IoMT projects. The surveyed
literature demonstrates the significance of vital signs sensors in
non-invasive blood pressure monitoring and the potential of
motion sensors in analyzing motor symptoms in Parkinson’s
disease. The following parameters mentioned in Figure 4 are
taken into consideration while designing existing and ongoing

Frontiers in Digital Health

Reduced complexity

Oral cavity linked nervous problem
detection rate

Minimized the feature dimension

The wearable sensor’s power and
memory footprint are analyzed
Prediction accuracy for three datasets
Scalability.

Model performance

Generalizability

Security

Security. High performance due
to optimization

Privacy preservation
Minimum energy consumption

Local medical data diagnosis and
rapid communication

Scalability

Energy efficiency

Sustainability

Reliability during data transmission

Better accuracy

Improved convergence rate
Comprehensive evaluation,
Large dataset

Transparent evaluation criteria

Interpretability vs. accuracy trade-
off

Limited explanation of

complex models

Scalability

Limited applicability
Interpretability vs. accuracy trade-
off

Limited explanation of
complex models
Scalability

Limited applicability
Interpretability vs. accuracy trade-
off

Scalability

Limited number of models

Lack of external validation
Limited scope of interpretability
Limited applicability
Interpretability vs. accuracy trade-
off

Limited to a specific set of datasets
Does not incorporate
interpretability techniques

Does not incorporate
explainability techniques

Lack of external validation
Limited scope of interpretability
Lack of external validation
Limited scope of interpretability
Limited to a specific set of datasets

IoMT systems that are positively helping to transform the IoMT

domain  through cutting-edge technology.  Physiological
parameters, biochemical parameters, electrical activity, respiratory
parameters, motion and activity, sleep patterns, environmental
factors, and medical adherence are the IoT devices applied for
treatments. Some of the IoMT projects have incorporated the
above-mentioned parameters and have made the availability of
diagnostics more accessible, for example, Ovularing (106),
VitalPatch (107), SmartPill (108), GlucoWear (109), MindMotion
Pro (110), BioStampRC (111), Biotricity (112), SmartMat (113),
PillCam (114), WAND (Wireless Artifact-free Neuromodulation
Device) (115), Abilify MyCite (116), Embrace (117), and Insulet

Omnipod (118).

3 Materials and methods

In this work, we propose an IoMT-based heart disease
prediction framework based on machine learning models like
Logistic Regression (119), SVM (120), Decision Tree (121),
Gradient Boost (122), and Random Forest (123). Figure 5
depicts the layered architecture of the work having four layers of
IoMT: a device layer, cloud layer, machine learning models
layer, and Explainable AI layer. The IoMT devices capture
patients’ vitals, and the sensed patient’s data are transferred to
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TABLE 2 Comparison of algorithms and prediction performance.

Reference

Algorithms

Type of data

10.3389/fdgth.2025.1612915

Prediction performance

compared

Juhola et al. (85) ANN, NB Disease symptom Accuracy: (ANN=85, NB=88)

Long et al. (86) ANN, LR Clinical and demographic data Accuracy: (ANN=0.965, LR=0.963)

Palaniappan and Awang | ANN, DT, SVM Clinical data for cancer incidence and survival Accuracy: (ANN=0.947, DT=0.936, SVM=0.957)
(87)

Jin et al. (88) LR, RF Electronic health records Accuracy: (LR=0.663, RF=0.627)

Puyalnithi and
Viswanatham (89)

DT, NB, RF, SVM

Clinical and demographic data

Sensitivity: (ANN=0.956, DT=0.958, SVM=0.971)

(100)

clinical laboratory measurement data

Forssen et al. (90) LR, RF Metabolomic data Accuracy: (LR=0.767, RF=0.732)

Tang et al. (91) ANN, LR Clinical, demographic, behavioral, and medical data Specificity: (ANN=0.928, DT=0.907, SVM=0.945)
Toshniwal et al. (92) ANN, LR Clinical and demographic data Accuracy: (ANN=0.909, LR=0.897)

Yang et al. (93) ANN, DT, LR Clinical and demographic data Accuracy: (ANN=0.909, DT=0.935, LR=0.894)
Mustageem et al. (94) DT, RF, SVM Image data Accuracy: (DT=0.932, RF=0.963, SVM=0.959)
Mansoor et al. (95) DT, KNN, NB Electronic health records, medical image, and gene data Accuracy: (DT=0.646, KNN=0.454, NB=0.495)
Kim et al. (96) LR, NB, SVM Gut microbiota Accuracy: (LR=0.98, NB=0.94, SVM=0.99)
Taslimitehrani et al. (97) | ANN, LR, SVM Electrochemical measurements of saliva Accuracy: (ANN=80.70, LR=75.86, SVM=84.09)
Anbarasi et al. (98) DT, NB Clinical and demographic data Accuracy: (DT=99.2%, NB=96.5%)

