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Developing high-quality training data is essential for tailoring large language

models (LLMs) to specialized applications like mental health. To address

privacy and legal constraints associated with real patient data, we designed a

synthetic patient and interview generation framework that can be tailored to

regional patient demographics. This system employs two locally run instances

of Llama 3.3:70B: one as the interviewer and the other as the patient. These

models produce contextually rich interview transcripts, structured by a

customizable question bank, with lexical diversity similar to normal human

conversation. We calculate median Distinct-1 scores of 0.44 and 0.33 for the

patient and interview assistant model outputs respectively compared to

0.50 ± 0.11 as the average for 10,000 episodes of a radio program dialog.

Central to this approach is the patient generation process, which begins with a

locally run Llama 3.3:70B model. Given the full question bank, the model

generates a detailed profile template, combining predefined variables (e.g.,

demographic data or specific conditions) with LLM-generated content to fill in

contextual details. This hybrid method ensures that each patient profile is both

diverse and realistic, providing a strong foundation for generating dynamic

interactions. Demographic distributions of generated patient profiles were not

significantly different from real-world population data and exhibited expected

variability. Additionally, for the patient profiles we assessed LLM metrics and

found an average Distinct-1 score of 0.8 (max = 1) indicating diverse word

usage. By integrating detailed patient generation with dynamic interviewing,

the framework produces synthetic datasets that may aid the adoption and

deployment of LLMs in mental health settings.
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1 Introduction

Recent research has explored LLM applications in healthcare, ranging from clinical

decision support and medical education to administrative automation (1, 2). In

psychiatric settings, LLMs have been investigated for risk assessment and predictive

analytics, helping identify high-risk patients and potential complications before they

escalate. They have also been used to tag and summarize patient behaviors during

clinical interviews, offering structured insights that assist clinicians in diagnoses or

provide secondary perspectives (3, 4). Beyond decision support, patient-facing

applications such as symptom assessment chatbots have been introduced to offer
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preliminary guidance; however, these tools require careful human

oversight to ensure accuracy and prevent misinterpretations,

particularly in high-risk mental health scenarios (2). Despite

these advancements, there are challenges that limit the

effectiveness of LLMs in mental health applications. A major

barrier is the lack of diverse, high-quality training data, as

psychiatric assessments involve complex, context-dependent

interactions that are difficult to standardize. Additionally, privacy

regulations—such as HIPAA, GDPR, and PIPEDA—impose strict

guidelines on the collection, storage, and use of personal health

data, making it challenging for researchers to access diverse and

representative datasets for model training. To address this,

synthetic data generation has been proposed as a privacy-

compliant solution, as they allow researchers to develop and test

models without accessing sensitive information (5, 6). This

approach has been particularly valuable in specialty fields such as

oncology, neurology, and cardiology, where patient datasets are

often limited due to privacy concerns and disease rarity (5).

However, while synthetic data has addressed some challenges in

these fields, its application in mental health research remains an

open area for exploration, particularly for generating adaptive,

context-aware interactions.

To address this, we present a synthetic patient and interview

generation framework that leverages two instances of Llama 3.3

70B models. Our objective is to comprehensively address key

challenges in deploying AI within mental health settings by:

• Facilitating Dynamic Interactions: The framework simulates

[psychiatric] intake assessments by assigning distinct roles:

one model acts as the interviewer and conducts the structured,

adaptive interviews, while the other model acts as the patient

and generates responses based off of a generated profile. This

design mirrors the interactive dynamics of real-world clinical

settings, allowing for natural and responsive exchanges.

• Generating Realistic Profiles: A separate component within the

framework is responsible for generating synthetic patient

profiles by combining predefined demographic and clinical

variables with dynamically produced content, ensuring

diversity and realism.

• Providing Customizability: The framework allows users to

tailor question banks and patient parameters to align with

specific research, training, or educational objectives. This

flexibility enhances its applicability across various mental

health contexts.

• Ensuring Versatility: By combining detailed profile generation

with interactive interviews, the tool addresses a range of

potential applications, including testing LLM capabilities,

creating training materials, exploring hypothetical scenarios,

or facilitating fine-tuning efforts for domain-

specific applications.

This framework represents a novel, resource-efficient, and

privacy-respecting approach to generating synthetic data and

interactions, addressing critical challenges in mental health

research and tool-development.

2 Methods

2.1 System architecture

The methodology employed in developing and implementing

the LLM-driven psychiatric interview system ensures structured

yet adaptive interviews using two instances of Llama 3.3-70B

models (Figure 1). We have included software code for

generating synthetic patient and interview transcripts on a public

repository https://github.com/ubcbraincircuits/SPIT_Generation.

git. One instance functions as the Interviewer Model, responsible

for dynamically selecting and delivering structured interview

questions, while the other instance serves as the Patient Model,

generating responses based on predefined profile data and free-

text generation. Unlike large-scale AI deployments that require

high-performance computing clusters, this system operates

efficiently on a locally run setup with a modest GPU

configuration, demonstrating that sophisticated LLM-driven

psychiatric assessments can be conducted without the need for

extensive computational infrastructure. This approach ensures

accessibility, lower operational costs, and full control over data

security while maintaining a balance between structured clinical

assessment and adaptive conversational flow, enabling more

naturalistic and contextually relevant responses.

