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Synthetic data in medical
imaging within the EHDS: a path
forward for ethics, regulation,
and standards

Junying Jiang, Lucia Domingues and Jorge M. Mendes”

Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciéncias
Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal

The increasing availability of medical imaging data offers unprecedented
opportunities for advancing artificial intelligence (Al)-driven healthcare.
However, strict data protection regulations in the European Union (EU),
especially the General Data Protection Regulation (GDPR), present significant
challenges to data sharing and reuse. Synthetic data—artificially generated
data that mimic the statistical properties of real data without revealing
sensitive information—have emerged as a promising solution to bridge this
gap. This perspective-style review examines the role of synthetic medical
imaging data within the European Health Data Space (EHDS), a policy
initiative aimed at enabling secure access to health data across the EU. While
we briefly reference cross-cutting privacy-enhancing technologies and one
non-imaging comparator to illuminate shared governance issues, our analysis
and conclusions are scoped to imaging applications. We discuss the technical
foundations and types of synthetic data, their potential to enhance
reproducibility and innovation, and the complex ethical and legal concerns
surrounding their use. Emphasising the need for a risk-based regulatory
framework, we advocate for synthetic data governance that ensures utility,
transparency, and accountability, especially when such data are generated
using generative Al models. This work contributes to ongoing debates on
how synthetic imaging data can support a privacy-preserving, data-driven
healthcare ecosystem in Europe.

KEYWORDS

synthetic data, medical imaging, European Health Data Space (EHDS), data privacy,
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Introduction

The European Health Data Space (EHDS) is a significant initiative that facilitates
cross-border data sharing within the European Union (EU). EHDS aims to advance
healthcare research, artificial intelligence (AI) development, and patient care by
enabling access to healthcare data. Medical imaging data, which are crucial for
diagnostics and treatment planning, encounter substantial obstacles to sharing owing
to stringent privacy laws, ethical concerns, and security challenges. These barriers pose
significant challenges to the development and deployment of innovative AI solutions
in healthcare. Synthetic data that replicate realistic imaging datasets without
compromising patient privacy have emerged as a promising solution to these
challenges, particularly in the early stages of clinical validation. This review examined
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the potential of synthetic data in medical imaging, focusing on its
with EHDS ethical
regulatory compliance, and the establishment of industry

alignment objectives, considerations,
standards. Specifically, it aims to (1) define synthetic data and
its applications in medical imaging within the EHDS framework;
(2) demonstrate how synthetic data can address barriers to
clinical validation, particularly in the early stages of innovative
solution development; (3) explore the ethical and regulatory
considerations related to the use of synthetic imaging in the
development and clinical validation; and (4) propose best
practices to ensure synthetic data quality, interoperability, and
applicability to support real-world clinical use cases. Our focus
is synthetic medical imaging in the EHDS context. We
occasionally draw on cross-cutting PETs and one contextual
(non-imaging) comparator solely to clarify the same regulatory
and ethical questions (e.g., Recital 26 anonymity, controller/
processor roles, Al Act risk). Unless explicitly noted, all claims,
recommendations, and the governance toolkit are intended
for imaging.

Methodology

This literature review employed an established and transparent
framework to identify and synthesise relevant literature on the
ethical and regulatory considerations of using synthetic medical
image data within the EHDS context. Although the structure of
this review draws inspiration from established frameworks, it
does not fully conform to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines.

To ensure broad coverage and relevance, a structured search
was conducted across four major databases: PubMed, Scopus,
Web of Science, and Google Scholar. The initial search was
carried out on December 21st, 2024, with an update on January
5th, 2025 to capture any newly added studies. Google Scholar
was searched last to capture potential grey literature. In addition
to database searches, forward and backward citation tracking
was performed by screening the reference lists of included
studies to identify further relevant works (leading to the
addition of 29 studies).

Search terms were developed to reflect the core themes of the
review in consultation with subject-matter experts. Keywords
included combinations of terms related to synthetic data,
EHDS,
relevance. Consistent terms were used across all databases except
PubMed, where Medical Subject Headings (MeSH) were applied
as appropriate.

The review focused on studies addressing ethical and

medical images, ethics, applications, and clinical

regulatory issues related to synthetic medical image data within
the EHDS framework. The inclusion criteria were:

« English-language publications.

o Published between January 1st, 2020 and January 5th 2025.

« Studies discussing synthetic data, especially in medical imaging,
with a link to legal, ethical, or clinical applications.
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Given the broad scope of the topic, the search also employed
multiple subsets of keywords to maximise sensitivity and
relevance. From an initial pool of 516 studies, 68 duplicates
were removed. Titles and abstracts of the remaining studies were
screened against pre-defined inclusion criteria, excluding 332
papers. The full texts of 119 remaining articles were then
assessed, of which 53 were excluded for not meeting the
eligibility criteria. A total of 66 studies were ultimately included
in the final analysis. These were included because relatively few
publications addressed the four core objectives of this review in
an integrated manner. The complete screening results are
summarised in Table 1, and the study selection process is
illustrated in Figure 1.

This literature review adopted a structured and rigorous
process to identify and analyse studies relevant to using
synthetic medical image data ethically within the EHDS
framework. Although the review was not formally registered or
reported according to PRISMA standards, key elements—such as
inclusion criteria, structured

transparent searching, and

screening by multiple reviewers—were incorporated to
enhance robustness.

Given the limited literature directly addressing synthetic image
data under EHDS, the included studies were organised into

thematic subtopics:

« Introduction to synthetic data;
data EHDS or
frameworks;

« Synthetic within related legal/ethical
« Applications in medical imaging;

« Implementation and technical considerations.

Each full-text article was assessed independently by the authors.
Any disagreements during screening or categorisation were
resolved through discussion. Relevant content was highlighted
and categorised for use in the manuscript. This structured
methodology enabled the development of a comprehensive and
credible
generalisability,

synthesis, supporting a nuanced discussion of
ethical

implementation of synthetic image data in the European health

compliance, and practical
research and innovation landscape.

We scoped this review to ethical and regulatory aspects of
synthetic medical imaging under the EHDS. A small number of
contextual (non-imaging) sources are cited where they inform
the same governance questions (e.g., GDPR anonymisation tests,
secondary-use access via data access bodies, and high-risk Al
obligations).

Synthetic data and its role in EHDS

With an imaging focus, we discuss how the EHDS is designed
to enhance the sharing and reuse of health data across the EU.
Where we reference LLMs/EHR or non-imaging PETs, these are
used as cross-cutting comparators to the same governance issues
faced by imaging. The conclusions remain imaging-scoped
unless explicitly stated. EHDS establishes a health-specific
ecosystem for primary and secondary health data use (1-6). By
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TABLE 1 Screening results.

10.3389/fdgth.2025.1620270

Database Search results Search results Results Results after
(December 21st, 2024) | update (January 5th, 2025) (duplicated removed) screening
Google scholar 165 165 165 37
PubMed 163 201 144
Scopus 44 44 37
Web of science 76 80 76 29
Forward and backward
Citation search 29 29 29
Total 477 519 451 66
[ Identification of studies via databases and registers }
)
Records identified from*:
Databases
g (google scholar (n = 165) EOCIS moved dole
PubMed (n = 201) sc‘eeD |.9- g 3 i
§ Scopus (n = 44) e ug %cg e records remove
o Web of Science (n = 80) (n=68)
§ Forward and Backward Citation Search (n = 29)
Registers (n = 519)
e/
v
—
: Records excluded
z]efczrgf)screened titles and abstracts N (n = 332 Reasons:
a2 Non-English, non-related topics)
v
. : Reports not retrieved
zegoﬁz ;sought for retrieval full-text screening (n=53 Reason: Fodus 160w
-g on synthetic methodology)
3
e
5 v
Reports assessed for eligibility
(n=66) >
Reports excluded:
(n=0)
)
v
Studies included in review
(n =66)

FIGURE 1
Flowchart representing of the selection of the included studies.

clarifying the scope of secondary data use, the EHDS aims to
facilitate the secure exchange and interoperability of health data
throughout Europe (1).

EHDS addresses the challenges associated with increasing the
volume and complexity of health data. These challenges include
data bottlenecks resulting from the sensitivity of health
information, interoperability issues due to a lack of
standardisation, and fragmentation, which complicate the
navigation of health services and data protection frameworks

Frontiers in Digital Health

(6). To mitigate these issues, EHDS proposes a unified market
for electronic health record systems, relevant medical devices,
and high-risk Al-driven healthcare applications. It establishes
governance frameworks, common standards, and infrastructure
to ensure seamless data exchange from decentralised
sources (1, 6).

A fundamental aspect of EHDS is the assurance that secondary
use of data complies with ethical and legal standards, particularly

in relation to the General Data Protection Regulation (GDPR).
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The EHDS enhances data access rights, establishes governance
structures at the Member State level, and requires standardised
formats for health data systems (1). Nonetheless, a significant
challenge persists: facilitating extensive data sharing, while
safeguarding patient privacy and mitigating the risks associated
with data breaches.

