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Psychotropic medications are associated with lower mortality in bipolar disorders 

(BD) and schizophrenia spectrum disorders (SZD) but may trigger serious adverse 

events requiring hospitalization. Determining the iatrogenic causes of such events 

can considerably help psychiatrists understand their development and adjust the 

prescription accordingly. We aimed to assess to what extent the psychotropic 

prescription sequence contributes to in-hospital non-psychiatric adverse events 

in BD and SZD. We conducted a case-control design including adults with BD or 

SZD from the French national healthcare system claims database (n = 87,182). 

A recurrent neural network model was trained to discriminate between adults 

who experienced adverse events and matched adults who did not, based only on 

psychotropic prescription sequences over the past 18 months and demographic 

data. Explainable AI combined enabled us to understand the model’s prediction. 

Psychotropic doses during the months preceding the adverse events were 

relatively more important than earlier doses to predict in-hospital urinary 

retention and thyroid disorders, but it was not the case to predict movement or 

cardiac disorders. The doses of certain benzodiazepines, tropatepine, quetiapine, 

clozapine, loxapine, lithium salts, and valproate were significant risk factors for 

adverse events. A recurrent neural network combined with explainable AI 

identified key psychotropic prescription features and duration associated with 

non-psychiatric adverse events among a large number of features. Yet, it was 

unable to predict events with high accuracy. Such a model could only be used 

retrospectively to generate hypotheses about iatrogenic risk factors for adverse 

events, offering limited value for integration into prescription softwares.
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Introduction

Bipolar disorders (BD) and schizophrenia spectrum disorders 

(SZD) are typically treated by psychotropic medications to prevent 

acute episodes in inpatient and outpatient care. Psychotropic 

medications are associated with lower all-cause mortality in SZD 

(1) and BD (2), but may lead to adverse drug events (ADEs), 

ranging from mild discomforts to serious medical emergencies 

that require hospitalization, such as hyponatremia or delirium. 

Non-psychiatric in-hospital adverse events affect half of 

inpatients with BD or SZD and are associated with longer 

hospitalizations (3). A first ADE significantly increases the risk 

of recurrence (4), highlighting the need to identify its iatrogenic 

causes. ADEs leading to hospitalization in young adults with BD 

or schizoaffective disorders are primarily attributed to lithium 

salts and second-generation antipsychotics (5). While anxiolytics 

and sedatives account for the highest absolute number of 

emergency department visits for ADEs, antipsychotics and 

lithium salts are the most frequently associated with emergency 

department visits for ADEs when adjusted for prescription 

prevalence (6). High psychotropic doses (7), psychotropic 

polypharmacy (5), and prolonged treatment duration (8) are 

also significantly associated with higher risks of in-hospital 

adverse events in BD and SZD. Conversely, serious ADEs may 

emerge after the introduction of a new medication regardless of 

dosage (9). While some adverse events are typically associated 

with specific medications (e.g., serotonin syndrome with 

antidepressants), others like delirium, have multiple putative 

iatrogenic causes, further complicating prevention. Identifying 

the prescription practices most strongly associated with ADEs 

with multiple putative iatrogenic causes could help clinicians 

understand their development, identify at-risk patients, and 

adjust prescriptions accordingly.

Studies investigating the non-psychiatric adverse events 

associated with psychotropic prescription practices using 

claims data (10) or pharmacovigilance databases (11) 

commonly apply traditional frequentist methods (e.g., logistic 

regression, survival analysis) to provide directly interpretable 

risk estimators as odds or hazard ratios. However, these 

models assume linear associations between predictors and 

risk of adverse events, rely on predefined model structures, 

and require excluding certain patients based on design 

constraints. For instance, patients with very stable 

prescriptions, common among outpatients with BD and SZD, 

are uninformative in case-crossover designs (12). Additionally, 

the risk of adverse effects may depend on the duration of 

psychotropic prescriptions (13), a feature rarely addressed 

in pharmacoepidemiological studies. A model capable of 

processing long-term sequences of psychotropic dosages could 

identify among the large number of prescription features the 

ones most associated with adverse events in naturalistic 

contexts and suggest when the risk is the highest.

