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Synthetic data in medical 
imaging within the EHDS: a path 
forward for ethics, regulation, 
and standards

Junying Jiang, Lúcia Domingues and Jorge M. Mendes*

Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências 

Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal

The increasing availability of medical imaging data offers unprecedented 

opportunities for advancing artificial intelligence (AI)-driven healthcare. 

However, strict data protection regulations in the European Union (EU), 

especially the General Data Protection Regulation (GDPR), present significant 

challenges to data sharing and reuse. Synthetic data—artificially generated 

data that mimic the statistical properties of real data without revealing 

sensitive information—have emerged as a promising solution to bridge this 

gap. This perspective-style review examines the role of synthetic medical 

imaging data within the European Health Data Space (EHDS), a policy 

initiative aimed at enabling secure access to health data across the EU. While 

we briefly reference cross-cutting privacy-enhancing technologies and one 

non-imaging comparator to illuminate shared governance issues, our analysis 

and conclusions are scoped to imaging applications. We discuss the technical 

foundations and types of synthetic data, their potential to enhance 

reproducibility and innovation, and the complex ethical and legal concerns 

surrounding their use. Emphasising the need for a risk-based regulatory 

framework, we advocate for synthetic data governance that ensures utility, 

transparency, and accountability, especially when such data are generated 

using generative AI models. This work contributes to ongoing debates on 

how synthetic imaging data can support a privacy-preserving, data-driven 

healthcare ecosystem in Europe.
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Introduction

The European Health Data Space (EHDS) is a significant initiative that facilitates 

cross-border data sharing within the European Union (EU). EHDS aims to advance 

healthcare research, artificial intelligence (AI) development, and patient care by 

enabling access to healthcare data. Medical imaging data, which are crucial for 

diagnostics and treatment planning, encounter substantial obstacles to sharing owing 

to stringent privacy laws, ethical concerns, and security challenges. These barriers pose 

significant challenges to the development and deployment of innovative AI solutions 

in healthcare. Synthetic data that replicate realistic imaging datasets without 

compromising patient privacy have emerged as a promising solution to these 

challenges, particularly in the early stages of clinical validation. This review examined 
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the potential of synthetic data in medical imaging, focusing on its 

alignment with EHDS objectives, ethical considerations, 

regulatory compliance, and the establishment of industry 

standards. Specifically, it aims to (1) define synthetic data and 

its applications in medical imaging within the EHDS framework; 

(2) demonstrate how synthetic data can address barriers to 

clinical validation, particularly in the early stages of innovative 

solution development; (3) explore the ethical and regulatory 

considerations related to the use of synthetic imaging in the 

development and clinical validation; and (4) propose best 

practices to ensure synthetic data quality, interoperability, and 

applicability to support real-world clinical use cases. Our focus 

is synthetic medical imaging in the EHDS context. We 

occasionally draw on cross-cutting PETs and one contextual 

(non-imaging) comparator solely to clarify the same regulatory 

and ethical questions (e.g., Recital 26 anonymity, controller/ 

processor roles, AI Act risk). Unless explicitly noted, all claims, 

recommendations, and the governance toolkit are intended 

for imaging.

Methodology

This literature review employed an established and transparent 

framework to identify and synthesise relevant literature on the 

ethical and regulatory considerations of using synthetic medical 

image data within the EHDS context. Although the structure of 

this review draws inspiration from established frameworks, it 

does not fully conform to the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) guidelines.

To ensure broad coverage and relevance, a structured search 

was conducted across four major databases: PubMed, Scopus, 

Web of Science, and Google Scholar. The initial search was 

carried out on December 21st, 2024, with an update on January 

5th, 2025 to capture any newly added studies. Google Scholar 

was searched last to capture potential grey literature. In addition 

to database searches, forward and backward citation tracking 

was performed by screening the reference lists of included 

studies to identify further relevant works (leading to the 

addition of 29 studies).

Search terms were developed to re:ect the core themes of the 

review in consultation with subject-matter experts. Keywords 

included combinations of terms related to synthetic data, 

medical images, EHDS, ethics, applications, and clinical 

relevance. Consistent terms were used across all databases except 

PubMed, where Medical Subject Headings (MeSH) were applied 

as appropriate.

The review focused on studies addressing ethical and 

regulatory issues related to synthetic medical image data within 

the EHDS framework. The inclusion criteria were:

• English-language publications.

• Published between January 1st, 2020 and January 5th 2025.

• Studies discussing synthetic data, especially in medical imaging, 

with a link to legal, ethical, or clinical applications.

Given the broad scope of the topic, the search also employed 

multiple subsets of keywords to maximise sensitivity and 

relevance. From an initial pool of 516 studies, 68 duplicates 

were removed. Titles and abstracts of the remaining studies were 

screened against pre-defined inclusion criteria, excluding 332 

papers. The full texts of 119 remaining articles were then 

assessed, of which 53 were excluded for not meeting the 

eligibility criteria. A total of 66 studies were ultimately included 

in the final analysis. These were included because relatively few 

publications addressed the four core objectives of this review in 

an integrated manner. The complete screening results are 

summarised in Table 1, and the study selection process is 

illustrated in Figure 1.

This literature review adopted a structured and rigorous 

process to identify and analyse studies relevant to using 

synthetic medical image data ethically within the EHDS 

framework. Although the review was not formally registered or 

reported according to PRISMA standards, key elements—such as 

transparent inclusion criteria, structured searching, and 

screening by multiple reviewers—were incorporated to 

enhance robustness.

Given the limited literature directly addressing synthetic image 

data under EHDS, the included studies were organised into 

thematic subtopics: 

• Introduction to synthetic data;

• Synthetic data within EHDS or related legal/ethical 

frameworks;

• Applications in medical imaging;

• Implementation and technical considerations.

Each full-text article was assessed independently by the authors. 

Any disagreements during screening or categorisation were 

resolved through discussion. Relevant content was highlighted 

and categorised for use in the manuscript. This structured 

methodology enabled the development of a comprehensive and 

credible synthesis, supporting a nuanced discussion of 

generalisability, ethical compliance, and practical 

implementation of synthetic image data in the European health 

research and innovation landscape.

We scoped this review to ethical and regulatory aspects of 

synthetic medical imaging under the EHDS. A small number of 

contextual (non-imaging) sources are cited where they inform 

the same governance questions (e.g., GDPR anonymisation tests, 

secondary-use access via data access bodies, and high-risk AI 

obligations).

Synthetic data and its role in EHDS

With an imaging focus, we discuss how the EHDS is designed 

to enhance the sharing and reuse of health data across the EU. 

Where we reference LLMs/EHR or non-imaging PETs, these are 

used as cross-cutting comparators to the same governance issues 

faced by imaging. The conclusions remain imaging-scoped 

unless explicitly stated. EHDS establishes a health-specific 

ecosystem for primary and secondary health data use (1–6). By 
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clarifying the scope of secondary data use, the EHDS aims to 

facilitate the secure exchange and interoperability of health data 

throughout Europe (1).

EHDS addresses the challenges associated with increasing the 

volume and complexity of health data. These challenges include 

data bottlenecks resulting from the sensitivity of health 

information, interoperability issues due to a lack of 

standardisation, and fragmentation, which complicate the 

navigation of health services and data protection frameworks 

(6). To mitigate these issues, EHDS proposes a unified market 

for electronic health record systems, relevant medical devices, 

and high-risk AI-driven healthcare applications. It establishes 

governance frameworks, common standards, and infrastructure 

to ensure seamless data exchange from decentralised 

sources (1, 6).

A fundamental aspect of EHDS is the assurance that secondary 

use of data complies with ethical and legal standards, particularly 

in relation to the General Data Protection Regulation (GDPR). 

TABLE 1 Screening results.

Database Search results Search results Results Results after

(December 21st, 2024) update (January 5th, 2025) (duplicated removed) screening

Google scholar 165 165 165 37

PubMed 163 201 144

Scopus 44 44 37

Web of science 76 80 76 29

Forward and backward

Citation search 29 29 29

Total 477 519 451 66

FIGURE 1 

Flowchart representing of the selection of the included studies.
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The EHDS enhances data access rights, establishes governance 

structures at the Member State level, and requires standardised 

formats for health data systems (1). Nonetheless, a significant 

challenge persists: facilitating extensive data sharing, while 

safeguarding patient privacy and mitigating the risks associated 

with data breaches.

Synthetic data represent a promising solution within the 

EHDS framework, enabling stakeholders to utilise health data 

for research, AI model training, and policymaking without 

compromising patient confidentiality (4). Synthetic data consist 

of artificially generated datasets that maintain the statistical 

properties of real-world health data while removing personally 

identifiable information. This approach aligns with the objective 

of maximising the utilisation of health information, while 

ensuring legal compliance (4). Medical images, for instance, fall 

under the broader category of health data that the EHDS aims 

to make interoperable and accessible through the digitisation of 

health records across the EU (7). Synthetic medical imaging data 

enables researchers and clinicians to develop and test AI 

modelsat the early stages without accessing sensitive 

patient information.

Although a legal definition of synthetic data is absent, it is 

commonly recognised through its generation methodologies. 