Synthetic data represent a promising solution within the
EHDS framework, enabling stakeholders to utilise health data
for research, AI model training, and policymaking without
compromising patient confidentiality (4). Synthetic data consist
of artificially generated datasets that maintain the statistical
properties of real-world health data while removing personally
identifiable information. This approach aligns with the objective
of maximising the utilisation of health information, while
ensuring legal compliance (4). Medical images, for instance, fall
under the broader category of health data that the EHDS aims
to make interoperable and accessible through the digitisation of
health records across the EU (7). Synthetic medical imaging data
enables researchers and clinicians to develop and test Al
modelsat the early stages without accessing sensitive
patient information.

Although a legal definition of synthetic data is absent, it is
commonly recognised through its generation methodologies.
Ianese (4) characterises synthetic data as artificial information
derived from real datasets using AI techniques. Despite its
data

properties of the original dataset, rendering it valuable for

fictitious nature, synthetic retains the statistical
the research and training of machine learning models.
Similarly, Greser (8) contends that synthetic data are not
collected, but are instead generated algorithmically to mirror
the statistical distributions of real-world data, with its utility
contingent upon the accuracy and representativeness of the
original dataset.

Various techniques have been used to generate synthetic
health data. Generative Adversarial Networks (GAN) consist of
a generator and discriminator, which collaboratively generate
synthetic samples that closely mimic real data. Conditional GAN
(CGAN) enhance this framework by integrating additional
information, whereas Conditional Tabular GAN (CTGAN)
further refine CGAN for structured health data by addressing
rare occurrences through mode-specific normalisation (9).
Autoencoders are neural networks that compress the input data
into a latent representation before reconstructing them.
Variational Autoencoders (VAE) advance this approach by
ensuring that the latent space adheres to a Gaussian distribution
(9). Alternative SynthPop, which
generates synthetic data sequentially based on conditional
distributions; Maximum Spanning Tree (MST) methods, which
preserve noisy marginals of low-dimensional data distributions,
which

introduces noise into marginal statistics (9).

methodologies include

and PrivBayes, constructs Bayesian networks and

Synthetic data can be generated from actual electronic medical
records, preserving their statistical properties, while ensuring the
exclusion of any real patient data. In contrast to anonymisation
techniques, synthetic data retains the essential characteristics of

the original dataset while adhering to privacy standards (4).
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The increasing deployment of Large Language Models (LLM)
in the healthcare sector presents significant challenges related to
data availability and quality. Access to high-quality medical data
is frequently restricted by paywalls and regulatory constraints,
thereby limiting the training of domain-specific AI models.
Synthetic data have emerged as a viable solution, as they allow
for the expansion of dataset size while ensuring privacy (10).
A recent study introduced a medical LLM, GatorTronGPT,
which was developed using synthetic data, resulting in enhanced
clinical text generation performance compared with models
trained solely on real data (11). Consequently, synthetic data
generation effectively addresses data scarcity, enhances model
performance, and improves generalisation, while
safeguarding privacy.

The SECURED (Scaling up Secure Processing, Anonymisation
and Generation of Health Data for EU Cross-Border Collaborative
Research and Innovation) project, launched in January 2023, aims
to enhance multiparty computation, data anonymisation, and
synthetic data generation within the health sector. A significant
application of this project is the creation of synthetic data for
educational purposes, enabling medical students to engage with
realistic case studies without compromising actual patient
records (12) while ensuring privacy in cross-border data
sharing (13).

Research in medical imaging has benefited significantly from
the utilisation of synthetic data. Traditional datasets in medical
imaging frequently encounter limitations such as insufficient
sample sizes, data heterogeneity, and challenges in integration
owing to variations in imaging protocols across different
institutions. Synthetic medical imaging data can -effectively
address these issues by generating diverse and high-quality
training sets, thereby enhancing deep learning models for
diagnostic and treatment planning purposes (10).

Although the integration of synthetic data into the EHDS
framework offers numerous benefits, it also presents significant
ethical and regulatory challenges. The absence of standardised
quality metrics and regulatory classification under the GDPR
raises concerns regarding data bias and validity (14, 15).
Nevertheless, advancements in deep generative models and
privacy-preserving infrastructure, such as EHDS health data
nodes, provide potential solutions to these issues. Ensuring
transparency in the data generation and validation processes is
crucial for maximising the potential of synthetic data while
adhering to ethical and legal standards.

Ethical challenges of synthetic data

While synthetic data is increasingly promoted as a privacy-
preserving alternative to real-world health data, its use in
research and development of innovative health solutions
ethical

protection compliance. Central among these are concerns related

introduces complex considerations beyond data
to consent, re-identification risks, bias, scientific integrity, data
sovereignty, and cybersecurity (8, 9, 16-19). These issues

challenge the assumption that synthetic data is inherently free
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from ethical scrutiny and wunderscore the importance of
governance frameworks that align with legal requirements and
ethical research principles.

Informed consent and data subject
autonomy

Although synthetic data does not directly contain identifiable
personal information, it is typically generated from real datasets
originally contributed by individuals. In many cases, these
individuals may not have explicitly consented to the use of their
data for synthetic data generation or secondary purposes such as
model training, commercial use, or cross-border data sharing
(19, 20). This raises important ethical concerns regarding
autonomy, transparency, and respect for data subjects’ rights—
particularly when synthetic data is used beyond the original
purpose for which the real data were collected (21). Ethical
research demands that participants be properly informed about
how their data may be used, even in derived or non-identifiable
forms. This is in line with the 2024 revision of the Declaration
of Helsinki, which emphasizes that researchers must obtain free
and informed consent for the collection, use, storage, and
possible future use of biological materials and identifiable or re-
identifiable data. The Declaration also states that if future uses
cannot be fully foreseen at the time of consent, they must still
be approved by an ethics committee, especially when obtaining
new consent is not practical. These updates reflect the growing
importance of transparency and ethical oversight in data reuse
and secondary research. The European Data Protection
Supervisor (EDPS) has emphasised that scientific research
cannot serve as a “carte blanche to take irresponsible risks” and
must be conducted within an established ethical framework (22).

In response to the tension between strict consent requirements
and the need for flexible data use, concepts such as “broad
consent” have emerged. Broad consent allows future research
uses while upholding ethical standards through ongoing
(23).
However, this model remains controversial, particularly when

information, oversight, and participant engagement
applied to data used to generate synthetic datasets that could be

reused in ways not foreseen during initial data collection.

Privacy risks and re-identification

Although synthetic data is designed to eliminate personally
identifiable information, it does not entirely remove the risk of
privacy breaches. According to the G29 Working Party and
CNIL, there are three key risks associated with synthetic data
derived from anonymised sources: (1) Singling Out, where
unique data points lead to the identification of individuals; (2)
Linkability, where records across datasets can be connected; and
(3) Attribute Inference,
individuals may be deduced (9). These risks are especially

where sensitive characteristics of

pronounced in contexts involving small populations or rare
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diseases, where the uniqueness of cases increases re-
identification potential (19).

Generative Adversarial Networks (GANs), commonly used to
generate synthetic medical images, can inadvertently reproduce
features of the original dataset if not properly regularised. It
may result in membership inference attacks, whereby an
adversary can determine whether a particular individual’s data
was used in the training set (24). For example, in a study
involving adolescents with de novo mutations, a GAN trained
on facial phenotype data was shown to be vulnerable to such
attacks if model weights were publicly shared (24). Differential
privacy techniques have shown promise in mitigating these risks
(25). Still, they are not foolproof and can introduce trade-offs
with data utility.

The legal ambiguity surrounding the classification of synthetic
data adds another layer of complexity. Under the GDPR, data is
only considered anonymous if re-identification is not reasonably
possible, considering time, cost, and technology (23). However,
the threshold for what constitutes “reasonable” varies across
jurisdictions. Institutions such as biobanks may not hold re-
identification keys. However, they could still be subject to data
protection data is classified as

regulations if synthetic

pseudonymised (1).

Bias and fairness

Synthetic data generation is highly dependent on the quality
and diversity of the source data. If the original dataset is
unbalanced or reflects systemic inequalities—such as
biased

practices—these issues are replicated or amplified in the

underrepresenting minority populations or clinical
synthetic data (6, 18). For instance, chest X-ray datasets have
been shown to underrepresent certain demographic groups,
leading to reduced diagnostic performance for these
populations (26).

While differential privacy techniques are designed to protect
sensitive attributes, they may disproportionately affect minority

subgroups by introducing statistical noise that distorts already

limited representation (19). Several strategies have been
proposed to address these challenges, including dataset
rebalancing, fairness-aware GANs (such as HealthGAN),

adversarial training, and participatory design approaches that
involve community stakeholders in model development (14, 27).

Scientific integrity and trust

A critical concern in the use of synthetic data is the potential
erosion of scientific integrity and public trust. Unlike real-world
datasets, synthetic data lack an intrinsic link to empirical reality,
raising questions about their validity for hypothesis testing,
model training, and clinical decision-making. The absence of
standardised benchmarks for evaluating synthetic data quality
further complicates this issue (10, 19).
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Studies have shown that different types of synthetic
distribution shifts may not improve model robustness and may
even obscure performance limitations under real-world
conditions (18). Moreover, the use of synthetic data without full
disclosure of generation methods, limitations, and validation
procedures can mislead users about the reliability of research
findings. Transparent

reporting and the development of

synthetic data quality standards are essential to ensure

credibility in research outcomes (17).