Machine learning methods have emerged as powerful tools for 

handling a large number of variables and identifying non-linear 

associations. Most machine learning models designed for 

pharmacy or pharmacology were trained to predict new drugs’ 

adverse reactions at the early stage of the drug development 

(14). A few models exhibited good performance to reliably 

predict adverse reactions in the context of non-psychotropic 

medications, like in the case of prescription in newborns 

(C-statistic = 0.91) (15) or hospitalized patients with chronic 

kidney disease (C-statistic = 0.81) (16). Besides, most predictive 

models designed for clinical psychiatry estimated the risk for 

psychiatric outcomes such as suicide attempts or relapse, or 

future psychotropic prescriptions (17). To our knowledge, no 

machine learning model estimated the risk for non-psychiatric 

adverse events in the context of psychiatric care. Recurrent 

Neural Networks (RNNs) have been effectively applied to 

various medical tasks involving time-series, with demonstrated 

effectiveness in predicting next-period prescriptions by learning 

from patients’ history (16). One type of RNN, Gated Recurrent 

Units (GRU) (17), effectively handles sequential data with 

temporal dependencies while mitigating vanishing or exploding 

gradients, which can hinder the ability of RNNs to learn long- 

range dependencies. GRU could be relevant to reveal the 

complex associations between multiple long-term sequences of 

psychotropic dosage and adverse events.

A key limitation of machine learning models compared to 

traditional frequentist methods in public health is the lack of 

transparency on the relationship between input features and 

predictions, i.e., the “black box” nature (18). Explainable AI 

(XAI) methods have emerged to clarify the rationale behind the 

model’s decision (19). Applying XAI to a machine learning 

model can improve clinicians’ understanding and trust in the 

model’s prediction. Besides, sequences of psychotropic 

prescriptions are often available in structured formats within 

prescription softwares or as pharmacy deliveries, facilitating 

automated processing. A model capable of providing valid risk 

estimates of ADEs based on such data could be valuable for 

clinical settings.

Our objective was to develop a GRU-based model that 

discriminates between patients with BD or SZD who 

experienced in-hospital adverse events and matched patients 

who did not, based solely on psychotropic prescription 

sequences and demographics. By incorporating explainable AI 

methods we aimed to identify the psychotropic drugs, doses, 

and treatment durations most associated with the development 

of in-hospital non-psychiatric adverse events. Our goal was not 

to reliably and accurately predict in-hospital adverse events, 

but rather evaluate the contribution of psychotropics to such 

events among patients with BD or SZD, identifying the 

prescription features clinicians should monitor or investigate in 

priority, and assess the relevance of implementing such a 

model in a prescription software, where only medication 

data are available, and not clinical test results, procedures, or 

comorbidity information.

Abbreviations  

ADEs, adverse drug events; BD, bipolar disorders; GRU, gated recurrent units; 

RNN, recurrent neural network; SHAP, SHapley additive exPlanations; SZD, 

schizophrenia spectrum disorders; XAI, explainable artificial intelligence.
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Methods

Analyses were conducted on SAS® Enterprise Guide v7.4 (SAS 

Institute North Carolina, USA) and Python.

Participants

We conducted a case-control nationwide longitudinal study, 

including patients from the French National Health Data System 

(SNDS), which covers medical interventions, hospitalizations, 

and outpatient treatments for 99% of the French population 

(over 65 million people). As the data is pseudonymised, patient 

consent was not required. We included individuals included in 

the SNDS from January 1, 2013 to December 31, 2022 with 

schizophrenia spectrum (SZD) and/or bipolar disorders (BD) 

defined as: 

1. Patients receiving 100% reimbursement for long-term 

conditions within the year, with diagnosis codes F20–25, 

F28, or F29 for SZD, and F30–31 for BD according to the 

international classification of diseases—10th revision (ICD- 

10) (Supplementary Table S1).

2. Patients with at least one hospitalization for SZD or BD (as 

primary or related diagnosis) within the previous two years.

3. Patients with at least one hospitalization for SZD or BD within 

the previous five years, combined with at least three purchases 

of specific medications within the year: 

- For SZD: antipsychotics (ATC code N05A, excluding 

N05AN).

- For BD: antipsychotics, lithium, valproate, 

carbamazepine, oxcarbazepine, or lamotrigine.

We excluded patients with missing data for age or sex, patients 

under 18 or over 65 years old, and twins or other multiple 

births (due to indistinguishable hospital records).

Outcome

We identified in-hospital adverse events recognized as 

psychotropic drug adverse events in the literature (20) that were: 

- Mostly acute, with severity developing over a short period 

(weeks to a couple of months).

- Severe enough to be reported in hospitalization.

- Reversible: if drug-induced, the condition resolves or becomes 

less severe after drug discontinuation.

- Not rare, defined as having a frequency >0.1%. In our sample, 

this corresponded to events reported by more than 

885 individuals.