Ianese (4) characterises synthetic data as artificial information 

derived from real datasets using AI techniques. Despite its 

fictitious nature, synthetic data retains the statistical 

properties of the original dataset, rendering it valuable for 

the research and training of machine learning models. 

Similarly, Greser (8) contends that synthetic data are not 

collected, but are instead generated algorithmically to mirror 

the statistical distributions of real-world data, with its utility 

contingent upon the accuracy and representativeness of the 

original dataset.

Various techniques have been used to generate synthetic 

health data. Generative Adversarial Networks (GAN) consist of 

a generator and discriminator, which collaboratively generate 

synthetic samples that closely mimic real data. Conditional GAN 

(CGAN) enhance this framework by integrating additional 

information, whereas Conditional Tabular GAN (CTGAN) 

further refine CGAN for structured health data by addressing 

rare occurrences through mode-specific normalisation (9). 

Autoencoders are neural networks that compress the input data 

into a latent representation before reconstructing them. 

Variational Autoencoders (VAE) advance this approach by 

ensuring that the latent space adheres to a Gaussian distribution 

(9). Alternative methodologies include SynthPop, which 

generates synthetic data sequentially based on conditional 

distributions; Maximum Spanning Tree (MST) methods, which 

preserve noisy marginals of low-dimensional data distributions, 

and PrivBayes, which constructs Bayesian networks and 

introduces noise into marginal statistics (9).

Synthetic data can be generated from actual electronic medical 

records, preserving their statistical properties, while ensuring the 

exclusion of any real patient data. In contrast to anonymisation 

techniques, synthetic data retains the essential characteristics of 

the original dataset while adhering to privacy standards (4).

The increasing deployment of Large Language Models (LLM) 

in the healthcare sector presents significant challenges related to 

data availability and quality. Access to high-quality medical data 

is frequently restricted by paywalls and regulatory constraints, 

thereby limiting the training of domain-specific AI models. 

Synthetic data have emerged as a viable solution, as they allow 

for the expansion of dataset size while ensuring privacy (10). 

A recent study introduced a medical LLM, GatorTronGPT, 

which was developed using synthetic data, resulting in enhanced 

clinical text generation performance compared with models 

trained solely on real data (11). Consequently, synthetic data 

generation effectively addresses data scarcity, enhances model 

performance, and improves generalisation, while 

safeguarding privacy.

The SECURED (Scaling up Secure Processing, Anonymisation 

and Generation of Health Data for EU Cross-Border Collaborative 

Research and Innovation) project, launched in January 2023, aims 

to enhance multiparty computation, data anonymisation, and 

synthetic data generation within the health sector. A significant 

application of this project is the creation of synthetic data for 

educational purposes, enabling medical students to engage with 

realistic case studies without compromising actual patient 

records (12) while ensuring privacy in cross-border data 

sharing (13).

Research in medical imaging has benefited significantly from 

the utilisation of synthetic data. Traditional datasets in medical 

imaging frequently encounter limitations such as insufficient 

sample sizes, data heterogeneity, and challenges in integration 

owing to variations in imaging protocols across different 

institutions. Synthetic medical imaging data can effectively 

address these issues by generating diverse and high-quality 

training sets, thereby enhancing deep learning models for 

diagnostic and treatment planning purposes (10).

Although the integration of synthetic data into the EHDS 

framework offers numerous benefits, it also presents significant 

ethical and regulatory challenges. The absence of standardised 

quality metrics and regulatory classification under the GDPR 

raises concerns regarding data bias and validity (14, 15). 

Nevertheless, advancements in deep generative models and 

privacy-preserving infrastructure, such as EHDS health data 

nodes, provide potential solutions to these issues. Ensuring 

transparency in the data generation and validation processes is 

crucial for maximising the potential of synthetic data while 

adhering to ethical and legal standards.

Ethical challenges of synthetic data

While synthetic data is increasingly promoted as a privacy- 

preserving alternative to real-world health data, its use in 

research and development of innovative health solutions 

introduces complex ethical considerations beyond data 

protection compliance. Central among these are concerns related 

to consent, re-identification risks, bias, scientific integrity, data 

sovereignty, and cybersecurity (8, 9, 16–19). These issues 

challenge the assumption that synthetic data is inherently free 
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from ethical scrutiny and underscore the importance of 

governance frameworks that align with legal requirements and 

ethical research principles.

Informed consent and data subject 
autonomy

Although synthetic data does not directly contain identifiable 

personal information, it is typically generated from real datasets 

originally contributed by individuals. In many cases, these 

individuals may not have explicitly consented to the use of their 

data for synthetic data generation or secondary purposes such as 

model training, commercial use, or cross-border data sharing 

(19, 20). This raises important ethical concerns regarding 

autonomy, transparency, and respect for data subjects’ rights— 

particularly when synthetic data is used beyond the original 

purpose for which the real data were collected (21). Ethical 

research demands that participants be properly informed about 

how their data may be used, even in derived or non-identifiable 

forms. This is in line with the 2024 revision of the Declaration 

of Helsinki, which emphasizes that researchers must obtain free 

and informed consent for the collection, use, storage, and 

possible future use of biological materials and identifiable or re- 

identifiable data. The Declaration also states that if future uses 

cannot be fully foreseen at the time of consent, they must still 

be approved by an ethics committee, especially when obtaining 

new consent is not practical. These updates re:ect the growing 

importance of transparency and ethical oversight in data reuse 

and secondary research. The European Data Protection 

Supervisor (EDPS) has emphasised that scientific research 

cannot serve as a “carte blanche to take irresponsible risks” and 

must be conducted within an established ethical framework (22).

In response to the tension between strict consent requirements 

and the need for :exible data use, concepts such as “broad 

consent” have emerged. Broad consent allows future research 

uses while upholding ethical standards through ongoing 

information, oversight, and participant engagement (23). 

However, this model remains controversial, particularly when 

applied to data used to generate synthetic datasets that could be 

reused in ways not foreseen during initial data collection.

Privacy risks and re-identification

Although synthetic data is designed to eliminate personally 

identifiable information, it does not entirely remove the risk of 

privacy breaches. According to the G29 Working Party and 

CNIL, there are three key risks associated with synthetic data 

derived from anonymised sources: (1) Singling Out, where 

unique data points lead to the identification of individuals; (2) 

Linkability, where records across datasets can be connected; and 

(3) Attribute Inference, where sensitive characteristics of 

individuals may be deduced (9). These risks are especially 

pronounced in contexts involving small populations or rare 

diseases, where the uniqueness of cases increases re- 

identification potential (19).

Generative Adversarial Networks (GANs), commonly used to 

generate synthetic medical images, can inadvertently reproduce 

features of the original dataset if not properly regularised. It 

may result in membership inference attacks, whereby an 

adversary can determine whether a particular individual’s data 

was used in the training set (24). For example, in a study 

involving adolescents with de novo mutations, a GAN trained 

on facial phenotype data was shown to be vulnerable to such 

attacks if model weights were publicly shared (24). Differential 

privacy techniques have shown promise in mitigating these risks 

(25). Still, they are not foolproof and can introduce trade-offs 

with data utility.

The legal ambiguity surrounding the classification of synthetic 

data adds another layer of complexity. Under the GDPR, data is 

only considered anonymous if re-identification is not reasonably 

possible, considering time, cost, and technology (23). However, 

the threshold for what constitutes “reasonable” varies across 

jurisdictions. Institutions such as biobanks may not hold re- 

identification keys. However, they could still be subject to data 

protection regulations if synthetic data is classified as 

pseudonymised (1).

Bias and fairness

Synthetic data generation is highly dependent on the quality 

and diversity of the source data. If the original dataset is 

unbalanced or re:ects systemic inequalities—such as 

underrepresenting minority populations or biased clinical 

practices—these issues are replicated or amplified in the 

synthetic data (6, 18). For instance, chest X-ray datasets have 

been shown to underrepresent certain demographic groups, 

leading to reduced diagnostic performance for these 

populations (26).

While differential privacy techniques are designed to protect 

sensitive attributes, they may disproportionately affect minority 

subgroups by introducing statistical noise that distorts already 

limited representation (19). Several strategies have been 

proposed to address these challenges, including dataset 

rebalancing, fairness-aware GANs (such as HealthGAN), 

adversarial training, and participatory design approaches that 

involve community stakeholders in model development (14, 27).

Scientific integrity and trust

A critical concern in the use of synthetic data is the potential 

erosion of scientific integrity and public trust. Unlike real-world 

datasets, synthetic data lack an intrinsic link to empirical reality, 

raising questions about their validity for hypothesis testing, 

model training, and clinical decision-making. The absence of 

standardised benchmarks for evaluating synthetic data quality 

further complicates this issue (10, 19).
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Studies have shown that different types of synthetic 

distribution shifts may not improve model robustness and may 

even obscure performance limitations under real-world 

conditions (18). Moreover, the use of synthetic data without full 

disclosure of generation methods, limitations, and validation 

procedures can mislead users about the reliability of research 

findings. Transparent reporting and the development of 

synthetic data quality standards are essential to ensure 

credibility in research outcomes (17).