Data sovereignty and indigenous data
ethics

Ethical considerations are particularly salient when synthetic
data involves populations with specific historical and cultural
vulnerabilities, such as Indigenous communities. Historically,
these populations have faced misuse and exploitation of their
health data. Using synthetic data does not eliminate the need for
appropriate governance; instead, it introduces new complexities
related to data sovereignty and community engagement (17).

Excluding Indigenous populations from training datasets may
lead to reduced model accuracy for these groups, while including
them—without community oversight—may infringe upon their
rights to control their data. Synthetic Indigenous datasets must
be developed in consultation with the communities they aim to
represent, ensuring alignment with ethical principles such as
ownership, control, access, and possession (OCAP).

Cybersecurity and misuse risks

Synthetic data also introduces cybersecurity vulnerabilities
that anonymisation may not fully mitigate. Techniques such as
data poisoning and adversarial attacks can compromise model
integrity at various stages of the AI lifecycle (8). In medical
imaging, even minor alterations to input data can cause
misclassification, potentially resulting in harmful
clinical outcomes.

Partially synthetic datasets combining real and artificial data
are particularly susceptible to data leakage and exploitation.
Malicious actors may attempt to reverse-engineer synthetic
datasets to infer information about real individuals, especially
when model architectures and training parameters are publicly
available (19).

Synthetic data holds

innovation while preserving individual privacy. Yet, it is not

significant promise for enabling

inherently exempt from ethical scrutiny. Concerns surrounding
informed consent, re-identification, bias, scientific reliability, and
community engagement highlight the need for robust ethical
oversight. Addressing these challenges requires interdisciplinary
collaboration,  standardised evaluation frameworks, and
continuous engagement with stakeholders (28). Only through a
deliberate and ethically grounded approach can the benefits of
synthetic data be fully realised without compromising individual

rights or public trust.
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Regulatory frameworks and standards
development

Currently, the European Union lacks dedicated regulations
that specifically govern the use of synthetic data. While this
absence of direct legislative instruments might suggest legal
permissibility, it should not be interpreted as an absence of
oversight. Synthetic data—particularly in healthcare and AI
applications—may still fall under existing frameworks such as
the General Data Protection Regulation (GDPR), the Medical
Device Regulation (MDR), and the forthcoming AI Act. These
instruments impose obligations concerning data quality, privacy,
transparency, and accountability, which are highly relevant when
synthetic data is used in developing, validating, or deploying
medical AI systems (8). This section examines the regulatory,
related to the
generation and use of synthetic imaging data, emphasising its

standard, and framework considerations
transformative potential to surmount traditional barriers in
healthcare data sharing. The objective is to present a balanced
yet supportive perspective on synthetic data, underscoring its
alignment with regulatory frameworks and its capacity to drive

equitable healthcare innovation across Europe.

European regulatory instruments

1. General Data Protection Regulation (GDPR)

Although synthetic data aims to eliminate identifiable
personal information, it may still fall under the scope of the
GDPR if the risk of re-identification persists. Article 4(1)
defines personal data broadly, and Recital 26 clarifies that
data is only anonymous if re-identification is not reasonably
possible. Consequently, synthetic data must be evaluated
case-by-case to determine whether it meets this threshold.
Where it does not, obligations related to lawful processing,
purpose limitation, and data minimisation remain
applicable (29, 30).

2. European Health Data Space (EHDS)

The proposed EHDS regulation seeks to establish a

harmonised framework for using and reusing health data
EU. While the

pseudonymised data, it acknowledges anonymised and

across  the regulation  prioritises
synthetic data as potential tools for secure secondary use.
However, detailed provisions for synthetic data are not yet
fully articulated, raising questions about its governance
under the EHDS framework (14, 15).

3. Al act

The proposed Al act introduces a risk-based approach to

regulating Al systems, including those used in medical and
healthcare contexts. While the Act does not refer explicitly
to synthetic data, it encompasses training data quality,
robustness, and transparency—directly relevant to synthetic
dataset generation. Developers using synthetic data to train
or validate AI systems may be required to demonstrate the
quality and representativeness of their data, especially in
high-risk applications (31).
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4. Medical device regulation (MDR)

Under the MDR, Al systems used for medical purposes may
qualify as medical devices, particularly if they support
diagnostic or therapeutic decisions. Synthetic data for
designing, testing, or validating such systems must be robust,
clinically relevant, and traceable. Although the MDR does
not yet contain specific provisions for synthetic data, its
emphasis on clinical evidence and performance evaluation
implies that the origin and quality of training data—
including synthetic sources—are subject to scrutiny.

5. Global and comparative contexts

Globally, the practices surrounding synthetic data intersect
with regulatory frameworks such as the U.S. Health
Insurance Portability and Accountability Act (HIPAA) and
China’s Personal Information Protection Law (PIPL). While
HIPAA takes a rule-based approach, the GDPR is principle-
based, leading to different interpretations and applications of
synthetic data protections. In contrast, the PIPL’s limited
data set model permits de-identified data to be used for
research without explicit consent, demonstrating a more
flexible legal framework (32).

6. Standardisation initiatives

Standardisation bodies such as ISO, IEC, and CEN are
working toward frameworks incorporating synthetic data
within broader AI and data governance standards. Emerging
standards—such as ISO/IEC 38507 and ISO/IEC TR 24028—
provide guidance on the ethical use of AI and risk
management, which may be extended to include the
generation and validation of synthetic data. The European
Commission has played a central role in supporting these
efforts by collaborating with CE and CENELEC to develop
harmonised standards for AI data quality under the ISO
5259 series (Burden and Stenberg, 2024). The FUTURE-AI
initiative also outlines criteria for trustworthy AI and ethical
synthetic data use in medical imaging, focusing on fairness,
robustness, and explainability (33). Meanwhile, the FAIR
(Findable, Accessible, Interoperable, Reusable) and CARE
(Collective Benefit, Authority to Control, Responsibility,
Ethics) principles offer valuable guidance on ethical and
responsible synthetic data practices, particularly in open
science and Indigenous contexts (17, 34). Standardisation is
also central to tackling data fragmentation, especially in
highly sensitive areas such as paediatric oncology. Tozzi
et al. (35), in a systematic review of Al in paediatric brain
tumour research, underscores the urgent need for

harmonised and interoperable data sources across European
institutions to improve reproducibility and
model performance.

Complementary to these efforts, the Fast Healthcare
(FHIR)
integrating synthetic datasets into real-world health systems.
As discussed by Pereira et al. (10), FHIR defines the
structure and semantics of electronic health data, enabling
data

applications through better interoperability, standardisation,

Interoperability Resources standard is key in

consistent exchange and supporting synthetic

and integration across diverse platforms.
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Mapping use cases to regulatory and
standards obligations

To translate the preceding legal analysis into practice, Table 2
maps common use cases of synthetic imaging data to obligations
under the EHDS, GDPR, AI Act, and MDR. Figure 2 provides a
Recital 26 decision tree to assess whether a dataset is anonymous
or pseudonymous, together with evidence expectations. Unless
explicitly noted as cross-cutting, the following mapping is scoped
to synthetic medical imaging.

Table 2 translates typical synthetic-imaging use cases into
concrete compliance expectations by aligning, for each scenario,
(i) the likely EHDS roles (who is the controller defining
purposes/means and who acts as processor), (ii) the GDPR
posture (whether the dataset should be treated as anonymous,
hence outside GDPR, or as pseudonymous, hence regulated),
(iii) the anticipated AI Act risk categorisation given the
intended use (e.g., research/education vs. diagnostic application),
and (iv) any MDR implications where outputs support clinical
performance or a medical device dossier. The entries are
indicative and context-dependent, but they make explicit the
evidence expected to justify an “anonymous” classification (e.g.,
attack metrics at or below baseline, absence of linkage keys,
and when to default to a
with  additional
Complementing the table, Figure 2 operationalises GDPR Recital

small-population safeguards)

“pseudonymous”  treatment safeguards.
26 for synthetic imaging. It begins by asking whether the dataset
was generated from personal data. If not, it is likely anonymous
(outside GDPR) provided you document the generation process
and confirm that no linkage keys exist. If it was generated from
personal data, you then assess re-identification risk. First, run
membership/attribute-inference attacks and compare their AUC
to a random-guess baseline; results meaningfully above baseline
indicate pseudonymous data (GDPR applies). Next, examine
small-population/rare-disease signals (e.g., k-anonymity counts,
site-specific rarity); any such risk also leads to a pseudonymous
classification. Finally, check for linkage or memorisation risks—
presence of keys, released weights/checkpoints that leak training
samples, nearest-neighbour/inversion probes suggesting copying,
or auxiliary datasets that enable linkage; any positive finding
again implies pseudonymous treatment with safeguards. Only if
all three checks (attacks, rarity, linkage/memorisation) are
negative or at baseline may the dataset be deemed anonymous,
in which case you retain the evidence demonstrating that re-
identification is “not reasonably likely.” Dashed callouts in the
figure list the concrete evidence expected at each step.