Bhatla and Jyoti (99) ANN, DT, NB Clinical data Fl-score: (ANN=80.20, LR=75.71, SVM=84.06)
Thenmozhi and Deepika | KNN, LR, SVM Demographic, anthropometric, vital signs, diagnostic, and Accuracy: (KNN=79.5, LR=80.7, SVM=82.6)

Tamilarasi and Porkodi
(101)

KNN, LR, NB, RF, SVM

Demographic and clinical test result

Accuracy: (KNN=0.721, LR=0.755, NB=0.762,
RF=0.803, SVM=0.749)

Marikani and Shyamala
(102)

ANN, LR, RF, SVM

Demographic, anthropometric, diagnostic and clinical lab
measurement data

Accuracy: (ANN=0.931, LR=0.935, RF=0.930,
SVM=0.986)

Lu et al. (103)

ANN, NB, SVM

Clinical, demographic, and diagnostic data

Accuracy: (ANN=86.04, NB=82.31, SVM=_86.62)

ANN, artificial neural network; NB, Naive Bayes; LR, logistic regression; DT, decision tree; RF, random forest.

cloud storage. The machine learning models herewith are used to
detect and classify cardiovascular diseases and associated risk
factors for diagnosing, monitoring, and preventing heart
diseases. XAI techniques such as LIME (124) and SHAP (125)
help overcome the limitations of traditional Machine Learning
models by providing interpretable decision outcomes, thereby
assisting both patients and clinicians.

3.1 Importance of XAl in the loMT

The following case studies outline why XAI will prove to be a
revolutionary change required in the IoMT.

3.1.1 Case study 1: a 26-year-old adult died due to
cardiac arrest

A 26-year-old man collapsed suddenly at a Metro Station in
New Delhi because of cardiac arrest. The young man was
immediately taken to a hospital, and the physician declared that
the person died because of chronic fat deposits in the arteries.
The postmortem was carried out at a medical institute, which
revealed that the visceral organs and the brain were congested,
resulting in lung blockage. incident, the
healthcare

prevalence of abrupt cardiac deaths among young adults and

Following this

administration raised concerns regarding the
drew attention to the presence of undiagnosed cardiovascular
diseases. Clinicians are advised to consider the risk factors and
causes of heart disease and to take preventive measures for early

diagnosis and further treatments.
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3.1.2 Case study 2: a 40-year-old actor’s demise
due to massive cardiac arrest

A 40-year-old man and actor died because of a massive heart
attack at his Mumbai residence. He took medicine, slept, and did
not wake up. He was immediately taken to the Cooper Hospital in
Mumbai, and the clinicians declared that the person was brought
dead due to a massive heart attack. Clinicians worldwide are advised
to assess the risk factors and lifestyle changes, thereby stressing
regular health checkups that can help prevent cardiovascular diseases.

Table 3 provides an overview of the sensors described above
and elucidates the shortcomings and advantages of these
devices, which acted as a support to this work.

3.2 Dataset description

CVD takes the lives of around 18 million people every year and is
the primary cause of death. The rate of accountability of death reports
due to CVD is around 31%. A total of 80% of deaths associated with
CVD are mainly due to heart attack and stroke. These attacks are
observed in groups of people who are less than 70 years old. With
this in mind, a dataset (126) has been prepared as an amalgamation
of observations recorded from Cleveland (303), Hungarian (294),
Switzerland (123), Long Beach, VA (200), and Stalog Dataset (270).
After removing duplicates, the final dataset contains 918 instances
with 11 important features for analyzing CVD diseases. The
dependent target class is Heart Failure. The other independent
features are Age, Sex, Chest Pain Type, ST_Slope, Cholesterol,
Resting BP, Blood Sugar, Resting ECG, Exercise Angina, Old Peak,
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FIGURE 4
Target features of loMT sensors.
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and Maximum Heart Rate (MaxHR). Some of the features are
numeric, and some of the features are non-numeric. Table 4
provides the list of features converted to numeric data. The string
data are transformed using the Label Encoder preprocessing
technique with Min-Max scalar transformation. The dataset (126)
has no missing values or class imbalance. Heart Rate, Variable
Heart Rate, Blood Glucose Level, MaxHR, Blood Pressure, and
ECG (Polar H10 Sensor) are measured by IoMT sensors. The other
readings are observed in the oscilloscopes and treadmills
(ST_Slope, Restring Angina), and some data are collected directly
from patients and their attenders (Name, Age, Sex, etc.).

3.3 System architecture

Figure 6 provides an overview of interfacing the ML algorithms
discussed in this section with XAI In terms of monitoring and
managing cardiovascular health, IoMT devices play an important
role in the use of advanced transformation techniques. These
devices increase power connectivity, analyze data, and monitor
remotely, providing advanced care for cardiac patients and
improving patient health. There are many IoMT devices for
monitoring the heart behavior of patients, such as remote ECG
monitors, wearable heart rate monitors, pacemakers, BP monitors,
temperature monitors, and medication dispensers. These devices
help healthcare professionals to monitor patients continuously.
They can personalize treatment plans, and they can easily predict
previous symptoms and take immediate action.