2.1.1 Patient profile generation

A locally run Llama 3.3-70B model generates synthetic patient

profiles (Figure 2) following predefined structures, ensuring

consistency while allowing for dynamic variability. To develop the

original patient profile template, a predefined question bank was

provided to an instance of Llama3.3:70b, along with a prompt.

This prompt instructed the model to generate a structured patient

profile that strictly adhered to the question bank’s format,

reinforced with an illustrative example. This approach ensured that

the template aligned with the intended structure before being

manually reviewed and refined for integration into the system.

This structured template is then populated with demographic

attributes based on real-world statistics before a final LLM

instance further enriches the profile with narrative details

(Figure 2). These profiles incorporate fixed demographic

variables—such as age, gender, and medical history—derived from

real-world population distributions relevant to the authors’

geographic region, enhancing applicability to local healthcare

contexts. The demographic distributions are informed by publicly

available datasets, including Statistics Canada, the British

Columbia (BC) Ministry of Education and Families, the BC

Ministry of Health, and the Vanier Institute of the Family (7–29).

To enhance realism, we employ the Faker Python package to

generate names, dates of birth, addresses, and occupations (30).

However, unlike conventional usage where names are sampled at

random, our approach weighs Faker’s ethnic name distributions

according to regional census data. This ensures that name

assignments align with realistic demographic proportions.

Additional characteristics are assigned based on curated lists

and dictionaries stored in a variables.py file. These include
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attributes that are not constrained by demographics, either by

choice or lack of data, such as allergies, health supplements,

recreational drug use, reasons for doctor appointments, and

psychiatric conditions with corresponding treatments. For

instance, psychiatric conditions are drawn from a dictionary

where conditions serve as keys and their commonly prescribed

medications (with dosages) are listed as values. This dictionary

was initially generated using ChatGPT to compile common

psychiatric conditions and associated medications, then manually

reviewed and refined. The appearance rate of these conditions

are also randomized, as it is not uncommon for a patient to have

comorbid diagnoses, so we include a chance that one to three

psychiatric conditions are given to a patient. Certain

characteristics, such as this one, remain fully randomized due to

a lack of reliable demographic data. While they currently follow a

predefined probability distribution, they can be adjusted in the

future as relevant population statistics become available.

Once the structured patient data is established, another

instance of Llama3.3:70b generates expanded descriptions for key

aspects such as family and social history, health and injury

history, personal interests, and daily lifestyle patterns. This step

ensures that synthetic patients exhibit diverse and more natural

storytelling, increasing their utility for training and research

purposes. The LLM is guided by a structured prompt that

FIGURE 1

Overall system architecture of patient profile generation, interview generation and output. The patient profile generation, which is further broken

down in Figure 2, takes in a profile template, fills in demographic attributes using random sampling based on the population statistics, and

subsequently fills in narrative details (for example, the names and ages of any children) using an instance of Llama3.3:70b. The patient profile is

then inserted into the “patient prompt” prior to the transcript generation. Similarly, the question bank is inserted into the interview assistant

model’s “assistant prompt” prior to the transcript generation. During transcript generation, these prompts are passed to their respective models,

and the models are called back and forth, the “interview assistant” model asking questions from the question bank and the “patient” model

answering with information from the patient profile. Throughout the interview, the “interview assistant” model summarizes the “patient” responses.

Once all questions have been asked and answered, the “interview assistant” model outputs both the interview transcript and summary notes into

one document, in both JSON and.txt format.
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instructs it to incorporate details while maintaining logical

consistency with the assigned attributes.

All patient profiles are stored in a structured format, ensuring

easy retrieval and modification. The patient generation is

implemented in “llm_patient_creator.ipynb” Jupyter Notebook

within the project repository (https://github.com/ubcbraincircuits/

SPIT_Generation.git). Users can modify variables.py to update

predefined lists or dictionaries and adjust probability

distributions. Additionally, patient records can be manually

edited post-generation to refine specific cases before use in

downstream applications.

2.1.2 Prompt design
The Interviewer and Patient Model prompts are built around a

structured Chain-of-Thought prompting strategy inspired by the

INSTRUCT framework (8), emphasizing stepwise task

decomposition, logical consistency, and grounded output

formatting. This methodology guides each model through the

structured yet dynamic process of conducting and responding to

a psychiatric interview, ensuring coherence, traceability, and

grounded dialogue generation.

Both prompts begin with context paragraphs establishing clear

roles: the Interviewer Model collects detailed psychiatric

information in a safe, ethical, and non-judgmental manner,

setting a clinical yet supportive tone; the Patient Model simulates

a synthetic patient participating realistically within the defined

scenario, maintaining character consistency and avoiding

breaking the fourth wall. These context paragraphs orient

each model clearly, embedding professional and ethical

interaction norms.

Following this introduction, structured sections enable targeted

interactions:

• The Interviewer Model uses a tagged section presenting the

current set of interview questions. This modular approach

ensures comprehensive coverage of structured

interview domains.

• The Patient Model uses a <PATIENT_INFO> tagged section

detailing a synthetic patient profile, encompassing structured

attributes (e.g., demographics, diagnoses) and freeform traits

(e.g., emotional tone, life events), ensuring responses remain

character-consistent and contextually grounded.

