
EDITED BY  

Fried Michael Dahlweid,  

Dedalus S.p.A., Italy

REVIEWED BY  

Salvatore Andrea Pullano,  

University Magna Graecia of Catanzaro, Italy  

Kazi A. Kalpoma,  

Ahsanullah University of Science and 

Technology, Bangladesh

*CORRESPONDENCE  

Swati Aggarwal  

swati.aggarwal@himolde.no

†
PRESENT ADDRESSES 

Rohit Jain, 

Intuit, Inc., Mountain View, CA, United States 

Salik Khwaja Mohammad, 

Google, Inc., Boulder, CO, United States

RECEIVED 22 April 2025 

ACCEPTED 25 August 2025 

PUBLISHED 30 September 2025

CITATION 

Jain K, Jain R, Mohammad SK and Aggarwal S 

(2025) MYSTETH—home-based heart 

monitoring.  

Front. Digit. Health 7:1616334. 

doi: 10.3389/fdgth.2025.1616334

COPYRIGHT 

© 2025 Jain, Jain, Mohammad and Aggarwal. 

This is an open-access article distributed 

under the terms of the Creative Commons 

Attribution License (CC BY). The use, 

distribution or reproduction in other forums is 

permitted, provided the original author(s) and 

the copyright owner(s) are credited and that 

the original publication in this journal is cited, 

in accordance with accepted academic 

practice. No use, distribution or reproduction 

is permitted which does not comply with 

these terms.

MYSTETH—home-based heart 
monitoring

Kopal Jain
1
, Rohit Jain

2†
, Salik Khwaja Mohammad

2† 
and  

Swati Aggarwal
3*

1Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India, 
2Department of Computer Science and Engineering, Netaji Subhas University of Technology, New 

Delhi, India, 3Faculty of Logistics, Molde University College, Molde, Norway

Introduction: The MySteth is an intelligent medical tool designed for cardiac 

disease screening, utilizing either a stethoscope or smartphone to record 

heart sounds. Normal heart sounds in healthy individuals consist of “lub” and 

“dub” noises, while murmurs—additional sounds during heartbeats—can 

indicate cardiac anomalies such as valve dysfunctions and rapid blood flow, 

categorized as systolic or diastolic.

Method: MySteth was developed and tested using heart sounds recorded via 

smartphone and digital stethoscope. For ensuring the clinical validity of the data, 

all heart sound samples were meticulously annotated by human experts—super- 

specialized cardiologists with extensive experience in cardiac diagnostics. To 

achieve high classification accuracy, MySteth employs a hybrid CNN-LSTM 

model combined with Linear Predictive Coding (LPC) for preprocessing. The 

study involves classifying recorded heart sounds into normal heartbeats and 

murmurs, with murmurs further divided into systolic and diastolic categories.

Results: The tool demonstrated an accuracy of 92% in distinguishing normal 

heartbeats from murmurs, 91% in classifying murmurs into systolic and 

diastolic types, and 90% in further categorizing systolic murmurs into Ejection 

Systolic Murmurs (ESM) and Pansystolic Murmurs (PSM). MySteth is accessible 

and affordable, requiring minimal equipment, as most individuals already own 

a smartphone, and digital stethoscopes are commonly available. This ease of 

use facilitates both professional and home-based heart monitoring, especially 

beneficial in remote areas with limited healthcare access.

Discussion: MySteth is an at-home heart diagnostic tool that leverages deep 

learning to classify heart sounds into normal, ESM, PSM, and diastolic 

murmurs. Its user-friendly design and minimal hardware requirements ensure 

broad adoption across various healthcare settings, facilitating timely and 

accurate preliminary heart investigations. This capability is crucial in combating 

the global burden of cardiovascular diseases. MySteth’s scalability and ease of 

deployment underscore its potential in early cardiovascular disease diagnosis, 

particularly in underserved regions, thereby promoting preventive healthcare.
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1 Introduction

The two typical heart sounds in healthy people are a lub and a dub, which happen 

one after the other with each beating. It’s common to refer to the lub as the first heart 

sound (S1) and a dub as the second heart sound (S2). Additional noises are heard in 

regular heart sounds (HS), which can be used in pathology diagnosis in circumstances 

when the heart is aberrant, such as valve dysfunctions and fast blood $ow (1). These 
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extra noises, sometimes referred to as murmurs, exhibit distinct 

traits in relation to heart valve problems, which are circulatory 

heart illnesses (2). The most common way to categorize cardiac 

murmurs is by timing; they can be classified as either systolic 

(3) or diastolic (4), depending on which portion of the heartbeat 

they occur during.

Murmurs of the heart that are audible during systole are known 

as systolic murmurs. The most common systolic murmur (5): 

1. Ejection-systolic murmurs (ESM): Diamond-shaped or 

spindle-shaped. The intensity first increases and then 

decreases during S1.

2. Pansystolic murmurs (PSM): Rectangular shaped. The 

intensity remains constant during S1.

The murmur heard in the heart during diastole is called diastolic 

heart murmur. Diastolic murmurs end at or before S1 and begin at 

or after S2 (6).

Heart murmurs are a problem that affects a large percentage of 

people worldwide. These murmurs might be an indicator of 

underlying cardiovascular disorders including valve dysfunctions. 

About 2.5% of Americans have heart valve disease, with the 

prevalence rising with age, according to the American Heart 

Association (7). One of the primary reasons heart murmurs are 

not timely diagnosed is the lack of access to regular and 

comprehensive cardiac evaluations, particularly in underserved and 

rural areas (8). Additionally, the subtle nature of some murmurs 

can make them difficult to detect without specialized equipment 

and expertise. The introduction of a home-based preliminary 

diagnostic tool for heart murmurs could be highly beneficial. Such 

a tool would enable individuals to monitor their heart sounds 

regularly, facilitating early detection of abnormalities and 

prompting timely medical consultations. This proactive approach 

could significantly reduce the burden of undiagnosed heart 

conditions, improve patient outcomes, and decrease healthcare 

costs associated with advanced cardiovascular diseases (9).