Data sovereignty and indigenous data 
ethics

Ethical considerations are particularly salient when synthetic 

data involves populations with specific historical and cultural 

vulnerabilities, such as Indigenous communities. Historically, 

these populations have faced misuse and exploitation of their 

health data. Using synthetic data does not eliminate the need for 

appropriate governance; instead, it introduces new complexities 

related to data sovereignty and community engagement (17).

Excluding Indigenous populations from training datasets may 

lead to reduced model accuracy for these groups, while including 

them—without community oversight—may infringe upon their 

rights to control their data. Synthetic Indigenous datasets must 

be developed in consultation with the communities they aim to 

represent, ensuring alignment with ethical principles such as 

ownership, control, access, and possession (OCAP).

Cybersecurity and misuse risks

Synthetic data also introduces cybersecurity vulnerabilities 

that anonymisation may not fully mitigate. Techniques such as 

data poisoning and adversarial attacks can compromise model 

integrity at various stages of the AI lifecycle (8). In medical 

imaging, even minor alterations to input data can cause 

misclassification, potentially resulting in harmful 

clinical outcomes.

Partially synthetic datasets combining real and artificial data 

are particularly susceptible to data leakage and exploitation. 

Malicious actors may attempt to reverse-engineer synthetic 

datasets to infer information about real individuals, especially 

when model architectures and training parameters are publicly 

available (19).

Synthetic data holds significant promise for enabling 

innovation while preserving individual privacy. Yet, it is not 

inherently exempt from ethical scrutiny. Concerns surrounding 

informed consent, re-identification, bias, scientific reliability, and 

community engagement highlight the need for robust ethical 

oversight. Addressing these challenges requires interdisciplinary 

collaboration, standardised evaluation frameworks, and 

continuous engagement with stakeholders (28). Only through a 

deliberate and ethically grounded approach can the benefits of 

synthetic data be fully realised without compromising individual 

rights or public trust.

Regulatory frameworks and standards 
development

Currently, the European Union lacks dedicated regulations 

that specifically govern the use of synthetic data. While this 

absence of direct legislative instruments might suggest legal 

permissibility, it should not be interpreted as an absence of 

oversight. Synthetic data—particularly in healthcare and AI 

applications—may still fall under existing frameworks such as 

the General Data Protection Regulation (GDPR), the Medical 

Device Regulation (MDR), and the forthcoming AI Act. These 

instruments impose obligations concerning data quality, privacy, 

transparency, and accountability, which are highly relevant when 

synthetic data is used in developing, validating, or deploying 

medical AI systems (8). This section examines the regulatory, 

standard, and framework considerations related to the 

generation and use of synthetic imaging data, emphasising its 

transformative potential to surmount traditional barriers in 

healthcare data sharing. The objective is to present a balanced 

yet supportive perspective on synthetic data, underscoring its 

alignment with regulatory frameworks and its capacity to drive 

equitable healthcare innovation across Europe.

European regulatory instruments

1. General Data Protection Regulation (GDPR)

Although synthetic data aims to eliminate identifiable 

personal information, it may still fall under the scope of the 

GDPR if the risk of re-identification persists. Article 4(1) 

defines personal data broadly, and Recital 26 clarifies that 

data is only anonymous if re-identification is not reasonably 

possible. Consequently, synthetic data must be evaluated 

case-by-case to determine whether it meets this threshold. 

Where it does not, obligations related to lawful processing, 

purpose limitation, and data minimisation remain 

applicable (29, 30).

2. European Health Data Space (EHDS)

The proposed EHDS regulation seeks to establish a 

harmonised framework for using and reusing health data 

across the EU. While the regulation prioritises 

pseudonymised data, it acknowledges anonymised and 

synthetic data as potential tools for secure secondary use. 

However, detailed provisions for synthetic data are not yet 

fully articulated, raising questions about its governance 

under the EHDS framework (14, 15).

3. AI act

The proposed AI act introduces a risk-based approach to 

regulating AI systems, including those used in medical and 

healthcare contexts. While the Act does not refer explicitly 

to synthetic data, it encompasses training data quality, 

robustness, and transparency—directly relevant to synthetic 

dataset generation. Developers using synthetic data to train 

or validate AI systems may be required to demonstrate the 

quality and representativeness of their data, especially in 

high-risk applications (31).
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4. Medical device regulation (MDR)

Under the MDR, AI systems used for medical purposes may 

qualify as medical devices, particularly if they support 

diagnostic or therapeutic decisions. Synthetic data for 

designing, testing, or validating such systems must be robust, 

clinically relevant, and traceable. Although the MDR does 

not yet contain specific provisions for synthetic data, its 

emphasis on clinical evidence and performance evaluation 

implies that the origin and quality of training data— 

including synthetic sources—are subject to scrutiny.

5. Global and comparative contexts

Globally, the practices surrounding synthetic data intersect 

with regulatory frameworks such as the U.S. Health 

Insurance Portability and Accountability Act (HIPAA) and 

China’s Personal Information Protection Law (PIPL). While 

HIPAA takes a rule-based approach, the GDPR is principle- 

based, leading to different interpretations and applications of 

synthetic data protections. In contrast, the PIPL’s limited 

data set model permits de-identified data to be used for 

research without explicit consent, demonstrating a more 

:exible legal framework (32).

6. Standardisation initiatives

Standardisation bodies such as ISO, IEC, and CEN are 

working toward frameworks incorporating synthetic data 

within broader AI and data governance standards. Emerging 

standards—such as ISO/IEC 38507 and ISO/IEC TR 24028— 

provide guidance on the ethical use of AI and risk 

management, which may be extended to include the 

generation and validation of synthetic data. The European 

Commission has played a central role in supporting these 

efforts by collaborating with CE and CENELEC to develop 

harmonised standards for AI data quality under the ISO 

5259 series (Burden and Stenberg, 2024). The FUTURE-AI 

initiative also outlines criteria for trustworthy AI and ethical 

synthetic data use in medical imaging, focusing on fairness, 

robustness, and explainability (33). Meanwhile, the FAIR 

(Findable, Accessible, Interoperable, Reusable) and CARE 

(Collective Benefit, Authority to Control, Responsibility, 

Ethics) principles offer valuable guidance on ethical and 

responsible synthetic data practices, particularly in open 

science and Indigenous contexts (17, 34). Standardisation is 

also central to tackling data fragmentation, especially in 

highly sensitive areas such as paediatric oncology. Tozzi 

et al. (35), in a systematic review of AI in paediatric brain 

tumour research, underscores the urgent need for 

harmonised and interoperable data sources across European 

institutions to improve reproducibility and 

model performance.

Complementary to these efforts, the Fast Healthcare 

Interoperability Resources (FHIR) standard is key in 

integrating synthetic datasets into real-world health systems. 

As discussed by Pereira et al. (10), FHIR defines the 

structure and semantics of electronic health data, enabling 

consistent exchange and supporting synthetic data 

applications through better interoperability, standardisation, 

and integration across diverse platforms.

Mapping use cases to regulatory and 
standards obligations

To translate the preceding legal analysis into practice, Table 2

maps common use cases of synthetic imaging data to obligations 

under the EHDS, GDPR, AI Act, and MDR. Figure 2 provides a 

Recital 26 decision tree to assess whether a dataset is anonymous 

or pseudonymous, together with evidence expectations. Unless 

explicitly noted as cross-cutting, the following mapping is scoped 

to synthetic medical imaging.

Table 2 translates typical synthetic-imaging use cases into 

concrete compliance expectations by aligning, for each scenario, 

(i) the likely EHDS roles (who is the controller defining 

purposes/means and who acts as processor), (ii) the GDPR 

posture (whether the dataset should be treated as anonymous, 

hence outside GDPR, or as pseudonymous, hence regulated), 

(iii) the anticipated AI Act risk categorisation given the 

intended use (e.g., research/education vs. diagnostic application), 

and (iv) any MDR implications where outputs support clinical 

performance or a medical device dossier. The entries are 

indicative and context-dependent, but they make explicit the 

evidence expected to justify an “anonymous” classification (e.g., 

attack metrics at or below baseline, absence of linkage keys, 

small-population safeguards) and when to default to a 

“pseudonymous” treatment with additional safeguards. 

Complementing the table, Figure 2 operationalises GDPR Recital 

26 for synthetic imaging. It begins by asking whether the dataset 

was generated from personal data. If not, it is likely anonymous 

(outside GDPR) provided you document the generation process 

and confirm that no linkage keys exist. If it was generated from 

personal data, you then assess re-identification risk. First, run 

membership/attribute-inference attacks and compare their AUC 

to a random-guess baseline; results meaningfully above baseline 

indicate pseudonymous data (GDPR applies). Next, examine 

small-population/rare-disease signals (e.g., k-anonymity counts, 

site-specific rarity); any such risk also leads to a pseudonymous 

classification. Finally, check for linkage or memorisation risks— 

presence of keys, released weights/checkpoints that leak training 

samples, nearest-neighbour/inversion probes suggesting copying, 

or auxiliary datasets that enable linkage; any positive finding 

again implies pseudonymous treatment with safeguards. Only if 

all three checks (attacks, rarity, linkage/memorisation) are 

negative or at baseline may the dataset be deemed anonymous, 

in which case you retain the evidence demonstrating that re- 

identification is “not reasonably likely.” Dashed callouts in the 

figure list the concrete evidence expected at each step.

