
EDITED BY

Hao Hu,

University of Macau, China

REVIEWED BY

Gilbert Regan,

Dundalk Institute of Technology, Ireland

Chandrasekar Sivakumar,

National Chung Hsing University, Taiwan

*CORRESPONDENCE

Bjørn Hofmann

b.m.hofmann@medisin.uio.no

RECEIVED 18 April 2025

ACCEPTED 28 July 2025

PUBLISHED 20 August 2025

CITATION

Hofmann B (2025) Biases in AI: acknowledging

and addressing the inevitable ethical issues.

Front. Digit. Health 7:1614105.

doi: 10.3389/fdgth.2025.1614105

COPYRIGHT

© 2025 Hofmann. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Biases in AI: acknowledging and
addressing the inevitable ethical
issues

Bjørn Hofmann
1,2*

1Centre of Medical Ethics, The University of Oslo, Oslo, Norway, 2Institute of the Health Sciences, The

Norwegian University of Science and Technology (NTNU), Gjøvik, Norway

Biases in artificial intelligence (AI) systems pose a range of ethical issues. The

myriads of biases in AI systems are briefly reviewed and divided in three main

categories: input bias, system bias, and application bias. These biases pose a

series of basic ethical challenges: injustice, bad output/outcome, loss of

autonomy, transformation of basic concepts and values, and erosion of

accountability. A review of the many ways to identify, measure, and mitigate

these biases reveals commendable efforts to avoid or reduce bias; however, it

also highlights the persistence of unresolved biases. Residual and undetected

biases present epistemic challenges with substantial ethical implications. The

article further investigates whether the general principles, checklists,

guidelines, frameworks, or regulations of AI ethics could address the identified

ethical issues with bias. Unfortunately, the depth and diversity of these

challenges often exceed the capabilities of existing approaches. Consequently,

the article suggests that we must acknowledge and accept some residual

ethical issues related to biases in AI systems. By utilizing insights from ethics

and moral psychology, we can better navigate this landscape. To maximize

the benefits and minimize the harms of biases in AI, it is imperative to identify

and mitigate existing biases and remain transparent about the consequences

of those we cannot eliminate. This necessitates close collaboration between

scientists and ethicists.
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GRAPHICAL ABSTRACT

Introduction

The literature on how to identify and assess biases in artificial

intelligence (AI) is burgeoning (1–3). So is the literature on how to

mitigate such biases (1, 2, 4–10). However, despite great efforts, the

problem prevails. So far, biases cannot be eliminated from AI

systems. Some biases we therefore have to live with—including

their ethical issues.

Correspondingly, there has been a proliferating literature on the

ethics of AI (11–20). A wide range of ethical principles, checklists,

guidelines, and frameworks have emerged for addressing basic

ethical challenges in AI (12, 14–18, 20–35). However, they are

rarely tailored to address the ethical aspects of biases.

Hence, there is a need to scrutinize the ethical aspects of biases

in AI in more detail. While some studies have addressed specific

ethical issues of bias, such as fairness (36), more comprehensive

and elaborate analyses are needed.

Accordingly, this article addresses four key questions:

1. What are the biases identified in AI systems? (short overview)

2. What are the basic ethical issues with biases in AI systems?

3. How can biases in AI systems be identified, measured, and

mitigated (in order to avoid or reduce their ethical implications)?

4. What can we do to acknowledge and address these (residual)

ethical issues with biases in AI?

Very many biases have been identified in AI systems. However,

despite great efforts, not all of them seem amenable to mitigation

—some we do not know how to mitigate, and others we might

not even recognize. Hence, there appear to be unknown residual

biases posing epistemic challenges with ethical implications. This

article identifies five inevitable ethical challenges with bias in AI

(forming the acronym IBATA): Injustice, Bad output/outcome,

Autonomy, Transformation, and Accountability.

That is, bias in AI poses special epistemic challenges which are

difficult to eliminate and which has important ethical implications (4,

37–40). Unfortunately, general principles, checklists, and frameworks

of AI ethics do not seem to be able to address these ethical issues.

Therefore, we must identify and mitigate as many biases as possible

and strive to reveal the consequences of those that cannot be avoided.

Moreover, we must acknowledge and actively address the inevitable

ethical challenges with bias to ascertain that the benefits outweigh the

harms. Overall, we must strive to use the powerful tool of AI to

obtain our goals instead of letting it dictate our values.

For practical reasons, the scope of this study, and its examples,

will be limited to healthcare. While the findings may be relevant for

AI bias in general, this warrants a separate study.
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Artificial intelligence (AI) is used as a generic term, including

machine learning and deep learning.