FIGURE 2

Detailed diagram of patient generation system. The system begins with a predefined question bank, which is provided to an instance of Llama3.3-70B

along with a prompt. This prompt instructs the model to generate a patient profile template that strictly adheres to the question bank’s structure and

format, reinforced with an illustrative example. Demographic attributes are then assigned to the template through random sampling based on

population statistics. The partially completed profile is then passed to another instance of Llama3.3-70B with a prompt directing it to fill in the

remaining sections with realistic but entirely fictional details. The final output is a structured, fully populated patient profile ready for use in

downstream applications.
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Each model’s Guidelines section supports natural-sounding,

empathetic, and variable interactions. For the Interviewer Model,

varied phrasings for acknowledgments, clarification prompts, and

transitions are provided to avoid repetitive language, particularly

regarding sensitive topics like trauma or substance use. Explicit

examples model respectful handling and graceful topic shifts. The

Patient Model’s Guidelines encourage behavioral variability,

instructing the model to express realistic emotional tones,

occasional vagueness, mild contradictions, and natural handling

of uncertainties or refusals.

At the core of both prompts is a structured INSTRUCT-based

Chain-of-Thought reasoning loop:

Interviewer Model (Six-step loop):

1. Identify the Previous Question asked by the model itself,

ensuring continuity.

2. Summarize the Patient’s Latest Answer using a structured

note format (Note: … <END_NOTE>) for downstream

parsing and traceability.

3. Assess Completeness based on predefined criteria: clarity,

detail, and relevance.

4. If Clarification is Needed, prompt for it using varied polite

phrasings, skipping all other steps.

5. If All Questions Have Been Asked, return RESPONSE:

<STOP> to indicate interview completion.

6. Otherwise, compose the next turn by integrating an appropriate

acknowledgment and posing the next question from the

queue—ensuring variation in phrasing and

emotional sensitivity.

Patient Model (Five-step loop):

1. Identify the Most Recent Question asked by the interview

assistant, ensuring that the response is directly relevant to

what was asked.

2. Retrieve Relevant Information from the patient profile,

focusing on key dimensions such as timelines, frequency,

or severity.

3. Formulate a Response that draws on these details, staying

brief, character-consistent, and focused on the core of the

interview assistant’s question.

4. Check for Clarity, adjusting vague answers with an additional

emotional or temporal cue if necessary.

5. Deliver the Final Answer, always beginning with RESPONSE:

to maintain output consistency and compatibility with the

surrounding system.

Both loops clearly separate internal reasoning from conversational

outputs, with only the final RESPONSE: communicated between

models. Embedded example workflows illustrate behavior in

common edge cases (e.g., vagueness, refusal, emotional distress),

reinforcing consistency and sensitivity.

This combined prompt design blends structured INSTRUCT-

style reasoning with realistic dialogue generation, enabling

comprehensive data collection and rapport-oriented interaction

while supporting controlled simulation realism. These prompts

are stored in the files “assistant_prompt_v6.txt” and

“patient_prompt_v2.txt”, and implemented in the

“double_model_chunking_ollama.py” file available in the project

GitHub repository (https://github.com/ubcbraincircuits/

SPIT_Generation.git).

2.1.3 Question bank
Transcript generation was created in collaboration with a

psychiatrist, who provided a mock interview transcript and an

outpatient intake questionnaire. We used these documents as the

basis for questions that should be covered in the synthetic

interview by extracting topics into a question bank. The final

question bank consisted of 47 points with 5 sections titled

General Information, Medical History, Family History, Personal

History, and Additional Comments. The question bank is used

by the interview assistant to provide structure to its question-

asking. We found that it was necessary to add specific follow-up

points in the question bank itself, and provide a final point for

ending the interview. The complete question bank is provided in

the “questionbank_chunked.txt” file in the project Github

(https://github.com/ubcbraincircuits/SPIT_Generation.git).

2.1.4 Transcript generation
2.1.4.1 Interview structure and flow

The interview process follows a structured, looped flow in which

two instances of Llama 3.3-70B are running in tandem—one acting as

the Interview Model and the other as the Patient Model—exchange

messages until a built-in stop condition signals the end of the

session (Figure 3). It begins with the Patient Model receiving the

hard-coded starting question and generating its initial response. The

Interview Model then ingests that reply alongside the full, pre-

defined question bank and produces a single, combined

acknowledgment-and-question output, ensuring that each turn feels

conversational yet remains faithful to the scripted prompts. The

models simply alternate patient responses and interview questions—

while the Interview Model records key clinical details after each

exchange—until the stop condition is triggered.

2.1.4.2 Turn management

To keep turns coherent and prevent role confusion, every

message is explicitly tagged and roles are swapped on each pass.

When querying the Patient Model, its own answers are labeled

“assistant” and the Interview Assistant Model’s questions “user”.

Before the next turn, we reset the system prompt to the

Interview Model’s template, relabel the patient’s last reply as

“assistant”, and queue up the next question as “user”. This

append-and-swap cycle begins with the Patient Model prompt as

the first system message and the starter question as the first user

message—and repeats until the Interview Model detects its stop-

condition token.

2.1.4.3 Chunking and dynamic question loading

To optimize efficiency, the system employs a chunking and

dumping mechanism, structuring the question bank into

predefined subcategories based on headers in the input text file.