With 17.9 million deaths from cardiovascular diseases (CVDs) 

per year, or 31% of all fatalities globally, CVD is a major public 

health concern (10). Early detection is key since cardiac disorders 

can worsen over time and necessitate more involved forms of 

care. For instance, coronary heart disease, one of the most 

common cardiac conditions in the United States, can worsen over 

time and eventually necessitate coronary artery bypass grafting 

(CABG) (11). Preventative detection of heart diseases is essential, 

and medical professionals often start by checking the patient’s 

heartbeat and abnormalities. Further tests, such as blood pressure 

and fasting protein profile tests, are then performed for further 

analysis (12). Currently, there is no easy method for heart 

screening at home without specialized medical personnel. Heart 

health monitoring and the availability of at-home testing options 

is crucial for promoting heart health awareness. At-home 

diagnostics can significantly contribute to heart health promotion 

and better outcomes for those at risk of cardiovascular problems 

by enabling individuals to adopt proactive measures towards 

lowering their risk of heart disease (13).

Numerous studies have employed machine learning and deep 

learning techniques to categorize heartbeat sounds; most of these 

studies have focused on data from phonocardiography (PCG), a 

specialized device used for medical diagnostics (14–19). 

However, this technology is not accessible to the average 

consumer and cannot be performed at home.

Advancements in technology have led to smartphone 

applications like SensiCardiac (20), Mobile Stethoscope (21), and 

iStethoscope Pro (22), which allow heart sounds to be 

conveniently recorded. Some studies have also used 

Electrocardiogram (ECG) signals, which are obtained from 

specialized instruments in medical facilities. Some studies have 

also used audio from electronic stethoscopes and mobile phones 

(23). Only a few categories have been used to categorize 

murmurs: artifact, extra-heart sound, extrasystole, murmur, 

normal heartbeat, moderate, severe, or normal, aberrant. There 

has never been an attempt to further categorize murmurs into 

systolic, diastolic, and systolic murmurs as well as ESM and PSM. 

Because there aren’t enough datasets available, the majority of 

these studies have limitations (24). The models are trained and 

validated on specific datasets which may not encompass the full 

variability seen in global populations. Without prior patient 

information, other classifications of murmurs—such as mitral 

valve prolapse, mitral regurgitation, and aortic stenosis—cannot 

be made. These classifications require further tests such as ECG, 

ultrasound, and cardiac CT (25). The key to reducing healthcare 

costs from CVD and increasing patient outcomes lies in early 

detection, prevention, and access to quality health services (26). 

Unfortunately, emergency rooms and hospitals are overcrowded, 

while affordable healthcare clinics are scarce. This created the 

need for the development of in-home health monitoring and 

CVD management programs (27). Early detection and prevention 

are crucial because CVD accounts for 17.9 million deaths yearly 

(28). Medical technology has advanced, but there are still no 

easily available, user-friendly techniques for doing at-home 

cardiac screenings (29). This study looks at how Mysteth uses 

digital stethoscope technology and deep learning methods to offer 

a quick and easy way to do initial cardiac investigations. The goal 

is to raise awareness of heart health issues and improve the lives 

of people who are at risk of CVDs.

This work presents MySteth as an innovative at-home heart 

diagnostic tool designed to bridge the gap in care by providing 

a convenient and accessible solution for preliminary heart 

investigations. While other heart testing options exist, MySteth 

offers distinct advantages. It is the first screening method of its 

kind to use deep learning techniques and recorded heartbeat 

sounds to detect a wide range of heart diseases using a 

smartphone or digital stethoscope. By employing deep learning, 

MySteth can classify heart murmurs with greater granularity, 

distinguishing between various types such as systolic, diastolic, 

Ejection Systolic Murmurs (ESM), and Pansystolic Murmurs 

(PSM), which have not been extensively categorized in previous 

studies. This technique effectively detects prevalent valvular 

heart conditions, including arrhythmia, mitral regurgitation, and 

coronary heart disease, at home. By leveraging widely available 

smartphones and digital stethoscopes, MySteth enhances cardiac 

diagnostics with precise, real-time analysis that is both accessible 

and cost-effective, marking a significant advancement in the field.
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Recent innovations in wearable diagnostics, such as 

triboelectric sensors for arteriovenous fistula (AVF) 

monitoring in hemodialysis patients, highlight the growing 

feasibility of compact, non-invasive devices for continuous 

cardiovascular assessment (30). These systems, which utilize 

triboelectric impedance cardiography (T-ICG) to detect 

vascular abnormalities like stenosis through changes in 

signal morphology at key cardiac cycle points, underscore 

the clinical relevance of acoustic and impedance-based 

monitoring techniques. Inspired by such developments, our 

work aims to explore whether similar diagnostic precision can 

be achieved using more ubiquitous technology, namely, 

smartphones paired with digital stethoscopes and deep 

learning models. By enabling at-home screening of 

cardiac conditions through familiar devices, our approach 

complements and extends the paradigm of accessible, portable 

monitoring tools, especially in contexts where specialized 

equipment and expertise are limited.

The work by Galli et al. (31), which presents a portable, 

non-invasive ventilation (NIV) system for home and clinical 

use, offers a valuable reference model. Their device 

integrates air$ow generation with pressure monitoring and 

remote smartphone-based data transmission, underscoring 

the importance of user-centered design and technological 

robustness in remote healthcare devices. For instance, recent 

advancements in wearable systems for arteriovenous (AV) 

fistula monitoring in dialysis patients have demonstrated the 

clinical feasibility and diagnostic value of portable acoustic 

sensing platforms (32). These systems use similar principles, 

capturing and analysing vascular sounds, to detect 

abnormalities such as stenosis, showcasing the real-world 

applicability of non-invasive auscultatory tools. Building 

upon such approaches, the MySteth system investigates 

whether commonly available devices like smartphones, when 

paired with digital stethoscopes and advanced deep learning 

models, can replicate and eventually democratize similar 

diagnostic capabilities.