Scholarly perspectives on synthetic data 
governance

A growing body of scholarship addresses the challenges and 

opportunities of synthetic data in the EU regulatory context. 

Scholars agree that while current frameworks allow for synthetic 

data use, legal ambiguity persists, especially regarding GDPR 

compliance (8). Synthetic data are increasingly recognised as 
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TABLE 2 Mapping synthetic-imaging use cases to EHDS/GDPR/AI Act/MDR obligations.

Use case EHDS rolea GDPR statusb AI Act riskc MDR implications (if 
clinical)d

U1. Method 

development/ 

education (non- 

clinical)

Controller: research org./data 

holder defining purpose. Processor: 

hosting/cloud provider or lab IT.

Often anonymous if: no linkage keys 

retained; MIA/AIA�baseline; no small- 

population leak risk; no model weights 

exposing memorisation. Otherwise 

pseudonymous.

Typically minimal/limited 

risk (research/education, 

not placed on market).

Not a medical device. No MDR.

U2. Pre-clinical model 

development/ 

validation (bench/off- 

line)

Controller: AI developer/ 

consortium. Processor: technical 

host and external labs.

Frequently pseudonymous unless strong 

evidence of anonymisation per Recital 

26e.

If intended for healthcare 

diagnosis/triage: high-risk 

(pre-market stage of high- 

risk system).

If used to support clinical evidence for 

Software as Medical Device (SaMD): 

contributes to technical 

documentation and performance eval.

U3. Benchmarking/ 

fairness audits across 

sites

Controller: benchmarking 

coordinator. Processors: 

participating sites’ IT.

Case-dependent; cross-site linkage may 

increase re-ID risk. Treat as 

pseudonymous unless tests show 

otherwise.

Limited to high 

depending on audited 

system’s intended medical 

purpose.

No MDR unless used as clinical 

evidence for a device.

U4. Training/ 

validation for 

diagnostic AI to be 

CE-marked

Controller: manufacturer (defines 

purposes/means). Processors: 

CROs, cloud MLOps, annotators.

Treat as pseudonymous (linked to real 

distributions); document privacy tests; 

PETs recommended.

High-risk (health AI 

under MDR scope).

MDR applies: synthetic datasets must 

be traceable; included in clinical/ 

performance evaluation package.

U5. Public release of 

synthetic dataset (open 

or controlled)

Controller: releasing institution 

(sets purpose/licence). Processor: 

repository/portal operator.

Release only if anonymous per Recital 

26 with evidence: MIA/AIA�baseline; 

NN/memorisation checks; small- 

population safeguards; documentation 

of pipeline.

Not an AI system per se; 

risk depends on 

downstream use.

No MDR by itself; downstream 

clinical use may trigger MDR.

U6. Cross-border 

secondary use via 

EHDS data access 

bodies

Controller: data user for secondary 

purpose; Data holder and access 

body have governance duties; 

Processors: data space infrastructure 

providers.

Pseudonymous by default; access body 

enforces safeguards. Anonymity must 

be justified with tests.

Depends on project: 

research (minimal/ 

limited) vs. device 

development (high-risk).

If supporting intended clinical 

performance: MDR duties on the 

manufacturer (traceability, 

documentation).

aEHDS role: “controller” determines purposes/means; “Processor” acts on behalf of a controller. Data access bodies govern secondary-use access.
bGDPR status: “anonymous” only when re-identification is not reasonably likely considering time, cost, and technology; otherwise treat as “pseudonymous.”
cAI Act risk: healthcare diagnostic/therapeutic AI is generally high-risk. Research/education tools not placed on the market are typically minimal/limited risk.
dMDR implications: apply when software is a medical device or evidence contributes to a device’s clinical/performance evaluation.
eEvidence expectations (Recital 26): membership/attribute inference attack results, nearest-neighbour/memorisation probes, small-population/rare-disease analysis, absence of linkage keys, 

and documentation of generation/DP/PET settings.

FIGURE 2 

Recital 26 decision tree: is a synthetic imaging dataset anonymous or pseudonymous? Evidence expectations shown in dashed notes.
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pivotal for privacy-preserving data sharing under the EHDS, with 

recent advancements in deep generative models enhancing their 

fidelity and utility (14, 15). Nevertheless, concerns remain 

around re-identification risks. As Biasin et al. (29) and van der 

Wel (30) argue, synthetic data must be rigorously assessed based 

on how they are generated. Improperly designed datasets could 

still fall under GDPR provisions, particularly where re- 

identification is plausible. The GDPR’s :exibility allows Member 

States to implement additional rules for health data, resulting in 

regulatory fragmentation and potential obstacles to cross-border 

collaboration (23). Borissova (36) and Ciminá (37) highlight the 

tension between Open Science and data protection. While 

synthetic data offer a privacy-friendly alternative, their 

classification as anonymised or pseudonymised remains unclear, 

complicating their use in collaborative research. Cross-border 

data sharing further intensifies these challenges, particularly 

around consent, data sovereignty, and integrating privacy- 

preserving techniques such as differential privacy (15).

Debates also focus on the EHDS framework’s definition of 

health data. As noted by Foà (1), its scope includes both 

personal and non-personal data. Yet, it lacks clear guidance on 

how synthetic data should be classified. For Borissova (36), the 

legal uncertainty undermines the potential of synthetic data 

unless clarified within the EHDS.

International comparisons highlight regulatory divergence. 

Casarosa and Greser (32) contrasts the GDPR’s strict data 

protection with more permissive frameworks like HIPAA and 

China’s PIPL. These differences create barriers to 

interoperability and international collaboration, reinforcing calls 

by Borissova (36) for alignment through bilateral agreements or 

global governance initiatives.

In the technical domain, scholars advocate for using Privacy 

Enhancing Technologies (PETs) such as Federated Learning and 

Homomorphic Encryption to support secure data sharing 

(38, 39). These methods allow decentralised collaboration without 

raw data exchange, aligning with EHDS priorities and addressing 

data sovereignty concerns. The COVID-19 pandemic provided a 

testbed for such approaches, demonstrating the utility of synthetic 

data and the need for interoperable data models (14, 40).

Ethical and procedural transparency remains a central 

concern. Authors stress the importance of documenting 

synthetic data generation methods, publishing evaluation 

metrics, and developing meaningful consent frameworks— 

particularly when individuals are unaware that their data were 

used to generate synthetic datasets (20, 29, 36). Aspell et al. (41) 

argue that evaluation frameworks for synthetic data remain 

underdeveloped and call for robust metrics to assess fidelity, 

representativeness, and utility in applied healthcare contexts.

Regulatory misalignment further complicates implementation. 

The AI Act’s risk-based classification system does not neatly map 

onto GDPR principles, contributing to uncertainty around the 

legal status of synthetic data (31). Cybersecurity risks and 

unclear data ownership also pose challenges, with calls for 

international coordination to ensure ethical and lawful data use 

(32, 42). In particular, Davidson and Winter (43) underscore the 

importance of anticipating emerging governance gaps when 

multiple legal instruments—such as the GDPR, AI Act, and 

EHDS—intersect without clearly delineating responsibilities.

The lack of standardised interoperability protocols across 

Member States impedes the integration of synthetic data into 

cross-border health systems. Harmonisation of definitions and 

frameworks is critical to ensuring synthetic data fulfil their 

potential as safe, equitable tools for healthcare innovation (14, 36).

Synthetic data has an important role in the European digital 

health ecosystem. While current regulations do not explicitly 

address their use, synthetic datasets intersect with multiple legal 

frameworks, including the GDPR, AI Act, MDR, and EHDS. 

Scholarly contributions reveal a strong consensus on their potential 

to advance privacy-preserving innovation while highlighting 

unresolved issues surrounding legal classification, consent, 

interoperability, and ethical governance. Institutional efforts from 

the European Commission and scholarly calls for standardisation— 

such as those by Tozzi et al. (35), Pereira et al. (10), Davidson and 

Winter (43), and Aspell et al. (41)—underscore the importance of 

a harmonised and transparent framework. Addressing these 

challenges through coordinated regulation, technical standards, and 

ethical practices is essential to unlocking synthetic data’s full value 

in European healthcare and beyond.

Synthetic image dataset methodology 
and case studies

Integrating synthetic data into medical imaging research 

within the European Health Data Space offers transformative 

potential but raises critical ethical concerns. This section 

discusses how synthetic data can address privacy preservation, 

data scarcity, and bias mitigation challenges. Three use cases are 

presented to illustrate cross-border collaboration in data 

transfer, the use of synthetic medical image datasets in 

validation, and the generation of data from Electronic Health 

Record (EHR) cases aligned with the objectives of the EHDS.