Our question bank, derived from an actual intake question bank

used in a clinic in Vancouver and reflective of other common

clinical interviews (i.e., SCID-5), is delivered in structured chunks
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as the interview progresses. The system dynamically loads a new

chunk just as the Interviewer Assistant Model is about to ask the

final question of the current chunk, preventing interruptions or

premature termination due to a lack of available questions. This

preemptive loading mechanism ensures a fluid and complete

interview experience while maintaining logical continuity. Once a

chunk is completed, previous interactions—both questions and

responses—are removed from active context and archived in the

transcript. This approach optimizes GPU usage, prevents early

termination, and ensures that only relevant information remains

in active processing, allowing the interview to proceed smoothly

without exceeding system constraints.

2.1.4.4 Limits and trade-offs

To enforce correct turn-taking, every message is explicitly

tagged and roles are swapped on each pass; the Interviewer

FIGURE 3

Detailed code architecture of transcript generation. The transcription generation method uses two instances of Llama3.3:70b, one acting as the

“Patient” and the other as the “Interview Assistant”. To maintain clear conversational roles, the patient model receives its own responses tagged as

“interview assistant” and the interview assistant’s questions tagged as “user” in the updated messages lists, while the interview assistant model

follows the reverse role assignment. The process begins with a system message providing the patient prompt, followed by an initial user message

to start the interaction. The patient model generates a response, which is appended to the conversation history. The roles are then inverted for

the interview assistant model, ensuring that its responses align with the expected dialogue structure. This iterative loop continues until a

predefined stop condition is met, signaling the conclusion of the interview.
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Model emits a <STOP> token when it has asked all questions.

Sessions that fail to produce <STOP> or otherwise violate these

role tags are flagged as prompt-adherence failures and reviewed

manually (see Results 3.2). We do not currently include

automated checks for hallucinations, incoherence, or role

deviation, but such quality-control mechanisms (e.g., classifier-

based consistency validators) could be integrated as a future

enhancement (see Discussion 4.4). Because at most one

6,144-token chunk (plus a brief seeded summary of previous

dialogue) resides in the model’s active window, neither model

has direct access to the full conversation history. This design

keeps computational requirements modest and avoids token-

overflow, but can introduce subtle gaps in long-range coherence

at chunk boundaries. In a higher-capacity deployment—e.g., on

GPUs with larger memory or models architected for extended

context windows—one could retain the entire dialogue in

memory to further enhance narrative continuity. We also

deliberately calibrate variability vs. consistency by tuning our

sampling parameters (temperature, top-k/top-p) and embedding

strict profile tags in every prompt (see Results 3.2). This ensures

patient replies remain true to their assigned character while still

exhibiting natural diversity.

2.1.4.5 Summary generation and implementation details

At interview completion, the Interviewer Assistant Model

determines when all relevant questions have been asked and

generates a structured summary based on the recorded notes.

This summary synthesizes key details from the interview,

providing a concise yet comprehensive overview of the patient’s

responses. The transcript generation process is called in the

“create_transcripts.ipynb” file and implemented in the

“double_model_chunking_ollama.py” file in the project Github

(https://github.com/ubcbraincircuits/SPIT_Generation.git).

2.1.5 Inference configuration
All calls to our two Llama 3.3:70B instances (Interviewer and

Patient models) use the following Ollama client settings:

• temperature = 0.9: Balances creativity and coherence: a value

near 1.0 allows for varied phrasings and richer narrative detail

(e.g., different acknowledgment styles), while avoiding the

randomness that would emerge at values closer to 1.0+ (31–34).

• top_k = 40: Truncates the sampling pool to the 40 most likely

tokens at each generation step, reducing the risk of extremely

low-probability (“off-topic”) words while still preserving

enough options for lexical diversity (31–34).

• top_p = 0.9: Implements nucleus sampling by including only

the smallest set of tokens whose cumulative probability

reaches 90%. This dynamically adjusts the sampling set to the

model’s confidence distribution, combining coherency with

variability (31–34).

• num_ctx = 6,144: Allocates a 6,144-token context window to

support long, multi-turn interviews. To prevent context

overflow, we employ the chunking-and-dumping mechanism

described in Section 2.1.4, which offloads completed question–

answer chunks from active memory before appending

new prompts.

These parameters were chosen based on best practices from the

literature to balance adherence to our structured prompts—so

that question order and profile grounding remain accurate—

while still providing the variability needed for a natural,

empathetic conversational style.

2.2 System implementation and
performance

The system is deployed locally on a dedicated desktop

workstation running Ubuntu 22.04.5 LTS (kernel version 6.8.0–

51-generic), featuring an AMD EPYC 7402P 24-Core Processor

paired with 256 GB of DDR4 ECC RAM. The computational

demands of the Llama 3.3-70B models are met by two NVIDIA

RTX 4090 GPUs, configured with NVIDIA driver version

550.144.03 and CUDA 12.4. Model inference is managed through

Ollama (version 0.5.7), an open-source platform specifically

designed to streamline the deployment and operation of large

language models.

This locally-hosted environment ensures data security—crucial

for potential applications involving sensitive patient information—

as well as reduced latency and complete control over computational

resources. By eliminating reliance on external cloud services, the

system guarantees consistent performance, privacy, and precise

execution tailored specifically to facilitate future secure clinical

applications. However, if privacy is not a primary concern, the

model can alternatively be deployed using cloud-based services

on systems without GPU hardware.

3 Results

3.1 System architecture and design

Our synthetic patient generation framework consists of three

key stages—patient profile generation, interview simulation, and

output formatting (see Figure 1). In this framework, patient

profiles are generated via a templating system, populated with

demographic attributes through probabilistic sampling, and

further enriched with narrative content using an instance of

Llama3.3:70B. As described in the methods, during transcript

generation, the interview assistant model queries the patient

model using a curated question bank, simulating a naturalistic

interview. The resulting interaction is compiled into a transcript

and accompanying summary, exported in both.txt and

JSON formats.

