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!Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India,
?Department of Computer Science and Engineering, Netaji Subhas University of Technology, New
Delhi, India, *Faculty of Logistics, Molde University College, Molde, Norway

Introduction: The MySteth is an intelligent medical tool designed for cardiac
disease screening, utilizing either a stethoscope or smartphone to record
heart sounds. Normal heart sounds in healthy individuals consist of “lub” and
“"dub” noises, while murmurs—additional sounds during heartbeats—can
indicate cardiac anomalies such as valve dysfunctions and rapid blood flow,
categorized as systolic or diastolic.

Method: MySteth was developed and tested using heart sounds recorded via
smartphone and digital stethoscope. For ensuring the clinical validity of the data,
all heart sound samples were meticulously annotated by human experts—super-
specialized cardiologists with extensive experience in cardiac diagnostics. To
achieve high classification accuracy, MySteth employs a hybrid CNN-LSTM
model combined with Linear Predictive Coding (LPC) for preprocessing. The
study involves classifying recorded heart sounds into normal heartbeats and
murmurs, with murmurs further divided into systolic and diastolic categories.
Results: The tool demonstrated an accuracy of 92% in distinguishing normal
heartbeats from murmurs, 91% in classifying murmurs into systolic and
diastolic types, and 90% in further categorizing systolic murmurs into Ejection
Systolic Murmurs (ESM) and Pansystolic Murmurs (PSM). MySteth is accessible
and affordable, requiring minimal equipment, as most individuals already own
a smartphone, and digital stethoscopes are commonly available. This ease of
use facilitates both professional and home-based heart monitoring, especially
beneficial in remote areas with limited healthcare access.

Discussion: MySteth is an at-home heart diagnostic tool that leverages deep
learning to classify heart sounds into normal, ESM, PSM, and diastolic
murmurs. Its user-friendly design and minimal hardware requirements ensure
broad adoption across various healthcare settings, facilitating timely and
accurate preliminary heart investigations. This capability is crucial in combating
the global burden of cardiovascular diseases. MySteth's scalability and ease of
deployment underscore its potential in early cardiovascular disease diagnosis,
particularly in underserved regions, thereby promoting preventive healthcare.

KEYWORDS
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1 Introduction

The two typical heart sounds in healthy people are a lub and a dub, which happen
one after the other with each beating. It’'s common to refer to the lub as the first heart
sound (S1) and a dub as the second heart sound (S2). Additional noises are heard in
regular heart sounds (HS), which can be used in pathology diagnosis in circumstances
when the heart is aberrant, such as valve dysfunctions and fast blood flow (1). These
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extra noises, sometimes referred to as murmurs, exhibit distinct
traits in relation to heart valve problems, which are circulatory
heart illnesses (2). The most common way to categorize cardiac
murmurs is by timing; they can be classified as either systolic
(3) or diastolic (4), depending on which portion of the heartbeat
they occur during.

Murmurs of the heart that are audible during systole are known
as systolic murmurs. The most common systolic murmur (5):

(ESM):
spindle-shaped. The intensity first increases and then

1. Ejection-systolic murmurs Diamond-shaped or
decreases during S1.
(PSM):

intensity remains constant during S1.

2. Pansystolic murmurs Rectangular shaped. The

The murmur heard in the heart during diastole is called diastolic
heart murmur. Diastolic murmurs end at or before S1 and begin at
or after S2 (6).

Heart murmurs are a problem that affects a large percentage of
people worldwide. These murmurs might be an indicator of
underlying cardiovascular disorders including valve dysfunctions.
About 2.5% of Americans have heart valve disease, with the
prevalence rising with age, according to the American Heart
Association (7). One of the primary reasons heart murmurs are
not timely diagnosed is the lack of access to regular and
comprehensive cardiac evaluations, particularly in underserved and
rural areas (8). Additionally, the subtle nature of some murmurs
can make them difficult to detect without specialized equipment
and expertise. The introduction of a home-based preliminary
diagnostic tool for heart murmurs could be highly beneficial. Such
a tool would enable individuals to monitor their heart sounds
regularly,
prompting timely medical consultations. This proactive approach

facilitating early detection of abnormalities and
could significantly reduce the burden of undiagnosed heart
conditions, improve patient outcomes, and decrease healthcare
costs associated with advanced cardiovascular diseases (9).

With 17.9 million deaths from cardiovascular diseases (CVDs)
per year, or 31% of all fatalities globally, CVD is a major public
health concern (10). Early detection is key since cardiac disorders
can worsen over time and necessitate more involved forms of
care. For instance, coronary heart disease, one of the most
common cardiac conditions in the United States, can worsen over
time and eventually necessitate coronary artery bypass grafting
(CABG) (11). Preventative detection of heart diseases is essential,
and medical professionals often start by checking the patient’s
heartbeat and abnormalities. Further tests, such as blood pressure
and fasting protein profile tests, are then performed for further
analysis (12). Currently, there is no easy method for heart
screening at home without specialized medical personnel. Heart
health monitoring and the availability of at-home testing options
is crucial for promoting heart health awareness. At-home
diagnostics can significantly contribute to heart health promotion
and better outcomes for those at risk of cardiovascular problems
by enabling individuals to adopt proactive measures towards
lowering their risk of heart disease (13).