Ethical considerations include ensuring that synthetic datasets 

do not perpetuate or exacerbate biases present in the original data 

—particularly concerning under-represented populations—and 

maintaining representativeness across diverse demographic 

groups. Moreover, robust validation frameworks are essential to 

assess synthetic data’s reliability and clinical relevance, especially 

in sensitive domains such as healthcare diagnostics. 

Transparency in data generation processes and adherence to 

privacy regulations, such as the GDPR, foster trust among 

researchers, clinicians, and patients. By prioritising inclusivity, 

fairness, and accountability in synthetic data practices, the 

European Health Data Space can harness these innovative tools 

to advance medical imaging while upholding ethical standards 

essential for equitable healthcare innovation.

Synthetic image data

Computer-Aided diagnosis (CAD), driven by AI and deep 

learning methods, has recently supported the process of medical 
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image analysis—especially MRI—and diagnosis. However, 

training deep learning models requires large sets of medical 

imaging data. While Generative Adversarial Networks (GAN) 

were initially popular for generating synthetic data in the 

medical imaging domain, they continue to address this challenge 

effectively (5, 44). GAN are a class of deep learning models 

composed of two neural networks: a generator and a 

discriminator. The generator produces synthetic data by creating 

random noise and generating increasingly realistic outputs (44). 

At the same time, the discriminator evaluates whether the data 

are real or synthetic using binary classification (24, 44). The two 

networks improve iteratively through adversarial training, 

resulting in highly realistic synthetic outputs (45).

GAN have transformative applications in medical imaging 

datasets, especially for brain MRI. Clinically, they support 

advanced analysis by synthesising missing MRI sequences or 

generating 3D brain MRIs (45). GAN offer significant benefits 

across clinical research, medical education, and patient privacy 

protection, among other areas.

Synthetic data generation and diversity

The production of large volumes of synthetic medical images 

—such as realistic brain scans—can significantly enhance training 

datasets. This is especially valuable for rare conditions like brain 

tumours or neurodegenerative diseases, where real data is scarce 

(19, 44, 45). Synthetic data also benefits medical education by 

providing abundant training materials and interactive 

simulations, allowing students to learn more effectively and 

encounter a broader range of clinical scenarios. GAN, in 

particular, enable the creation of customised datasets that 

include both common and rare edge cases, helping students and 

professionals become familiar with diverse conditions (45). 

Moreover, synthetic medical image data is increasingly used to 

augment datasets for AI/ML-based diagnostic tools, predictive 

screening systems, and other health technologies. This helps 

mitigate challenges related to limited or imbalanced real-world 

datasets. Using synthetic data for pre-testing and validation can 

also reduce costs and accelerate research timelines before 

transitioning to real-world deployment (19). In summary, 

synthetic image data can support various aspects of medical 

research, education, and technology development. Synthetic 

image data can help with the following aspects:

1. Tumour segmentation

Generative Adversarial Networks (GANs) have shown 

significant promise in enhancing tumour segmentation tasks 

by generating highly accurate segmentation masks that 

delineate tumour boundaries. This is particularly beneficial 

in brain MRI, where tumours often present with complex 

shapes and indistinct edges. By synthesizing annotated 

examples, GANs can augment training data and improve the 

robustness and sensitivity of segmentation algorithms used 

in clinical diagnostics (45).

2. Super-resolution and image quality enhancement

Low-resolution or poor-quality medical scans can hinder 

diagnostic accuracy, particularly in resource-limited settings. 

GANs contribute to super-resolution by learning to enhance 

these images, producing higher-resolution outputs that retain 

anatomical fidelity. This refinement aids radiologists and AI 

systems alike in detecting subtle pathological changes that 

might otherwise be missed in noisy or compressed images (45).

3. Modality translation

GANs can simulate disease progression by translating 

healthy brain MRIs into their diseased counterparts. This 

kind of image-to-image translation supports research and 

clinical training by creating synthetic but realistic 

progressions of neurodegenerative diseases, tumours, or 

stroke lesions. Such applications allow for controlled 

experimentation and help fill gaps where real-world 

longitudinal imaging data is limited or unavailable (45).

4. Prognosis and image registration

Though less widely explored, GANs are emerging tools in 

prognosis modeling—predicting how a disease is likely to 

evolve over time based on imaging patterns. In addition, 

GANs assist in image registration by aligning images taken 

at different times or using different modalities, improving 

longitudinal analysis and multi-modal integration in 

treatment planning (45).

5. Protection of patient privacy

Importantly, because synthetic images do not correspond to 

actual individuals, they eliminate the risk of patient re- 

identification. GAN preserve the statistical properties of real 

datasets without reproducing identifiable features, making 

them a powerful approach to data sharing that complies with 

ethical and legal standards such as GDPR and HIPAA (44).

6. Improved model performance

Synthetic image data can substantially enhance the 

performance of machine learning models, especially in tasks 

where real data is limited or imbalanced. A notable study by 

Brugnara et al. (46) demonstrated this in the context of 

detecting new multiple sclerosis (MS) lesions on brain MRI. 

By integrating synthetic data into the training pipeline, the 

ResNet model’s AUC increased from 56% to 77.5%, while an 

attention-based model achieved a leap from 83.6% to 93.3%. 

These improvements underscore the potential of synthetic 

data in boosting generalisability and performance across 

different AI architectures and clinical settings.

7. Stress-testing AI models

Synthetic data empowers researchers to replicate rare diseases 

and simulate challenging imaging conditions that are often 

underrepresented in real-world datasets. For instance, GANs 

can generate synthetic histological images of rare cancer 

subtypes or introduce artefacts such as noise and distortion, 

enabling robust testing of diagnostic models. Additionally, 

synthetic data plays a crucial role in mitigating domain shift. 

By emulating variations in imaging protocols, equipment 

types, and patient populations across different institutions, it 

helps uncover and correct biases in AI models trained on data 

from a single source. This significantly enhances the models’ 

ability to generalise across diverse clinical environments (24).

While a diverse array of methodologies exists for generating 

synthetic image data, our focus is on Generative Adversarial 
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Networks (GAN) due to their initial popularity in the medical 

imaging domain (5, 44). Variations of GAN are particularly 

advantageous for preserving privacy while effectively generating 

synthetic tabular data. They are renowned for their ability to 

handle high-dimensional data; however, hyperparameter tuning 

is necessary to prevent model collapse (47).

The transformative role of GAN in medical imaging continues 

to expand, offering benefits that range from data augmentation to 

enhanced diagnostic precision and privacy preservation. Their 

versatility extends to generating synthetic data for rare 

conditions, improving image quality, simulating disease 

progression, and stress-testing AI models across varied imaging 

conditions. These capabilities not only enhance model 

robustness but also contribute to more equitable and 

generalisable clinical tools. To better understand the landscape 

of GAN applications in medical imaging, Table 3 summarises 

key GAN architectures and their corresponding use cases, 

drawing on recent findings by Kim et al. (5) and Cheng et al. (48).

Case studies in synthetic medical imaging

Several studies demonstrate the application of synthetic image 

datasets in overcoming barriers in medical research, particularly 

regarding privacy, data availability, and cross-border 

collaboration. Table 4 summarises selected case studies, their 

methodologies, and their impact on medical imaging.

Case studies

Two use cases from Aunón et al. (39) and Yan et al. (57) have 

been selected as case studies due to their strong alignment with the 

objectives of the EHDS, particularly in enabling secure cross- 

border data sharing and reuse, while addressing challenges 

related to privacy and interoperability.

Aunón (39) comprehensively evaluate Privacy-Enhancing 

Technologies (PETs), including Federated Learning, Differential 

Privacy, and Homomorphic Encryption. It demonstrates their 

applicability within data spaces to support secure collaboration 

across organisations. The study emphasises the importance of 

privacy preservation in facilitating data sharing, directly 

resonating with the EHDS’s goal of establishing interoperable 

and secure frameworks for health data exchange across the EU 

and beyond. Furthermore, it highlights practical examples—such 

as the application of federated learning in healthcare use cases— 

showing how PETs can help overcome critical barriers like data 

heterogeneity, quality issues, and privacy concerns, which are 

key challenges to fulfilling the EHDS’s vision.

In contrast, Yan et al. (57) focus on generating synthetic 

Electronic Health Record (EHR) data using advanced GAN- 

based models, such as EMR-WGAN. This paper addresses the 

EHDS’s objective of standardising and making health records 

interoperable by offering a transparent tutorial on generating 

high-quality synthetic EHRs that preserve statistical fidelity while 

protecting patient privacy. The practical application of synthetic 

data generation supports secondary uses, including machine 

learning model development, hypothesis generation, medical 

education, and AI-driven healthcare innovation. Unlike other 

studies that concentrate solely on privacy or technical 

implementation, this paper illustrates how synthetic EHR data 

can be tailored to specific use cases while remaining accessible 

and usable across various healthcare systems.

These two papers stand out by offering actionable frameworks 

that align with EHDS regulatory aims while providing practical 

solutions to technical barriers in health data sharing. Aunón 

(39) and Yan et al. (57) uniquely address both technological 

maturity—such as federated learning protocols—and real-world 

TABLE 3 Different model of GAN for medical image synthetic data.