Methods

To address the four questions above narrative reviews are

conducted to provide overviews of (1) the biases in AI, (2) the

ethics principles, guidelines, and frameworks for artificial

intelligence (AI), and (3) of the ways to identify, measure, and

mitigate biases in AI. Narrative reviews were conducted according

to (41, 42). As other such reviews, this narrative review is “non-

quantitative, thematic, educational and …. opinionated” (43).

Initial searches for the topics were done in Google Scholar.

Supplemental searches were done in PubMed. Logical search

terms were “bias* in AI” and “ethic* in AI”. Combinations with

“review” and “systematic review” were applied to limit the

number of hits. After title and abstract screening, 98 references

were included. Snowballing included additional 53 references,

and a reviewer suggested additional 19 references (for which

I am most thankful).

Data extraction and synthesis: content was extracted from the

identified references and synthesized according to the research

questions using thematic content analysis. Standard (normative)

ethical analysis is applied to identify profound (residual)

ethical issues.

Biases in AI systems (RQ1)

Bias is defined as “pervasive simplifications or distortions in

judgment and reasoning that systematically affect human

decision making” (44). There is a proliferating literature on

biases in AI, and the biases are generally divided in three main

types (1, 3, 7, 45–47): input bias, system bias, and application bias.

Input biases are biases in the input data for algorithm training.

Data can be incomplete, erroneous, or contain biases of a wide

range of kinds, e.g., race, sex, age, and socioeconomic status.

These biases have many causes, and although they are data-

related biases, they originate in human (cognitive and affective)

biases, social biases, or organizational biases. Input bias can be

revealed by analyzing the data sets. See below. Supplementary

Table S1 provides an overview of some major input biases.

System bias is bias in the design and development of

algorithms. These biases may originate in selection and sampling

(data cleaning, imputation, curation, and treatment of outliers) or

in processing and validation of algorithms (48, 49). System bias

can be identified and measured by process variables. See below.

Supplementary Table S2 provides an overview of some major

system biases.

Application bias (also called deployment bias or human bias)

stems from the use of the AI systems in practice and is prone to

a wide range of human biases (5, 45). Additionally there is bias

drift over time (model drift/decay, concept drift) (8, 50).

Application bias can be identified and measured by comparative

outcome analyses.

A recent systematic review showed that the majority of the

studies in the healthcare suffered from input bias and system

bias (51). Supplementary Table S3 provides an overview of some

major application biases. Figure 1 affords an overview of these

three types of biases in AI.

Hence, there is an overwhelming number of biases that can

appear in AI systems. Let us now turn to the next question:

Which ethical issues do they pose.

Ethical issues with biases in AI (RQ2)

Clearly the vast variety of biases will pose specific ethical issues

in particular contexts. However, certain general characteristics of the

biases over a variety of contexts may expose some generic ethical

issues that are of relevance to a wide range of AI applications.

Moreover, while biases may have positive effects, this study will

concentrate on its potential negative aspects. The reason for this is

that it is crucial that we are aware of and address these in the

development, implementation, and use of AI systems.

The most obvious negative implication of bias in AI systems is

increased (risk of) harm and reduced safety, as well as adverse

effects resulting from erroneous decisions, diagnosis, treatment,

or prognosis. The problem is that it violates the ethical principle

of non-maleficence (relating to the ancient principle of primum

non nocere).

Correspondingly, bias may result in poor or erroneous output

from the AI system, resulting in bad outcome reducing the

effectiveness of healthcare services (52). This may origin in a range

of the biases listed in S1–3 as well as in model drift, and context

ignorance (45). One example is how AI-based tools for assessing

skin cancer result in poorer outcomes for populations with diverse

skin tones (53). Hence, bias may hamper utility, such as health

improvement, and infringe the principle of beneficence.

Yet another obvious ethical challenge following from AI bias is

discrimination, unfairness, and stigma. Biases in terms of race, sex,

gender, age, socioeconomic status, and ableism are well-

documented and undermine the principles of justice and fairness

(40, 54–56). As stated in the NIST report “[t]hese biases can

negatively impact individuals and society by amplifying and

reinforcing discrimination at a speed and scale far beyond the

traditional discriminatory practices that can result from implicit

human or institutional biases such as racism, sexism, ageism or

ableism” (45).

Biases are often latent, that is, they will not be apparent before

after long time use (57). This poses a basic epistemic problem: the

uncertainty of biases adds to the problem of understanding the

output from AI systems (explainability, the black-box problem).

This challenges the principles of autonomy (and the rule of

informed consent) as people are not appropriately informed. It

also undermines transparency and accountability.