Numerous studies have employed machine learning and deep
learning techniques to categorize heartbeat sounds; most of these
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studies have focused on data from phonocardiography (PCG), a
(14-19).
However, this technology is not accessible to the average

specialized device used for medical diagnostics
consumer and cannot be performed at home.
Advancements in technology have led to smartphone
applications like SensiCardiac (20), Mobile Stethoscope (21), and
iStethoscope Pro (22), which allow heart to be

recorded. studies used

sounds

conveniently Some have also
Electrocardiogram (ECG) signals, which are obtained from
specialized instruments in medical facilities. Some studies have
also used audio from electronic stethoscopes and mobile phones
(23). Only a few categories have been used to categorize
artifact,

normal heartbeat, moderate, severe, or normal, aberrant. There

murmurs: extra-heart sound, extrasystole, murmur,
has never been an attempt to further categorize murmurs into
systolic, diastolic, and systolic murmurs as well as ESM and PSM.
Because there aren’t enough datasets available, the majority of
these studies have limitations (24). The models are trained and
validated on specific datasets which may not encompass the full
variability seen in global populations. Without prior patient
information, other classifications of murmurs—such as mitral
valve prolapse, mitral regurgitation, and aortic stenosis—cannot
be made. These classifications require further tests such as ECG,
ultrasound, and cardiac CT (25). The key to reducing healthcare
costs from CVD and increasing patient outcomes lies in early
detection, prevention, and access to quality health services (26).
Unfortunately, emergency rooms and hospitals are overcrowded,
while affordable healthcare clinics are scarce. This created the
need for the development of in-home health monitoring and
CVD management programs (27). Early detection and prevention
are crucial because CVD accounts for 17.9 million deaths yearly
(28). Medical technology has advanced, but there are still no
easily available, user-friendly techniques for doing at-home
cardiac screenings (29). This study looks at how Mysteth uses
digital stethoscope technology and deep learning methods to offer
a quick and easy way to do initial cardiac investigations. The goal
is to raise awareness of heart health issues and improve the lives
of people who are at risk of CVDs.

This work presents MySteth as an innovative at-home heart
diagnostic tool designed to bridge the gap in care by providing
a convenient and accessible solution for preliminary heart
investigations. While other heart testing options exist, MySteth
offers distinct advantages. It is the first screening method of its
kind to use deep learning techniques and recorded heartbeat
sounds to detect a wide range of heart diseases using a
smartphone or digital stethoscope. By employing deep learning,
MySteth can classify heart murmurs with greater granularity,
distinguishing between various types such as systolic, diastolic,
Ejection Systolic Murmurs (ESM), and Pansystolic Murmurs
(PSM), which have not been extensively categorized in previous
studies. This technique effectively detects prevalent valvular
heart conditions, including arrhythmia, mitral regurgitation, and
coronary heart disease, at home. By leveraging widely available
smartphones and digital stethoscopes, MySteth enhances cardiac
diagnostics with precise, real-time analysis that is both accessible
and cost-effective, marking a significant advancement in the field.
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Recent innovations in wearable diagnostics, such as
fistula (AVF)
monitoring in hemodialysis patients, highlight the growing

triboelectric  sensors for arteriovenous
feasibility of compact, non-invasive devices for continuous
cardiovascular assessment (30). These systems, which utilize
cardiography (T-ICG) to detect

vascular abnormalities like stenosis through changes in

triboelectric impedance
signal morphology at key cardiac cycle points, underscore

the clinical relevance of acoustic and impedance-based
monitoring techniques. Inspired by such developments, our
work aims to explore whether similar diagnostic precision can
be achieved using more ubiquitous technology, namely,
smartphones paired with digital

stethoscopes and deep

learning models. By enabling at-home screening of
cardiac conditions through familiar devices, our approach
complements and extends the paradigm of accessible, portable
monitoring tools, especially in contexts where specialized
equipment and expertise are limited.

The work by Galli et al. (31), which presents a portable,
non-invasive ventilation (NIV) system for home and clinical
Their

integrates airflow generation with pressure monitoring and

use, offers a valuable reference model. device
remote smartphone-based data transmission, underscoring
the importance of user-centered design and technological
robustness in remote healthcare devices. For instance, recent
advancements in wearable systems for arteriovenous (AV)
fistula monitoring in dialysis patients have demonstrated the
clinical feasibility and diagnostic value of portable acoustic
sensing platforms (32). These systems use similar principles,
detect

abnormalities such as stenosis, showcasing the real-world

capturing and analysing vascular sounds, to

applicability of non-invasive auscultatory tools. Building
upon such approaches, the MySteth system investigates
whether commonly available devices like smartphones, when
paired with digital stethoscopes and advanced deep learning
models, can replicate and eventually democratize similar
diagnostic capabilities.

2 Methods

In our work heartbeat is divided into two categories:
We next divide the
murmurs into systolic and diastolic murmurs. We further

murmurs, and normal heart sounds.
classify systolic murmurs into PSM and ESM. We don’t need
further categorization of diastolic murmurs, as most of the
murmurs in this category are pathologic in nature and hence
severe (33). The categorization shown in Figure 1 is the one
identified by most of the doctors when they first examine a
patient using a stethoscope. It is good enough to manifest
evidence for a variety of heart disease. This procedure involves
three classification steps to progressively refine the detection and
categorization of heart sounds.

The complete procedure used to perform the classification in
Mysteth is explained into two main parts: Data Preprocessing and
the MySteth Architecture.
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FIGURE 1

Classification of heart sounds into normal and murmurs, murmurs
into systolic and diastolic murmurs, and further classifications to
ESM and PSM.