Selected in-hospital adverse events were urinary retention, 

constipation, cardiac rhythm or conduction disorders, electrolyte 

imbalances, pneumonia, seizures, delirium spectrum disorders, 

thyroid disorders and motor disorders (Supplementary 

Table S2). We included patients who experienced an outcome 

event at least 18 months after their initial BD or SZD diagnosis 

to exclusively study psychotropic prescriptions for those 

disorders. We only studied the first hospitalization with an 

adverse event after the initial diagnosis of BD or SZD.

Medications

We collected dispensations of antidepressants (ATC code 

starting by N06A), anxiolytics, hypnotics, lithium salts and 

antipsychotics (N05), antiepileptics (N03A), and antiparkinsonians 

with anticholinergic properties (N04A), based on outpatients’ 

reimbursement records, for the 18 months preceding the event. 

Only medications purchased before the event were collected. As 

information on inpatient psychotropic prescription is missing in 

the SNDS, we provided the model with a variable coding the 

occurrence of hospitalization (psychiatric or non-psychiatric) 

over the month so that the model could account for the possible 

lack of information on treatment.

We defined the duration of a prescription as the time interval 

between two consecutive treatment deliveries, based on the 

assumption that individuals who purchased a medication again 

had fully consumed their previous supply (see Supplementary 

Material 1). We did not apply a strict definition of treatment 

duration, as it is not appropriate for psychotropic medications, 

which are frequently discontinued due to factors like 

forgetfulness, adverse effects, or intermittent symptoms. We 

computed the mean daily dose over the month for each 

medication and each of the 18 months preceding the event. 

Artefactual null doses may appear when a patient does not 

purchase medication every month. For instance, if a patient 

purchases two boxes in one month and none the next month, it 

would appear as if they took a high dose of the treatment before 

discontinuing it. Therefore, we smoothed the doses by applying 

a sliding weighted temporal average (21), using the formula:

D0

i, d, m ¼
(Di, d, m�1 þ 4 � Di, d, m þ Di, d, mþ1)

6 

with Di,d,m, the dose of the drug d for individual i at month m

Statistical analyses

Matching
We matched case individuals to control individuals 

hospitalized in the same type of ward (psychiatric or non- 

psychiatric) during the month of the outcome event but who 

did not experience any adverse event. Matching criteria included 

sex, age as of 18 months prior to the event, diagnoses of BD, 

SZD, traumatic brain injury, Parkinson’s disease, dementia, 

multiple sclerosis, epilepsy, cerebrovascular disease, or 

intellectual disability recorded between January 1, 2013 and the 

date of the adverse event. We also matched individuals on 

frailty, assessed by the Charlson Comorbidity Index over the 

year of the adverse event (22) (see Supplementary Table S3 for 

the definitions of comorbidities).
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Preprocessing variables

We normalized the mean daily dose and age. Other predictors 

were binary coded: hospitalization over the month, sex (0 for 

males), BD and SZD diagnoses. Besides, the nine outcome 

variables (i.e., adverse events) were binary coded and were not 

mutually exclusive: several adverse events could be reported 

during the same hospitalization.

Classification models

Each model took as input the 18 normalized mean daily doses 

for each medication and indicators of hospitalization (i.e., one 

measure every month), BD and SZD diagnoses, age at inclusion, 

and sex. Each model returned a 9-dimension vector representing 

the predicted probabilities of the nine adverse events 

(Supplementary Table S2).

We built a model combining a bidirectional GRU and 

traditional feedforward neural layers, referred to as the 

bidirectional GRU or biGRU-based model (Figure 1). The input 

was a 88 × 18 matrix (i.e., 88 variables measured over 18 

months) including only time-dependent variables (normalized 

medication dosages and hospitalization). The input matrix was 

first processed by one neural layer to reduce the dimensions 

from 88–32 before being fed to the biGRU module. A GRU unit 

uses an input gate, an output gate, and a forget gate to regulate 

the Mow of past (previous month) and new information (current 

month), allowing the model to retain relevant past information 

over arbitrary time intervals (23). A biGRU module processes 

the input iteratively onward (from the first to the last month) 

and backward (from the last to the first month), reducing the 

risk of forgetting the features of the first month (i.e., vanishing 

gradient). The hidden states of the GRU unit, which are vectors 

representing what the module memorized from the sequence, 

were collected after the onward and backward processing. Those 

hidden states were concatenated together and with a vector 

containing time-independent variables (sex, age at inclusion, BD 

and SZD diagnoses). The concatenated vector was then reduced 

and modified by three traditional neural layers to produce a 

nine-dimension vector with values varying between 0 and 1, 

corresponding to the event probabilities. The size of the hidden 

state of the GRU unit was a hyperparameter, meaning we 

selected its value based on performance of the model in the 

train subset.