3.1.1 Patient profile generation pipeline

The patient profile generation pipeline begins with a question

bank and a guiding prompt passed to Llama3.3:70B, instructing

the model to generate a structured template that adheres to the

question framework (see Figure 2). Demographic variables were

then sampled from real-world population statistics to partially

complete the profile (7–29). A second instance of Llama3.3:70B

fills in narrative fields with plausible yet entirely fictional details.
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This process resulted in a structured, demographically grounded,

and narratively rich profile ready for downstream use. Using the

indicated hardware it took about 3 h to generate 1,000 patients

and ∼50 h to generate 100 transcripts.

3.1.2 Transcript generation workflow

The conversation between patient and interview assistant

models was orchestrated through a dynamic role-based

messaging system (see Figure 3). Two instances of Llama3.3:70B

were used: one for the “Patient”, the other for the “Interview

Assistant”. To preserve turn-taking realism, each model receives

reversed role labels in their message histories. The interview

assistant model asks questions from the question bank, while the

patient model generates responses based on its profile. The loop

continued until a predefined stop condition was met, producing

a transcript and a structured set of summary notes and attributes

of the patient. Example transcripts are available on the Github

Repository in both.JSON and.TXT format. (https://github.com/

ubcbraincircuits/SPIT_Generation/tree/main/

transcript_generation/transcripts/llama3.3/DM).

3.2 Metrics and statistical analysis

To systematically quantify our synthetic data’s linguistic

richness, redundancy, and demographic fidelity, we employ three

well-established metrics. Below, each metric is defined in detail,

including its mathematical formulation, interpretive range, and

relevance to our analyses.

• Distinct-1 (35) is a lexical diversity metric that measures the

proportion of unique unigrams (single-word tokens) in

generated responses. Distinct-1 ensures that the model

produces varied and naturalistic language rather than reusing

the same wording or phrases across different patient profiles.

Formally:

Distinct 1 ¼

# of unique unigrams

Total # of unigrams

Values range from 0 to 1: a score of 0 indicates complete repetition

(no unique tokens), while a score of 1 denotes perfect diversity

(every token is unique). In our context, higher Distinct-1 scores

reflect more varied, human-like language use. We apply this

metric to patient narratives (3.2.2) and interview transcripts (3.2.3).

• The Duplicate Ratio quantifies redundancy by calculating the

fraction of output segments that appear identically more than

once. If Ndup is the total count of duplicate segments and Ntot

the total number of segments, then:

Duplicate Ratio ¼

Ndup

Ntot

A low Duplicate Ratio (near 0) indicates minimal repetition,

whereas higher values point to frequent rote responses. We use

this metric to assess narrative fields (e.g., “work history”,

“relaxation methods”) for unexpected uniformity (3.2.2).

• χ
2 Goodness-of-Fit Test is used to evaluate whether our synthetic

demographic distributions match real-world data. A p-value

above 0.05 indicates no significant deviation. We apply this test

to ethnicity, age, and disability categories (3.2.1) and

relationship status and parental status by age/sex (3.2.1)

3.2.1 Demographic validity of synthetic patients

To assess the validity of synthetic demographic information, we

compared key demographic and health-related characteristics

against regional population prevalence statistics (see Figure 4)

(7–9). We evaluated ethnicity distributions in a one-thousand-

patient sample against census data using a chi-square test

(χ2 = 11.90, p = 0.1556), finding no significant difference (see

Figure 4A). Figure 4B similarly examines age-group frequencies,

again demonstrating close alignment with real-world age

demographics (χ2 = 2.47, p = 0.6495). Expected distributions for

ten disability categories were derived from published, age- and

sex-specific prevalence rates: for each synthetic patient, we first

determined whether they had any disability based on their

gender and age bracket, then—using overall type-specific

prevalence percentages—assigned them to a particular disability

category (see Figure 4C). The observed frequencies in our

generated cohort closely matched these expected proportions

across all categories (χ2 = 9.83, p = 0.3648).

Similarly, we compared the expected (based on the regional

population prevalence statistics) relationship and parental status

to that of the generated set of 1,000 patients. Results for

relationship status by age and sex are shown in the heatmap in

Figure 5A and for parental status in Figure 5B with blue

denoting the synthetic patients and red the regional population

prevalence statistics. Again, as with ethnicity, age, and disabilities,

we used a chi-square test to determine whether the group of

generated synthetic patients showed significant deviation from

the regional population prevalence statistics (χ2 = 12.24, p = 0.967;

indicating adherence to regional statistics).