2.1 Data collection, labelling,
preprocessing, refining, and data synthesis

This part includes the steps shown in Figure 2, as explained
below, which are applied on the original dataset to build a
suitable Neural Network Model.

1. Data Collection: The authors used a publicly available Kaggle
dataset (https://www.kaggle.com/kinguistics/heartbeat-sounds)
to identify murmurs in heartbeat sound audios. The dataset
contains 832 distinct heartbeats, of which 480 audios were
selected for the use case. This dataset was gathered from the
general public via the stethoscope Pro iPhone app and a

digital

DigiScope. In the original publicly available dataset of 832

clinic trial in hospitals using the stethoscope,
heartbeat recordings, the distribution of samples was heavily
skewed toward normal heart sounds, with murmurs forming
a smaller proportion (only 129 audios). To avoid introducing
bias from this imbalance, we selected 480 recordings that
included 351 normal heartbeats and 129 murmurs, ensuring

that both categories were adequately represented in the initial
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FIGURE 2

Preliminary steps for data preprocessing on the original dataset of 480 audio files selected. Created using Canva, licensed under Free Content License.
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training set. This balanced selection was essential to prevent the
model from underperforming on pathological cases.

2. Data Labelling: The publicly available dataset (https://www.
kaggle.com/kinguistics/heartbeat-sounds) was annotated by
Dr. Nishant Thakur, a super-specialized cardiologist from
Max Hospital, I.P. Extension, Delhi, India, and re-annotated
and cross-checked by Dr. Rajat Jain, a super-specialized
cardiologist from Safdarjung Hospital, Delhi, India. Since
the dataset is publicly available so no ethical approvals
were required.

3. Audio Processing and Refining: Raw audios, sampled at
22050Hz, were down sampled to 4 kHz. This down sampling
reduces computational load and storage requirements while
retaining essential information for heartbeat analysis (34).
Only the first 3's of each audio were preserved to capture a
complete cardiac cycle (SI to S2 to S1), ensuring that the
analysis encompasses all critical heart sounds. Audios shorter
than 3s were repeated to reach or exceed the 3-second
duration, maintaining consistency in input length for the
model. The study transformed audio signals into numerical
data through the extraction of distinct features representative
of signal characteristics, including amplitude, frequency, and
duration, using the librosa library. Librosa is a widely-used
Python library for audio analysis, known for its robust feature
extraction capabilities, which facilitate effective signal
characterization for subsequent classification (35).

4. Data Synthesis: Given the small initial dataset, Gaussian
Mixture Models (GMM) were used to increase the dataset
size to 10,000 audio vectors. This approach is beneficial as
GMMs can generate new, realistic data points by modelling
the probability distribution of the existing data, thus
enhancing the dataset without additional data collection
efforts (36). Out of the 10,000 vectors, 3,600 were murmurs,
out of which 730 were systolic murmurs. GMMs were used
again to increase the number of audio vectors represented by

size of 5,000. This

augmentation ensures that the dataset is well-balanced,

systolic murmurs to a targeted

particularly for the systolic murmur class, which is crucial
for training a robust and unbiased classification model (37).

Specifically, the distribution of murmurs and normal
heartbeats in the synthetic samples closely mirrors that of the
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original dataset, which consisted of 129 murmurs and 351
normal heartbeats recorded from a limited number of subjects—
approximately 480 in total. Hence, it can be concluded that the
total number of subjects for whom the data has been generated
artificially is 9,520. The synthetic data was generated in a
way that maintains subject-level diversity while amplifying
underrepresented classes, particularly systolic murmurs. This
alignment indicates that the GMM-based augmentation has
effectively preserved the statistical properties and variability of
the original dataset.

The use of data augmentation in scenarios with limited real-
world samples is well-supported in literature; for instance, Frid-
Adar et al. (38) demonstrated in synthetic data can significantly
improve model performance when real data is scarce. Similarly,
the targeted augmentation used here ensures the generation of
high-quality, representative data, thereby enhancing model
generalizability while reducing potential class imbalance. The
proportion of heartbeats and murmurs, as well as its granular
classifications in the generated dataset are similar to their
proportions in the original dataset, thus suggesting that the data
synthesis is appropriate and can be used for further experiments.

5. Model Training: Various models were trained on the refined
datasets obtained from each of the following classification
tasks. The train test ratios for all tasks were kept constant at
a 70-30 percent split:

a. Classification Task 1: Applied on the original dataset to
separate the heartbeat sounds into normal heartbeats
and murmurs

b. Classification Task 2: Applied on the Murmurs obtained
from classification task 1 to obtain systolic and
diastolic murmurs

c. Classification Task 3: Applied on the Systolic Murmurs
obtained from classification task 2 to divide them into
Pansystolic Murmurs (PSM) and Ejection Systolic
Murmurs (ESM)

Various neural network models were applied on the dataset to
obtain the best possible results:

1. CNN-LSTM:

The CNN-LSTM architecture was chosen due to its ability to
effectively combine both spatial and temporal feature extraction,

frontiersin.org
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which is particularly important for the classification of heartbeat
audio signals. CNNs can reduce noise by focusing on important
through filters, which makes the
subsequent LSTM layers more effective in learning the temporal

features convolutional
dependencies of the cleaned signal (39). Details of the models
are as follows:

a. Input Layer: Processed numerical data representing the
heartbeat audio signals.

b. Intermediate CNN and LSTM Layers, shown in Table 1.
Output Layer: SoftMax activation function to classify the audio

signals into categories (e.g., normal heartbeat, murmur).