GAN model Usage in medical imaging Special features Problem solved

Deep convolutional 

GAN (DCGAN)

Generates high-quality synthetic medical images, 

such as MRI or CT scans

Improves image quality and stability during 

training compared to earlier GAN

Addresses the need for high-quality synthetic 

data for training models, reducing privacy risks

Conditional GAN 

(CGAN)

Produces targeted medical images, such as those 

of specific diseases or orGAN

Enables controlled generation of images (e.g., 

specific tumour types)

Solves class imbalances in datasets by generating 

condition-specific data

Progressive 

growing GAN 

(PGGAN)

Creates high-resolution synthetic medical 

images, such as detailed brain MRIs

Stabilizes training and improves fine details in 

generated images

Addresses the challenge of generating high- 

resolution medical images needed for clinical 

applications

StyleGAN Generates synthetic medical images with precise 

control over features like organ contours or 

tumor textures

Offers fine-grained control over high-level 

attributes (e.g., shape) and stochastic variations 

(e.g., texture)

Enhances diversity in datasets by allowing 

variation in image styles while maintaining 

realism

CycleGAN Converts low-dose CT to high-dose CT or 

generates missing MRI sequences from other 

modalities

Works without paired datasets, using cycle- 

consistency loss to ensure realistic translations 

between modalities

Facilitates modality translation, reducing the 

need for multiple imaging sessions and radiation 

exposure

StarGAN Synthesises multi-contrast MRI or 

echocardiography views from limited data

Handles diverse datasets and imaging modalities 

efficiently with a unified framework

Simplifies multi-modality imaging work:ows 

and reduces dependency on large datasets across 

domains

Differentially 

private GAN

Generates privacy-preserving synthetic medical 

images but with reduced quality, making it less 

suitable for high-dimensional datasets like 

medical images

Protects against membership inference attacks, 

especially in scenarios with dataset shifts. 

Ensures privacy through DP-SGD, which adds 

noise and clips gradients during training

Addresses privacy concerns by preventing 

sensitive data leakage from training datasets. 

However, struggles with maintaining image 

quality and utility, which negatively impacts 

downstream classification tasks and fairness 

metrics
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implementation—such as GAN-based synthetic EHR generation— 

making them exemplary for illustrating how EHDS objectives can 

be effectively operationalised across Europe and on a global scale.

Case study 1: cross-border synthetic data transfer
The primary objective of this experiment was to demonstrate 

how Federated Learning (FL) facilitates collaborative machine 

learning across multiple healthcare institutions while preserving 

patient privacy. It aligns with the broader aims of health data 

spaces, which seek to enable secure and privacy-preserving data 

sharing to advance medical research and enhance patient 

outcomes. By leveraging FL, the study tackles critical issues such 

as data accessibility, heterogeneity, and privacy concerns, 

showcasing FL’s potential to overcome major barriers in the 

healthcare domain.

The study employed publicly available datasets of skin lesion 

images sourced from four institutions in Australia, Austria, 

Brazil, and the Netherlands. The datasets included HAM10000, 

PAD-UFES-20, and MED-NODE. Initially, the combined dataset 

contained eight types of skin lesions, but this was reduced to 

five (nevus, melanoma, actinic keratosis, basal cell carcinoma, 

and benign keratosis) due to class imbalance and insufficient 

sample sizes for certain lesion types. This selection helped 

mitigate data imbalance by focusing on lesion categories that 

were adequately represented across the participating institutions.

Several preprocessing steps were carried out to prepare the 

data for training. First, the HAM10000 dataset was split into 

subsets corresponding to Australia and Austria, creating four 

distinct datasets. The images were then normalised to a 

resolution of 224 � 224 pixels with RGB channels. Each pixel 

value was standardised by subtracting the mean and dividing by 

the standard deviation of each channel. Finally, each dataset was 

divided into training (75%) and testing (25%) sets, ensuring no 

overlap. A global test set was constructed from the local test sets 

to assess the generalisation performance of the FL model.

A pre-trained MobileNet v2 Convolutional Neural Network 

(CNN) was utilised for transfer learning due to its proven 

effectiveness in skin lesion classification tasks. Transfer learning 

reduced the need for extensive labelled data and minimised 

computational requirements. A weighted cross-entropy loss 

function was applied to address class imbalances in this 

multiclass classification task. Class weights were set inversely 

proportional to the sample sizes of each class, ensuring that 

under-represented classes had more significant in:uence during 

model training. For the FL setup, local models were trained 

independently on each dataset for 50 epochs with a batch size of 

32, using stochastic gradient descent (SGD) and a learning rate 

0.001. Models were then aggregated using the FedAvg strategy 

over 20 communication rounds, each involving 10 epochs of 

local training per institution.

The performance of both local and federated models was 

assessed using two key metrics: the F1 score and confusion 

matrix analysis. F1 scores were calculated per class and as a 

weighted average across all classes to account for class imbalance. 

The confusion matrix was normalised by class support to provide 

a clear visualisation of prediction accuracy for each class.

The findings revealed significant differences between models 

trained locally and those trained using the federated approach. 

Locally trained models performed well on lesion types 

sufficiently represented in their respective datasets but showed 

poor performance on under-represented classes or those absent 

from the local data. For instance, the Netherlands dataset lacked 

certain lesion types, resulting in zero predictive capability for 

those classes.

In contrast, the federated model demonstrated improved 

generalisation across all lesion types. Notably, institutions such 

as the one in the Netherlands could predict lesion types absent 

from their local training data due to knowledge transfer through 

model aggregation. However, slight reductions in performance 

were observed in specific cases—for example, predictions of 

actinic keratosis in Australia—likely due to averaging effects 

inherent in the aggregation process. By sharing model 

parameters instead of raw data, FL preserved patient privacy 

while enabling collaborative learning across diverse and 

geographically distributed datasets.

This experiment highlights the transformative potential of FL 

for healthcare data sharing within health data spaces. It shows that 

FL can address challenges such as data heterogeneity, class 

imbalance, and privacy in multiclass classification problems. It 

also underscores the importance of preprocessing and 

strategically handling imbalanced datasets for successful model 

training. From an industry perspective, FL facilitates 

collaborative research without compromising data ownership or 

patient confidentiality. It enables wider access to diverse 

datasets, thereby improving the robustness and generalisability 

of AI models. Future directions include integrating FL with 

other PET—such as Differential Privacy or Secure Multi-Party 

Computation—to bolster security and reduce risks like potential 

information leakage from model updates. Furthermore, 

developing advanced aggregation techniques tailored to 

heterogeneous datasets could further enhance performance in 

federated environments.

In conclusion, this case study demonstrates how FL aligns 

with the core objectives of health data spaces by enabling secure, 

privacy-preserving collaboration among healthcare institutions 

while addressing essential challenges in AI-driven 

medical research.

Case study 2: synthetic electronic health record

The primary objective of this experiment (included as non- 

imaging comparator to clarify governance issues that equally 

affect imaging) was to create high-quality synthetic EHR data 

that mimics the statistical properties of real-world patient data 

while maintaining privacy. It aligns with the objectives of the 

EHDS, which seeks to promote secure and privacy-preserving 

data sharing to advance healthcare research and innovation. 

This approach addresses key challenges in health data 

accessibility by enabling the generation of realistic synthetic 

datasets, including privacy concerns, data scarcity, and 

imbalances in the subpopulation representation.

This study utilised the publicly available MIMIC-IV dataset 

from the Beth Israel Deaconess Medical Centre, which contains 
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structured EHR data from patients admitted to intensive care units 

between 2008 and 2019 (Figure 3). The dataset includes 

demographic information, diagnoses, procedures, and clinical 

measurements such as BMI and blood pressure. A subset of 

patients with at least one hospital admission was extracted, 

resulting in a cohort of approximately 181,000 patients. The 

diagnoses were converted from ICD-9/10 codes to phecodes for 

clinical relevance and dimensionality reduction.

Preprocessing involves several steps to prepare the data for 

GAN training. Outliers were identified and removed based on 

clinically implausible values (e.g. BMIs > 60 or < 10). Missing 

values were addressed using random sampling based on 

marginal distributions for variables, such as BMI and blood 

pressure, which had around 38%–43% missing rates. Continuous 

variables were normalised to a range of (0,1) to ensure 

consistent scaling during model training. Low-prevalence 

concepts were removed or aggregated into higher-level 

categories to improve the model performance while maintaining 

clinical relevance.

The GAN architecture consists of two neural networks: a 

generator that produces synthetic records and a discriminator 

that distinguishes between real and synthetic data. The EMR- 

WGAN model was employed because of its ability to capture 

complex statistical relationships in EHR data while stabilising 

the training through Wasserstein divergence. The training used 

a non-conditional paradigm where all variables were treated 

equally without explicit labels guiding the generation. Multiple 

runs were performed with checkpoints evaluated for optimal 

synthetic data quality to address challenges, such as mode 

collapse and instability in GAN training. A SoftMax layer was 

added to ensure that categorical variables adhered to the one- 

hot encoding constraints. While record-level clinical constraints 

(e.g. prohibiting male patients from having female-specific 

diagnoses) were not enforced during training, these violations 

were analysed during evaluation.