Scholarly perspectives on synthetic data
governance

A growing body of scholarship addresses the challenges and
opportunities of synthetic data in the EU regulatory context.
Scholars agree that while current frameworks allow for synthetic
data use, legal ambiguity persists, especially regarding GDPR
compliance (8). Synthetic data are increasingly recognised as
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TABLE 2 Mapping synthetic-imaging use cases to EHDS/GDPR/AI Act/MDR obligations.

Use case

EHDS role?

GDPR statusP

Al Act risk©

10.3389/fdgth.2025.1620270

MDR implications (if
clinical)

Ul. Method
development/
education (non-
clinical)

Controller: research org./data
holder defining purpose. Processor:
hosting/cloud provider or lab IT.

Often anonymous if: no linkage keys
retained; MIA/AIA <baseline; no small-
population leak risk; no model weights
exposing memorisation. Otherwise
pseudonymous.

Typically minimal/limited
risk (research/education,
not placed on market).

Not a medical device. No MDR.

U2. Pre-clinical model
development/
validation (bench/off-
line)

Controller: AT developer/
consortium. Processor: technical
host and external labs.

Frequently pseudonymous unless strong
evidence of anonymisation per Recital
26°.

If intended for healthcare
diagnosis/triage: high-risk
(pre-market stage of high-
risk system).

If used to support clinical evidence for
Software as Medical Device (SaMD):
contributes to technical
documentation and performance eval.

U3. Benchmarking/
fairness audits across
sites

Controller: benchmarking
coordinator. Processors:
participating sites’ IT.

Case-dependent; cross-site linkage may
increase re-ID risk. Treat as
pseudonymous unless tests show
otherwise.

Limited to high
depending on audited
system’s intended medical
purpose.

No MDR unless used as clinical
evidence for a device.

U4. Training/
validation for
diagnostic Al to be
CE-marked

Controller: manufacturer (defines
purposes/means). Processors:
CROs, cloud MLOps, annotators.

Treat as pseudonymous (linked to real
distributions); document privacy tests;
PETs recommended.

High-risk (health AI
under MDR scope).

MDR applies: synthetic datasets must
be traceable; included in clinical/
performance evaluation package.

U5. Public release of
synthetic dataset (open
or controlled)

Controller: releasing institution
(sets purpose/licence). Processor:
repository/portal operator.

Release only if anonymous per Recital
26 with evidence: MIA/AIA<baseline;
NN/memorisation checks; small-
population safeguards; documentation
of pipeline.

Not an Al system per se;
risk depends on
downstream use.

No MDR by itself; downstream
clinical use may trigger MDR.

U6. Cross-border
secondary use via
EHDS data access
bodies

Controller: data user for secondary
purpose; Data holder and access
body have governance duties;
Processors: data space infrastructure
providers.

Pseudonymous by default; access body
enforces safeguards. Anonymity must
be justified with tests.

Depends on project:
research (minimal/
limited) vs. device
development (high-risk).

If supporting intended clinical
performance: MDR duties on the
manufacturer (traceability,
documentation).

3EHDS role: “controller” determines purposes/means; “Processor” acts on behalf of a controller. Data access bodies govern secondary-use access.

bGDPR status: “anonymous” only when re-identification is not reasonably likely considering time, cost, and technology; otherwise treat as “pseudonymous.”

CAI Act risk: healthcare diagnostic/therapeutic Al is generally high-risk. Research/education tools not placed on the market are typically minimal/limited risk.

dMDR implications: apply when software is a medical device or evidence contributes to a device’s clinical/performance evaluation.

€Evidence expectations (Recital 26): membership/attribute inference attack results, nearest-neighbour/memorisation probes, small-population/rare-disease analysis, absence of linkage keys,

and documentation of generation/DP/PET settings.

[ Start: Synthetic imaging dataset under assessment ]

Likely Anonymous
(outsde GDPR)

Document generation method and absence oflinkage keys

i Evidence: pipeline transparency, provenance, no access to any

i counts, rarity analysis, site

FIGURE 2

{ Evidence: k-anonymty style

Yes

Generated
from Yes
personal
data?
Assess re-identification risk Evidence: membership/attribute inference AUC,
(time, cost technology) nearest-neighbour’'memorisation probes.
No Are at?ack Yes
metrics
above
baseline? Any linkage
keys, model
No weights
Sx'nall No exp'os'rllg,
e =y
signals? sisko

Anonymous (outside GDPR) Evidence: key e
Retain documentation supporting “notr bly o i r;co 5
likely” re-ID [eEmepoicy 1or

weights/checkpoints;

auxiliary dataset audit

Apply PETs (e.g., DP, FL); limit

Pseudonymous (GDPR applies)
access; document residual risk

1
)

Recital 26 decision tree: is a synthetic imaging dataset anonymous or pseudonymous? Evidence expectations shown in dashed notes.
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pivotal for privacy-preserving data sharing under the EHDS, with
recent advancements in deep generative models enhancing their
fidelity and utility (14, 15). Nevertheless, concerns remain
around re-identification risks. As Biasin et al. (29) and van der
Wel (30) argue, synthetic data must be rigorously assessed based
on how they are generated. Improperly designed datasets could
still fall under GDPR provisions, particularly where re-
identification is plausible. The GDPR’s flexibility allows Member
States to implement additional rules for health data, resulting in
regulatory fragmentation and potential obstacles to cross-border
collaboration (23). Borissova (36) and Cimina (37) highlight the
tension between Open Science and data protection. While
data their
classification as anonymised or pseudonymised remains unclear,

synthetic offer a privacy-friendly alternative,
complicating their use in collaborative research. Cross-border
data sharing further intensifies these challenges, particularly
around consent, data sovereignty, and integrating privacy-
preserving techniques such as differential privacy (15).

Debates also focus on the EHDS framework’s definition of
health data. As noted by Foa (1), its scope includes both
personal and non-personal data. Yet, it lacks clear guidance on
how synthetic data should be classified. For Borissova (36), the
legal uncertainty undermines the potential of synthetic data
unless clarified within the EHDS.

International comparisons highlight regulatory divergence.
Casarosa and Greser (32) contrasts the GDPR’s strict data
protection with more permissive frameworks like HIPAA and
China’s  PIPL.  These

interoperability and international collaboration, reinforcing calls

differences  create  barriers to
by Borissova (36) for alignment through bilateral agreements or
global governance initiatives.

In the technical domain, scholars advocate for using Privacy
Enhancing Technologies (PETs) such as Federated Learning and
Homomorphic Encryption to support secure data sharing
(38, 39). These methods allow decentralised collaboration without
raw data exchange, aligning with EHDS priorities and addressing
data sovereignty concerns. The COVID-19 pandemic provided a
testbed for such approaches, demonstrating the utility of synthetic
data and the need for interoperable data models (14, 40).

Ethical and procedural transparency remains a central
Authors

synthetic data generation methods,

concern. stress the importance of documenting

publishing evaluation
metrics, and developing meaningful consent frameworks—
particularly when individuals are unaware that their data were
used to generate synthetic datasets (20, 29, 36). Aspell et al. (41)
argue that evaluation frameworks for synthetic data remain
underdeveloped and call for robust metrics to assess fidelity,
representativeness, and utility in applied healthcare contexts.
Regulatory misalignment further complicates implementation.
The AI Act’s risk-based classification system does not neatly map
onto GDPR principles, contributing to uncertainty around the
legal status of synthetic data (31). Cybersecurity risks and
unclear data ownership also pose challenges, with calls for
international coordination to ensure ethical and lawful data use
(32, 42). In particular, Davidson and Winter (43) underscore the
importance of anticipating emerging governance gaps when
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multiple legal instruments—such as the GDPR, AI Act, and
EHDS—intersect without clearly delineating responsibilities.

The lack of standardised interoperability protocols across
Member States impedes the integration of synthetic data into
cross-border health systems. Harmonisation of definitions and
frameworks is critical to ensuring synthetic data fulfil their
potential as safe, equitable tools for healthcare innovation (14, 36).

Synthetic data has an important role in the European digital
health ecosystem. While current regulations do not explicitly
address their use, synthetic datasets intersect with multiple legal
frameworks, including the GDPR, AI Act, MDR, and EHDS.
Scholarly contributions reveal a strong consensus on their potential
innovation while

to advance privacy-preserving highlighting

unresolved issues surrounding legal classification, consent,
interoperability, and ethical governance. Institutional efforts from
the European Commission and scholarly calls for standardisation—
such as those by Tozzi et al. (35), Pereira et al. (10), Davidson and
Winter (43), and Aspell et al. (41)—underscore the importance of
a harmonised and transparent framework. Addressing these
challenges through coordinated regulation, technical standards, and
ethical practices is essential to unlocking synthetic data’s full value

in European healthcare and beyond.