Furthermore, regularization methods were implemented in
CNN-LSTM architecture to mitigate overfitting risks. A dropout
of 20% was used in the LSTM layer, and the model was kept
simple with a total of 5 layers.

2. BIiLSTM: BiLSTMs have been successfully applied to various
medical signal classification tasks, including ECG and
phonocardiography (PCG) signals. Their effectiveness in

capturing the temporal dynamics and dependencies in such

data makes them a reliable choice for heartbeat classification

(40). The details of the model are as follows:

a. Input Layer: Processed numerical data representing the
heartbeat audio signals.
b. Intermediate BiLSTM and Dense Layers, shown
in Table 1.

c. Output Layer of Size 2 Units: SoftMax activation to
classify the audio signals into categories (e.g., systolic
murmur, diastolic murmur).

3. CNN: Heartbeat signals can exhibit significant variability in
both time and frequency domains. CNNs, with their ability
to apply convolutional filters across the input signal, can
robustly handle such variations

characteristics of the heartbeat patterns (41). The details of

the model are as follows:

and capture essential

a. Input Layer: Processed numerical data representing the
heartbeat audio signals.

b. Intermediate CNN Layers, shown in Table 1.
Output Layer: SoftMax activation function to provide
classification probabilities. (e.g., Normal Heartbeat,

Murmur)

4. BiGRU: Heartbeat signals are sequential in nature, and it is

crucial to capture the temporal dependencies within the

data. BiGRUs can process the input in both forward and

10.3389/fdgth.2025.1616334

backward directions, capturing dependencies from both past
and future contexts, which is particularly beneficial for
heartbeat classification (42). The details of the models are as
follows:

a. Input Layer: Processed numerical data representing the
heartbeat audio signals.

b. Intermediate BiLSTM and Dense Layers, shown in
Table 1.

c. Output Layer of Size 2 Units: SoftMax activation to
classify the audio signals into categories (e.g., systolic
murmur, diastolic murmur).

The results obtained from the models for each of the classification
are articulated in the Results section. As the CNN-LSTM model
gave the best accuracy scores, it was employed in the MySteth
Architecture. This was followed by a SHAP (SHapley Additive
exPlanations) on 10 test cases.

2.2 Mysteth architecture

The MySteth Architecture was designed to handle the refined
datasets and perform the classifications at each step. The following
steps, shown in Figure 3, are part of the processing pipeline:

1. Recording: A person records their heartbeat using a
smartphone in a silent environment, capturing a 3-second
audio clip.

2. Down sampling and Compression: Linear Predictive Coding
(LPC) facilitates a two-step procedure of down sampling and
compression of the recorded audio before training the
models. By lowering the audio’s sampling rate, down

sampling effectively minimizes the amount of data and

computing load while preserving crucial information. The
spectral envelope of the digital voice signals is then
using LPC
important components of the heart sounds, this approach
LPC

minimizes the amount of data while preserving important

compressed compression. By preserving

improves the efficacy of feature extraction (43).

information, which makes processing and analyzing the
cardiac sounds simpler and quicker. In order to ensure that
deep learning models can effectively capture and learn from
the key elements of the heart sounds throughout the training
phase, this preliminary step optimizes the data for the

models (44). The integration of LPC for down sampling and

TABLE 1 Model architectures employed for training and testing on the audio vector and feature dataset.

s N0 Model Architecture

CNN- Layer 1: CNN Layer with 9 filters, ReLU activation Layer 2: CNN Layer with 64 filters, ReLU activation Layer 3: CNN Layer with 32 filters, ReLU
LSTM activation Layer 4: LSTM Layer with 8 neurons, tanh activation (default) Layer 5: LSTM Layer with 4 neurons, tanh activation (default)
2 BiLSTM Layer 1: BILSTM Layer with 128 neurons, tanh activation (default) Layer 2: BILSTM Layer with 64 neurons, tanh activation (default) Layer 3: Dense
Layer with 64 neurons, ReLU activation Layer 4: Dense Layer with 32 neurons, ReLU activation
3 CNN Layer 1: CNN Layer with 9 filters, ReLU activation Layer 2: CNN Layer with 64 filters, ReLU activation Layer 3: CNN Layer with 32 filters, ReLU
activation
4 BiGRU

Layer 1: BiGRU Layer with 128 neurons, tanh activation (default) Layer 2: BiGRU Layer with 64 neurons, tanh activation (default) Layer 3: Dense

Layer with 64 neurons, ReLU activation Layer 4: Dense Layer with 32 neurons, ReLU activation

Frontiers in Digital Health
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FIGURE 3

Mysteth architecture combining CNNs and LSTMs to classify heartbeats into its granular levels. Created using Canva, licensed under Free Content License.

compression in the preprocessing pipeline optimizes the data 6. Classification Task 2: Murmurs are further divided into

for deep learning models (45). diastolic and systolic forms.