Several biases can also influence human agency as they may

reduce human oversight and control, e.g., due to overreliance on

AI systems. For example, overreliance on advice has been

demonstrated amongst radiologists assessing chest x-rays and

making diagnostic decisions (58). Corresponding, the idea that
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all problems can be solved by technology (techno-solutionism) (59,

60), the belief that technology is always the solution

(technochauvinism) (61, 62), or the conception of a technological

imperative (63–66), “technological paternalism,” (67, 68) or AI-

paternalism (69) may reduce human agency as well as

challenging the principle of respect for autonomy.

Conceptual challenges raise from biases transforming basic

conceptions (70). As pointed out by Floridi: “The digital is

deeply transforming reality” (71). Biases may coupling,

decoupling, or recoupling features of the world and thereby

incite reconceptualization and re-ontologizing of the entities in

the world (72). In healthcare this may occur when AI-systems

constructed to detect specific conditions (or diagnoses) come to

define the same conditions or when AI measures replace human

experiences, such as pain or suffering (73). For example,

biomarker-based algorithms may change the way we

conceptualize, experience, and handle cognitive impairment and

Alzheimer’s disease. Relatedly, concept drift/creep, model drift,

model decay may transform basic conceptions (50). The

transformation or re-conceptualization may change social norms

and values as well as challenging autonomy and accountability.

Correspondingly, bias may have a hermeneutic effect. The

output from AI systems may incite new interpretations of

agency, personhood, and self-understanding. For example, AI

measures may come to (re)define health and disease (wellbeing

and suffering) and influence people’s interpretation of signs and

symptoms, but also of their (self)understanding. This may again

challenge their autonomy, integrity, and accountability. It may

also instigate hermeneutic epistemic injustice (74).

Moreover, biases may result in a lack of traceability, resulting in

dissolved or unclear responsibilities (6, 75). Due to lack of

transparency in general, and with respect to bias in particular, it

can be difficult to hold anybody responsible for errors or harms

of bias in AI systems. Again, bias may undermine accountability,

and establishing accountability for biased AI outcomes can be

difficult (38, 76).

Biases, such as automation complacency (45) or automation

bias (5), result in overreliance on AI systems, reduced critical

reflection, and deskilling (77, 78). This may change power-

relationships and professional integrity, influencing professional

ethics. Accordingly, biases in AI systems may reduce trust in

such systems and their providers.

Thus, biases in AI systems have a range of ethical implications,

raising a series of basic ethical issues, and may undermine several

fundamental ethical principles: “the purposes for which AI systems

are developed and applied are not in accordance with societal

values or fundamental rights such as beneficence, non-maleficence,

justice, and explicability” (18). Table 1 provides an overview of

ethical implications of AI bias, as well as explanations, examples,

and ethical principles or issues arising from these implications.

Hence, a plethora of ethical implications and issues have been

identified resulting from biases in AI. Let us now turn to the next

question: How can biases be identified, measured, and mitigated? If

biases can mitigated, it would resolve or reduce the

ethical challenges.

Identifying and mitigating biases in AI
(RQ3)

A wide range of approaches have been developed to identify,

measure, and mitigate biases (1–3, 7, 79–81). General checklists,

such as STARD-AI, TRIPOD-AI, PROBAST, MI-CLAIM,

MINIMAR, TEHAI, DECIDE-AI etc aim at avoiding biases.

Correspondingly, there are many methods for detecting and

measuring biases in AI systems, such as equalized odds, statistical

parity, Context Association Test (CAT), Word Embedding

Association Test (WEAT), counterfactual fairness, predictive

parity, Categorial Bias Score (CBS), Embedding Coherence Test

(ECT) and others. For example, large chest x-ray data sets can be

used to demonstrate underdiagnosis bias of artificial intelligence

algorithms in under-served patient populations (82). Table 2

FIGURE 1

Overview of the three main types of biases in AI.
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gives a brief overview of general checklists for avoiding biases,

measures of bias in AI, and bias measurement data sets.

Additionally, there are measures for mitigating biases, such as

bias mitigation guidelines (2), checklist (7), bias-handling

algorithms (83), debiasing systems, as well as data sets for

measuring bias and the effects of bias-mitigating measures (2,

84), as shown in Table 3. Assessing these approaches is beyond

the scope of this study, but specific methods can be found in the

literature (84). Correspondingly, there are methods to measure

and increase fairness by reducing bias (80, 85).