2 Methods

In our work heartbeat is divided into two categories: 

murmurs, and normal heart sounds. We next divide the 

murmurs into systolic and diastolic murmurs. We further 

classify systolic murmurs into PSM and ESM. We don’t need 

further categorization of diastolic murmurs, as most of the 

murmurs in this category are pathologic in nature and hence 

severe (33). The categorization shown in Figure 1 is the one 

identified by most of the doctors when they first examine a 

patient using a stethoscope. It is good enough to manifest 

evidence for a variety of heart disease. This procedure involves 

three classification steps to progressively refine the detection and 

categorization of heart sounds.

The complete procedure used to perform the classification in 

Mysteth is explained into two main parts: Data Preprocessing and 

the MySteth Architecture.

2.1 Data collection, labelling, 
preprocessing, refining, and data synthesis

This part includes the steps shown in Figure 2, as explained 

below, which are applied on the original dataset to build a 

suitable Neural Network Model. 

1. Data Collection: The authors used a publicly available Kaggle 

dataset (https://www.kaggle.com/kinguistics/heartbeat-sounds) 

to identify murmurs in heartbeat sound audios. The dataset 

contains 832 distinct heartbeats, of which 480 audios were 

selected for the use case. This dataset was gathered from the 

general public via the stethoscope Pro iPhone app and a 

clinic trial in hospitals using the digital stethoscope, 

DigiScope. In the original publicly available dataset of 832 

heartbeat recordings, the distribution of samples was heavily 

skewed toward normal heart sounds, with murmurs forming 

a smaller proportion (only 129 audios). To avoid introducing 

bias from this imbalance, we selected 480 recordings that 

included 351 normal heartbeats and 129 murmurs, ensuring 

that both categories were adequately represented in the initial 

FIGURE 1 

Classification of heart sounds into normal and murmurs, murmurs 

into systolic and diastolic murmurs, and further classifications to 

ESM and PSM.
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training set. This balanced selection was essential to prevent the 

model from underperforming on pathological cases.

2. Data Labelling: The publicly available dataset (https://www. 

kaggle.com/kinguistics/heartbeat-sounds) was annotated by 

Dr. Nishant Thakur, a super-specialized cardiologist from 

Max Hospital, I.P. Extension, Delhi, India, and re-annotated 

and cross-checked by Dr. Rajat Jain, a super-specialized 

cardiologist from Safdarjung Hospital, Delhi, India. Since 

the dataset is publicly available so no ethical approvals 

were required.

3. Audio Processing and Refining: Raw audios, sampled at 

22050Hz, were down sampled to 4 kHz. This down sampling 

reduces computational load and storage requirements while 

retaining essential information for heartbeat analysis (34). 

Only the first 3 s of each audio were preserved to capture a 

complete cardiac cycle (S1 to S2 to S1), ensuring that the 

analysis encompasses all critical heart sounds. Audios shorter 

than 3 s were repeated to reach or exceed the 3-second 

duration, maintaining consistency in input length for the 

model. The study transformed audio signals into numerical 

data through the extraction of distinct features representative 

of signal characteristics, including amplitude, frequency, and 

duration, using the librosa library. Librosa is a widely-used 

Python library for audio analysis, known for its robust feature 

extraction capabilities, which facilitate effective signal 

characterization for subsequent classification (35).

4. Data Synthesis: Given the small initial dataset, Gaussian 

Mixture Models (GMM) were used to increase the dataset 

size to 10,000 audio vectors. This approach is beneficial as 

GMMs can generate new, realistic data points by modelling 

the probability distribution of the existing data, thus 

enhancing the dataset without additional data collection 

efforts (36). Out of the 10,000 vectors, 3,600 were murmurs, 

out of which 730 were systolic murmurs. GMMs were used 

again to increase the number of audio vectors represented by 

systolic murmurs to a size of 5,000. This targeted 

augmentation ensures that the dataset is well-balanced, 

particularly for the systolic murmur class, which is crucial 

for training a robust and unbiased classification model (37).

Specifically, the distribution of murmurs and normal 

heartbeats in the synthetic samples closely mirrors that of the 

original dataset, which consisted of 129 murmurs and 351 

normal heartbeats recorded from a limited number of subjects— 

approximately 480 in total. Hence, it can be concluded that the 

total number of subjects for whom the data has been generated 

artificially is 9,520. The synthetic data was generated in a 

way that maintains subject-level diversity while amplifying 

underrepresented classes, particularly systolic murmurs. This 

alignment indicates that the GMM-based augmentation has 

effectively preserved the statistical properties and variability of 

the original dataset.

The use of data augmentation in scenarios with limited real- 

world samples is well-supported in literature; for instance, Frid- 

Adar et al. (38) demonstrated in synthetic data can significantly 

improve model performance when real data is scarce. Similarly, 

the targeted augmentation used here ensures the generation of 

high-quality, representative data, thereby enhancing model 

generalizability while reducing potential class imbalance. The 

proportion of heartbeats and murmurs, as well as its granular 

classifications in the generated dataset are similar to their 

proportions in the original dataset, thus suggesting that the data 

synthesis is appropriate and can be used for further experiments. 