The biGRU-based model had 5,601 trainable parameters. 

Initial parameters were randomly selected. Then, for each trial 

FIGURE 1 

Representation of the biGRU-based model. The input was an 88 × 18 matrix (i.e., 88 variables measured over 18 months) containing normalized 

psychotropic drug dosages and past hospitalizations. This input was first processed by one neural layer that reduced the number of dimensions 

from 88 to 32, compressing the largely sparse input. The resulting 32 × 18 matrix was then processed by a biGRU module to detect time 

patterns. The GRU module processed the sequence onward and backward. We collected the two final hidden states (i.e., h-sized vectors), which 

were concatenated with a vector containing time-independent variables (sex, age at inclusion, BD and SZ diagnoses). The resulting vector of 

dimension (2 h + 4) was then reduced to a 9-dimension vector through three successive neural layers. A sigmoid activation function was applied 

to produce a final output with values varying between 0 and 1, interpreted as probabilities.
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(also called epoch), the parameters of the model were corrected, 

depending on the learning rate, to minimize the prediction loss 

measured by the loss function. We used a weighted version of 

the cross entropy loss function: like any loss function, it 

measured the error between the true label and the output, but 

amplified the error when the event occurred. This method 

counteracts the fact that a machine learning model tends to 

predict the most common event when outputs are unbalanced. 

The weights were defined as the reversed frequency of the 

event in the sample: 0.9418 for urinary retention, 0.8540 for 

constipation, 0.8873 for electrolytic disorders, 0.9742 for 

motor disorders, 0.9487 for delirium spectrum disorders, 

0.9753 for seizures, 0.9096 for pneumonia, 0.9694 for cardiac 

rhythm or conduction disorders, and 0.9259 for thyroid 

disorders. We used the rectified linear function (ReLU) as 

activation function after each neural layer except after the 

output layer where we used the sigmoid function to produce 

values between 0 and 1. Adam optimizer was used to optimize 

the gradient descent, i.e., the correction applied to the 

trainable parameters, with a 0.0005 learning rate and 128 

batch size. Dropout was set to 10% to reduce the risk 

of overfitting.

We compared this model with more explainable classification 

models: Random Forest (RF) and Extreme gradient boosting 

(XGB) (see Supplementary Material 2).

Training and selection of hyperparameters

As recommended (24), models were trained on the same 

training set, which constituted 80% of the initial dataset 

(Figure 2). To mitigate overfitting of the biGRU-based model 

and improve generalizability of the results, we trained the model 

on a subset of the training set and evaluated the prediction loss 

on a separate validation subset after each epoch. Training was 

interrupted when the loss in the validation subset stopped 

decreasing, i.e., when learning stopped improving, for 15 

consecutive epochs, thereby reducing the risk of overfitting. The 

final model was selected based on the lowest prediction loss 

observed in the validation subset.

Hyperparameters were selected through a five-fold cross- 

validation process, which consisted in splitting five times the 

training set into a training and a validation subset using an 80/ 

20 split. We trained the models in the training subset and 

measured their performances with the area under the receiver 

operating characteristic curve (AUC) in the associated validation 

subset for each hyperparameter value. We then averaged the 

AUC over the five splits and selected the set of hyperparameters 

resulting in the highest mean AUC.

Testing the models
To identify the best-performing model and estimate the 

predictive power achievable when considering only psychotropic 

FIGURE 2 

Flowchart of the study. Initially, 885,270 adults with SZD or BD aged between 18 and 65 years-old were identified between 2013 and 2022. Among 

those, 241,487 received a diagnosis code for an in-hospital adverse event at least 18 months after the initial SZD or BD diagnosis. We matched 43,591 

of those individuals to 43,591 control individuals recruited from the initial sample. Matching criteria included age, sex, BD diagnosis, SZD diagnosis, 

neurological comorbidities, and frailty level. The sample of control and case individuals was then split into one train set (80%) and one test set (20%) 

to measure the final performance of the model. During cross-validation, the train set was split into a train subset (80%) to train the model, and a 

validation subset (20%) to identify the hyperparameters yielding the best performance.
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prescription sequences and demographic data, we evaluated the 

performance of the models in the test set, i.e., the remaining 

20% of the initial dataset. The most performant model was 

selected to identify the most relevant contributors to 

the prediction.

Explaining the predictions

XAI methods aim to explain the output of a model and have 

been commonly used to improve the explainability of neural 

network models, which are not directly interpretable (24). 