Machine learning techniques play a substantial role in identifying
heart diseases with the help of IoMT devices. Data are collected from
IoMT sensor devices, and ML algorithms understand the data, detect
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anomalies, and produce solutions for accurate heart diagnosis. Many
ML algorithms can be applied to train the model to analyze data and
recognize patterns. A large volume of data can be processed by ML
algorithms from IoMT sensor devices, such as blood pressure
measurements, ECG reading results, and heart rate information.
ML algorithms like decision trees, Random Forest, SVM, and
Logistic Regression are applied here with IoMT devices.

Al algorithms suggest transparent and interpretable
explanations for making decisions or predictions. Traditional AI
algorithms work as black boxes and produce results with less
transparency. When we use explainable AI, it produces an
understanding of the reasoning behind its results. Data are
collected from IoMT devices and sent for preprocessing, followed
by model selection and training. After training the data, feature
analysis is done, and during local interpretability, explainable AI
uses LIME to understand how specific features contribute to
identifying the heart disease. As global interpretability, SHAPLEY
helps explainable Al analyze overall behavior and features and
their relationship to the decision-making process. Model-agnostic
interpretability independently understands the prediction process
and aims to apply it to any algorithm. The results can finally be

visualized so that appropriate decisions can be made.

3.4 Mathematical modeling

3.4.1 Random Forest

Random Forest (127) is an ensemble technique of a machine
learning algorithm applied for classification and regression
problems. The ensemble combines many models to make
predictions accurately. To make an accurate prediction, a Random
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FIGURE 5
Layered architecture diagram of proposed work. Created using Draw.io.

Forest combines many decision trees (128). Forest refers to a
collection of decision trees. Every tree is made independently by a
subset of the training data and its input features. Selecting data and

Frontiers in Digital Health

features randomly reduces the overfitting problem and creates
diversity among each tree. Random forest considers the majority
vote from different samples of the decision trees for classification
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TABLE 3

Type

Application

Comparison of wearable and ingestible health devices.

Parameters

Advantages

10.3389/fdgth.2025.1612915

Demerits

1 Ovularing (106) | Wearable Women’s health Ovulation monitoring | Accurate fertility tracking Limited compatibility with other
devices
2 VitalPatch (107) | Wearable Healthcare Vital signs monitoring | Real-time health monitoring | Requires regular battery
replacement
3 SmartPill (108) Ingestible Healthcare Drug delivery Non-invasive medication Possibility of device malfunction
monitoring tracking
4 GlucoWear (109) | Wearable Diabetes care Continuous glucose Improved glucose Calibration requirements for
monitoring management accuracy
5 Bio Stamp RC Wearable Research Motion analysis Long-term data collection Limited sensor placement options
(110)
6 Biotricity (111) Wearable Cardiology ECG monitoring Real-time cardiac monitoring | Relatively high cost for consumer
use
7 Mind motion pro | Bio-feedback Various rehabilitation Muscle activity, EMG Provides real-time feedback | Relies on accurate sensor
(112) devices applications for muscle control placement and signal quality
8 SmartMat (113) Wearable Fitness Yoga and exercise Precise posture and Limited battery life
tracking movement analysis
9 PillCam (114) Ingestible Medical imaging Gastrointestinal Non-invasive imaging of the | Limited imaging capabilities
imaging digestive system compared with MRI
10 WAND (115) Implantable Neurology Deep brain stimulation | Effective treatment for Invasive surgical procedure for
neurological disorders implantation
11 Abilify MyCite Ingestible Mental health Medication adherence | Monitors medication Limited availability and regulatory
(116) ingestion approval
12 Empatica Wearable Epilepsy Seizure detection Alerts caregivers during Some false alarms and limitations
Embrace (117) seizures in accuracy
13 Insulet Omnipod | Wearable Diabetes care Insulin delivery Tubeless insulin pump system | Initial setup and learning curve
(118) for users

TABLE 4 Feature conversation details of the dataset.

SL. Features Numeric Transformation

Types

no change
1 Chest pain ATA 1 Label encoder and min-
type max scalar
NYP 2
ASA 3
TA 4
2 ST_Slope Up 1 Label encoder and min-
max scalar
Down 0
Down -1
zero
3 Resting ECG | Normal 0 Label encoder and min-
max scalar
Abnormal 1
4 Sex Male 1 Label encoder and min-
max scalar
Female 0
5 Exercise Yes 1 Label encoder and min-
angina max scalar
No 0

NYP, non-anginal pain; TA, typical angina.

and regression tasks. Bagging or bootstrap and boosting are the two
types of ensemble methods. Bagging depends on majority voting by
creating many training subsets from the training sample with
replacements. Boosting refers to joining weak and strong data by
making sequential models to produce the highest accuracy. When
the amount of data in the training set is #, then with replacement
“n,” data are sampled at random as a bootstrap sample. This helps
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to grow the tree with training data. When there are “m” input

«_ »

variables, v < m is chosen so that “v” variables are taken at

« »

random from “m.” The value “v” is constant when the tree grows
to the maximum extent. Many subtrees made by the parameters
are formed in the forest. When the forest is completely trained for
classification, it is traversed across all the subtrees (129). The
classification result from each tree is taken as a vote. The maximum
vote is considered a new instance. The generalization error (PE*)

for the Random Forest is given by Equation 1.