5. Model Training: Various models were trained on the refined 

datasets obtained from each of the following classification 

tasks. The train test ratios for all tasks were kept constant at 

a 70–30 percent split: 

a. Classification Task 1: Applied on the original dataset to 

separate the heartbeat sounds into normal heartbeats 

and murmurs

b. Classification Task 2: Applied on the Murmurs obtained 

from classification task 1 to obtain systolic and 

diastolic murmurs

c. Classification Task 3: Applied on the Systolic Murmurs 

obtained from classification task 2 to divide them into 

Pansystolic Murmurs (PSM) and Ejection Systolic 

Murmurs (ESM)

Various neural network models were applied on the dataset to 

obtain the best possible results: 

1. CNN-LSTM:

The CNN-LSTM architecture was chosen due to its ability to 

effectively combine both spatial and temporal feature extraction, 

FIGURE 2 

Preliminary steps for data preprocessing on the original dataset of 480 audio files selected. Created using Canva, licensed under Free Content License.
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which is particularly important for the classification of heartbeat 

audio signals. CNNs can reduce noise by focusing on important 

features through convolutional filters, which makes the 

subsequent LSTM layers more effective in learning the temporal 

dependencies of the cleaned signal (39). Details of the models 

are as follows: 

a. Input Layer: Processed numerical data representing the 

heartbeat audio signals.

b. Intermediate CNN and LSTM Layers, shown in Table 1.

c. Output Layer: SoftMax activation function to classify the audio 

signals into categories (e.g., normal heartbeat, murmur).

Furthermore, regularization methods were implemented in 

CNN-LSTM architecture to mitigate overfitting risks. A dropout 

of 20% was used in the LSTM layer, and the model was kept 

simple with a total of 5 layers. 

2. BiLSTM: BiLSTMs have been successfully applied to various 

medical signal classification tasks, including ECG and 

phonocardiography (PCG) signals. Their effectiveness in 

capturing the temporal dynamics and dependencies in such 

data makes them a reliable choice for heartbeat classification 

(40). The details of the model are as follows: 

a. Input Layer: Processed numerical data representing the 

heartbeat audio signals.

b. Intermediate BiLSTM and Dense Layers, shown 

in Table 1.

c. Output Layer of Size 2 Units: SoftMax activation to 

classify the audio signals into categories (e.g., systolic 

murmur, diastolic murmur).

3. CNN: Heartbeat signals can exhibit significant variability in 

both time and frequency domains. CNNs, with their ability 

to apply convolutional filters across the input signal, can 

robustly handle such variations and capture essential 

characteristics of the heartbeat patterns (41). The details of 

the model are as follows: 

a. Input Layer: Processed numerical data representing the 

heartbeat audio signals.

b. Intermediate CNN Layers, shown in Table 1.

c. Output Layer: SoftMax activation function to provide 

classification probabilities. (e.g., Normal Heartbeat, 

Murmur)

4. BiGRU: Heartbeat signals are sequential in nature, and it is 

crucial to capture the temporal dependencies within the 

data. BiGRUs can process the input in both forward and 

backward directions, capturing dependencies from both past 

and future contexts, which is particularly beneficial for 

heartbeat classification (42). The details of the models are as 

follows: 

a. Input Layer: Processed numerical data representing the 

heartbeat audio signals.

b. Intermediate BiLSTM and Dense Layers, shown in 

Table 1.

c. Output Layer of Size 2 Units: SoftMax activation to 

classify the audio signals into categories (e.g., systolic 

murmur, diastolic murmur).

The results obtained from the models for each of the classification 

are articulated in the Results section. As the CNN-LSTM model 

gave the best accuracy scores, it was employed in the MySteth 

Architecture. This was followed by a SHAP (SHapley Additive 

exPlanations) on 10 test cases.

2.2 Mysteth architecture

The MySteth Architecture was designed to handle the refined 

datasets and perform the classifications at each step. The following 

steps, shown in Figure 3, are part of the processing pipeline: 

1. Recording: A person records their heartbeat using a 

smartphone in a silent environment, capturing a 3-second 

audio clip.

2. Down sampling and Compression: Linear Predictive Coding 

(LPC) facilitates a two-step procedure of down sampling and 

compression of the recorded audio before training the 

models. By lowering the audio’s sampling rate, down 

sampling effectively minimizes the amount of data and 

computing load while preserving crucial information. The 

spectral envelope of the digital voice signals is then 

compressed using LPC compression. By preserving 

important components of the heart sounds, this approach 

improves the efficacy of feature extraction (43). LPC 

minimizes the amount of data while preserving important 

information, which makes processing and analyzing the 

cardiac sounds simpler and quicker. In order to ensure that 

deep learning models can effectively capture and learn from 

the key elements of the heart sounds throughout the training 

phase, this preliminary step optimizes the data for the 

models (44). The integration of LPC for down sampling and 

TABLE 1 Model architectures employed for training and testing on the audio vector and feature dataset.

S. No. Model Architecture

1 CNN- 

LSTM

Layer 1: CNN Layer with 9 filters, ReLU activation Layer 2: CNN Layer with 64 filters, ReLU activation Layer 3: CNN Layer with 32 filters, ReLU 

activation Layer 4: LSTM Layer with 8 neurons, tanh activation (default) Layer 5: LSTM Layer with 4 neurons, tanh activation (default)

2 BiLSTM Layer 1: BiLSTM Layer with 128 neurons, tanh activation (default) Layer 2: BiLSTM Layer with 64 neurons, tanh activation (default) Layer 3: Dense 

Layer with 64 neurons, ReLU activation Layer 4: Dense Layer with 32 neurons, ReLU activation

3 CNN Layer 1: CNN Layer with 9 filters, ReLU activation Layer 2: CNN Layer with 64 filters, ReLU activation Layer 3: CNN Layer with 32 filters, ReLU 

activation

4 BiGRU Layer 1: BiGRU Layer with 128 neurons, tanh activation (default) Layer 2: BiGRU Layer with 64 neurons, tanh activation (default) Layer 3: Dense 

Layer with 64 neurons, ReLU activation Layer 4: Dense Layer with 32 neurons, ReLU activation
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compression in the preprocessing pipeline optimizes the data 

for deep learning models (45).

3. Heartbeat Signal Verification: The extracted features are 

compared to a reference model of a normal “lub-dub” 

heartbeat. The patient is asked to re-record the heartbeat if 

the signal does not match the classic “lub-dub” pattern.