SHapley Additive exPlanations (SHAP) values can be used to 

assess the contribution of input features to the output of a 

machine learning model (19). We computed SHAP values in the 

test set using the Python package shap. To measure SHAP 

values, each feature value of a patient is considered a “player” in 

a cooperative game and the model’s prediction represents the 

“payout”. SHAP values estimate how to distribute this payout 

among the features of each patient, thereby providing insight 

into their contribution to the model’s predictions. In the case of 

a neural network, SHAP values correspond to the expected 

gradient-based attribution (25), which is the difference between 

the current gradient and the gradient applied to the model 

using sampled reference inputs from the background dataset. 

A SHAP value different to 0 indicates that the feature value 

contributes more to the gradient than the feature reference 

value. A positive SHAP value indicates the feature value 

contributes to increase the output value, i.e., the predicted 

probability of adverse event, whereas a negative SHAP value 

indicates the feature value contributes to decrease the predicted 

probability of adverse event. SHAP values were converted into 

percentages of the total individual SHAP value to obtain 

individual relative measures of the features’ importance, 

enabling comparisons between individuals. We then averaged 

SHAP values across time or features to assess their average 

contributions to the model’s predictions.

Estimating the associated risks
To assess the robustness of the results obtained with SHAP 

and provide relevant risk estimates of adverse events for clinical 

settings, we conducted logistic regression analyses conditioned 

on matched control patients, thereby controlling for matching 

variables. Predictors included the medications ranked among the 

top 10 features with the highest absolute SHAP values.

Results

Description of the sample

The final sample included 87,194 individuals with BD or 

SZD (53.7% females, aged 46.5 ± 11.3) (Table 1). Among them, 

26,508 (30.4%) individuals had only BD diagnoses, 43,376 

(49.8%) had only SZD diagnoses, and 17,298 (19.8%) had both 

BD and SZD diagnoses. We collected the dosages of 87 different 

psychotropic medications.

Performance of the models

Training of the biGRU-based model is illustrated in 

Supplementary Figure S1. We selected the hyperparameters 

yielding the best performance (Supplementary Table S4). The 

most performant model to predict adverse events was the 

biGRU-based model (mean AUC = 0.60), followed by the XGB 

model (mean AUC = 0.56) (Supplementary Table S5). The RF 

model performed no better than randomness. Only the biGRU- 

based model exhibited a balanced trade-off between sensitivity 

and specificity for all outcome variables.

Iatrogenic risk factors of adverse events

To explain the predictions of the biGRU-based model, we 

measured the SHAP values associated with each feature of the 

input matrix. To facilitate interpretations, we illustrated how 

SHAP values explain the final prediction of urinary retention for 

one individual (Supplementary Figure S2).

To assess the role of time in model predictions, we averaged 

SHAP values over each timepoint (Figure 3). SHAP values were 

on average higher over the few months directly preceding 

urinary retention, electrolyte imbalances, pneumonia, seizures, 

delirium spectrum disorders, and thyroid disorders, suggesting 

that the months directly preceding these events were relatively 

more important for the model. More than half of the model’s 

prediction of urinary retention, seizures and thyroid disorders 

was made only by considering the seven or eight months 

preceding the event.

To more accurately explain the model’s predictions, we 

calculated the mean individual SHAP values associated with 

each feature over the whole period. Being hospitalized over the 

18 months before the event was considered the most prominent 

factor to predict all adverse events except cardiac and thyroid 

disorders (Figure 4). Past hospitalizations of certain patients had 

SHAP values higher than 50%, therefore contributing to more 

than half of the decision for that patient. Age and sex were also 

among the most inMuential features. Older age favored the 

prediction of electrolyte imbalances, motor disorders, delirium 

spectrum disorders, pneumonia, cardiac disorders and thyroid 

disorders, whereas younger age favored the prediction of 

seizures. Being a woman greatly favored the prediction of 

thyroid disorders, and being a man greatly favored the 

prediction of cardiac disorders and pneumonia.

The doses of diazepam, oxazepam, tropatepine, quetiapine, 

olanzapine, valproate, and lithium salts over the 18 months 

before the event were key factors to predict adverse events. For 

instance, the doses of tropatepine, quetiapine and diazepam 

most favored the prediction of urinary retention and 

constipation. We noticed positive associations between SHAP 

values and medication doses, suggesting some predictions were 

dose-dependent. The high doses of certain psychotropics 

contributed to more than half of the model’s decision for 

certain patients.
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Estimating the iatrogenic risks of adverse 
events

We quantified the risk for adverse events associated with 

psychotropic doses using conditional logistic regression analyses. 