PE" = P,,(mf(X,Y)) <0 (1)

Here, mf (X, Y) is a margin function that measures the average
number of votes from (X, Y) exceeding any other class. X refers to
the prediction variable and Y refers to the classification task. “I”
denotes the indicator function. The expected value for the margin
function of a random forest is indicated as Equation 2.

R= Exy(mf(X,Y)) @

A Random Forest’s average strength and the base classifiers’ mean
correlation are joined as generalization errors. If p represents the
mean rate of correlation, the generalization error value for the
upper bound is given by Equation 3.

PE* < p(1 —s%)/s (3)
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To achieve better accuracy in a Random Forest, the subtrees of
decision trees must be consistent and diverse. Random Forest is
very efficient in detecting outliers. It is scalable, robust, and handles
missing data without imputation.

3.4.2 Local Interpretable Model-Agnostic
Explanations

LIME (130) is a post-hoc model-agnostic framework for any
black box machine learning model’s judgment for all instances
(55). LIME creates new data from the nearest neighborhood and
finds the predictions of these new samples with the help of a
black box model. LIME’s explanation depends on monitoring
the classifier model’s behavior based on local surrogate models.
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The LIME
surrogate model.

algorithm follows three steps to train a

1. Select a few data instances as x € R% representing the reason
for an opaque recommender model f predicting the feature
vector x for the probability f (x). LIME expects the data to
be converted into an interpretable picture like a binary

X efo, 1 the

available components.

Create a new dataset Z of perturbed data 2’ € {0, 1}d, by taking

non-zero elements of x' at random. The labels must be

vector representing available/non-

identified for this new set of data elements in Z in the
closest area of xX. To obtain the labels for the new data, the
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perturbed samples 2’ € {0, 1} are transformed back into the
original form z € R?. The opaque model f is then examined
for each instance f (z). Because the perturbed samples z' are
randomly generated, there might be z samples that are closer
or farther away from the original instance x for weighing.
This weight is measured as Il,(z) to evaluate the closeness
between the data x and z.

Using this newly weighted data Z and the labels created by f (z),
anew model g € G is trained, where G refers to models such as
decision trees, linear models, and so on. The interpretable and
explanatory surrogate model &(x) of the new data g is then used
to explain f (x) as shown in Equation 4.

&(x) = g € G argmin(L(f, g, I1,

) +Qg)) 4
Here, L is the loss function, which measures how g follows the
behavior of f in the nearest neighborhood of x. Minimizing this
loss function ensures that the behavior of g aligns with the
behavior of f indicated by IL,. The complexity of the model
Q(g) must be kept low. When g(2) is represented as a linear
function, g(') = ¢TZ' + @, the equation 5 becomes a linear
regression problem to evaluate ¢ and ¢,.

(5)

= > Iz

2,7 €Z

L(f, ¢y, 11 — (g +¢'2))’

The advantages of LIME are that it is easy to implement,
completely fast in terms of computational techniques, and
easy to work with in tabular data, text, and images.

3.4.3 SHAPELY Additive exPlanations

The SHAP (124) method improves computational time, and
tree-based methods improve explanation precision. The main
goal of SHAP is to form perturbations to simulate the features
that are not present and to use the linear local model to
approximate the prediction changes as given in LIME. It ignores
retraining the model without the feature of interest. Local
explanations can be combined to describe the model’s global
performance. Local and global explanations are reliable with
each other as they follow the same basic methods. SHAP uses
agnostic explainer KernelSHAP and model-specific explainers
such as TreeSHAP for tree-based models, DeepSHAP for deep
models, and LinearSHAP for linear models.

SHAP produces SHAPELY values, which express model
predictions as linear combinations of binary variables. This
framework explains how each covariate contributes when fixed
in the model. The prediction f(x), using s(x’), for a linear
model for the binary values y € {0, 1}
0; € R, is given by Equation 6.

with the elements

M
s )= 0o+ > 0, (6)
i=1
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Algorithm 1 Algorithm for heart disease prediction.