3. Heartbeat Signal Verification: The extracted features are 7. Classification Task 3: Systolic Murmurs are classified
compared to a reference model of a normal “lub-dub” into Pansystolic Murmur (PSM) and Ejection Systolic
heartbeat. The patient is asked to re-record the heartbeat if Murmur (ESM).

the signal does not match the classic “lub-dub” pattern.
4. Model Training: The audio vector and the extracted features 3 Results
passes through a pre-trained CNN-LSTM model that has
shown the best results (as tabulated in Tables 1-3). This
model had been trained previously on huge amounts of data
(as explained in Part A). CNN and LSTM were applied
serially due to the complementary nature of their roles in

This section presents the results obtained from classifying
heartbeat sounds using different models (as explained in Part
A of the Methods section) into the following categories: Normal

heartbeat, Murmurs, Systolic Murmur, Diastolic Murmur, PSM

feature extraction and sequence modelling. The CNNs can (Pansystolic Murmur), and ESM (Ejection Systolic Murmur).

preprocess and distil the essential features, which the LSTMs

. 1. Classification results for Normal Heartbeat, and Murmur:
can then analyze in a temporal context (46).

. . . . The classification accuracy for Normal Heartbeat and
a. Static feature extraction is done by Convolutional

Neural Networks (CNN) Murmurs was evaluated using different models on the
b. Temporal characteristics are extracted using Long compressed audio representations obtained through Linear
Short-Term Memory (LSTM) Predictive Coding (LPC). An overview of the outcomes,
shown in Table 2, the Receiver Operating Characteristic
Curve for the classification using the CNN-LSTM Hybrid
Model, shown in Figure 4 justify the selection of a CNN-

LSTM model.

c. Three convolution layers with kernel sizes of 9, 64, and
32 are applied, followed by batch normalization after
each convolution layer. The details of the layers are
given in Part A.

d. For LSTM-based models, two layers of sizes 8 and 4 are The classification of heartbeat sounds is an essential task in the
added, followed by a dense layer. The details of the  medical field, as it helps healthcare professionals diagnose various
layers are given in Part A. cardiovascular conditions. Although numerous research activities

5. Classification Task 1: Two categories are created from the have been carried out to enhance the precision of heartbeat
processed audio: murmur and normal heartbeat. sound categorization, the majority of them have concentrated on
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TABLE 2 Evaluation metrics for different models for classifying heart sounds into normal, and murmur.

Model Accuracy Precision Recall F1 Score ROC-AUC
BiLSTM 68% 0.68 1.00 0.81 0.50
CNN 72% 1.00 0.05 0.10 0.53
BiGRU 88% 0.98 0.17 0.30 0.59
CNN and LSTM 92% 0.73 0.93 0.82 0.93
TABLE 3 Evaluation metrics for different models for classifying murmurs into systolic murmur and diastolic murmur.
Model Accuracy Precision Recall F1 Score ROC-AUC
CNN 68% 0.50 0.55 0.52 0.48
BiLSTM 72% 0.88 0.05 0.10 0.52
BiGRU 84% 0.65 0.95 0.77 0.70
CNN and LSTM 91% 0.80 0.70 0.75 0.83

refining data pre-processing methods or employing a single
primary method such as neural networks, support vector
machines, or hidden Markov models (47).

The impact of each feature on the model, shown in Figure 5, to
classify the heartbeat sounds into normal heartbeats or murmurs
depicts that the MFCCs, specifically mfcc6, mfccll, mfcec3 and
mfcc8 have a considerable amount of weightage while making
the predictions. It can also be concluded that the values of these
features directly affect their SHAP values. For example, a high
mfcc6 gives a highly positive SHAP value when predicting
normal heartbeats, and a highly negative SHAP value when
predicting murmurs. A similar trend is observed for almost all
features. It is also noted that the features like chroma STFT,
spectral bandwidth, RMSE and zero crossing rate have least
impact on the model outputs.

N

Classification results for systolic murmur, and diastolic
murmur: The classification accuracy for distinguishing
between Systolic and Diastolic Murmurs was assessed using
various models on the compressed representations of the
murmur audio. The results, shown in Table 3, Receiver
Operating Characteristic Curve for the classification using
the CNN-LSTM Hybrid Model, shown in Figure 6 depict the
efficiency of each model.

A hybrid classifier can significantly enhance classification
accuracy. When combined in a hybrid CNN-LSTM model, these
models can effectively extract deep features and contextual time
data from Phonocardiogram (PCG) signals. The CNN
component handles feature extraction, while the LSTM module
extracts time-dependent features (48).

The impact of each feature on the model to classify the
murmurs into systolic or diastolic murmurs, shown in Figure 7
depicts that the audio features like Rolloff, spectral centroid and
spectral bandwidth have a considerable amount of weightage
while making the predictions, which is contrary to the
observation in the previous classification step. Among the
MFCCs, mfcc2 seems to affect the model output the most. The
values of these features directly affect their SHAP values. It is
also noted that the features like chroma STFT, RMSE and zero
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crossing rate have least impact on the model outputs, just as in
the previous classification step.

3. Classification results for PSM, and ESM: The accuracy for
further classifying systolic murmurs into PSM and ESM was
evaluated using various models on the compressed feature
representations obtained from LPC feature
method. The outcomes, shown in Table 4, the Receiver

extraction

Operating Characteristic Curve for the classification using
the CNN-LSTM Hybrid Model, shown in Figure 8 justify the
utility of the CNN-LSTM model.

This hybrid approach has been shown to outperform single
CNN or LSTM-based methods, producing richer and more
concentrated models with higher performance and fewer
parameters. These findings demonstrate how well different
recurrent neural networks function in conjunction with
convolutional neural networks to tackle challenging audio
categorization problems. The utilization of LPC for feature
extraction significantly contributes to the models’ performance,
especially in distinguishing subtle differences in heart sounds (49).