Diazepam dose at the month of the event was significantly 

associated with higher risks of any adverse event except thyroid 

disorders (1.02 ≤ OR ≤ 1.04 mg/day) (Supplementary Table S6). 

Oxazepam dose was significantly associated with higher risks of 

all adverse events, except urinary retention and thyroid 

disorders (1.03 ≤ OR ≤ 1.05/10 mg/day). Tropatepine dose was 

significantly associated with higher risks of urinary retention, 

constipation, electrolyte imbalances, motor disorders and 

delirium spectrum disorders (1.01 ≤ OR ≤ 1.05 mg/day). 

Quetiapine dose was associated with higher risks of urinary 

retention, constipation, pneumonia, motor and thyroid disorders 

(1.06 ≤ OR ≤ 1.07/100 mg/day). Lithium salts dose was 

associated with higher risks of thyroid disorders (OR = 1.06/ 

100 mg/day), motor disorders (OR = 1.08/100 mg/day) and 

delirium spectrum disorders (OR = 1.03/100 mg/day). Loxapine 

dose was associated with significantly higher risks of pneumonia 

(OR = 1.25/100 mg) and constipation (OR = 1.18/100 mg), and 

valproate dose was associated with significantly higher risks of 

electrolyte imbalances, seizures, and pneumonia 

(1.02 ≤ OR ≤ 1.04/100 mg/day).

Discussion

We aimed to assess the extent to which sequences of 

psychotropic prescriptions contribute to the risk of in-hospital 

non-psychiatric adverse events in a large cohort of adults with 

BD and SZD. In-hospital adverse events affected 27.3% of adults 

aged 18–65 years with BD or SZD over 10 years. Truedson and 

collaborators estimated that only 1.4% of psychiatric patients are 

hospitalized for adverse drug events over 10 years (5), 

suggesting that most adverse events reported here were not 

precipitated by drugs.

The predictive performance was lower than that of pre- 

existing models designed to predict ADEs (0.63 ≤ AUCs ≤ 0.81) 

(26), showing that outpatient psychotropic prescription 

sequences are insufficient for accurately forecasting in-hospital 

non-psychiatric adverse events. Models that exhibited the 

strongest performance in predicting ADEs were trained on 

clinical and laboratory data (16), which are likely more 

informative than claims data. Even in this context, performance 

remains lower than that achieved by RNNs trained on 

healthcare datasets to predict other outcomes, such as blood 

glucose level in patients with diabetes (27), suggesting that 

ADEs are inherently more challenging to predict. Although our 

objective was not to build a predictive model, the poor 

performance of our model made it impossible to provide 

TABLE 1 Description of the sample at the month of the event. Individuals with a discharge diagnosis of adverse events were matched with control 
individuals hospitalized in the same type of ward (psychiatric or non-psychiatric) during the same month without any adverse event discharge 
diagnosis. Matching variables were highlighted in grey.

Category With an adverse event Without adverse event

(n = 43,591) (n = 43,591)

mean (SD) n (%) mean (SD) n (%)

Female, n (%) - 23,420 (53.7%) - 23,420 (53.7%)

Age, mean (SD) 46.5 (11.3) - 46.5 (11.3) -

Bipolar disorders, n (%) 21,903 (50.2%) - 21,903 (50.2%)

Schizophrenia spectrum disorders, n (%) - 30,337 (69.6%) - 30,337 (69.6%)

Hospitalized over the month in the psychiatric ward, n (%) - 14,642 (33.6%) - 14,642 (33.6%)

Charlson Comorbidity Index, mean (SD) 0.79 (1.28) - 0.79 (1.28) -

Individuals with a non-zero Charlson Comorbidity Index, n (%) - 19,582 (44.9%) - 19,582 (44.9%)

Traumatic brain injury - 453 (1%) - 453 (1%)

Parkinson’s disease - 57 (0.1%) - 57 (0.1%)

Dementia - 53 (0.1%) - 53 (0.1%)

Multiple sclerosis - 17 (<0.1%) - 17 (<0.1%)

Epilepsy - 339 (0.8%) - 339 (0.8%)

Cerebrovascular disease - 346 (0.8%) - 346 (0.8%)