A recent systematic review of electronic health record-based

models revealed that 80% of the identified bias mitigation studies

reported improved performance after bias mitigation while 13.3%

observed unchanged bias after mitigation, and 6.7% found

performance variability based on the applied evaluation metrics

(1). More specifically, a reduction of racial bias of 84% has been

reported by changing the index variable in a commercial

prediction algorithm to identify and help patients with complex

health needs (56). Yet another example is how group-based

training of algorithms for cardiac segmentation in MRI images

substantially reduced bias to a standard deviation of 0.89, while

making the algorithm impractical (79, 86). Other studies have

shown limitations of explainability tools for bias identification (87).

Typical for many mitigation measures is that they are specific

and fragmented. They address explicit issues, such as fairness

(36, 40), or are directed towards specific biases or processes of AI

development (1). However, they may miss out on a range of

specific and overarching biases. Moreover, methods for bias

measurement and mitigation may themselves be biased. For

example what measure you use to estimate fairness (e.g.,

Equalized odds, Equal opportunity, Precision-recall parity,

Predictive equality, Predictive parity, Equal conditional use

accuracy, or Equal selectivity), how you choose to estimate these

(in terms of true positive rate, area under receiver operating

characteristic curve, false positive rate etc), and whether you

correct or normalize the calculations, will influence the

assessment of bias and fairness (36).

Thus, while novel or evolving approaches, such as algorithmic

auditing (88) may further reduce bias in AI, so far we have to

address the residual biases. See Figure 2.

Moreover, as we do not know what we do not know about

biases in AI systems, there are unknown and unavoidable biases.

Other biases may be known, but their effect is unknown. They

pose Knightian uncertainty (89). Additionally, biases may stem

from indeterminacy, as many key concepts such as pain,

suffering, and dysfunction can be defined in many ways. Each

definition may have its pros and cons—biasing the outcome of

AI systems. Thus, despite great efforts to identify and reduce

biases in AI systems, they still pose fundamental epistemic

challenges with basic ethical implications.

Acknowledging and addressing ethical
issues with biases in AI (RQ4)

How then, can we address the ethical implications of biases in

AI? Can they be tackled by applying (some of) the very many

ethical principles, approaches, guidelines, checklists, and

frameworks that have been developed for ethics in AI? Or do we

need other approaches?

Using general ethical principles to address
bias problems

Due to the general ethical concerns with AI a wide range of

ethical principles, approaches, guidelines, checklists, and

frameworks have been developed (11–18, 34, 90). WHO’s ethical

principles (20), position papers on AI ethics for trustworthy AI

(91), as well as regulations, such as the US Algorithmic

Accountability Act (92) and the EU Artificial Intelligence Act

(93) are but some examples of such efforts.

Several (systematic) reviews provide good overviews of ethical

issues and principles (13, 16, 26, 94–97), as illustrated in

Figure 3 (with data from 14).

TABLE 1 Overview of ethical implications of AI bias, explanations, examples, and ethical principles or issues following from these implications.

Implications Explanation Example Ethical principle, issue

Safety Increased risk, adverse effect/harm Erroneous decisions, diagnosis, treatment, prognosis Non-maleficence, negative utility

Effectiveness Poor output, bad outcome Does not improve health Beneficence

Epistemic: Uncertainty Lack of understanding Black-box problem

Incomprehensibility

Autonomy

Transparency, Accountability

Agency Lack of control, Paternalism Tech-reliance, Technochauvinism, Quick Fix Autonomy

Transformative Conceptual

challenges

Reconceptualization

Defining > detecting

AI measures frame, form, or replace conceptions and

experiences, e.g., of Alzheimer’s disease

Accountability

Social norms and values

Integrity

Hermeneutic changes New interpretations of agency,

personhood, (self)understanding

AI measures come to define basic human experiences, such

as health and disease

Autonomy, Integrity, Accountability,

Epistemic injustice

Justice Discrimination, unfairness, stigma Sex, gender, age, race, rurality, education, economy Justice

Fairness

Traceability Dissolved or unclear responsibility Nobody can be held responsible for decisions Accountability

Liability

Under-, Overreliance Automation bias Inappropriate reliance on AI Trust

Power(lessness)

De-skilling Reduced critical reflection Less experience in examination Professional (competency and)

integrity
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As can be seen from Table 1, many of the ethical issues and

principles at stake for AI in general are relevant with biases in

AI as well. For example, transparency and accountability are

challenges with bias as well. However, this does not warrant that

the general principles or frameworks can address the ethical

issues with bias. As pointed out, some biases are latent and

unknown while others cannot be eliminated.

Concurrent with the compilation of ethical principles for AI

there is an increased awareness of a range of challenges with

applying them in practice (14, 98, 99). Vagueness, practical

applicability, strong counterforces, and lack of ethical

competency are but some of these challenges (14, 100).