The quality of the synthetic data was assessed across three 

dimensions: utility, privacy, and fairness. The utility metrics 

include: 

• Dimension-wise Distribution: Evaluated how well synthetic 

data preserved the variable distributions.

• Column-wise Correlation: Measured correlation consistency 

between real and synthetic variables.

• Latent Cluster Analysis: Assessed structural similarity in the 

latent space.

• Prediction performance: Comparison of model performance 

when trained on real vs. synthetic data.

• Feature Importance: Examined overlap in key 

predictive features.

Privacy risks were evaluated using membership and attribute 

inference attacks, whereas fairness focused on equitable 

representation across patient subpopulations. The results 

demonstrated that the EMR-WGAN model effectively generated 

high-quality synthetic EHR data while reducing privacy risks 

compared with real datasets. Dimension-wise distribution 

analysis showed that the second run achieved the lowest 

absolute prevalence difference (APD), indicating better 

preservation of variable distributions. Column-wise correlation 

and latent cluster analysis also highlighted strong alignment 

with real data structures.

However, this study had some limitations. Male-specific 

diagnoses were occasionally assigned to female records in 

synthetic datasets because of the insufficient preservation of sex- 

diagnosis correlations. Privacy evaluations revealed significantly 

reduced membership inference risks compared to real data but 

highlighted minor variations across runs. This experiment 

underscores the potential of GAN-based synthetic EHR 

generation as a transformative tool for healthcare research 

within the EHDS framework. This approach addresses critical 

barriers, such as privacy concerns and limited access to diverse 

patient populations, by enabling the secure sharing of realistic 

yet anonymised datasets. Synthetic EHRs offer opportunities for 

hypothesis testing, model training, and educational purposes 

without compromising patient confidentiality. In the health care 

industry, they facilitate software development, medical 

education, and system testing under realistic conditions.

FIGURE 3 

An overview of synthetic electronic health record data generation process through training generative models (Yan et al., 2024).
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Future directions include incorporating temporal information 

into synthetic records for longitudinal analyses, improving 

fairness across subpopulations, and exploring hybrid models that 

combine GAN with other privacy-enhancing technologies such 

as differential privacy. These advancements align with the EHDS 

goals by promoting equitable access to high-quality health data 

while safeguarding individual privacy.

Failure modes and a minimum validation 
battery for synthetic medical imaging

From methodological overview to quality assurance, we now 

specify imaging-specific failure modes and a minimum 

validation battery. Although synthetic data can mitigate access 

and privacy barriers, generative pipelines are prone to well- 

documented pitfalls, such as mode collapse and diversity loss, 

identity leakage/memorisation that elevates re-identification risk, 

overfitting and site/style shortcuts that undermine external 

validity, and hallucinated anatomical artefacts that erode clinical 

credibility. Because these issues directly intersect with the 

privacy (e.g., membership/attribute inference) and fairness 

concerns discussed earlier, a clear set of pre-release checks is 

needed before any secondary use under the EHDS. Below, we 

enumerate imaging-specific failure modes and propose a 

minimum validation battery that covers utility/fidelity on held- 

out real data, privacy attack testing, subgroup fairness, and 

documentation/traceability, establishing a pragmatic evidentiary 

:oor. This battery is designed to complement the regulatory 

mapping (Table 2, Figure 2) and to operationalise the 

governance dimensions formalised in the SID-GT toolkit, 

enabling data stewards, developers, and access bodies to apply 

consistent acceptance criteria aligned with EHDS objectives.

Minimum validation battery before secondary use 

under EHDS
We recommend that the following baseline battery be 

completed and reported before secondary use or sharing within 

EHDS. Items map to the governance pillars (utility, privacy, 

fairness, traceability, and disclosure) and to EU frameworks, as 

summarised elsewhere in the manuscript.

A. Utility & fidelity (held-out real data) 

• Task performance on held-out real data: report AUC/F1, 

sensitivity/specificity, and calibration (e.g., ECE/Brier), 

comparing (i) real-only, (ii) real+synthetic, and (iii) 

synthetic-only training.

• External/site validation: evaluate across at least one external 

site/scanner/protocol to test for domain shift; include 

ablations of the synthetic proportion.

• Expert review: double-blinded radiologist rating (e.g., 5-point 

realism/anatomical plausibility) with inter-rater agreement 

(e.g., Cohen’s k); :ag systematic artefacts.

• Distributional alignment: report simple but informative shifts 

(intensity histograms, lesion size/location distributions); include 

nearest-neighbour distance distributions to detect collapse.

B. Privacy (link to “Privacy Risks and Re-identification”) 

• Membership/attribute inference: report attack AUC vs. random 

baseline; describe attacker knowledge. If above-baseline, treat as 

pseudonymous and apply additional safeguards.

• Memorisation probes: nearest-neighbour search in a perceptual 

feature space; duplicate detection; generator inversion tests; 

report minimum distances and exemplar pairs.

• If using differential privacy (DP): report e, d, clipping/noise 

schedule, and induced utility trade-offs; document residual 

risks in the release notes.

C. Bias & fairness (link to “Bias and Fairness”) 

• Subgroup metrics with uncertainty: report AUC/F1 and 

calibration with 95% CIs for sex, age bands, ethnicity (where 

lawful), and site; pre-specify acceptable disparity margins 

(e.g., DAUC within a narrow, justified range).

• Coverage summary: provide subgroup counts/percentages in 

the synthetic set; describe any targeted augmentation or 

reweighting applied.

D. Traceability 

• Data/model cards: document generator architecture, training 

data provenance and inclusion/exclusion criteria, PETs/DP 

settings, seeds/checkpoints, and versioning; maintain chain- 

of-custody records.

E. Disclosure & labelling 

• Synthetic labelling & intended use: mark datasets as synthetic; 

state intended scope (research, education, pre-clinical 

validation), limits (e.g., under-represented phenotypes), and 

residual risks. Provide the licence and contact.

Acceptance guidance
• Release for broader secondary use (e.g., public/consortium 

sharing): only if attack metrics are at or near baseline, no 

memorisation evidence is found, expert review shows no 

systematic anatomical artefacts, and subgroup disparities are 

within pre-specified margins. Otherwise, treat as regulated 

pseudonymous data with restricted access and safeguards.

• Clinical evidence contribution: when synthetic data contributes 

to device performance documentation, ensure full traceability 

and external validation; prominently disclose synthetic 

proportions and any fairness mitigations.

This validation battery is designed to be used in conjunction with 

the governance checklist (SID-GT, cf. Table 5), providing a 

pragmatic baseline for quality, privacy, and equity before 

secondary use under EHDS.

Critical discussion and future 
directions

Current challenges

The rapid advancement of AI in healthcare presents 

significant ethical, technical, and regulatory challenges. As 
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Federico and Trotsyuk (62) argue, there is a dual obligation to 

foster innovation while safeguarding individual rights, with 

particular attention paid to unintended consequences, such as 

privacy breaches and the amplification of existing biases. Their 

call for a globally harmonised regulatory framework re:ects a 

growing consensus that balancing innovation with public welfare 

requires coordinated, anticipatory governance. A similar 

perspective is echoed by Aucouturier and Grinbaum (63), who 

advocates a shift from compliance-driven assessments to ethics- 

by-design methodologies. Such an approach would embed 

ethical considerations directly into the development pipeline of 

AI systems, thereby enhancing their long-term accountability 

and societal alignment. Collaborative governance is critical in 

this context. Baumgartner et al. (15) emphasise the importance 

of interdisciplinary teams in managing the complexities of 

modern health data systems, particularly where data sovereignty, 

interoperability, and privacy intersect. Colonna and Submitter 

(64) further note that as private actors increasingly in:uence 

public AI research, governance frameworks must evolve to 

counter regulatory arbitrage and ensure that societal interests 

are prioritised over commercial gain.

Cross-national data sharing introduces additional complexity 

owing to the heterogeneous nature of datasets. When data 

originate from multiple countries, format, quality, and 

completeness variations can negatively impact the performance of 

privacy-enhancing technologies (PETs). This highlights the need 

for rigorous pre-processing and homogenisation techniques. He 

(2) points out that without a clear EU-level interpretation of 

relevant laws, data access bodies and holders may apply 

inconsistent standards, potentially undermining the EHDS goals. 

Therefore, EHDS implementation must be closely monitored to 

ensure that data minimisation and ethical use are consistently 

upheld. The quality and representativeness of datasets remain a 

persistent concern. Biasin et al. (29) and Burden et al. (38) warn 

of the dangers of “data contamination” from synthetic content 

and stress the need for diverse, high-quality datasets to prevent 

AI systems from reinforcing existing inequities. Without rigorous 

standards and continuous auditing, AI-driven systems risk 

perpetuating harmful biases and eroding public trust.

Transparency is a fundamental element in building trust. 

Baumgartner et al. (15) underscore the value of open-source 

methodologies and documentation for fostering confidence in 

synthetic data and AI applications. However, as Federico and 

Trotsyuk (62) cautioned, existing regulations often fail to 

enforce transparency, leaving significant gaps in accountability. 