In-hospital adverse events Urinary retention, n (%) - 5,122 (11.8%) -

Constipation, n (%) - 12,835 (29.4%) -

Electrolyte imbalances, n (%) - 9,822 (22.5%) -

Motor disorders, n (%) - 2,269 (5.2%) -

Delirium spectrum disorders, n (%) - 4,874 (11.2%) -

Seizures, n (%) - 2,114 (4.8%) -

Pneumonia, n (%) - 7,961 (18.3%) -

Cardiac rhythm or conduction disorders, n (%) - 2,553 (5.9%) -

Thyroid disorders, n (%) - 6,283 (14.4%) -

Vidal et al.                                                                                                                                                              10.3389/fdgth.2025.1633220 

Frontiers in Digital Health 07 frontiersin.org



reliable local explanations for individual predictions. Instead, we 

drew general, sample-based interpretations. Such conclusions 

were possible because SHAP is a conservative XAI method (28), 

highlighting only the most robust individual associations.

The biGRU-based model outperformed the RF and XGB 

models, which received the same variables unordered, indicating 

that the orders of the prescription and hospitalization sequences 

participated in the prediction. This finding aligns with prior 

evidence that variations in medication dosage, such as the 

introduction of a drug, contributes to adverse event risk (13, 

29). Assessing the evolution of doses over preceding months in 

addition to the current dose could help identify iatrogenic risk 

factors of in-hospital adverse events.

Psychotropic prescriptions changes over the few months 

preceding in-hospital adverse events — particularly urinary 

retention, seizures, and thyroid disorders — were more relevant to 

explain the development of those events. This aligns with findings 

that users of anticholinergic medications have a higher risk of 

urinary retention within 30 days of initiation than longer term 

users (13), that the risk of seizures is highest within 90 days of 

starting antipsychotics (29), and that first signs of thyroid 

disorders appear on average within 56.5 days of lithium salts 

initiation (30). In contrast, the entire sequence of psychotropic 

prescriptions was similarly relevant for predicting constipation, 

motor disorders, and cardiac rhythm or conduction disorders. 

This suggests that these conditions can occur any time following a 

prescription change. Indeed, constipation can result from both 

short- and long-term exposure to second-generation 

antipsychotics (31), and extrapyramidal syndrome can appear at 

highly variable intervals after antipsychotic initiation (76.5 ± 105.8 

days) (32). Another possible explanation is that those events are 

favored by stable psychotropic prescription patterns. Therefore, 

the model assigns similar importance to each month, as 

prescriptions remain consistent across months. This may explain 

the findings for motor or cardiac disorders, which are strongly 

linked to antipsychotic use (33).

In line with previous findings, benzodiazepine use was 

associated with higher risk of pneumonia, in-hospital delirium, 

constipation, and cardiac disorders. Associations between 

benzodiazepines and electrolyte imbalances (34) or urinary 

retention (35) have only been reported in case studies, warranting 

further investigation of the role of GABAergic activity in such 

phenomena. The associations between benzodiazepines and motor 

disorders or seizures probably result from indication bias, as these 

drugs are often prescribed to manage akathisia or reduce seizure 

risk, revealing a limitation of the database. Another plausible 

FIGURE 3 

Relative importance of time in the prediction of adverse events by the biGRU-based model in the test set. (A) Urinary retention, (B) Constipation, 

(C) Electrolyte imbalances, (D) Motor disorders, (E) Delirium spectrum disorders, (F) Seizures, (G) Pneumonia, (H) Cardiac rhythm or conduction 

disorders, (I) Thyroid disorders. The relative importance of time was assessed by averaging SHAP values across months (displayed in blue). 

Cumulative mean SHAP values for the current month and all subsequent months leading up to the event are represented by pink bars. These 

cumulative SHAP values indicate the sequence duration necessary for the model to make its prediction: when the cumulative mean SHAP value 

exceeds 50% of the total SHAP value (identified by the red dotted line), the information from that month onward was, on average, sufficient for 

the model to reach a decision.
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explanation is that individuals with high doses of benzodiazepine 

have more risk of being exposed to psychotropic polypharmacy, 

which is associated with higher risks of adverse events. Consistent 

with international guidelines, our results support the cautious use 

of oxazepam and diazepam at the lowest possible dose (36, 37).

Antiparkinsonians, like tropatepine, have shown associations 

with higher risks of urinary retention, constipation or delirium 

spectrum disorders in previous studies, likely due to their strong 

anticholinergic properties. Tropatepine is primarily prescribed in 

BD and SZD to mitigate antipsychotic-induced parkinsonism, 

which may explain its association with motor disorders. Another 

possible explanation for this association is that tropatepine 

favors tardive dyskinesia (38). In line with international 

recommendations, our findings support the cautious use, and, if 

possible, deprescribing of antiparkinsonians in BD and SZD (36).