Additionally, Hagendorff points to other poignant problems in

his evaluation of ethics frameworks for ethics in AI. “Currently,

AI ethics is failing in many cases. Ethics lacks a reinforcement

mechanism. Deviations from the various codes of ethics have no

consequences.… Furthermore, empirical experiments show that

reading ethics guidelines has no significant influence on the

decision-making of software developers.…Distributed

responsibility in conjunction with a lack of knowledge about

long-term or broader societal technological consequences causes

software developers to lack a feeling of accountability or a view

of the moral significance of their work. Especially economic

incentives are easily overriding commitment to ethical principles

and values” (18).

Moreover, Brent Mittelstadt has pointed out that the generally

(bioethical) principle-based approach of AI ethics is inadequate as

AI development is substantially different from medical ethics as it

lacks “(1) common aims and fiduciary duties, (2) professional

history and norms, (3) proven methods to translate principles

into practice, and (4) robust legal and professional accountability

mechanisms” (101). He continues to point out that the real work

of AI ethics is “to translate and implement our lofty principles,

and in doing so to begin to understand the real ethical

challenges of AI” (101).

While it is beyond the scope of this article to investigate all the

ethical principles, checklists, guidelines, frameworks or regulations

with respect to the very many biases from AI systems, the

mentioned shortcomings indicate that such measures cannot

solve all the ethical issues following from (unknown or residual)

bias. On a positive note, some frameworks are developed to

address specific ethical issues (fairness) of bias in AI (36) and for

addressing epistemic-ethical issues in the design of AI systems

(55), and can be helpful.

Table 4 provides an overview of how various approaches

address the five key ethical challenges with biases in AI (forming

the acronym IBATA): Injustice, Bad output/outcome, loss of

TABLE 2 General checklists for avoiding biases, measures of bias in AI, and
bias measurement data sets.

General checklists for
avoiding biases

Measures
of bias in AI

Bias
measurement

data sets

Standards for Reporting of

Diagnostic Accuracy Study checklist

for AI, STARD-AI

Equalized odds StereoSet, stereotypical

biases in gender,

profession, race, and

religion

Transparent Reporting of a

multivariable prediction model for

Individual Prognosis or Diagnosis

for AI, TRIPOD-AI

Statistical parity WinoBias, identify

gender bias in

coreference resolution

systems

Prediction model risk of bias

assessment tool (PROBAST)

The Context

Association Test

(CAT)

BBQ, bias benchmark for

question answering

Minimum information about

clinical artificial intelligence

modeling, CLAIM/MI-CLAIM

Word

Embedding

Association Test

(WEAT)

BOLD: Dataset and

metrics for measuring

biases in open-ended

language generation.

MINimum Information for Medical

AI Reporting, MINIMAR

Counterfactual

fairness

Translational Evaluation of

Healthcare AI (TEHAI)

Predictive parity

Stage-specific reporting guideline

for the early and live clinical

evaluation of decision-support

systems based on artificial

intelligence, DECIDE-AI

The Categorial

Bias (CB) score

SPIRIT-AI, a set of

recommendations for clinical trial

protocols evaluating interventions

with an AI component (Liu, 2020)

The Embedding

Coherence Test

(ECT)

Recommendations for clinical trial

reports evaluating interventions

with an AI component, CONSORT-

AI

Association

without ground

truth

Checklist for AI in Medical Imaging

(CLAIM)

Natural language

inference

Consolidated Standards of

Reporting Trials-Artificial

Intelligence (CONSORT-AI)

Based on (2, 46, 180).

TABLE 3 Guidelines and checklist for mitigating bias, debiasing systems,
as well as data sets for measuring bias and the effects of bias-
mitigating measures.

Bias mitigation measures
or
strategies

Bias mitigation impact
evaluation data sets

Bias mitigation checklist (7) Corpus of Linguistic Acceptability (CoLA)

Guidelines:

• Creating a well-defined goal

• Reviewing the training and

input data

• Using explainable and

interpretable models

• Feature selection and pre-

processing

• Regularized model training

• Model validation

• Algorithmic auditing,

• Hyperparameter tuning

• Fairness-aware algorithms

• Monitoring and feedback

Stanford Sentiment Treebank (SST-2)

Debiasing devetloped AI systems

• Synthetic data augmentation

• Re-sampling to balance

class distributions

• Reweighing to ensure

fair representation

• Disparate impact remover

• Biased embedding correction

• Debiasing

Toolkits for detecting and mitigating bias

• AI Fairness 360 (AIF360, IBM)

• Fairlearn (Microsoft)

• What-If Tool (Google)

• Fiddler AI

Based on (1, 2, 6, 7, 9, 10, 81).
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Autonomy, Transformation of basic concepts and values, and loss

of Accountability. While several of the frameworks address two or

more issues, only one addresses all.