3.2.2 Narrative diversity in model outputs
We analyzed the linguistic variability of generated patient

narratives using two diversity metrics (Figure 6). We calculated

the Duplicate Ratio metric (Figure 6A), which was low across

most of the patients LLM-generated attributes, but notably

higher in a few specific categories, namely “work history”, “past

marriages/relationships” and “relaxation methods”, indicating

some expected repetition in generated outputs. We also calculate

a Distinct-1 score for all LLM generated content for each patient

and present a histogram in Figure 6B. The histogram reflects a

high ratio of unique unigrams, consistent with rich lexical

diversity in the patient narrative details. Together, these results

indicate that the model produces varied and, in most cases, non-

redundant narrative details, enhancing the realism of the

synthetic data.
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FIGURE 4

Demographic distributions of a One thousand patient sample. (A) The ethnicity distribution in the generated dataset compared to real-world

demographic statistics from the authors’ local region. The observed distribution of ethnic groups in the synthetic patient dataset is plotted

alongside expected proportions. A chi-square test yielded a value of χ
2= 11.90 with a p-value of 0.1556, indicating no significant difference

between the generated and actual ethnic distributions. (B) The age distribution comparison, showing the proportion of different age groups in the

generated dataset vs. the actual demographic distribution. A chi-square test yielded a value of χ2= 2.47 with a p-value of 0.6495, again indicating

no significant difference. (C) Expected values were computed using sex- and age-specific disability prevalence rates, with the total probability of

being disabled distributed proportionally across ten categories: Mental-health related, Pain-related, Seeing, Learning, Memory, Mobility, Flexibility,

Hearing, Dexterity, and Developmental disabilities. The observed data were derived from the frequency of assigned disability labels within the

dataset. A chi-square test yielded a value of χ2= 9.83 with a p-value of 0.3648, again indicating no significant difference. In all panels, standard

deviation error bars represent the variance within the generated dataset.
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FIGURE 5

Heatmap comparisons of generated patient demographics and real-world population data. (A) Heatmaps depicting the distribution of relationship

status across age groups in the generated patient dataset compared to real-world demographic data. Relationship categories include Single,

Living-apart-together, Married, Common-law, Divorced/Separated, and Widowed. Each cell represents the proportion of individuals within a

specific age and relationship status category. The alignment between the generated and real-world distributions was assessed using chi-squared

tests, with a resulting χ
2= 12.24, p= 0.967. (B) Heatmaps showing the probability of having at least one child across age groups in the generated

patient dataset vs. real-world data. Color intensity corresponds to the proportion of individuals with children within each age group. Statistical

comparison of the distributions yielded a z-score of −0.6517 and a p-value of 0.2573.
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FIGURE 6

Patient generator LLM narrative data metrics. (A) Duplicate Ratio measures the proportion of completely identical responses generated by the LLM.

A higher duplicate ratio indicates that the model frequently produces identical outputs across different runs (inferences), suggesting lower

diversity. A lower duplicate ratio reflects greater variability in generated responses. (B) Histogram of Distinct-1 scores calculated on all LLM

generated content for each patient. As noted elsewhere, Distinct-1 quantifies the diversity of unigrams on a scale of zero to one by calculating the

fraction of unique unigrams relative to the total unigrams count. Higher Distinct-1 scores signify a broader vocabulary and greater lexical diversity,

while lower scores indicate more repetitive word usage. The average Distinct-1 score across each transcript is 0.791 with a standard deviation of 0.070.
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3.2.3 Transcript metrics
In the 79 transcripts that complied with the stop-condition

protocol (see below), lexical diversity was notably higher in the

patient’s responses than in the interview assistant’s responses.

The median Distinct-1 score was 0.45 for user turns as compared

to 0.33 for interview assistant turns. These results show the

generally high adherence rate and some clear asymmetry in

language variety between the patients and the interview assistant.

For comparison, we also calculated the Distinct-1 score on a set

of transcripts from a radio show comprising 10,000+ episodes

and 3,000,000+ utterances (36). We calculated the Distinct-1

score per episode and averaging across episodes resulted in a

score of 0.50 with a standard deviation of 0.11. Given the values

reported above for Distinct-1 for our patient and interview

assistant models, this indicates that lexical diversity of the patient

model is within the range of normal human conversation. The

interview assistant is lower due to the repetitive nature of answer

acknowledgements (e.g., “Thank you for sharing that…”).

In attempting to generate 100 transcripts, 10 sessions (10%)

failed to meet the stop-condition criterion established in the

provided prompts, because the interview-assistant model either

failed to output the required “<STOP>” token or ended the

interview prematurely. This constitutes our measure of full

prompt-adherence failure (See Figure 7, data points with white

fill). A more subtle prompt-adherence issue (soft failure)—seen in

both models—was the unintended disclosure of the full chain-of-

thought process instead of the concise final answer due to

improper formatting in the model’s output (See Figure 7, data

points with gray fill). When soft failure occurs, it typically dilutes

lexical diversity and lowers the Distinct-1 score. When we restrict

our analysis to only the inlier transcripts (i.e., excluding both full

and soft failures), the median Distinct-1 scores remain essentially

unchanged—0.444 for patient turns and 0.331 for assistant turns—

confirming that prompt-adherence failures do not bias our

diversity metrics. Regardless, transcripts flagged for prompt-

adherence failures would not be included in finalized datasets used

for downstream analyses (see Discussion 4.5).

An extension would be to perform a qualitative analysis using

human volunteers and analysis of actual patient transcripts as

ground truth. However, because of limitations around access to

actual transcripts (and informed consent), such an approach is

currently challenging. In lieu of a full expert study, we informally

spot-checked several generated transcripts to ensure they read

coherently, maintained empathic tone, and adhered to the

prescribed interview flow. A systematic, blinded evaluation by

clinical experts remains an important next step (see Discussion 4.5).