Input: x = [>7 I

xirform = label.encoder(x);

Y < Yirain> Ytests

X < Xtrain> Xtests

n « samples, fimages;

TRUEp «— TruePositive;

TRUEy «— TrueNegative;

FALSEp < FalsePositive;

FALSEy « FalseNegative;

Features — a, b;

Accuracy: m
Precision: TRUl[;JrFAW
Recall: TRUE, +FAL5)5N

F1-score: m

Activation: max [Accu, Prec, Reca, F1 — Sco, Sensi, Specil;
while yis # 0 do

if x;. is Potable do
TRUEp+TRUEy
TRUEp-+ TRUEN +FALSEp }FALSEN

accu «—

Preci — TRUTEP+FALS£P

reca < TRuE, FFALSESS

. 2 TRUEp
S1-sco — 2*1RULL]§+J-ALSLP+J-ALSLN

i =P
Sensi — TRUF2+SFAISF\
FALSE,
Speci — mrsE, + TRUEY

end
else

Xiest is Not Potable
TRUE)+TRUEy
accu — TRUFP+TRUF\+FAISI-‘p+FAISF\

Preci — s, +FAL§E,

reca < TRUEP+FALSEN

2+TRUEp
fl-sco — 2+TRUE, + FALSEp+ FALSEy>
Sensi «— U

TRUE; + FALSEy’
Speci «— Sk

SEp .
FALSEp+TRUEy’

Here, M is a variable for explanations which is shown in Equation 7.

Bi(f, ) = D) (1) )

3 (R )

ycz

il
M

where f is the model of this method, z is the variable, and z’ are the
selected variables. The value f.(y/)
prediction, the SHAPELY values from its mean value of the ith

—f«(y} denotes, for every

Algorithm 2 Algorithm for explainable Al.

Input: x = [2111 xn(l - Xn)]?
Y < Ytrain> Ytests
X < Xtrain> Xtests
k «— No_of _samples;
cf «— Complexityfunction;
r «— local_surrogate_regressor;
L « Loss_function;
d « Permutations;
dU D;
E «— Number_of _players;
v — value_function_of _the_players;
while Y # Local do
if Predictproba is local then
L(x) < Loss_function;
exp «— 0()k = L(r, of, m) + w(cf);
>Decision Explained with Local Surrogates (LIME)
else
Predictproba is global
0(y) — Castfunction,
exp — 0() = Yy [dI'(E — |d] — 1)/ E(v(E U i — Vi(p));
>Decision Explained with Global Surrogates (SHAPELY)
end
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variable. Local accuracy results from the explainable model are
equal to those of the basic models. The missing nature of the
SHAPELY values has features that were not added as the first
input without any effect. Consistency of the model changes with
reliance on a single feature, and related characteristics cannot be
reduced independently of other factors. The advantage of SHAP
is that it predicts an instance disseminated among the feature
values. The limitations are its slow computational time, high
with

computational complexity,

instability similar to LIME.

and problems explanation

3.5 Algorithm

This section describes two algorithms, one for the heart risk
evaluation through Algorithm 1 and the other for explaining
heart failure through the Algorithm 2. These two algorithms
comprehensively analyze and explain the risk of Heart Failure as
a complete solution. In Algorithm 1, the performance metrics
such as accuracy, precision, recall, sensitivity, specificity, and
Fl-score are evaluated. During the testing phase, when xest
becomes 1, the heart failure alarm will be activated. Otherwise,
the result indicates that the function of the heart is normal. In
Algorithm 2, the model with local surrogates explains the
appropriate decision after heart failure when the prediction is
local. In case the probability of the prediction is global,
explainability is achieved in global surrogates.

3.6 Environment-based attribute access
control algorithm

The dataset under consideration must be protected and
authenticated. Hence, rigorous data access control permissions
must be set in the cloud to access it properly. A secure
environment-based attribute access control system is required in
this context to protect unauthorized access to the data in the cloud.
The model is divided into two categories: static and dynamic. Users
with the lowest role, such as those looking for recommendations,
access information in a static environment. This audience will only
be permitted to obtain legal information; no other transactions will
be permitted. In a dynamic state, different parameters are
measured and recorded at various instances of time. Thus, many
data acquisition and update cycles are a series of transactions
carried out in the cloud in big time. These states only allow special
users such as clinicians and administrators.

The development of a digital identity is the first step. The key
used in the digital identity protects and guarantees a transmission
between the server and the client, and the key is px. The user
shares its digital account identity and the symmetric key ek, and
the
decrypting the key pi. Various functions used in the algorithm,

corresponding data information can be obtained by
such as IssueRole, revokelssueRole, and partialExtension, help the
framework achieve a secured space to function. After the digital
identity is authenticated and a role is identified, the model can
the entity’s

access framework accordingly. Each of the
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transactions is considered along with its authorization. Therefore,
a secure environment for the fuzzy framework is achieved.

4 Results
4.1 Experimental setup

The 11 parameters that determine the failure of the heart are
acquired from various sources across various countries and used in
this work. These parameters have a strong influence on determining
heart failure in real time. Most of these parameters are embedded
with IoMT sensors, which can be integrated through information
fusion in cloud platforms. Later, these data are classified by cloud
machine learning models and transformed into a valid dataset. One
such dataset is used in this work for experimental analysis. Because
the problem is binary, the experimentation is done with machine
learning models such as SVM, Logistic Regression, Decision Tree,
and Random Forest. The explanation of this dataset is provided by
LIME and SHAPELY values. The classification probability of the
random forest model is evaluated due to its high classification
accuracy with various explanations for clarity.