Synthetic image dataset methodology
and case studies

Integrating synthetic data into medical imaging research
within the European Health Data Space offers transformative
potential but raises critical ethical concerns. This section
discusses how synthetic data can address privacy preservation,
data scarcity, and bias mitigation challenges. Three use cases are
presented to illustrate cross-border collaboration in data
transfer, the use of synthetic medical image datasets in
validation, and the generation of data from Electronic Health
Record (EHR) cases aligned with the objectives of the EHDS.

Ethical considerations include ensuring that synthetic datasets
do not perpetuate or exacerbate biases present in the original data
—particularly concerning under-represented populations—and
maintaining representativeness across diverse demographic
groups. Moreover, robust validation frameworks are essential to
assess synthetic data’s reliability and clinical relevance, especially
healthcare

Transparency in data generation processes and adherence to

in sensitive domains such as diagnostics.
privacy regulations, such as the GDPR, foster trust among
researchers, clinicians, and patients. By prioritising inclusivity,
fairness, and accountability in synthetic data practices, the
European Health Data Space can harness these innovative tools
to advance medical imaging while upholding ethical standards

essential for equitable healthcare innovation.

Synthetic image data

Computer-Aided diagnosis (CAD), driven by AI and deep
learning methods, has recently supported the process of medical
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image analysis—especially MRI—and diagnosis. However,
training deep learning models requires large sets of medical
imaging data. While Generative Adversarial Networks (GAN)
were initially popular for generating synthetic data in the
medical imaging domain, they continue to address this challenge
effectively (5, 44). GAN are a class of deep learning models
composed of two neural networks: a generator and a
discriminator. The generator produces synthetic data by creating
random noise and generating increasingly realistic outputs (44).
At the same time, the discriminator evaluates whether the data
are real or synthetic using binary classification (24, 44). The two
networks improve iteratively through adversarial training,
resulting in highly realistic synthetic outputs (45).

GAN have transformative applications in medical imaging
datasets, especially for brain MRI. Clinically, they support
advanced analysis by synthesising missing MRI sequences or
generating 3D brain MRIs (45). GAN offer significant benefits
across clinical research, medical education, and patient privacy

protection, among other areas.

Synthetic data generation and diversity

The production of large volumes of synthetic medical images
—such as realistic brain scans—can significantly enhance training
datasets. This is especially valuable for rare conditions like brain
tumours or neurodegenerative diseases, where real data is scarce
(19, 44, 45). Synthetic data also benefits medical education by
providing
simulations, allowing students to learn more effectively and

abundant training materials and interactive
encounter a broader range of clinical scenarios. GAN, in
particular, enable the creation of customised datasets that
include both common and rare edge cases, helping students and
professionals become familiar with diverse conditions (45).
Moreover, synthetic medical image data is increasingly used to
augment datasets for AI/ML-based diagnostic tools, predictive
screening systems, and other health technologies. This helps
mitigate challenges related to limited or imbalanced real-world
datasets. Using synthetic data for pre-testing and validation can
also reduce costs and accelerate research timelines before
transitioning to real-world deployment (19). In summary,
synthetic image data can support various aspects of medical
research, education, and technology development. Synthetic
image data can help with the following aspects:

1. Tumour segmentation
Generative Adversarial Networks (GANs) have shown
significant promise in enhancing tumour segmentation tasks
by generating highly accurate segmentation masks that
delineate tumour boundaries. This is particularly beneficial
in brain MRI, where tumours often present with complex
shapes and indistinct edges. By synthesizing annotated
examples, GANs can augment training data and improve the
robustness and sensitivity of segmentation algorithms used
in clinical diagnostics (45).
2. Super-resolution and image quality enhancement
Low-resolution or poor-quality medical scans can hinder
diagnostic accuracy, particularly in resource-limited settings.
GANSs contribute to super-resolution by learning to enhance
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these images, producing higher-resolution outputs that retain
anatomical fidelity. This refinement aids radiologists and Al
systems alike in detecting subtle pathological changes that
might otherwise be missed in noisy or compressed images (45).

3. Modality translation
GANs can simulate disease progression by translating
healthy brain MRIs into their diseased counterparts. This
kind of image-to-image translation supports research and
clinical training by creating synthetic but realistic
progressions of neurodegenerative diseases, tumours, or
stroke lesions. Such applications allow for controlled
and help fill gaps

longitudinal imaging data is limited or unavailable (45).

experimentation where real-world
4. Prognosis and image registration
Though less widely explored, GANs are emerging tools in
prognosis modeling—predicting how a disease is likely to
evolve over time based on imaging patterns. In addition,
GANSs assist in image registration by aligning images taken
at different times or using different modalities, improving
longitudinal analysis and multi-modal integration in
treatment planning (45).
5. Protection of patient privacy
Importantly, because synthetic images do not correspond to
actual individuals, they eliminate the risk of patient re-
identification. GAN preserve the statistical properties of real
datasets without reproducing identifiable features, making
them a powerful approach to data sharing that complies with
ethical and legal standards such as GDPR and HIPAA (44).
6. Improved model performance
Synthetic image data can substantially enhance the
performance of machine learning models, especially in tasks
where real data is limited or imbalanced. A notable study by
Brugnara et al. (46) demonstrated this in the context of
detecting new multiple sclerosis (MS) lesions on brain MRIL
By integrating synthetic data into the training pipeline, the
ResNet model’s AUC increased from 56% to 77.5%, while an
attention-based model achieved a leap from 83.6% to 93.3%.
These improvements underscore the potential of synthetic
data in boosting generalisability and performance across
different AI architectures and clinical settings.
7. Stress-testing AI models
Synthetic data empowers researchers to replicate rare diseases
and simulate challenging imaging conditions that are often
underrepresented in real-world datasets. For instance, GANs
can generate synthetic histological images of rare cancer
subtypes or introduce artefacts such as noise and distortion,
enabling robust testing of diagnostic models. Additionally,
synthetic data plays a crucial role in mitigating domain shift.
By emulating variations in imaging protocols, equipment
types, and patient populations across different institutions, it
helps uncover and correct biases in AI models trained on data
from a single source. This significantly enhances the models’
ability to generalise across diverse clinical environments (24).

While a diverse array of methodologies exists for generating
synthetic image data, our focus is on Generative Adversarial
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Networks (GAN) due to their initial popularity in the medical
imaging domain (5, 44). Variations of GAN are particularly
advantageous for preserving privacy while effectively generating
synthetic tabular data. They are renowned for their ability to
handle high-dimensional data; however, hyperparameter tuning
is necessary to prevent model collapse (47).

The transformative role of GAN in medical imaging continues
to expand, offering benefits that range from data augmentation to
enhanced diagnostic precision and privacy preservation. Their
data for
simulating ~ disease

versatility extends to generating

quality,
progression, and stress-testing AI models across varied imaging
These
but
generalisable clinical tools. To better understand the landscape

synthetic rare

conditions, improving image

conditions. capabilities not only enhance model

robustness also contribute to more equitable and
of GAN applications in medical imaging, Table 3 summarises
key GAN architectures and their corresponding use cases,

drawing on recent findings by Kim et al. (5) and Cheng et al. (48).

Case studies in synthetic medical imaging

Several studies demonstrate the application of synthetic image
datasets in overcoming barriers in medical research, particularly
data
collaboration. Table 4 summarises selected case studies, their

regarding  privacy, availability, and  cross-border

methodologies, and their impact on medical imaging.

Case studies

Two use cases from Aundn et al. (39) and Yan et al. (57) have
been selected as case studies due to their strong alignment with the
objectives of the EHDS, particularly in enabling secure cross-

TABLE 3 Different model of GAN for medical image synthetic data.

GAN model Usage in medical imaging Special features

10.3389/fdgth.2025.1620270

border data sharing and reuse, while addressing challenges
related to privacy and interoperability.

Aunén (39) comprehensively evaluate Privacy-Enhancing
Technologies (PETs), including Federated Learning, Differential
Privacy, and Homomorphic Encryption. It demonstrates their
applicability within data spaces to support secure collaboration
across organisations. The study emphasises the importance of
privacy preservation in facilitating data sharing, directly
resonating with the EHDS’s goal of establishing interoperable
and secure frameworks for health data exchange across the EU
and beyond. Furthermore, it highlights practical examples—such
as the application of federated learning in healthcare use cases—
showing how PETs can help overcome critical barriers like data
heterogeneity, quality issues, and privacy concerns, which are
key challenges to fulfilling the EHDS’s vision.

In contrast, Yan et al. (57) focus on generating synthetic
Electronic Health Record (EHR) data using advanced GAN-
based models, such as EMR-WGAN. This paper addresses the
EHDS’s objective of standardising and making health records
interoperable by offering a transparent tutorial on generating
high-quality synthetic EHRs that preserve statistical fidelity while
protecting patient privacy. The practical application of synthetic
data generation supports secondary uses, including machine
learning model development, hypothesis generation, medical
education, and Al-driven healthcare innovation. Unlike other
that

implementation, this paper illustrates how synthetic EHR data

studies concentrate solely on privacy or technical
can be tailored to specific use cases while remaining accessible
and usable across various healthcare systems.