4 Discussion

The use of synthetic data for AI applications in mental health

presents a promising avenue for addressing long-standing

challenges related to data availability, privacy, and population

representation (37). In this work, we introduce a framework for

FIGURE 7

Distinct-1 score per transcript by role. The plot shows the Distinct-1 ratio—the proportion of unique unigrams to total tokens—computed for each

transcript separately for patient (blue) and interview assistant (red) turns. Dashed horizontal lines mark the median Distinct-1 for each role

(patient = 0.435; interviewer = 0.329). Prompt-adherence failures are denoted by white or gray fill. White fill indicates a full prompt-adherence

failure, while gray fill indicates a soft-failure, as described in Transcript Metrics in Results.

Warner et al. 10.3389/fdgth.2025.1625444

Frontiers in Digital Health 12 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1625444
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


generating dynamic, demographically grounded, and narratively

diverse synthetic psychiatry patients using Llama 3.3, a locally

hosted and open-source large language model (38). By simulating

psychiatric interviews between a virtual patient and an interview

assistant model, our system provides a privacy-respecting and

scalable alternative to traditional clinical datasets.

4.1 Role of synthetic data in AI for mental
health

Clinical datasets in psychiatry are often limited by small sample

sizes, unbalanced demographics, and strict privacy regulations

(39–43). Synthetic patient generation offers a compelling

alternative to these constraints by enabling the creation of

realistic, representative, and reusable data without implication for

patient confidentiality (44). Unlike de-identified clinical data,

which can still pose re-identification risks, synthetic datasets

generated from probabilistic models and language-based

simulations eliminate direct links to real individuals (45–47).

As demonstrated in our demographic evaluations (Figure 4),

the generated patients are constructed to align closely with real-

world distributions in ethnicity, age, and disability type. By

explicitly controlling for underrepresented characteristics,

synthetic data can help mitigate biases that may go unaddressed

in traditional datasets, especially in psychiatric contexts where

social and cultural diversity significantly impact diagnosis and

treatment or, at a more fundamental level, if an individual seeks

care (37, 48).

Nevertheless, while synthetic patients offer strong utility for

research and education, they cannot fully replace the complexity

and nuance of real human experiences. Important aspects such

as behavioral variability, hesitancy to discuss symptoms (stigma),

subtle symptom progression, or comorbidities that evolve over

time are not encompassed in a single interview. Synthetic

patients and their interview transcripts are best viewed as a

complement to real data that we must continue to improve as an

instrument for model development, exploration, and testing. It

will never be a full substitute for clinical interactions.

4.2 Comparison to existing AI approaches

Our approach diverges from AI systems trained on static

datasets or structured clinical records. Domain-specific models

like ClinicalBERT and Med-PaLM2 have demonstrated strong

performance on predictive modeling, specifically prediction of

hospital readmission, and medical question answering (US

Medical Licensing Exam style-questions), respectively (49, 50).

However, these systems are typically trained on datasets like

MIMIC-III or MultiMedQA that contain limited interactive or

psychiatric content (51, 52). While existing models have been

successfully applied to structured medical tasks, their use in

adaptive, context-dependent exchanges, an essential characteristic

of psychiatric assessments, remains an area of ongoing

exploration (53–59).

Existing synthetic data efforts have focused largely on

structured tabular data, imaging, or Electronic Health Record

(EHR) simulation, often using techniques such as Generative

Adversarial Networks (GANs) or Variational Autoencoders

(VAEs). While these methods have produced high-quality

synthetic datasets for various medical domains (5, 60), work on

interactive, narrative-based simulations is evolving rapidly. For

example, other authors have used prompt engineering with

ChatGPT to simulate patients and psychiatrists (61). Importantly

their work shows that despite rational design of prompts to

produce a more faithful clinical interaction, ultimately these

models were rejected as artificial and disingenuous when

evaluated by human users. Our contribution in this work is a

framework producing full psychiatric interviews between LLMs

acting in dialogue—one as the patient, the other as the interview

assistant providing a test-bed for exploring AI tool development

in mental health.

4.3 Applications and impact

Synthetic patients have several potential applications, notably

in AI model validation, where they serve as standardized

benchmarks for assessing conversational AI systems in

psychiatry. The technique being developed whereby the machine

generates demographically accurate synthetic responses that can

be utilized in our broader vision for developing an AI agent

capable of running structured interviews and ultimately more

general psychiatric interviews that can provide time-saving

summary documentation for clinical staff. For medical education,

interactive synthetic interviews can provide trainees with realistic

diverse scenarios, improving diagnostic reasoning and clinical

interviewing skills.

Clinically, synthetic transcripts generated by large,

computationally intensive models (e.g., Llama 3.3:70b, DeepSeek-

R1, or proprietary state-of-the-art models) can be leveraged to

fine-tune smaller, computationally efficient models suitable for

broader deployment. While our current implementation using

the Llama3.3:70b model operates within relatively modest

hardware constraints, scaling up to accommodate many

concurrent users would necessitate substantial hardware upgrades

or cloud-based deployments –both of which introduce higher

costs, complexity, and privacy concerns.

Instead, using high-quality synthetic datasets to fine-tune

compact models enables the deployment of mental health

chatbots or AI assistants even on modest infrastructure. Such

smaller models can handle real-time interactions effectively,

potentially transforming aspects of psychiatric care delivery by

providing consistent initial assessments, augmenting therapeutic

interactions, or serving as accessible mental health resources in

underserved regions. Beyond the direct clinical potential being

developed, the ability to create synthetic summaries that are

accurate demographically to our population, and true-to-life can

also be used in the educational setting and in clinical teaching.