It is also important to notice that very many articles mention

ethical principles or frameworks for addressing such issues in AI

in general, without demonstrating their application or fruitfulness

in the case of bias (83, 119, 120). Others point to ethical

challenges with bias (especially fairness) without demonstrating

how they can be solved or addressed (121, 122).

Living with residual bias, epistemic
challenges, and prevailing ethical issues

As revealed, biases are abundant in AI systems and raise a range

of ethical issues. While some of the biases may be mitigated, residual

biases appear to prevail. As such, epistemic challenges will occur. The

information, suggestions, and advice from AI systems will sometimes

be incorrect or imprecise. The knowledge and the derived evidence

will occasionally be uncertain and leave us ignorant about crucial

factors. Correspondingly, the measures and concepts applied in AI

systems may be vague, ambiguous, and change/drift over time.

Hence, the output from AI systems (e.g., diagnoses, treatment

suggestions, prognoses, decisions etc) may be wrong. Accordingly,

the outcomes from such systems may have uncertain efficacy,

effectiveness, safety (123), and efficiency (i.e., cost-effectiveness).

This raises a range of ethical issues as elaborated in Table 1.

Moreover, they may have regulatory or legal issues (e.g.,

litigation) and societal challenges (norm creep). Even when

applying the rich armamentarium of ethical principles, checklists,

guidelines, frameworks, and regulations, some basic issues will

prevail: Injustice, Bad output/outcome, loss of Autonomy,

Transformation of basic concepts and values, and loss of

Accountability (forming the acronym IBATA). Figure 4 sums up

the three main types of biases, mitigating approaches, and basic

ethical challenges from residual biases.

How then, can we handle the ethical issues following from

biases that cannot be mitigated (because they are unknown or

because our mitigation measures are insufficient) or addressed by

general approaches in AI ethics? Such ethical issues pose genuine

moral dilemmas (124), moral distress (125), moral residue (125,

126), moral doubt (127), and even moral injury (128–130). These

challenges are not unique to AI and bias in AI, and a range of

approaches have been suggested to address moral residue and

moral doubt, such as reflective debriefing, professional

counseling, and ethics training (131, 132).

Moreover, as the ethical issues from biases in AI stem from

epistemic problems (uncertainty and ignorance), measures to

handle uncertainty may be relevant. For example, one can apply a

range of strategies to develop uncertainty tolerance (133–142), for

uncertainty management (143–150), uncertainty handling

(151–153), as well as for increasing comfort with uncertainty (154).

In particular, strategies to tolerate and manage uncertainty may

help with the cognitive, emotional, behavioural, and moral burden

of uncertainty of bias in AI systems (both in terms of whether

there is bias and its extension). Importantly, it is crucial to avoid

bias numbness, i.e., that “bias is inevitable, so we need not to care”.

Correspondingly, one can elaborate on basic concepts, such as

outcome measures, in order to reduce bias due to indeterminacy

and concept creep. For example, ascertaining that outcome

measures directly can be related to human pain, dysfunction or

suffering (155) (or wellbeing) can avoid biases due to unclear,

vague, or biased concepts.

Corresponding to the de-biasing strategies in AI R&D there are

many de-biasing strategies for human biases that may be helpful

(156–161). Additionally, we need to pay special attention to

FIGURE 2

Residual bias after mitigating various types of bias in AI.
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biases generated by AI, such as overreliance (162), deskilling (77,

78), and acceptance of algorithmic discrimination (162) as they

can proliferate or enhance existing bias. Moreover, addressing

differences in blaming humans and machines (163, 164) is

crucial to address the challenges with accountability.

To maximize autonomy in (biased) AI-based systems it is crucial

to be transparent about uncertainty and ignorance about bias and the

implications thereof. This is crucial for disclosure in informed

consent. Moreover, it is important to be aware of potential

paternalism due to bias, e.g., in decision support systems. While

paternalism in general is motivated by beneficence, good outcomes

may be absent for individuals and groups in biased systems.

To reduce unwarranted transformation, it is crucial to be

creative with in envisioning transformative effects of AI systems

and their biases. How will the algorithm change our conceptions

of the phenomena they handle and the social norms and values

that regulate our behavior. For example, biased AI systems for

detecting Alzheimer’s disease may change our conceptions of

cognitive impairment and our social norms and values (and

fears) (165). More generally, we should look for potential

conceptual changes (related to health and disease, personal

identity, and social status) as well as looping-effects, i.e., human

adaptation to classifications and altered classifications (166).