These two papers stand out by offering actionable frameworks
that align with EHDS regulatory aims while providing practical
solutions to technical barriers in health data sharing. Aunén
(39) and Yan et al. (57) uniquely address both technological

maturity—such as federated learning protocols—and real-world

Problem solved

Deep convolutional | Generates high-quality synthetic medical images,

GAN (DCGAN)
Conditional GAN
(CGAN)

Progressive
growing GAN
(PGGAN)
StyleGAN

CycleGAN

StarGAN

Differentially
private GAN

such as MRI or CT scans

Produces targeted medical images, such as those
of specific diseases or orGAN

Creates high-resolution synthetic medical
images, such as detailed brain MRIs

Generates synthetic medical images with precise
control over features like organ contours or
tumor textures

Converts low-dose CT to high-dose CT or
generates missing MRI sequences from other
modalities

Synthesises multi-contrast MRI or
echocardiography views from limited data

Generates privacy-preserving synthetic medical
images but with reduced quality, making it less
suitable for high-dimensional datasets like
medical images

Frontiers in Digital Health

Improves image quality and stability during
training compared to earlier GAN

Enables controlled generation of images (e.g.,
specific tumour types)

Stabilizes training and improves fine details in
generated images

Offers fine-grained control over high-level
attributes (e.g., shape) and stochastic variations
(e.g., texture)

Works without paired datasets, using cycle-
consistency loss to ensure realistic translations
between modalities

Handles diverse datasets and imaging modalities
efficiently with a unified framework

Protects against membership inference attacks,
especially in scenarios with dataset shifts.
Ensures privacy through DP-SGD, which adds
noise and clips gradients during training

1

Addresses the need for high-quality synthetic
data for training models, reducing privacy risks
Solves class imbalances in datasets by generating
condition-specific data

Addresses the challenge of generating high-
resolution medical images needed for clinical
applications

Enhances diversity in datasets by allowing
variation in image styles while maintaining
realism

Facilitates modality translation, reducing the
need for multiple imaging sessions and radiation
exposure

Simplifies multi-modality imaging workflows
and reduces dependency on large datasets across
domains

Addresses privacy concerns by preventing
sensitive data leakage from training datasets.
However, struggles with maintaining image
quality and utility, which negatively impacts
downstream classification tasks and fairness
metrics
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implementation—such as GAN-based synthetic EHR generation—
making them exemplary for illustrating how EHDS objectives can
be effectively operationalised across Europe and on a global scale.

Case study 1: cross-border synthetic data transfer

The primary objective of this experiment was to demonstrate
how Federated Learning (FL) facilitates collaborative machine
learning across multiple healthcare institutions while preserving
patient privacy. It aligns with the broader aims of health data
spaces, which seek to enable secure and privacy-preserving data
sharing to advance medical research and enhance patient
outcomes. By leveraging FL, the study tackles critical issues such
as data accessibility, heterogeneity, and privacy concerns,
showcasing FL’s potential to overcome major barriers in the
healthcare domain.

The study employed publicly available datasets of skin lesion
images sourced from four institutions in Australia, Austria,
Brazil, and the Netherlands. The datasets included HAM10000,
PAD-UFES-20, and MED-NODE. Initially, the combined dataset
contained eight types of skin lesions, but this was reduced to
five (nevus, melanoma, actinic keratosis, basal cell carcinoma,
and benign keratosis) due to class imbalance and insufficient
sample sizes for certain lesion types. This selection helped
mitigate data imbalance by focusing on lesion categories that
were adequately represented across the participating institutions.

Several preprocessing steps were carried out to prepare the
data for training. First, the HAM10000 dataset was split into
subsets corresponding to Australia and Austria, creating four
distinct datasets. The images were then normalised to a
resolution of 224 x 224 pixels with RGB channels. Each pixel
value was standardised by subtracting the mean and dividing by
the standard deviation of each channel. Finally, each dataset was
divided into training (75%) and testing (25%) sets, ensuring no
overlap. A global test set was constructed from the local test sets
to assess the generalisation performance of the FL model.

A pre-trained MobileNet v2 Convolutional Neural Network
(CNN) was utilised for transfer learning due to its proven
effectiveness in skin lesion classification tasks. Transfer learning
reduced the need for extensive labelled data and minimised
computational requirements. A weighted cross-entropy loss
function was applied to address class imbalances in this
multiclass classification task. Class weights were set inversely
proportional to the sample sizes of each class, ensuring that
under-represented classes had more significant influence during
model training. For the FL setup, local models were trained
independently on each dataset for 50 epochs with a batch size of
32, using stochastic gradient descent (SGD) and a learning rate
0.001. Models were then aggregated using the FedAvg strategy
over 20 communication rounds, each involving 10 epochs of
local training per institution.

The performance of both local and federated models was
assessed using two key metrics: the F1 score and confusion
matrix analysis. F1 scores were calculated per class and as a
weighted average across all classes to account for class imbalance.
The confusion matrix was normalised by class support to provide
a clear visualisation of prediction accuracy for each class.
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The findings revealed significant differences between models
trained locally and those trained using the federated approach.
Locally trained models performed well on lesion types
sufficiently represented in their respective datasets but showed
poor performance on under-represented classes or those absent
from the local data. For instance, the Netherlands dataset lacked
certain lesion types, resulting in zero predictive capability for
those classes.

In contrast, the federated model demonstrated improved
generalisation across all lesion types. Notably, institutions such
as the one in the Netherlands could predict lesion types absent
from their local training data due to knowledge transfer through
model aggregation. However, slight reductions in performance
were observed in specific cases—for example, predictions of
actinic keratosis in Australia—likely due to averaging effects
the

parameters instead of raw data, FL preserved patient privacy

inherent in aggregation process. By sharing model

while enabling collaborative learning across diverse and
geographically distributed datasets.

This experiment highlights the transformative potential of FL
for healthcare data sharing within health data spaces. It shows that
FL can address challenges such as data heterogeneity, class
imbalance, and privacy in multiclass classification problems. It
the
strategically handling imbalanced datasets for successful model
FL

collaborative research without compromising data ownership or

also underscores importance of preprocessing and

training. From an industry perspective, facilitates
patient confidentiality. It enables wider access to diverse
datasets, thereby improving the robustness and generalisability
of AI models. Future directions include integrating FL with
other PET—such as Differential Privacy or Secure Multi-Party
Computation—to bolster security and reduce risks like potential
information from model Furthermore,

leakage updates.

developing advanced aggregation techniques tailored to
heterogeneous datasets could further enhance performance in
federated environments.

In conclusion, this case study demonstrates how FL aligns
with the core objectives of health data spaces by enabling secure,
privacy-preserving collaboration among healthcare institutions
while essential in  Al-driven

addressing challenges

medical research.

Case study 2: synthetic electronic health record
The primary objective of this experiment (included as non-
imaging comparator to clarify governance issues that equally
affect imaging) was to create high-quality synthetic EHR data
that mimics the statistical properties of real-world patient data
while maintaining privacy. It aligns with the objectives of the
EHDS, which seeks to promote secure and privacy-preserving
data sharing to advance healthcare research and innovation.
This in health data
accessibility by enabling the generation of realistic synthetic
data
imbalances in the subpopulation representation.
This study utilised the publicly available MIMIC-IV dataset
from the Beth Israel Deaconess Medical Centre, which contains

approach addresses key challenges

datasets, including privacy concerns, scarcity, and
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structured EHR data from patients admitted to intensive care units
between 2008 and 2019 (Figure 3). The dataset includes
demographic information, diagnoses, procedures, and clinical
measurements such as BMI and blood pressure. A subset of
patients with at least one hospital admission was extracted,
resulting in a cohort of approximately 181,000 patients. The
diagnoses were converted from ICD-9/10 codes to phecodes for
clinical relevance and dimensionality reduction.

Preprocessing involves several steps to prepare the data for
GAN training. Outliers were identified and removed based on
clinically implausible values (e.g. BMIs > 60 or < 10). Missing
values were addressed using random sampling based on
marginal distributions for variables, such as BMI and blood
pressure, which had around 38%-43% missing rates. Continuous
variables were normalised to a range of (0,1) to ensure
consistent

scaling during model training. Low-prevalence

concepts were removed or aggregated into higher-level
categories to improve the model performance while maintaining
clinical relevance.

The GAN architecture consists of two neural networks: a
generator that produces synthetic records and a discriminator
that distinguishes between real and synthetic data. The EMR-
WGAN model was employed because of its ability to capture
complex statistical relationships in EHR data while stabilising
the training through Wasserstein divergence. The training used
a non-conditional paradigm where all variables were treated
equally without explicit labels guiding the generation. Multiple
runs were performed with checkpoints evaluated for optimal
synthetic data quality to address challenges, such as mode
collapse and instability in GAN training. A SoftMax layer was
added to ensure that categorical variables adhered to the one-
hot encoding constraints. While record-level clinical constraints
(e.g. prohibiting male patients from having female-specific
diagnoses) were not enforced during training, these violations
were analysed during evaluation.