4.2 Results

4.2.1 Preprocessing

The dataset is preprocessed to convert the data types into a
unified format, which makes it suitable for the classification
problem. The statistical analysis of the various features of
interest is tested with the correlation matrix shown in Figure 7.
The features that have a higher correlation as per the correlation
map are Exercise-Induced Angina, Chest Pain Type, and Age.
Preprocessing equations

1. Missing value imputation
Let X = {x1, x, ..

entries.
Xi = {

= 1 n
where x = ;>0

., X,} be a feature vector with missing

if x; is not missing
if x; is missing

Xi

(11)

x;j is the mean of observed values and #’ is
the number of non-missing entries. Mean imputation replaces
missing values with the average of the available values in
the feature.

2. Label encoding
Let a categorical variable C€E {c, ¢, ..., ck} Dbe
transformed into integer labels as Equation 12.
Label(¢;) =1; , where; €{0,1, ..., k—1} (12)

Each distinct category c; is mapped to a unique integer /;. This
method is commonly used when categories have no

intrinsic ordering.
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3. Standardization of binary target class
Given a binary target variable y € {0, 1}, standardization is
defined as Equation 13.

(13)

where

wy =Byl =p. 0y =vp(1-p)
Assuming y ~ Bernoulli(p), the mean u, and standard
deviation o, are computed to transform y into a zero-mean,

unit-variance variable suitable for certain learning models.
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4.2.2 Machine learning models

The target attribute Heart Disease is a binary classifier where “1”
indicates heart failure and “0” indicates no failure. Because the
problem is binary, we apply machine learning models such as
SVM, Logistic Regression, Decision Tree, Random Forest,
AdaBoost, and Gradient Boosting Classifier Algorithm. Model
parameters and specifications of various methods are specified in
Table 5. The model parameters of the Random Forest are slightly
higher than that of the other models with respect to AUC. The
results obtained in this work have only a thin difference in the
metric values measured across various machine learning models
since the dataset is free from missing values or class imbalance.
The cost function of Logistic Regression (Equation 8), Gradient
Boost (Equation 9) AdaBoost (Equation 10) are highlighted. The
metric evaluation is presented in Table 6. There are essential
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TABLE 5 Model parameters and specifications.

Hyperparameters

Time

10.3389/fdgth.2025.1612915

Cost function

complexity
Logistic Regression Solver, penalty (optional) 2-3s cotbr
(131) T ®)
SVM (132) C Gamma Kernel size 2-3s (W(e) =3 ai =53, yiyjaiaid(xi) - ()]
Decision Tree (133) Gini, max depth, minSamples, features 2-3s « Find best split s* in all variables that maximize impurity decrease
o Label the currentNode with the best-split variable and its value
« Divide the available learning data L into L; and L,
o Create nodes t; and ¢, that contain data L; and L,, respectively
o Repeat with currentNode = t; and data L,
o Repeat with currentNode = t, and data L,
Random Forest (127) | max_depth Min_sample_split 2-3s o There are M number of trees instead of only one tree
Max_leaf_nodes Min_samples_leaf o There are p number of variables in each tree instead of k, where p < k and k
N_estimators Max_sample (bootstrap is the total number of variables
sample) Max_features o Each tree is built using N number of samples, where N is 63.2% of the total
number of samples N
Gradient Boost (134) | Maximum iterations Learning rate Maximum 2-3s N
depth Or maximum leaf nodes MSE — le];(y‘ —5)? )
AdaBoost (135) Number of estimations Learning rate 2-3s N
Exponential Loss = Z exp(—yi - i) (10)
i=1
TABLE 6 Classification report of the various machine learning models.
Method Accuracy Precision Recall Fl-score MCC ROC
SVM (132) 0.89 0.89 0.89 0.89 0.777 0.94
Logistic Regression (131) 0.875 0.875 0.875 0.874 0.746 0.933
Decision Tree (133) 0.961 0.962 0.961 0.961 0.922 0.991
Random Forest (127) 0.955 0.955 0.955 0.955 0.910 0.994
Gradient Boost (134) 0.935 0.935 0.935 0.935 0.868 0.985

metrics such as sensitivity and specificity, which estimate the true
positive rate Tpg, true negative rate Ty, false positive rate Fpg,
and false negative rate Fyg. These parameters calculate the

TABLE 7 Sensitivity and specificity analysis of the various machine
learning models.

Method Sensitivity Specificity
SVM (132) 0.89 0.89
Logistic Regression (131) 0.875 0.875
Decision Tree (133) 0.962 0.961
Random Forest (127) 0.955 0.955
Gradient Boost (134) 0.935 0.935

reliability of the model. The explanation of a machine learning
model is based on reliability and performance. Table 7 presents
these metrics with corresponding values for each machine
learning model.

4.2.3 Tenfold classification

Table 8 illustrates the results from 10-fold validation without
preprocessing using a Python IDE. Without the application of
the which
comparatively less than the original 70-30 train-test evaluation.
The model has already been optimized with the highest levels of

preprocessing, results provide accuracy, is

TABLE 8 Classification report of the various machine learning models for 10-fold.