Another pressing challenge relates to the resource demands of 

synthetic data generation, particularly when using models, such 

as GAN, for medical image synthesis. As Arora and Arora (44) 

noted, the generation of high-quality synthetic images requires 

substantial computational power. Asadi et al. (65) similarly 

highlights the significant trade-offs between the costs of training 

GAN measured in time, energy, and memory, and the practical 

benefits of using synthetic data. This raises a critical question: 

are the performance gains from synthetic datasets sufficient to 

justify their resource intensity?

Future directions for synthetic data

The future of AI in healthcare will depend mainly on 

addressing the aforementioned challenges, particularly regarding 

the ethical, technical, and governance aspects of synthetic data. 

Bertl et al. (66) identified several key barriers, including a lack 

of standardised interoperability frameworks, ethical uncertainties 

in data reuse, and insufficient collaboration among stakeholders. 

These challenges are exacerbated by the speed of technological 

change, which often outpaces the adaptability of the existing 

regulatory frameworks. Therefore, robust yet :exible standards 

are needed to ensure AI systems remain equitable, safe, and 

effective (15, 62, 64, 66).

An equally pressing concern is the fair distribution of the benefits 

of AI. Federico and Trotsyuk (62) stressed the importance of 

ensuring that AI advancements serve both underrepresented and 

underserved populations. Their view aligns with that of 

Aucouturier and Grinbaum (63), emphasising ethical governance 

structures that prioritise inclusivity and societal well-being. The 

challenges and opportunities surrounding synthetic medical 

imaging within the EHDS framework require a coordinated set of 

TABLE 5 SID-GT: Pillars, reporting checklist, and EU framework mapping.

Pillar What to report (checklist) EU framework anchors

1. Utility & 

fidelity

Held-out real-data performance (AUC, F1, sensitivity/specificity, calibration); task 

definition and clinical/contextual thresholds; external validation/site-shift tests; 

ablation of synthetic-vs-real mix; data leakage checks.

AI Act (Art. 10–15 data governance, risk mgmt., transparency); 

MDR (clinical evidence/performance evaluation for intended 

purpose).

2. Privacy membership- and attribute-inference attack AUC vs. random baseline; nearest- 

neighbour/memorisation probes; if DP used: report e, d, clipping/noise schedule, 

and utility trade-off; residual linkage risks (singling out/linkability/attribute 

inference) and mitigations.

GDPR (Recital 26; Arts. 4, 5, 25 privacy by design); EHDS 

(secondary-use safeguards, access governance).

3. Bias & fairness Subgroup metrics (sex, age, ethnicity, site) with CIs; DAUC/DF1 vs. overall; 

calibration by subgroup; dataset composition/coverage; mitigations (reweighting, 

fairness-aware synthesis, targeted augmentation) and post-hoc audits.

AI Act (Art. 10 data quality/representativeness); EHDS (equitable 

access/quality).

4. Traceability Model/data cards: purpose, provenance, training recipe, PETs, hyperparameters; 

versioning and chain of custody; seeds/checkpoints; deterministic build info; 

interoperability notes (schemas/ontologies).

AI Act (Art. 12 record-keeping/technical documentation); MDR 

(Annex II technical file); EHDS (interoperability/metadata).

5. Disclosure & 

labelling

Explicit “synthetic” labelling; intended use (research, education, pre-clinical 

validation); limits and residual risks; licence/usage restrictions; contact for queries; 

dataset DOI/version.

GDPR (Arts. 12–14 transparency); EHDS (access & transparency 

obligations).
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actions. These must address technical hurdles and the ethical and 

legal complexities of the implementation. Central to this effort is 

the need to clarify data ownership, especially when synthetic 

datasets are derived from personal health data. Intellectual property 

concerns must be resolved, and individuals should retain agency 

over how their real or synthetic data are used. It includes the 

development of harmonised consent frameworks that enable 

patients to make informed decisions about their data and provide 

mechanisms to withdraw consent when needed.

Bias mitigation must also be prioritised in synthetic data 

development. This can be achieved by integrating fair auditing 

and demographic balancing mechanisms into the data 

generation pipeline. Ensuring that synthetic datasets re:ect a 

wide range of populations is critical for achieving equitable AI 

outcomes. Interoperability is another major hurdle to overcome. 

Unified protocols and standards across EU member states are 

essential for facilitating seamless data exchange while respecting 

national data sovereignty. Harmonising these frameworks will be 

key to enabling collaborative AI innovation throughout Europe. 

To prevent fragmentation and inconsistency, the EU must take 

the lead in establishing a unified standard for synthetic-data 

governance. It could be modelled after initiatives such as 

FUTURE-AI, which propose benchmarks for technical quality, 

ethical integrity, and interoperability. Such frameworks should 

promote transparency, fairness, and robustness, which are 

essential criteria for ensuring the reliability of synthetic data and 

their integration into clinical work:ow.

Embedding ethics-by-design principles at every stage of synthetic 

data development is vital. From the outset, privacy, consent, and 

fairness should be considered and supported by the 

interdisciplinary ethics committees. Regular ethical audits should be 

institutionalised to address risks and proactively build public trust. 

Transparency in the data-generation process is crucial. Developers 

should provide detailed documentation of their methodologies, 

algorithms, and validation metrics. Open sourcing of these 

frameworks, where possible, would facilitate peer review, 

replication, and broader collaboration, aligning with Open Science 

principles and enhancing trust in synthetic data tools. In essence, 

ethical frameworks should not be viewed as regulatory hurdles but 

as enablers of trust and innovation. Within EHDS, robust 

governance mechanisms are essential for unlocking the full 

potential of synthetic imaging data. Addressing consent, ownership, 

bias, and interoperability issues is fundamental to this vision. 

Synthetic data offers the potential to transform healthcare by 

enabling secure, privacy-preserving data sharing and supporting the 

development of AI applications that are accessible and equitable. 

With careful alignment of technical innovation and ethical 

regulations, synthetic data can support advances in diagnostics, 

personalised treatment, and public health, while maintaining public 

confidence and compliance with fundamental rights.

One of the most exciting developments in this space is the 

integration of synthetic medical image generation with natural 

language processing (NLP), mainly through vision-language 

models (VLM). Systems such as LLaVA-Med and Med-PaLM 

merge the interpretive strengths of computer vision and text- 

based AI to unlock powerful new applications (5):

• Guided image synthesis: VLM can create synthetic medical 

images based on clinical text inputs. For example, given a 

description such as “an MRI scan showing glioblastoma with 

a 5 cm lesion in the frontal lobe,” the system can generate a 

corresponding synthetic image.

• Multimodal dataset creation: By pairing synthetic images with 

automated text annotations, VLM can create large-scale 

multimodal datasets for tasks such as classification, 

segmentation, or anomaly detection.

• Visual question answering (VQA): These models can generate 

synthetic visual responses to clinical queries, thereby 

supporting medical education and training by providing 

tailored examples.

• Cross-modality synthesis: VLM facilitate conversion across 

imaging modalities (e.g. MRI to CT), supporting diagnostic 

:exibility, and reducing redundant scanning.

• Automated annotation and captioning: VLM streamline the 

process of labelling images by generating consistent, detailed 

captions, saving time and ensuring annotation quality.

• Interactive data generation: Through conversational interfaces, 

clinicians can iteratively refine synthetic images by adjusting 

input specifications, enhancing usability, and tailoring 

outputs to clinical needs (5).

Towards a governance toolkit for synthetic 
imaging data

While the ethical and regulatory considerations discussed 

above provide a conceptual foundation, their translation into 

actionable practices remains a key challenge. To support 

alignment with the European Health Data Space (EHDS) 

objectives, we propose a Synthetic Imaging Data Governance 

Toolkit (SID-GT). This toolkit serves as a practical checklist for 

researchers, developers, and data custodians to evaluate synthetic 

datasets along five essential governance pillars: utility, privacy, 

fairness, traceability, and disclosure. The toolkit and checklist 

presented here target synthetic medical imaging; when guidance 

generalises beyond imaging, this is indicated explicitly. Each 

pillar is explicitly linked to European regulatory frameworks. 

including the GDPR, AI Act, MDR, and EHDS regulation, 

ensuring that governance practices are not only technically 

robust but also legally grounded. For clarity, Table 5 summarises 

the proposed governance pillars, associated reporting 

requirements, and their alignment with key EU regulatory 

instruments. By embedding these dimensions into evaluation 

protocols and reporting standards, the SID-GT promotes 

transparency, accountability, and comparability across projects, 

facilitating trust and interoperability within EHDS.

In conclusion, when developed and governed responsibly, 

synthetic data can revolutionise medical research and healthcare 

delivery across Europe. The EHDS provides a promising 

foundation, but its success depends on concerted efforts to 

integrate ethics, transparency, and standardisation into every 

phase of synthetic data innovation. The introduction of a 
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practical governance toolkit (Table 5) illustrates how these 

principles can be operationalised, providing a concrete pathway 

to ensure that synthetic imaging data are used in a manner that 

is legally robust, ethically sound, and clinically meaningful.
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