The impact of each feature on the model to classify the systolic
murmurs into ESM or PSM, shown in Figure 9, depicts that the
audio features like Rolloff, spectral centroid and spectral
bandwidth have a considerable amount of weightage while
making the predictions, which is similar to the observation in
the previous classification step. Among the MFCCs, mfcc3
seems to affect the model output the most. At this classification
step, the values of these features do not affect their SHAP
values, which is contrary to the previous two classification steps.
It is also noted that the features like chroma STFT, RMSE and
zero crossing rate have least impact on the model outputs, just
as in the previous classification steps.

The statistical analysis, shown in Table 5, depicts the probable
accuracy, precision and recall values obtained in a 95% confidence
interval. These values are similar to the values obtained on the
testing dataset, thus strengthening our results. Furthermore,
statistical significance testing has been done against a random
classifier. The null hypothesis states that the random classifier
would be just as good as the model presented in the paper. The
accuracy statistic is not very close, but the p-values are negligible
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Receiver Operating Characteristic (ROC) Curve
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FIGURE 4
ROC curve for classification of heart sounds into normal and murmur using the CNN-LSTM model.
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FIGURE 5
SHAP explanations for classifying heartbeat sounds into (a) normal heartbeat and (b) murmur.
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ROC curve for classification of murmurs into systolic murmurs and diastolic murmurs using the CNN-LSTM hybrid model.
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TABLE 4 Evaluation metrics for different models for classifying systolic murmurs further into PSM, ESM.

Model Accuracy Precision Recall F1 Score ROC-AUC
BiLSTM 51% 0.31 0.25 0.28 0.30
BiGRU 62% 0.43 0.42 0.41 0.36
CNN and LSTM 71% 0.60 0.54 0.56 0.54
CNN 90% 0.68 0.74 0.71 0.70
Receiver Operating Characteristic (ROC) Curve
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FIGURE 8
ROC curve for classification of diastolic murmurs into ESM and PSM using the CNN-LSTM hybrid model.

for all classification tasks, signifying that our model performs
much better than a random classifier baseline, hence disproving
the The
classification task, shown in Figure 10, are representative of the

null hypothesis. confusion matrices for each
metrics obtained. These have been reported for the testing
dataset (whose size was around 3,000 for the initial, 1,080 for
the intermediate, and 1,500 for the final classification tasks).
A very important observation is that the number of heartbeats
that are actually murmurs but classified as normal are very low
[76 out of 3,000, as can be seen in Figure 10(a)]. This reiterated
the fact that MySteth presents a reliable algorithm to be used
for home-based heart health monitoring.

In conclusion, it has been established that the CNN-LSTM
model out-performs the rest of the models when it is desired to
classify heartbeats into higher granularity levels, while also
giving insights into an interpretable decision-making process in
order the predict the outcome at each classification step. While
lightweight models such as shallow CNNs or simple feedforward

networks may offer faster inference times, they lack the capacity
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to capture complex temporal patterns. Hence, the proposed
CNN-LSTM model seems to be a good-fit in order to perform
accurate classification while gaining the trust of medical
professionals. This makes it a wuseful aspect of a home
monitoring device, while decreasing the load on doctors.

4 Discussion

The introduction of MySteth as an innovative at-home heart
diagnostic tool represents an advancement in the field of cardiac
care, addressing critical gaps in the accessibility and convenience
of preliminary heart investigations. This discussion focuses on
the unique aspects and justifications for our approach,
emphasizing the integration of CNN-LSTM architectures with
Linear Predictive Coding (LPC) preprocessing, and the impact
of these choices on the efficacy and practicality of MySteth.

The primary motivation for employing a hybrid CNN-LSTM
model stems from the of

complementary  strengths
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SHAP explanations for classifying diastolic murmurs into (a) ESM and (b) PSM.
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TABLE 5 Confidence intervals for evaluation metrics, and statistical
significance testing for the model.

Classification Normal and | Systolic and

task Murmur diastolic

CI for accuracy [0.910, 0.929] [0.892, 0.926] [0.884, 0.914]
CI for precision [0.706, 0.753] [0.739, 0.851] [0.654, 0.712]
CI for recall [0.913, 0.943] [0.635, 0.756] [0.710, 0.768]
Accuracy statistic 0.851 0.904 0.635
p-value 0.0 1.495x 10778 3.431x107%°

Convolutional Neural Networks (CNNs) and Long Short-Term
Memory networks (LSTMs) in handling the complexities of
heartbeat sound classification (50). CNNs are adept at extracting
spatial features from the input data, capturing local patterns and
significant characteristics of the heart sounds. This capability is
crucial for identifying the nuanced features present in heartbeat
signals, such as murmurs and other anomalies. LSTMs, on the
other hand, excel at modelling temporal dependencies and
sequential patterns within the data. By integrating LSTMs with
CNNs, we ensure that the model not only recognizes spatial
features but also understands how these features evolve over
(51). This
analyzing heartbeat sounds, which inherently possess both

time combination is particularly effective for
spatial and temporal dimensions.