Method Accuracy Precision Recall Fl-score AUC
SVM (132) 0.844 0.844 0.844 0.844 0.904
Logistic Regression (131) 0.861 0.860 0.860 0.861 0.924
Decision Tree (133) 0.792 0.792 0.794 0.792 0.778
Random Forest (127) 0.859 0.859 0.859 0.859 0.920
AdaBoost (135) 0.781 0.781 0.782 0.781 0.780
Gradient Boost (134) 0.874 0.873 0.873 0.874 0.928
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accuracy through preprocessing techniques. The preprocessed
values are already tabulated in Table 6.

4.2.4 Explainable Al models

The Random Forest model is selected to explain the LIME and
SHAPELY models of the XAI The LIME model explains the local
surrogates and estimates which features are positive (increase) and
which are negative toward the prediction of the target class. This
model is used in a local surrogate for a particular dataset instance.
This application also determines the feature weights and
prediction score for each classifier in accordance with a
specific instance.

SHAPELY uses various models based on the explainer
suggested by Random Forest. It provides the testpatch, which
distributes features in the global surrogates. Then, SHAPELY
uses plots like summary plot, which provides the order of the
features that determine the magnitude of the output. It also
provides the dependency plot, which explains the dependency
between the two variables of interest in global surrogacy. The
decision plot of SHAPELY provides the decision on a particular
instance and explains the rationale behind the classification with
the feature impact analysis.

The first model discussed for explainability is the partial
dependency plot (PDP). This plot shows the relationship
through linear

between the two contributing features

10.3389/fdgth.2025.1612915

relationship estimation through LASSO. The correlation between
the two attributes is represented by the PDP. The plot between
the MaxHR with the target feature Heart Disease is presented by
the PDP plot in Figure 8. The LIME model predicts the
behavior of an instance in the local surrogacy and explains
the relationship between the target attribute and the rest of the
features in the dataset. This also estimates the attribute weights,
which features provide a positive relationship to the target
prediction, and which features provide a negative response.
According to an instance depicted in Figure 9, class 0, which is
no disease, has a 2% probability, and class 1, which is the Heart
Disease, has a 98% probability of occurrence. This notebook
model explains the list of the features that influence the target
attribute. Figure 10 shows the Pyplot, which describes the
features that have a positive relationship towards the target, such
as 1_slope, Chest Pain Type, Age, Cholesterol, Blood Sugar,
Exercise Angina, Sex, and MaxHR. The features with a negative
relationship to the target, like Old Peak and Blood Sugar, are
also explained. Using linear relationships, LIME thus explains
the relationship between the target attribute and the rest of the
attributes in a particular row instance. This also estimates the
feature weight, nature, and significance of that particular local
surrogacy. The SHAPELY explainer provides local and global
surrogate explanations for the local instance and the complete
dataset, respectively. It uses various plots to describe each
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FIGURE 8
Partial dependency plot between the MaxHR and heart disease.
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FIGURE 9
LIME explainer explanation for heart disease prediction with NoteBook.
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FIGURE 10
LIME explainer explanation using PyPlot for feature significance.
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feature’s significance in determining the target’s magnitude. The
plots that are depicted in this work include

« Force plot

o Test patch

» Dependency plot
o Summary plot
 Decision plot

The force plot explains an instance in the local surrogacy and tells
how the feature values take a range between minimum and
maximum, with the perception of a corresponding instance. It
shows how the features contribute to the model prediction for
a specific observation, as shown in Figure 11. The prediction
score for this model is 0.98. The red-colored features increase
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the prediction score, and the blue-colored features decrease the
prediction score. The features closer to this dividing region
have the highest impact on the model prediction for that
particular instance. In this instance, the parameter Cholesterol
is for increasing the prediction score and 1_slope for
decreasing the prediction. The classic test patch provides the
overall distribution of features and shows how they can help
predict the target. This global surrogate model explains the
entire dataset regarding what features contribute to the
prediction of heart failure through a double-colored area. The
red color shows chances for Heart Failure, and the blue shows
normal output. The classy test patch is described in Figure 12.
In this plot, the features closer to the dividing boundary are
also highly important in predicting the model. The summary
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FIGURE 11
SHAPELY explainer explanation for heart disease with a force plot.
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plot lists various features in the dataset and sorts them based on
the order of significance in determining the magnitude of the
output. Cholesterol, Maximum Heart Rate, Blood Pressure,
Age, and Chest Pain Type have the order of significance in
determining the target value, respectively. The features and
their corresponding weight importance are shown in Figure 13.
Figure 14 depicts the summary plot with feature concentration.
The target value, Heart Failure, is distributed from 0 to
1. Various features like 1_slope, Chest Pain Type, Exercise
Angina, Old Peak, and Cholesterol are plotted as per the order
of significance in determining the output magnitude. The red-
colored region shows a high impact, and the blue-colored
region shows a low impact in predicting the target attribute.
The SHAPELY decision plot is illustrated in Figure 15. This is
a global surrogate model, where the dependency between the
target class and the cholesterol is plotted in the graph in
Figure 15. PDP also looks similar to the dependency plot of
SHAPELY, but SHAPELY provides granular outputs that can
be increased or minimized. The second point is that PDP is
only a plot, but a dependency plot is a variable-like result.
Taking the average value per variable is like plotting variable
importance against the SHAP value, which will look like a
PDP graph.
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5 Discussion