For example, they can be used by clinicians for creation of

clinical vignettes in rounds, presentations, and examination
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settings which would be highly time-saving and improve diversity

of clinical presentations being represented.

In the future, richer datasets could be generated from advanced

open-source (e.g., DeepSeek-R1) or, licensing permitting, closed-

source models (e.g., GPT-4o, GPT-4.5 or the Gemini models).

This approach would provide broader narrative diversity and

realism, further improving smaller models’ conversational and

potential diagnostic assistance.

4.4 Regulatory and ethical considerations

The development of AI-based mental health tools is

constrained by strict privacy regulations, including the Health

Insurance Portability and Accountability Act (HIPAA) in the

United States, the General Data Protection Regulation (GDPR) in

Europe, the Personal Information Protection and Electronic

Documents Act (PIPEDA) in Canada, and British Columbia’s

Freedom of Information and Protection of Privacy Act (FIPPA),

all which limit access to real patient data. Even when real-world

data is available, it is often incomplete and may be insufficiently

representative of the populations the AI system aims to serve.

This makes data augmentation an essential strategy for

mitigating bias and ensuring a more representative and

comprehensive training dataset for any AI tool (60, 62).

With clinical datasets usually unavailable, this shifts the

challenge to generating synthetic datasets that align with the

characteristics of the intended population who will use the AI

tool. To do so effectively, trusted data sources must be identified

to inform the demographic and clinical distributions of synthetic

patients. In the author’s city, this includes publicly available

datasets from Statistics Canada, the British Columbia Ministry of

Education and Families, the British Columbia Ministry of Health,

and the Vanier Institute of the Family. However, even these

sources do not always provide data that is structured in a way

that aligns with the specific details that practicing psychiatrists

will request from their patients. In cases where key demographic

or clinically relevant attributes (e.g., disability status,

hospitalizations, family medical history) are missing, estimates

are needed to approximate the distributions of certain

characteristics. This process must be carefully documented

alongside the synthetic generation code to ensure transparency

and reproducibility. In this work, we have applied estimations for

parameters relationship status by age and sex and the probability

of having a child by age and sex with detailed rationals

and probability estimates available in the GitHub repository

(https://github.com/ubcbraincircuits/SPIT_Generation/tree/main/

patient_creation/Estimation%20Rational). As recent reviews note,

synthetic datasets must be critically assessed to ensure they do

not perpetuate or amplify existing inequities (5). Continued

iteration to improve estimates, incorporate community feedback,

and engagement with potential end users will be essential for

ensuring that synthetic mental health data is both ethically

responsible and has the potential to improve clinical efficacy.

Although we have strived for demographic realism and

transparency in constructing our synthetic patients, it is possible that

bias may already be embedded in the statistical sources we have

chosen. We emphasize that this system is in an early research stage

and has not been applied to actual patients. Prior to any deployment

outside of a research context, the project and its intended clinical

uses would undergo full review by institutional ethics boards,

including evaluation of the specific demographic data sources and

statistical estimation procedures used to guide patient generation.

4.5 Challenges and future directions

Despite significant progress, challenges remain. As noted in the

previous paragraph, developers of AI tools must remain mindful of

the risk of bias propagation: assumptions underlying estimates

must be understood and updated to avoid the generation of

skewed synthetic datasets that perpetuate inaccuracies. Assessing

the quality of psychiatric dialogue is another area which needs

development. Although we included informal spot-checks of

transcript realism (see Results 3.2.4), our evaluation remains

largely focused around quantitative language metrics (Distinct-1

etc.). A systematic, blinded qualitative assessment by clinical

experts will be essential to validate clinical tone, empathy, and

symptom realism. While lexical diversity metrics like Duplicate

Ratio and Distinct-1 (Figure 6) capture surface-level variation,

more sophisticated tools are needed to assess clinical tone,

empathy, and symptom realism including hesitancy on the part

of the patient to discuss potentially stigmatizing symptoms.

Additionally, prompt-adherence remains a practical challenge, as

observed in our results (3.2.4, Figure 7), where both full and soft

adherence failures occurred in a subset of generated transcripts.

While such failures did not significantly bias lexical diversity

measures, ongoing refinement of prompting strategies or

automated detection methods will be essential to mitigate these

issues and ensure dataset integrity. Furthermore, our approach

inherits common risks associated with large language models,

such as potential hallucinations (generation of factually incorrect

or contextually inappropriate information) and inherent biases

stemming from their training data. Although our structured

prompting methods and demographic grounding reduce these

risks, they cannot fully eliminate them. Future work should

incorporate systematic monitoring for these issues and continue

developing techniques, such as rigorous prompt engineering,

automated content validation, and expert review, to further

mitigate these risks. Finally, incorporating dataset-level validation

could further enhance the robustness of the synthetic dataset. For

example, one possible approach to reducing repetition in the

LLM generated patient attributes could be the implementation of

dataset-level validation techniques that dynamically adjust

generated patient attributes based on real-time feedback from the

model during generation, such as tracking all previously

generated patients relaxation methods (yoga, meditation, etc.)

within a generated dataset to ensure a variety of responses.

Future work may also scale this framework to simulate broader

domains such as psychological therapy, youth mental health, or

cross-cultural care and continuous development is required to

incorporate the benefits of improved foundation models.
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