Linear Predictive Coding (LPC) plays a pivotal role in our
approach by facilitating data compression and enhancing feature
extraction. LPC reduces the complexity of the raw audio data
while preserving essential information, making the subsequent
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processing by CNN and LSTM layers more efficient. This
preprocessing step is crucial for improving the model’s ability to
detect subtle patterns and anomalies in the cardiac sounds,
thereby enhancing classification accuracy (52). By incorporating
LPC, we address the challenge of high data volume and
computational load, enabling the use of advanced deep learning
models This
efficiency is particularly beneficial for at-home diagnostic tools

even in resource-constrained environments.
like MySteth, where minimal hardware requirements and quick
processing are critical for user adoption and practicality (53).
Compared to conventional methods of heartbeat classification,
which often rely on manual feature extraction and traditional
machine learning algorithms, our CNN-LSTM approach offers
several distinct advantages. Traditional methods can be limited
by their dependency on handcrafted features and their inability
to fully capture the complexity of the heartbeat signals. In
contrast, deep learning models, particularly the CNN-LSTM
combination, automatically learn relevant features from the data,
leading to more accurate and robust classifications (54).
Moreover, the ability to handle large and complex datasets
without significant manual intervention makes our approach
more scalable and adaptable to different healthcare settings.
High accuracy rates have been achieved by our models,
including the exceptional performance of the CNN-LSTM
model with a 92% accuracy for classifying the heartbeats into
normal and murmurs, and 91% for classifying the murmurs
into systolic and diastolic murmurs. This underscores the
effectiveness of our method in differentiating between normal
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and pathological heart sounds as well as finer distinctions such as
various types of murmurs.

Unlike the recently developed hardware-centric designs
(30-32), MySteth presents an end-to-end signal-processing using
a deep
segmentation and classification. This enables deployment on

learning model for heart sounds to perform

commodity devices and potentially broadening access where
specialized sensors like PVDF triboelectric (30, 32) or NIV
turbines (31) are impractical. Patient-cohort validations like B-/

(30, 32),
demonstrate

stenosis and device-level

(1)
interpretable trends. MySteth currently depends on SHAP

C-point  slopes vs.

performance envelopes physiologically
explanations to justify the results of its analysis. Triboelectric
ICG features (30, 32) have direct hemodynamic interpretations.
However, MySteth uses algorithmic acoustic features, with less
explicit references to mechanistic markers, such as the timing or
the severity correlation, which may be a matter of concern for
improving clinician trust to take triage decisions. These systems
push the frontier in hemodialysis vascular monitoring (30, 32)
and home respiratory therapy (31). MySteth advances acoustic
cardiac screening on accessible hardware, that is a simple
smartphone, thus filling a different but clinically adjacent niche
that emphasizes software-driven auscultation and potential
population-scale reach.

This work represents a pilot study aimed at evaluating the
feasibility and effectiveness of deep learning-based heartbeat
classification, and the results so far have been encouraging. The
CNN-LSTM model demonstrated high accuracy in classifying
heart
conditions, indicating strong potential for clinical relevance.
While clinical validation has not yet been initiated, it is a key

normal and pathological sounds under controlled

focus of our future work. While the manuscript does not
explicitly analyze the impact of domestic ambient noise on system
performance, it is important to note that domestic sounds—such
traffic,
characteristics that are significantly different from those of heart

as speech, appliances, or external have acoustic

sounds. These can be integrated as a preprocessing layer into the
overall classification pipeline to improve robustness in real-world
environments. Prior studies have demonstrated that heart sounds
distinct acoustic characteristics, such as

possess temporal
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regularity and specific frequency ranges, that differentiate them
from other bodily sounds, making them suitable candidates for
signal separation and denoising. Springer et al. (55) emphasized
the effectiveness of frequency and envelope-based methods for
isolating heart sounds from noise.

The current evaluation has been performed entirely on
controlled and expert-annotated data. While this setup ensures
high-quality ground truth for
benchmarking, it does not fully capture the variability, and

model development and

recording artifacts present in real-world environments.
Translation to home and clinical utility requires systematic
prospective validation and robust noise-adaptation strategies.
A prospective validation study can be conducted on diverse
different

conditions, and recording environments. This study could

patient populations across age groups, cardiac
include recordings from multiple devices (smartphones, digital
stethoscopes) to assess hardware variability. Further, annotation
of new data can be done correctly by multiple expert
cardiologists to ensure reliable ground truth. Stratified sampling
can also be done to capture a balanced representation of normal
heart sounds and pathological murmurs, including rare subtypes.

The minimal hardware requirements and straightforward
implementation of MySteth mean it can be readily adopted in
various healthcare environments, including remote or under-
resourced areas. This accessibility addresses a critical need in
global healthcare, providing reliable and early detection tools for
heart disease, which remains a leading cause of mortality
worldwide (56). This paper distinguishes itself from previous
research by introducing MySteth, a novel home-based heart
monitoring tool that utilizes deep learning techniques to classify
heart sounds with enhanced accuracy and detail. Unlike earlier
studies that primarily concentrated on phonocardiography or
ECG data—methods not easily accessible for home use—
MySteth employs commonly available devices like smartphones
and digital stethoscopes. It extends beyond basic heart sound
classification by differentiating between normal heartbeats,
murmurs, and specific subtypes such as Ejection Systolic
Murmurs (ESM) and Pansystolic Murmurs (PSM). This level of
granularity, particularly in home settings, has not been achieved

by previous studies. The use of deep learning models for more
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precise and real-time analysis, combined with its accessibility and
cost-effectiveness, marks this paper as a significant advancement
in cardiac diagnostics over prior research.