4. Model Training: The audio vector and the extracted features 

passes through a pre-trained CNN-LSTM model that has 

shown the best results (as tabulated in Tables 1–3). This 

model had been trained previously on huge amounts of data 

(as explained in Part A). CNN and LSTM were applied 

serially due to the complementary nature of their roles in 

feature extraction and sequence modelling. The CNNs can 

preprocess and distil the essential features, which the LSTMs 

can then analyze in a temporal context (46). 

a. Static feature extraction is done by Convolutional 

Neural Networks (CNN).

b. Temporal characteristics are extracted using Long 

Short-Term Memory (LSTM).

c. Three convolution layers with kernel sizes of 9, 64, and 

32 are applied, followed by batch normalization after 

each convolution layer. The details of the layers are 

given in Part A.

d. For LSTM-based models, two layers of sizes 8 and 4 are 

added, followed by a dense layer. The details of the 

layers are given in Part A.

5. Classification Task 1: Two categories are created from the 

processed audio: murmur and normal heartbeat.

6. Classification Task 2: Murmurs are further divided into 

diastolic and systolic forms.

7. Classification Task 3: Systolic Murmurs are classified 

into Pansystolic Murmur (PSM) and Ejection Systolic 

Murmur (ESM).

3 Results

This section presents the results obtained from classifying 

heartbeat sounds using different models (as explained in Part 

A of the Methods section) into the following categories: Normal 

heartbeat, Murmurs, Systolic Murmur, Diastolic Murmur, PSM 

(Pansystolic Murmur), and ESM (Ejection Systolic Murmur). 

1. Classification results for Normal Heartbeat, and Murmur: 

The classification accuracy for Normal Heartbeat and 

Murmurs was evaluated using different models on the 

compressed audio representations obtained through Linear 

Predictive Coding (LPC). An overview of the outcomes, 

shown in Table 2, the Receiver Operating Characteristic 

Curve for the classification using the CNN-LSTM Hybrid 

Model, shown in Figure 4 justify the selection of a CNN- 

LSTM model.

The classification of heartbeat sounds is an essential task in the 

medical field, as it helps healthcare professionals diagnose various 

cardiovascular conditions. Although numerous research activities 

have been carried out to enhance the precision of heartbeat 

sound categorization, the majority of them have concentrated on 

FIGURE 3 

Mysteth architecture combining CNNs and LSTMs to classify heartbeats into its granular levels. Created using Canva, licensed under Free Content License.
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refining data pre-processing methods or employing a single 

primary method such as neural networks, support vector 

machines, or hidden Markov models (47).

The impact of each feature on the model, shown in Figure 5, to 

classify the heartbeat sounds into normal heartbeats or murmurs 

depicts that the MFCCs, specifically mfcc6, mfcc11, mfcc3 and 

mfcc8 have a considerable amount of weightage while making 

the predictions. It can also be concluded that the values of these 

features directly affect their SHAP values. For example, a high 

mfcc6 gives a highly positive SHAP value when predicting 

normal heartbeats, and a highly negative SHAP value when 

predicting murmurs. A similar trend is observed for almost all 

features. It is also noted that the features like chroma STFT, 

spectral bandwidth, RMSE and zero crossing rate have least 

impact on the model outputs. 

2. Classification results for systolic murmur, and diastolic 

murmur: The classification accuracy for distinguishing 

between Systolic and Diastolic Murmurs was assessed using 

various models on the compressed representations of the 

murmur audio. The results, shown in Table 3, Receiver 

Operating Characteristic Curve for the classification using 

the CNN-LSTM Hybrid Model, shown in Figure 6 depict the 

efficiency of each model.

A hybrid classifier can significantly enhance classification 

accuracy. When combined in a hybrid CNN-LSTM model, these 

models can effectively extract deep features and contextual time 

data from Phonocardiogram (PCG) signals. The CNN 

component handles feature extraction, while the LSTM module 

extracts time-dependent features (48).

The impact of each feature on the model to classify the 

murmurs into systolic or diastolic murmurs, shown in Figure 7

depicts that the audio features like Rolloff, spectral centroid and 

spectral bandwidth have a considerable amount of weightage 

while making the predictions, which is contrary to the 

observation in the previous classification step. Among the 

MFCCs, mfcc2 seems to affect the model output the most. The 

values of these features directly affect their SHAP values. It is 

also noted that the features like chroma STFT, RMSE and zero 

crossing rate have least impact on the model outputs, just as in 

the previous classification step. 

3. Classification results for PSM, and ESM: The accuracy for 

further classifying systolic murmurs into PSM and ESM was 

evaluated using various models on the compressed feature 

representations obtained from LPC feature extraction 

method. The outcomes, shown in Table 4, the Receiver 

Operating Characteristic Curve for the classification using 

the CNN-LSTM Hybrid Model, shown in Figure 8 justify the 

utility of the CNN-LSTM model.

This hybrid approach has been shown to outperform single 

CNN or LSTM-based methods, producing richer and more 

concentrated models with higher performance and fewer 

parameters. These findings demonstrate how well different 

recurrent neural networks function in conjunction with 

convolutional neural networks to tackle challenging audio 

categorization problems. The utilization of LPC for feature 

extraction significantly contributes to the models’ performance, 

especially in distinguishing subtle differences in heart sounds (49).

The impact of each feature on the model to classify the systolic 

murmurs into ESM or PSM, shown in Figure 9, depicts that the 

audio features like Rolloff, spectral centroid and spectral 

bandwidth have a considerable amount of weightage while 

making the predictions, which is similar to the observation in 

the previous classification step. Among the MFCCs, mfcc3 

seems to affect the model output the most. At this classification 

step, the values of these features do not affect their SHAP 

values, which is contrary to the previous two classification steps. 