This section deals with the comparative analysis of various
machine learning algorithms that are used in this work. This
work also deals with how the features contribute to the results
in the SHAPELY explainer. The comparative analysis of the
various machine learning algorithms is presented in Figure 16.
The ratio of rightly predicted data to the total observations
determines the accuracy of the model. The ratio of the rightly
predicted positive data to the total analyzed positives fixes the
precision. The ratio of the rightly predicted positive data to all
actual positives is a recall metric. F1-score defines the harmonic
mean of both precision and recall. The Random Forest model,
which has a higher accuracy of 0.955 and F1-score of 0.955, was
selected for explanation by XAI applications. The second-best
values for accuracy and Fl-score are recorded in the Gradient
Boost model with values of 0.935 and 0.935 with a precision of
0.997. Logistic Regression and SVM have accuracy values of
0.875 and 0.875. All these models only have marginal differences
in the values of parameters between them. The Decision Tree
model recorded a highest accuracy of 0.961, but the AUC was
the highest for random forest, which is 0.994. Thus, this model
is selected for XAI implementation.
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SHAPELY explanation for heart disease with a summary plot.
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The 10-fold validation is also presented in Figure 17. These
results show reduced accuracy levels with the lack of standard
preprocessing techniques. Despite the reduced accuracy levels,
Gradient Boosting and Random Forest algorithms perform much
better than the rest of the models. The SHAPELY decision plots
are presented in Figures 18, 19. These decision plots are
extremely important in determining why an instance is classified
as normal or abnormal (Heart Failure). In this local instance, the
values of 1_slope, ECG Peak, and Exercise Angina are high. The
value of cholesterol is also high, and the Chest Pain Type is
Recorded as Type 3. All these feature values correspond to the
heart disease classification into 1, which means a risk indication
of Heart Failure. In the case of Figure 19, all the feature values
are normal, and the instance is classified into the normal
category. Thus, the decision plot of SHAPELY values provides a
detailed explanation regarding how an instance is classified on the
basis of various values of the features available.

5.1 Challenges

This work has the following challenges (not limited to), which are
required to be addressed in the future. The sensors may go out of order
and hence can provide false alarms to the cloud and database. The
electronic faults may induce false alarms regarding heart failure.
The medical data are subjected to be private. Explaining may
compromise the privacy and integrity of the individual medical
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data. Medical data stored in the cloud are vulnerable to attacks if no
security mechanisms are provided. If the medical record is stored in
a blockchain model, it is extremely difficult to access and explain
the same with the XAI model. The reliability of the explanation and
privacy need to be enhanced by Federated Learning. Training and
demonstration are required for medical practitioners to handle data
from wearable sensors and the cloud.

5.2 Contributions of the paper

The essential contributions of this paper helps identify the
complete purpose of this research. This paper provides a complete
illustration of all the sections of IoMT-enabled XAI infrastructure.
It also discusses various IoMT applications and case studies
related to heart failure in detail. This paper works with a dataset
with all the vital parameters required for heart failure prediction.
It provides solutions for the explanation of heart failure through
local and global surrogates with the explanations of LIME and
SHAPELY. This study discusses various state-of-the-art IoMT
sensors with practical applicability in medical applications with a
discussion of advantages and disadvantages.

5.3 Future work

Improvements can be made to this study by applying many
advanced techniques. The application of 6G may improve the
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connectivity and network-related issues associated with wearable
sensors. Application of Federated Learning would improve the
privacy, reliability, and safety of medical data. Meta-verse
applications can enhance IoMT sensor support and provide real-
time solutions to heart problems. Industry 5.0 can enhance the
quality of service of the proposed system with a human-centric
man-machine interface. Web 3.0 standards can provide better
semantics, security, and reliability in cloud service.

6 Conclusion

Early detection of heart failure is the most desirable and need-
of-the-hour application, as the number of cardiac arrest cases
increases day by day. A healthy life cycle, clean habits, and a
peaceful life are the real medicines to overcome heart disease.
Clinical efforts are merely supplementary but not primary in
nature in addressing the issues related to heart failure. The IoMT
integrated Heart Failure prediction model discussed in this study
is extremely useful in this stressful modern-day life. The IoMT
sensors can control and monitor most of the parameters relevant
to heart failure at the primary level. XAI provides excellent
support to this system by indicating what body parameters
influence the heart failure condition through various models that
show the significance of the features for the prediction of the
target. The probability of prediction of the Random Forest model
is used by LIME, the local explainer, and SHAPELY, the global
related to heart failure
prediction. This model is a whistleblower to many such systems

explainer, for explaining models

developed to make human life longer, better, and safer.
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