The quality of the synthetic data was assessed across three

dimensions: utility, privacy, and fairness. The utility metrics

10.3389/fdgth.2025.1620270

o Dimension-wise Distribution: Evaluated how well synthetic
data preserved the variable distributions.

« Column-wise Correlation: Measured correlation consistency
between real and synthetic variables.

o Latent Cluster Analysis: Assessed structural similarity in the
latent space.

o Prediction performance: Comparison of model performance
when trained on real vs. synthetic data.

o Feature Examined

Importance: overlap in  key

predictive features.

Privacy risks were evaluated using membership and attribute
focused on

representation patient subpopulations. The
demonstrated that the EMR-WGAN model effectively generated
high-quality synthetic EHR data while reducing privacy risks

inference attacks, whereas fairness equitable

across results

compared with real datasets. Dimension-wise distribution
analysis showed that the second run achieved the lowest
(APD),

preservation of variable distributions. Column-wise correlation

absolute prevalence difference indicating  better
and latent cluster analysis also highlighted strong alignment
with real data structures.

However, this study had some limitations. Male-specific
diagnoses were occasionally assigned to female records in
synthetic datasets because of the insufficient preservation of sex-
diagnosis correlations. Privacy evaluations revealed significantly
reduced membership inference risks compared to real data but
highlighted minor variations across runs. This experiment
of GAN-based synthetic EHR

generation as a transformative tool for healthcare research

underscores the potential
within the EHDS framework. This approach addresses critical
barriers, such as privacy concerns and limited access to diverse
patient populations, by enabling the secure sharing of realistic
yet anonymised datasets. Synthetic EHRs offer opportunities for
hypothesis testing, model training, and educational purposes
without compromising patient confidentiality. In the health care

industry, they facilitate software development, medical
include: education, and system testing under realistic conditions.
Data preprocessing
( Remove outliers ] ( Data generation and ]
L J postprocessing
N Model training ( Data quality evaluation
- ) s < Nonconditional generation } =
o Nonconditional training [ { Utility J
L . J
b s Conditional generation \
v - 2 S - ‘ } - [ Privacy ‘
Normalize continuous | Conditional training L J
variables ‘ L o l [ Fairness ’\
= v - L %) Determine composition }
Handle concepts with ‘
low prevalence
\ J
L J
FIGURE 3
An overview of synthetic electronic health record data generation process through training generative models (Yan et al., 2024).
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Future directions include incorporating temporal information
into synthetic records for longitudinal analyses, improving
fairness across subpopulations, and exploring hybrid models that
combine GAN with other privacy-enhancing technologies such
as differential privacy. These advancements align with the EHDS
goals by promoting equitable access to high-quality health data
while safeguarding individual privacy.

Failure modes and a minimum validation
battery for synthetic medical imaging

From methodological overview to quality assurance, we now

specify
validation battery. Although synthetic data can mitigate access

imaging-specific failure modes and a minimum
and privacy barriers, generative pipelines are prone to well-
documented pitfalls, such as mode collapse and diversity loss,
identity leakage/memorisation that elevates re-identification risk,
overfitting and site/style shortcuts that undermine external
validity, and hallucinated anatomical artefacts that erode clinical
credibility. Because these issues directly intersect with the
privacy (e.g., membership/attribute inference) and fairness
concerns discussed earlier, a clear set of pre-release checks is
needed before any secondary use under the EHDS. Below, we
enumerate imaging-specific failure modes and propose a
minimum validation battery that covers utility/fidelity on held-
out real data, privacy attack testing, subgroup fairness, and
documentation/traceability, establishing a pragmatic evidentiary
floor. This battery is designed to complement the regulatory
mapping (Table 2, Figure 2) and to operationalise the
governance dimensions formalised in the SID-GT toolkit,
enabling data stewards, developers, and access bodies to apply

consistent acceptance criteria aligned with EHDS objectives.

Minimum validation battery before secondary use
under EHDS

We recommend that the following baseline battery be
completed and reported before secondary use or sharing within
EHDS. Items map to the governance pillars (utility, privacy,
fairness, traceability, and disclosure) and to EU frameworks, as
summarised elsewhere in the manuscript.
A. Utility & fidelity (held-out real data)

o Task performance on held-out real data: report AUC/FI,
(e.g., ECE/Brier),
real+synthetic, and (iii)

sensitivity/specificity, and calibration

comparing (i) real-only, (ii)
synthetic-only training.

o External/site validation: evaluate across at least one external
site/scanner/protocol to test for domain shift; include
ablations of the synthetic proportion.

o Expert review: double-blinded radiologist rating (e.g., 5-point
realism/anatomical plausibility) with inter-rater agreement
(e.g., Cohen’s k); flag systematic artefacts.

o Distributional alignment. report simple but informative shifts
(intensity histograms, lesion size/location distributions); include

nearest-neighbour distance distributions to detect collapse.
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B. Privacy (link to “Privacy Risks and Re-identification”)

o Membership/attribute inference: report attack AUC vs. random
baseline; describe attacker knowledge. If above-baseline, treat as
pseudonymous and apply additional safeguards.

o Memorisation probes: nearest-neighbour search in a perceptual
feature space; duplicate detection; generator inversion tests;
report minimum distances and exemplar pairs.

o If using differential privacy (DP): report €, 6, clipping/noise
schedule, and induced utility trade-offs; document residual
risks in the release notes.

C. Bias & fairness (link to “Bias and Fairness™)

o Subgroup metrics with uncertainty: report AUC/F1 and
calibration with 95% ClIs for sex, age bands, ethnicity (where
lawful), and site; pre-specify acceptable disparity margins
(e.g., AAUC within a narrow, justified range).

o Coverage summary: provide subgroup counts/percentages in
the synthetic set; describe any targeted augmentation or
reweighting applied.

D. Traceability

o Data/model cards: document generator architecture, training
data provenance and inclusion/exclusion criteria, PETs/DP
settings, seeds/checkpoints, and versioning; maintain chain-
of-custody records.

E. Disclosure & labelling

o Synthetic labelling & intended use: mark datasets as synthetic;

state intended scope (research, education, pre-clinical
validation), limits (e.g., under-represented phenotypes), and

residual risks. Provide the licence and contact.

Acceptance guidance

o Release for broader secondary use (e.g, public/consortium
sharing): only if attack metrics are at or near baseline, no
memorisation evidence is found, expert review shows no
systematic anatomical artefacts, and subgroup disparities are
within pre-specified margins. Otherwise, treat as regulated
pseudonymous data with restricted access and safeguards.

o Clinical evidence contribution: when synthetic data contributes
to device performance documentation, ensure full traceability
and external validation;

prominently disclose synthetic

proportions and any fairness mitigations.

This validation battery is designed to be used in conjunction with
the governance checklist (SID-GT, cf. Table 5), providing a
pragmatic baseline for quality, privacy, and equity before
secondary use under EHDS.

Critical discussion and future
directions

Current challenges

The rapid advancement of AI in healthcare presents
significant ethical, technical, and regulatory challenges. As
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TABLE 5 SID-GT: Pillars, reporting checklist, and EU framework mapping.

10.3389/fdgth.2025.1620270

‘m What to report (checklist) EU framework anchors

1. Utility &

fidelity definition and clinical/contextual thresholds; external validation/site-shift tests;
ablation of synthetic-vs-real mix; data leakage checks.

2. Privacy membership- and attribute-inference attack AUC vs. random baseline; nearest-

neighbour/memorisation probes; if DP used: report ¢, &, clipping/noise schedule,

Held-out real-data performance (AUC, F1, sensitivity/specificity, calibration); task | AI Act (Art. 10-15 data governance, risk mgmt., transparency);

MDR (clinical evidence/performance evaluation for intended
purpose).

GDPR (Recital 26; Arts. 4, 5, 25 privacy by design); EHDS
(secondary-use safeguards, access governance).

and utility trade-off; residual linkage risks (singling out/linkability/attribute

inference) and mitigations.

3. Bias & fairness

calibration by subgroup; dataset composition/coverage; mitigations (reweighting,

Subgroup metrics (sex, age, ethnicity, site) with CIs; AAUC/AF1 vs. overall;

AI Act (Art. 10 data quality/representativeness); EHDS (equitable
access/quality).

fairness-aware synthesis, targeted augmentation) and post-hoc audits.

4. Traceability

interoperability notes (schemas/ontologies).
5. Disclosure &
labelling

dataset DOI/version.

Federico and Trotsyuk (62) argue, there is a dual obligation to
foster innovation while safeguarding individual rights, with
particular attention paid to unintended consequences, such as
privacy breaches and the amplification of existing biases. Their
call for a globally harmonised regulatory framework reflects a
growing consensus that balancing innovation with public welfare
requires coordinated, anticipatory governance. A similar
perspective is echoed by Aucouturier and Grinbaum (63), who
advocates a shift from compliance-driven assessments to ethics-
by-design methodologies. Such an approach would embed
ethical considerations directly into the development pipeline of
Al systems, thereby enhancing their long-term accountability
and societal alignment. Collaborative governance is critical in
this context. Baumgartner et al. (15) emphasise the importance
of interdisciplinary teams in managing the complexities of
modern health data systems, particularly where data sovereignty,
interoperability, and privacy intersect. Colonna and Submitter
(64) further note that as private actors increasingly influence
public AI research, governance frameworks must evolve to
counter regulatory arbitrage and ensure that societal interests
are prioritised over commercial gain.