It is also noted that the features like chroma STFT, RMSE and 

zero crossing rate have least impact on the model outputs, just 

as in the previous classification steps.

The statistical analysis, shown in Table 5, depicts the probable 

accuracy, precision and recall values obtained in a 95% confidence 

interval. These values are similar to the values obtained on the 

testing dataset, thus strengthening our results. Furthermore, 

statistical significance testing has been done against a random 

classifier. The null hypothesis states that the random classifier 

would be just as good as the model presented in the paper. The 

accuracy statistic is not very close, but the p-values are negligible 

TABLE 2 Evaluation metrics for different models for classifying heart sounds into normal, and murmur.

Model Accuracy Precision Recall F1 Score ROC-AUC

BiLSTM 68% 0.68 1.00 0.81 0.50

CNN 72% 1.00 0.05 0.10 0.53

BiGRU 88% 0.98 0.17 0.30 0.59

CNN and LSTM 92% 0.73 0.93 0.82 0.93

TABLE 3 Evaluation metrics for different models for classifying murmurs into systolic murmur and diastolic murmur.

Model Accuracy Precision Recall F1 Score ROC-AUC

CNN 68% 0.50 0.55 0.52 0.48

BiLSTM 72% 0.88 0.05 0.10 0.52

BiGRU 84% 0.65 0.95 0.77 0.70

CNN and LSTM 91% 0.80 0.70 0.75 0.83
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FIGURE 4 

ROC curve for classification of heart sounds into normal and murmur using the CNN-LSTM model.

FIGURE 5 

SHAP explanations for classifying heartbeat sounds into (a) normal heartbeat and (b) murmur.
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FIGURE 6 

ROC curve for classification of murmurs into systolic murmurs and diastolic murmurs using the CNN-LSTM hybrid model.

FIGURE 7 

SHAP explanations for classifying murmurs into (a) systolic murmur and (b) diastolic murmur.
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for all classification tasks, signifying that our model performs 

much better than a random classifier baseline, hence disproving 

the null hypothesis. The confusion matrices for each 

classification task, shown in Figure 10, are representative of the 

metrics obtained. These have been reported for the testing 

dataset (whose size was around 3,000 for the initial, 1,080 for 

the intermediate, and 1,500 for the final classification tasks). 

A very important observation is that the number of heartbeats 

that are actually murmurs but classified as normal are very low 

[76 out of 3,000, as can be seen in Figure 10(a)]. This reiterated 

the fact that MySteth presents a reliable algorithm to be used 

for home-based heart health monitoring.

In conclusion, it has been established that the CNN-LSTM 

model out-performs the rest of the models when it is desired to 

classify heartbeats into higher granularity levels, while also 

giving insights into an interpretable decision-making process in 

order the predict the outcome at each classification step. While 

lightweight models such as shallow CNNs or simple feedforward 

networks may offer faster inference times, they lack the capacity 

to capture complex temporal patterns. Hence, the proposed 

CNN-LSTM model seems to be a good-fit in order to perform 

accurate classification while gaining the trust of medical 

professionals. This makes it a useful aspect of a home 

monitoring device, while decreasing the load on doctors.

4 Discussion

The introduction of MySteth as an innovative at-home heart 

diagnostic tool represents an advancement in the field of cardiac 

care, addressing critical gaps in the accessibility and convenience 

of preliminary heart investigations. This discussion focuses on 

the unique aspects and justifications for our approach, 

emphasizing the integration of CNN-LSTM architectures with 

Linear Predictive Coding (LPC) preprocessing, and the impact 

of these choices on the efficacy and practicality of MySteth.

The primary motivation for employing a hybrid CNN-LSTM 

model stems from the complementary strengths of 

TABLE 4 Evaluation metrics for different models for classifying systolic murmurs further into PSM, ESM.

Model Accuracy Precision Recall F1 Score ROC-AUC

BiLSTM 51% 0.31 0.25 0.28 0.30

BiGRU 62% 0.43 0.42 0.41 0.36

CNN and LSTM 71% 0.60 0.54 0.56 0.54

CNN 90% 0.68 0.74 0.71 0.70

FIGURE 8 

ROC curve for classification of diastolic murmurs into ESM and PSM using the CNN-LSTM hybrid model.
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Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory networks (LSTMs) in handling the complexities of 

heartbeat sound classification (50). CNNs are adept at extracting 

spatial features from the input data, capturing local patterns and 

significant characteristics of the heart sounds. This capability is 

crucial for identifying the nuanced features present in heartbeat 

signals, such as murmurs and other anomalies. LSTMs, on the 

other hand, excel at modelling temporal dependencies and 

sequential patterns within the data. By integrating LSTMs with 

CNNs, we ensure that the model not only recognizes spatial 

features but also understands how these features evolve over 

time (51). This combination is particularly effective for 

analyzing heartbeat sounds, which inherently possess both 

spatial and temporal dimensions.

Linear Predictive Coding (LPC) plays a pivotal role in our 

approach by facilitating data compression and enhancing feature 

extraction. LPC reduces the complexity of the raw audio data 

while preserving essential information, making the subsequent 

processing by CNN and LSTM layers more efficient. This 

preprocessing step is crucial for improving the model’s ability to 

detect subtle patterns and anomalies in the cardiac sounds, 

thereby enhancing classification accuracy (52). By incorporating 

LPC, we address the challenge of high data volume and 

computational load, enabling the use of advanced deep learning 

models even in resource-constrained environments. This 

efficiency is particularly beneficial for at-home diagnostic tools 

like MySteth, where minimal hardware requirements and quick 

processing are critical for user adoption and practicality (53).

Compared to conventional methods of heartbeat classification, 

which often rely on manual feature extraction and traditional 

machine learning algorithms, our CNN-LSTM approach offers 

several distinct advantages. Traditional methods can be limited 

by their dependency on handcrafted features and their inability 

to fully capture the complexity of the heartbeat signals. In 

contrast, deep learning models, particularly the CNN-LSTM 

combination, automatically learn relevant features from the data, 

leading to more accurate and robust classifications (54). 