Thus, despite ineliminable (residual) bias in AI systems and

unavoidable basic ethical issues, there are measures to face with

the ethical aspects of bias in AI. The point in this review has

been to identify the ethical issues with bias in AI systems (in

healthcare) and not to provide a full-fledged framework to

address them. This will be the next step. Nonetheless, the review

has provided us with some fruitful initial practical guidance for

addressing the basic ethical issues of bias in AI systems,

summarized in Table 5.

FIGURE 3

Relative frequency in percent of the AI ethics principles identified in a recent systematic review (14).

Hofmann 10.3389/fdgth.2025.1614105

Frontiers in Digital Health 08 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1614105
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Instead of believing that the ethical issues can be avoided or

handled by the application of ethical principles or perspectives

we have to learn how to face with and live with them. Biases add

a new type of uncertainty with ethical burdens, that we have to

learn to live with (134). Importantly, the biases make it

challenging to ascertain that the benefits from AI applied in

healthcare outweigh the negative implications. They call for

modesty and measures to harness the hype.

TABLE 4 Overview of whether the established ethical frameworks or principles for AI mention the ethical issues raised by bias. Dark green means that the
issue is more or less addressed. White that it is not addressed. Light green that it is mentioned or implicitly addressed.

Challenge framework Injustice Bad output/
outcome

Autonomy Transformation Accountability

AI4People (102)

Global landscape (103)

Machine Ethics (104)

Dynamics of AI Principles (105)

IEEE Ethically Aligned Design (EAD) (106)

The European Commission’s High-Level Expert (107)

Group on Artificial Intelligence Report on the Future of Artificial

Intelligence (108)

OECD Recommendation of the Council on Artificial Intelligence (109)

The Asilomar AI Principles (110)

AI Now 2019 Report (111)

Principles for Accountable Algorithms and a Social Impact Statement for

Algorithms

Montréal Declaration for Responsible Development of Artificial

Intelligence (112)

OpenAI Charter (113)

ITI AI Policy Principles (114)

Microsoft AI principles (2025) (114)

Google and DeepMind Ethics Principles (115)

Google Perspectives on issues in AI governance (116)

Everyday Ethics for Artificial Intelligence (117)

Partnership on AI (118)

FIGURE 4

Overview of the main types of biases, mitigating approaches, and basic ethical challenges from residual biases.
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This indicates that despite great scientific efforts (bias

mitigation) and ethical endeavors (AI ethics) we must expect and

live with some unknown or residual biases from AI systems.

Rather than scaring us off, this should sharpen our attention and

inspire our efforts to address biases in AI systems both

scientifically and ethically. Even more, it requires a close

collaboration between scientists and ethicists.

Discussion

This article started by briefly reviewing the main types of biases

in AI systems and identified a series of basic ethical issues from

these biases. Then it examined some of the many ways to

identify, measure, and mitigate these biases. While

acknowledging these great efforts, there are (yet) no measures to

eliminate all biases in AI systems. Residual biases pose inevitable

epistemic challenges with profound ethical implications and

issues. The article then briefly scrutinized whether the general

principles, checklists, guidelines, frameworks, or regulations of

ethics in AI systems could address the identified ethical issues.

However, due to the unresolved epistemic challenges, it is (yet)

unlikely that these general approaches will address the ethical

issues of biases. Accordingly, we have to acknowledge and live

with the ethical issues listed in Table 1 and Figure 4. A host of

approaches in ethics and moral psychology offer support to do

so. An important lesson from this study is that we have to take

biases and their basic ethical issues into account when assessing

and implementing AI systems.

It is important to notice that I do not claim or promote any kind

of AI exceptionalism. Biases occur with all types of health decisions,

and epistemic challenges with ethical implications result from very

many technologies, including AI systems (167, 168). However, the

hype of AI, its widespread, and partially uncritical implementation

makes the ethics of biases in AI highly pertinent.

Moreover, I have not argued that biases will never be eradicated

or that ethical principles or frameworks will not ever be able to

address the ethical issues. I have only argued that, yet they do not.

Additionally, I have ignored a range of issues, such as global

sustainability of developing algorithms. Furthermore, I have not

addressed aspects like “the danger of a malevolent artificial

general intelligence, machine consciousness, the reduction of

social cohesion by AI ranking and filtering systems on social

networking sites, the political abuse of AI systems, a lack of

diversity in the AI community, links to robot ethics, the dealing

with trolley problems, the weighting between algorithmic or

human decision routines, “hidden” social and ecological costs of

AI, to the problem of public–private-partnerships and industry-

funded research” (18). These are issues for further work.