Cross-national data sharing introduces additional complexity
When data

quality, and

owing to the heterogeneous nature of datasets.

originate from multiple countries, format,
completeness varjations can negatively impact the performance of
privacy-enhancing technologies (PETs). This highlights the need
for rigorous pre-processing and homogenisation techniques. He
(2) points out that without a clear EU-level interpretation of
relevant laws, data access bodies and holders may apply
inconsistent standards, potentially undermining the EHDS goals.
Therefore, EHDS implementation must be closely monitored to
ensure that data minimisation and ethical use are consistently
upheld. The quality and representativeness of datasets remain a
persistent concern. Biasin et al. (29) and Burden et al. (38) warn
of the dangers of “data contamination” from synthetic content
and stress the need for diverse, high-quality datasets to prevent
Al systems from reinforcing existing inequities. Without rigorous
standards and continuous auditing, Al-driven systems risk

perpetuating harmful biases and eroding public trust.
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Model/data cards: purpose, provenance, training recipe, PETs, hyperparameters;
versioning and chain of custody; seeds/checkpoints; deterministic build info;

Explicit “synthetic” labelling; intended use (research, education, pre-clinical
validation); limits and residual risks; licence/usage restrictions; contact for queries;

AI Act (Art. 12 record-keeping/technical documentation); MDR
(Annex II technical file); EHDS (interoperability/metadata).

GDPR (Arts. 12-14 transparency); EHDS (access & transparency
obligations).

Transparency is a fundamental element in building trust.
Baumgartner et al. (15) underscore the value of open-source
methodologies and documentation for fostering confidence in
synthetic data and AI applications. However, as Federico and
Trotsyuk (62) cautioned, existing regulations often fail to
enforce transparency, leaving significant gaps in accountability.
Another pressing challenge relates to the resource demands of
synthetic data generation, particularly when using models, such
as GAN, for medical image synthesis. As Arora and Arora (44)
noted, the generation of high-quality synthetic images requires
substantial computational power. Asadi et al. (65) similarly
highlights the significant trade-offs between the costs of training
GAN measured in time, energy, and memory, and the practical
benefits of using synthetic data. This raises a critical question:
are the performance gains from synthetic datasets sufficient to

justify their resource intensity?

Future directions for synthetic data

The future of AI in healthcare will depend mainly on
addressing the aforementioned challenges, particularly regarding
the ethical, technical, and governance aspects of synthetic data.
Bertl et al. (66) identified several key barriers, including a lack
of standardised interoperability frameworks, ethical uncertainties
in data reuse, and insufficient collaboration among stakeholders.
These challenges are exacerbated by the speed of technological
change, which often outpaces the adaptability of the existing
regulatory frameworks. Therefore, robust yet flexible standards
are needed to ensure Al systems remain equitable, safe, and
effective (15, 62, 64, 66).

An equally pressing concern is the fair distribution of the benefits
of AL Federico and Trotsyuk (62) stressed the importance of
ensuring that Al advancements serve both underrepresented and
Their with  that of
Aucouturier and Grinbaum (63), emphasising ethical governance

underserved populations. view aligns
structures that prioritise inclusivity and societal well-being. The
challenges and opportunities surrounding synthetic medical

imaging within the EHDS framework require a coordinated set of
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actions. These must address technical hurdles and the ethical and
legal complexities of the implementation. Central to this effort is
the need to clarify data ownership, especially when synthetic
datasets are derived from personal health data. Intellectual property
concerns must be resolved, and individuals should retain agency
over how their real or synthetic data are used. It includes the
development of harmonised consent frameworks that enable
patients to make informed decisions about their data and provide
mechanisms to withdraw consent when needed.

Bias mitigation must also be prioritised in synthetic data
development. This can be achieved by integrating fair auditing
the data
generation pipeline. Ensuring that synthetic datasets reflect a

and demographic balancing mechanisms into
wide range of populations is critical for achieving equitable AI
outcomes. Interoperability is another major hurdle to overcome.
Unified protocols and standards across EU member states are
essential for facilitating seamless data exchange while respecting
national data sovereignty. Harmonising these frameworks will be
key to enabling collaborative Al innovation throughout Europe.
To prevent fragmentation and inconsistency, the EU must take
the lead in establishing a unified standard for synthetic-data
governance. It could be modelled
FUTURE-AI which propose benchmarks for technical quality,
ethical integrity, and interoperability. Such frameworks should

after initiatives such as

promote transparency, fairness, and robustness, which are
essential criteria for ensuring the reliability of synthetic data and
their integration into clinical workflow.

Embedding ethics-by-design principles at every stage of synthetic
data development is vital. From the outset, privacy, consent, and
should be supported by the

interdisciplinary ethics committees. Regular ethical audits should be

fairness considered  and
institutionalised to address risks and proactively build public trust.
Transparency in the data-generation process is crucial. Developers
should provide detailed documentation of their methodologies,
algorithms, and validation metrics. Open sourcing of these
frameworks, where possible, would facilitate peer review,
replication, and broader collaboration, aligning with Open Science
principles and enhancing trust in synthetic data tools. In essence,
ethical frameworks should not be viewed as regulatory hurdles but
innovation. Within EHDS,

governance mechanisms are essential for unlocking the full

as enablers of trust and robust
potential of synthetic imaging data. Addressing consent, ownership,
bias, and interoperability issues is fundamental to this vision.
Synthetic data offers the potential to transform healthcare by
enabling secure, privacy-preserving data sharing and supporting the
development of Al applications that are accessible and equitable.
With careful alignment of technical innovation and ethical
regulations, synthetic data can support advances in diagnostics,
personalised treatment, and public health, while maintaining public
confidence and compliance with fundamental rights.

One of the most exciting developments in this space is the
integration of synthetic medical image generation with natural
language processing (NLP), mainly through vision-language
models (VLM). Systems such as LLaVA-Med and Med-PaLM
merge the interpretive strengths of computer vision and text-
based Al to unlock powerful new applications (5):
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o Guided image synthesis: VLM can create synthetic medical
images based on clinical text inputs. For example, given a
description such as “an MRI scan showing glioblastoma with
a 5cm lesion in the frontal lobe,” the system can generate a
corresponding synthetic image.

o Multimodal dataset creation: By pairing synthetic images with
automated text annotations, VLM can create large-scale

tasks

segmentation, or anomaly detection.

multimodal datasets for such as classification,

o Visual question answering (VQA): These models can generate
thereby
supporting medical education and training by providing

synthetic visual responses to clinical queries,
tailored examples.

o Cross-modality synthesis: VLM facilitate conversion across
imaging modalities (e.g. MRI to CT), supporting diagnostic
flexibility, and reducing redundant scanning.

o Automated annotation and captioning: VLM streamline the
process of labelling images by generating consistent, detailed
captions, saving time and ensuring annotation quality.

« Interactive data generation: Through conversational interfaces,
clinicians can iteratively refine synthetic images by adjusting
input specifications, and

enhancing usability, tailoring

outputs to clinical needs (5).

Towards a governance toolkit for synthetic
imaging data

While the ethical and regulatory considerations discussed
above provide a conceptual foundation, their translation into
actionable practices remains a key challenge. To support
alignment with the European Health Data Space (EHDS)
objectives, we propose a Synthetic Imaging Data Governance
Toolkit (SID-GT). This toolkit serves as a practical checklist for
researchers, developers, and data custodians to evaluate synthetic
datasets along five essential governance pillars: utility, privacy,
fairness, traceability, and disclosure. The toolkit and checklist
presented here target synthetic medical imaging; when guidance
generalises beyond imaging, this is indicated explicitly. Each
pillar is explicitly linked to European regulatory frameworks.
including the GDPR, AI Act, MDR, and EHDS regulation,
ensuring that governance practices are not only technically
robust but also legally grounded. For clarity, Table 5 summarises
the
requirements, and their alignment with key EU regulatory

proposed  governance pillars, associated reporting
instruments. By embedding these dimensions into evaluation
protocols and reporting standards, the SID-GT promotes
transparency, accountability, and comparability across projects,
facilitating trust and interoperability within EHDS.

In conclusion, when developed and governed responsibly,
synthetic data can revolutionise medical research and healthcare
delivery across Europe. The EHDS provides a promising
foundation, but its success depends on concerted efforts to
integrate ethics, transparency, and standardisation into every

phase of synthetic data innovation. The introduction of a
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practical governance toolkit (Table 5) illustrates how these
principles can be operationalised, providing a concrete pathway
to ensure that synthetic imaging data are used in a manner that
is legally robust, ethically sound, and clinically meaningful.
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