Moreover, the ability to handle large and complex datasets 

without significant manual intervention makes our approach 

more scalable and adaptable to different healthcare settings. 

High accuracy rates have been achieved by our models, 

including the exceptional performance of the CNN-LSTM 

model with a 92% accuracy for classifying the heartbeats into 

normal and murmurs, and 91% for classifying the murmurs 

into systolic and diastolic murmurs. This underscores the 

effectiveness of our method in differentiating between normal 

FIGURE 9 

SHAP explanations for classifying diastolic murmurs into (a) ESM and (b) PSM.

TABLE 5 Confidence intervals for evaluation metrics, and statistical 
significance testing for the model.

Classification 
task

Normal and 
Murmur

Systolic and 
diastolic

ESM and 
PSM

CI for accuracy [0.910, 0.929] [0.892, 0.926] [0.884, 0.914]

CI for precision [0.706, 0.753] [0.739, 0.851] [0.654, 0.712]

CI for recall [0.913, 0.943] [0.635, 0.756] [0.710, 0.768]

Accuracy statistic 0.851 0.904 0.635

p-value 0.0 1.495 × 10−178 3.431 × 10−26
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and pathological heart sounds as well as finer distinctions such as 

various types of murmurs.

Unlike the recently developed hardware-centric designs 

(30–32), MySteth presents an end-to-end signal-processing using 

a deep learning model for heart sounds to perform 

segmentation and classification. This enables deployment on 

commodity devices and potentially broadening access where 

specialized sensors like PVDF triboelectric (30, 32) or NIV 

turbines (31) are impractical. Patient-cohort validations like B-/ 

C-point slopes vs. stenosis (30, 32), and device-level 

performance envelopes (31) demonstrate physiologically 

interpretable trends. MySteth currently depends on SHAP 

explanations to justify the results of its analysis. Triboelectric 

ICG features (30, 32) have direct hemodynamic interpretations. 

However, MySteth uses algorithmic acoustic features, with less 

explicit references to mechanistic markers, such as the timing or 

the severity correlation, which may be a matter of concern for 

improving clinician trust to take triage decisions. These systems 

push the frontier in hemodialysis vascular monitoring (30, 32) 

and home respiratory therapy (31). MySteth advances acoustic 

cardiac screening on accessible hardware, that is a simple 

smartphone, thus filling a different but clinically adjacent niche 

that emphasizes software-driven auscultation and potential 

population-scale reach.

This work represents a pilot study aimed at evaluating the 

feasibility and effectiveness of deep learning–based heartbeat 

classification, and the results so far have been encouraging. The 

CNN-LSTM model demonstrated high accuracy in classifying 

normal and pathological heart sounds under controlled 

conditions, indicating strong potential for clinical relevance. 

While clinical validation has not yet been initiated, it is a key 

focus of our future work. While the manuscript does not 

explicitly analyze the impact of domestic ambient noise on system 

performance, it is important to note that domestic sounds—such 

as speech, appliances, or external traffic, have acoustic 

characteristics that are significantly different from those of heart 

sounds. These can be integrated as a preprocessing layer into the 

overall classification pipeline to improve robustness in real-world 

environments. Prior studies have demonstrated that heart sounds 

possess distinct acoustic characteristics, such as temporal 

regularity and specific frequency ranges, that differentiate them 

from other bodily sounds, making them suitable candidates for 

signal separation and denoising. Springer et al. (55) emphasized 

the effectiveness of frequency and envelope-based methods for 

isolating heart sounds from noise.

The current evaluation has been performed entirely on 

controlled and expert-annotated data. While this setup ensures 

high-quality ground truth for model development and 

benchmarking, it does not fully capture the variability, and 

recording artifacts present in real-world environments. 

Translation to home and clinical utility requires systematic 

prospective validation and robust noise-adaptation strategies. 

A prospective validation study can be conducted on diverse 

patient populations across different age groups, cardiac 

conditions, and recording environments. This study could 

include recordings from multiple devices (smartphones, digital 

stethoscopes) to assess hardware variability. Further, annotation 

of new data can be done correctly by multiple expert 

cardiologists to ensure reliable ground truth. Stratified sampling 

can also be done to capture a balanced representation of normal 

heart sounds and pathological murmurs, including rare subtypes.

The minimal hardware requirements and straightforward 

implementation of MySteth mean it can be readily adopted in 

various healthcare environments, including remote or under- 

resourced areas. This accessibility addresses a critical need in 

global healthcare, providing reliable and early detection tools for 

heart disease, which remains a leading cause of mortality 

worldwide (56). This paper distinguishes itself from previous 

research by introducing MySteth, a novel home-based heart 

monitoring tool that utilizes deep learning techniques to classify 

heart sounds with enhanced accuracy and detail. Unlike earlier 

studies that primarily concentrated on phonocardiography or 

ECG data—methods not easily accessible for home use— 

MySteth employs commonly available devices like smartphones 

and digital stethoscopes. It extends beyond basic heart sound 

classification by differentiating between normal heartbeats, 

murmurs, and specific subtypes such as Ejection Systolic 

Murmurs (ESM) and Pansystolic Murmurs (PSM). This level of 

granularity, particularly in home settings, has not been achieved 

by previous studies. The use of deep learning models for more 

FIGURE 10 

Confusion matrices obtained for the (a) initial, (b) intermediate, and (c) final classification tasks.
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precise and real-time analysis, combined with its accessibility and 

cost-effectiveness, marks this paper as a significant advancement 

in cardiac diagnostics over prior research.

This study focuses primarily on the development and 

evaluation of a pre-trained deep learning model for heartbeat 

classification, which can be used directly for real-time heartbeat 

classification. As the model is designed to be used as a pre- 

trained solution, the end user is not required to perform on- 

device training or intensive computation locally, hence 

nullifying the requirement of strong hardware for the same. 