This study focuses primarily on the development and
evaluation of a pre-trained deep learning model for heartbeat
classification, which can be used directly for real-time heartbeat
classification. As the model is designed to be used as a pre-
trained solution, the end user is not required to perform on-
device training or intensive computation locally, hence
nullifying the requirement of strong hardware for the same.
Therefore, issues related to power consumption, battery life, and
energy optimization strategies were not within the scope of this
work, and need not be a cause of concern for the end-user.
Finally, it is also noteworthy that the model predictions provide
a good amount of interpretability using the SHAP values and
help medical professionals gauge a better insight into the
decision-making process, thus functioning as a helpful home
heart-screening device for patients well a useful

as as

understanding of the prediction to the medical practitioners.

5 Future work

While our work presents significant advancements, there are
limitations and areas for improvement. As already stated, not
much study has been done in the area of categorizing mobile
phone heartbeat sounds (57). To improve research in this area, a
larger and more realistic dataset must be created (58). The
models are trained and validated on specific datasets which may
not encompass the full variability seen in global populations.
Future work should focus on incorporating more diverse datasets
to enhance generalizability. In this work, the audio was encoded
using linear predictive coding. To compress audio, more
encoding methods can be employed, such as auto-encoders.
While our method is efficient, optimizing it further for real-time
processing and deployment on portable devices could enhance its
practical application. Future research should explore seamless
integration with existing clinical workflows, ensuring that the
technology is user-friendly for healthcare professionals. To
confirm the models’ long-term dependability and efficacy in
practical situations, longitudinal research and comprehensive
clinical trials are required (59).

The current study utilized uncleaned data recorded from
smartphones, which included a significant amount of noise due
to breathing artifacts. These artifacts can adversely affect the
accuracy of classification. Future research could focus on
removing these artifacts to enhance the signal-to-noise ratio,
thereby improving the accuracy of murmur classification. Despite
the presence of breathing artifacts in the current uncleaned data,
the preliminary classification accuracies achieved were promising
for screening purposes. This suggests that even without artifact
removal, the current results may still offer valuable diagnostic
information in a clinical setting. Further investigation is required
to explore the potential of this technology as a tool for non-
invasive heart screening, particularly in resource-limited settings
where access to traditional cardiac diagnostics is limited.
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Although domestic and breathing noise are recognized as
important factors in real-world deployment, the present study did
The
preprocessing pipeline can be adapted to better handle real-world

not include quantitative noise robustness experiments.

acoustic conditions by incorporating adaptive band-pass filters,
wavelet-based denoising, or spectral subtraction techniques to
remove ambient and breathing artifacts without compromising
clinically relevant heart sounds. Training can be made more robust
by training with synthetically augmented datasets that include
controlled levels of domestic noise (speech, TV, traffic, appliance
hums, etc.), enabling the model to generalize better to variable
acoustic environments. The utility can be improved by adding a
pre-classification module that evaluates signal-to-noise ratio (SNR)
and prompts re-recording if background noise is too high.

The deep learning model presented is relatively simple and
could be enhanced by incorporating more complex features and
deeper neural network architectures. By leveraging recent
advances in deep learning, such as attention mechanisms and
unsupervised feature learning, the classification accuracy could
be further improved.

This work represents a preliminary investigation aimed at
evaluating the feasibility and effectiveness of deep learning-
based heartbeat classification, and the results so far have been
CNN-LSTM  model
accuracy in classifying normal and pathological heart sounds

encouraging. The demonstrated high
under controlled conditions, indicating strong potential for
clinical relevance. The next step involves testing the system in
real-world settings, including diverse patient populations and
varied acoustic environments, such as outpatient clinics and
home-based monitoring.

The current study primarily utilizes synthetic data generated
through a Gaussian Mixture Model (GMM)-based augmentation
approach, which was designed to preserve subject-level diversity
while amplifying underrepresented classes, particularly systolic
murmurs. This method ensures that the augmented dataset
maintains the statistical properties and variability of the original
recordings, thereby supporting robust model training. To address
generalizability beyond the training data, future work will focus
on collecting and evaluating data from real-world use of the
MySteth prototype in diverse clinical and home environments.

In conclusion, this preliminary work lays the groundwork for
future efforts to enhance heartbeat classification accuracy using
smartphone recordings. Proposed future directions include
removing noise artifacts from the data, employing more
sophisticated deep learning models, expanding the classification
these
advancements will refine murmur detection and improve the

scope, and collecting larger datasets. Ultimately,

quality of cardiac diagnostics provided by smartphone recordings.

6 Conclusions

MySteth is a tool that our study introduces. Using deep
learning algorithms and just the sound of a heartbeat recorded
using a phone or digital stethoscope, the authors investigated
the screening of a broad class of heart disorders. Heartbeats can
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be categorized by MySteth into three categories: normal, systolic,
and diastolic murmurs. Systolic murmurs can also be further
classified into two categories: Ejection Systolic Murmur (ESM)
and Pansystolic Murmur (PSM).

In order to keep the condition from getting worse to the point
where it becomes fatal or irreversible, this effort can be very
helpful in identifying the onset of a wide class of cardiovascular
heart diseases (60). MySteth, a tool in the field of heart sound
classification, can significantly contribute to preventive
healthcare and lower the total burden of cardiovascular illnesses
by enabling at-home early screening and precise diagnosis of
heart

architecture, the instrument can be deployed in a variety of

murmurs and other irregularities. Because of its

contexts, such as remote and rural locations, allowing
disadvantaged groups to benefit from modern diagnostics. The
scalable and adaptable nature of MySteth ensures it can be
integrated into different healthcare environments, from large
urban hospitals to small rural clinics and even home-based care.
By addressing both the technological and practical challenges in
this domain, MySteth stands out as a viable solution with

significant potential for improving global health outcomes.
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