The implications listed in Table 1 are neither exhaustive nor

exclusive. The ethical implications of bias in AI systems can

interact and overlap. For example, the overreliance may stem

from transformative and conceptual changes. Nonetheless, I

believe that the categories are relevant for addressing the ethical

issues of bias in AI systems. Future work and development may

refine this typology.

Moreover, the review is not exhaustive when it comes to bias

mitigation measures or ethical principles and frameworks for AI.

The latter has more than 3,680,000 references in Google Scholar.

Many more relevant references could have been added, e.g., on

intersectionality frameworks applied to AI bias and emerging

algorithmic auditing standards (88, 169). Regulatory measures

could also have been included, such as the EU AI Act, which in

Article 15 addresses bias and refers to the ethical principles of

fairness, accountability, transparency, and privacy (170–172).

However, they do not provide specific measures and practices to

address the ethical issues of biases in AI.

As acknowledged in the introduction, biases may have morally

good effects. It is argued that bias can be helpful or contribute to

balance injustice (52, 173, 174) and that biases may be corrective:

“bias itself might be used to counter the effects of certain other

types of bias risks” (173) e.g., in order to reduce risk. There are

also ways that AI can be used to omit or reduce human biases.

For example, AI can be used for preference-identification and

predictions, as humans are bad at anticipating and deliberate on

future events due to various biases (175, 176). Even if some

biases are good, we need to differentiate the good from the bad,

i.e., we need to identify the negative implications of biases in AI

(and balance them against the positive ones as well as the

benefits from the AI systems as such). Reviewing the morally

good aspects of bias in AI is beyond the scope of this study and

warrants a separate investigation.

Moreover, the scope of this study, and its examples, has been

limited to healthcare. While the findings may be relevant for

other fields of AI applications or for AI bias in general, further

studies are needed to investigate its generalizability and

transferability. Such studies can benefit from comparative studies

with and within other fields, such as criminal justice (85, 177, 178).

TABLE 5 Summary of the practical implications and guidance for the basic ethical issues of bias in AI systems.

Injustice Bad output/outcome Autonomy Transformation Accountability

Mitigate bias and its

implications as much as

possible

Be transparent about

potential injustice due to

bias

Make trade-offs between

fairness and efficiency

transparent

Monitor and audit outcomes

from AI-based systems

Be transparent about potential

differences in outcomes

Relate outcomes to basic values,

such as reduced pain,

dysfunction, and suffering

Be transparent about uncertainty and

ignorance about bias and the

implications thereof (disclosure)

Be aware of potential paternalism due

to bias, e.g., in decision support

Be creative with respect to envisioning

transformative effects of AI systems and

their biases

Look for conceptual changes and looping-

effects

Clarify responsibility for

outcomes

Address over-reliance

and de-skilling

Avoid bias-numbing
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As acknowledged, the study of bias may itself be biased. The

literature has identified stakeholders to be “bias apologists” and

“bias deniers” (179). This may challenge the work on

acknowledging and addressing the biases and its ethical implications.

Conclusion

The brief review of the vast number of biases in AI systems

identified three main types of bias: input bias, system bias, and

application bias. These biases pose a series of basic ethical

challenges: injustice, bad output/outcome, loss of autonomy,

transformation of basic concepts and values, and loss of

accountability (IBATA). Reviewing the many ways to identify,

measure, and mitigate these biases demonstrated great efforts to

reduce biases and their ethical implications. However, at present

they are not able to eliminate all biases. Some biases remain

unknown, and residual biases pose inevitable epistemic

challenges with profound ethical implications and issues.

Investigating whether the general principles, checklists,

guidelines, frameworks, or regulations of AI ethics could address

the identified ethical issues with bias ends negative as the ethical

issues are profound, diverse, and complex. Instead, it is suggested

that we have to live with the (residual) ethical issues of biases in

AI systems. A host of approaches in ethics and moral psychology

offer support to do so.

Few technologies are flawless. Avoiding all ethical issues of AI

is impossible. However, the task is to maximize the benefits and

minimize the harms—and to provide so much knowledge about

both benefits and harms as possible. Therefore, we must identify

and mitigate as many biases as possible and strive to reveal the

consequences of those that cannot be avoided.

The epistemic and ethical challenges with biases in AI systems

both should sharpen our attention and inspire our efforts both

scientifically and ethically. Even more, it requires a close

collaboration between scientists and ethicists.

Overall, we must strive to use this powerful tool to obtain our

goals instead of letting it dictate our values.
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