Therefore, issues related to power consumption, battery life, and 

energy optimization strategies were not within the scope of this 

work, and need not be a cause of concern for the end-user. 

Finally, it is also noteworthy that the model predictions provide 

a good amount of interpretability using the SHAP values and 

help medical professionals gauge a better insight into the 

decision-making process, thus functioning as a helpful home 

heart-screening device for patients as well as a useful 

understanding of the prediction to the medical practitioners.

5 Future work

While our work presents significant advancements, there are 

limitations and areas for improvement. As already stated, not 

much study has been done in the area of categorizing mobile 

phone heartbeat sounds (57). To improve research in this area, a 

larger and more realistic dataset must be created (58). The 

models are trained and validated on specific datasets which may 

not encompass the full variability seen in global populations. 

Future work should focus on incorporating more diverse datasets 

to enhance generalizability. In this work, the audio was encoded 

using linear predictive coding. To compress audio, more 

encoding methods can be employed, such as auto-encoders. 

While our method is efficient, optimizing it further for real-time 

processing and deployment on portable devices could enhance its 

practical application. Future research should explore seamless 

integration with existing clinical work$ows, ensuring that the 

technology is user-friendly for healthcare professionals. To 

confirm the models’ long-term dependability and efficacy in 

practical situations, longitudinal research and comprehensive 

clinical trials are required (59).

The current study utilized uncleaned data recorded from 

smartphones, which included a significant amount of noise due 

to breathing artifacts. These artifacts can adversely affect the 

accuracy of classification. Future research could focus on 

removing these artifacts to enhance the signal-to-noise ratio, 

thereby improving the accuracy of murmur classification. Despite 

the presence of breathing artifacts in the current uncleaned data, 

the preliminary classification accuracies achieved were promising 

for screening purposes. This suggests that even without artifact 

removal, the current results may still offer valuable diagnostic 

information in a clinical setting. Further investigation is required 

to explore the potential of this technology as a tool for non- 

invasive heart screening, particularly in resource-limited settings 

where access to traditional cardiac diagnostics is limited.

Although domestic and breathing noise are recognized as 

important factors in real-world deployment, the present study did 

not include quantitative noise robustness experiments. The 

preprocessing pipeline can be adapted to better handle real-world 

acoustic conditions by incorporating adaptive band-pass filters, 

wavelet-based denoising, or spectral subtraction techniques to 

remove ambient and breathing artifacts without compromising 

clinically relevant heart sounds. Training can be made more robust 

by training with synthetically augmented datasets that include 

controlled levels of domestic noise (speech, TV, traffic, appliance 

hums, etc.), enabling the model to generalize better to variable 

acoustic environments. The utility can be improved by adding a 

pre-classification module that evaluates signal-to-noise ratio (SNR) 

and prompts re-recording if background noise is too high.

The deep learning model presented is relatively simple and 

could be enhanced by incorporating more complex features and 

deeper neural network architectures. By leveraging recent 

advances in deep learning, such as attention mechanisms and 

unsupervised feature learning, the classification accuracy could 

be further improved.

This work represents a preliminary investigation aimed at 

evaluating the feasibility and effectiveness of deep learning– 

based heartbeat classification, and the results so far have been 

encouraging. The CNN-LSTM model demonstrated high 

accuracy in classifying normal and pathological heart sounds 

under controlled conditions, indicating strong potential for 

clinical relevance. The next step involves testing the system in 

real-world settings, including diverse patient populations and 

varied acoustic environments, such as outpatient clinics and 

home-based monitoring.

The current study primarily utilizes synthetic data generated 

through a Gaussian Mixture Model (GMM)-based augmentation 

approach, which was designed to preserve subject-level diversity 

while amplifying underrepresented classes, particularly systolic 

murmurs. This method ensures that the augmented dataset 

maintains the statistical properties and variability of the original 

recordings, thereby supporting robust model training. To address 

generalizability beyond the training data, future work will focus 

on collecting and evaluating data from real-world use of the 

MySteth prototype in diverse clinical and home environments.

In conclusion, this preliminary work lays the groundwork for 

future efforts to enhance heartbeat classification accuracy using 

smartphone recordings. Proposed future directions include 

removing noise artifacts from the data, employing more 

sophisticated deep learning models, expanding the classification 

scope, and collecting larger datasets. Ultimately, these 

advancements will refine murmur detection and improve the 

quality of cardiac diagnostics provided by smartphone recordings.

6 Conclusions

MySteth is a tool that our study introduces. Using deep 

learning algorithms and just the sound of a heartbeat recorded 

using a phone or digital stethoscope, the authors investigated 

the screening of a broad class of heart disorders. Heartbeats can 
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be categorized by MySteth into three categories: normal, systolic, 

and diastolic murmurs. Systolic murmurs can also be further 

classified into two categories: Ejection Systolic Murmur (ESM) 

and Pansystolic Murmur (PSM).

In order to keep the condition from getting worse to the point 

where it becomes fatal or irreversible, this effort can be very 

helpful in identifying the onset of a wide class of cardiovascular 

heart diseases (60). MySteth, a tool in the field of heart sound 

classification, can significantly contribute to preventive 

healthcare and lower the total burden of cardiovascular illnesses 

by enabling at-home early screening and precise diagnosis of 

heart murmurs and other irregularities. Because of its 

architecture, the instrument can be deployed in a variety of 

contexts, such as remote and rural locations, allowing 

disadvantaged groups to benefit from modern diagnostics. The 

scalable and adaptable nature of MySteth ensures it can be 

integrated into different healthcare environments, from large 

urban hospitals to small rural clinics and even home-based care. 

By addressing both the technological and practical challenges in 

this domain, MySteth stands out as a viable solution with 

significant potential for improving global health outcomes.
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