As expected, second-generation antipsychotics, lithium salts 

and valproate, were identified as risk factors of adverse events 

(5). Our results reinforce prior research showing that quetiapine 

is associated with higher risks of pneumonia (10), constipation 

(39), and urinary retention (40), which are likely due to its 

FIGURE 4 

Relative importance of feature values in the prediction of adverse events by the biGRU-based model in the test set. (A) Urinary retention, 

(B) Constipation, (C) Electrolyte imbalances, (D) Motor disorders, (E) Delirium spectrum disorders, (F) Seizures, (G) Pneumonia, (H) Cardiac 

rhythm or conduction disorders, (I) Thyroid disorders. The relative importance of features was measured by averaging SHAP values across 

features. Features are listed from top to bottom by mean absolute SHAP value. Only the 14 features with the highest absolute SHAP values are 

displayed. A positive SHAP value indicates that the value of the feature encouraged the prediction of the adverse event, while a negative SHAP 

value indicates the value of the feature encouraged the prediction of its absence. One dot represents one patient and its colour indicates the 

feature value for that patient.
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anticholinergic properties, as well as thyroid abnormalities (41), 

for which autoimmune thyroiditis is the leading 

pathophysiological hypothesis. Clozapine was associated with 

dose-dependent risks of pneumonia (10), likely related to 

hypersalivation induced by its cholinergic activity on M4 

receptors, and constipation (31), likely driven by its 

anticholinergic, antiserotonin, and antihistaminic effects. While 

the associations between clozapine dosage and the risks of 

pneumonia and constipation are consistent with current 

prescription guidelines (42), we expected a stronger association 

between clozapine dosage and other adverse events, such as 

cardiac disorders. However, it was the first report of a risk of 

pneumonia associated with loxapine, an antipsychotic widely 

used in France. As expected, lithium salts dose was associated 

with higher risks of thyroid disorders. Lithium salts dose was 

also associated with higher risks of delirium-spectrum disorders 

and motor disorders, which could be explained by lithium salts- 

induced tremors. The pharmacological explanations for such 

adverse reactions are still under investigation. Valproate dose 

was linked to increased risks of electrolyte imbalances, likely due 

to hyponatremia, and pneumonia, which was only reported as 

significant when valproate is associated with second-generation 

antipsychotics (43). The mechanism of this interaction remains 

to be characterized. Certain psychotropic doses were among the 

most inMuential features to predict adverse events but were not 

significantly associated with adverse events in conditional 

logistic regression models. This discrepancy could be explained 

by a non-linear relationship between psychotropic dose and 

adverse event risk detected by the biGRU-based model but not 

the logistic regression model. Overall, prescribers should 

acknowledge the risks for adverse events associated with the 

doses of quetiapine, clozapine, loxapine, lithium salts and 

valproate in BD and SZD.

Hospitalization, sex, and to a lesser extent, age, were among 

the most inMuential factors in predicting adverse events. This 

aligns with the documented association between medical ward 

admission and an increased risk of rehospitalization for ADEs 

(44). Treatment regimens are frequently reassessed and new 

medications are introduced during hospitalization, increasing 

the risk of adverse events. Age and sex are also known to 

contribute to the manifestation and development of 

psychotropic adverse effects in BD and SZD.

Overall, results were globally consistent between SHAP values 

analyses and logistic regression analyses. Additionally, some 

findings were consistent with current knowledge on 

psychotropics, further supporting the application of post-hoc 

XAI to a neural network model processing prescription 

sequences to obtain a valid, automated, data-driven assessment 

of iatrogenic risks. Our model could be used retrospectively to 

generate hypotheses on the iatrogenic risk factors of an adverse 

event in clinical settings. Besides, we ensured our model 

required minimal computing resources, enabling local 

deployment thereby ensuring that sensitive patient information 

remains within the care facility. However, our findings also 

suggest that the prediction accuracy for adverse events from a 

model integrated into prescription software would be limited. 

A clinical decision support system designed to support 

treatment adjustments would require more than just past 

psychotropic prescription sequences and demographic 

information to provide reliable recommendations.

Our study presented several limitations. Some of our results 

were very likely explained by an indication bias: for instance, the 

significant association between the dose of valproate, an 

antiepileptic, and in-hospital seizure may be explained by the 

fact that patients at higher risk of seizures are more likely to be 

prescribed higher dose of valproate. We used data on the 

reimbursement of medication rather than its actual 

consumption. We may therefore have overestimated exposure to 

psychotropics as 20.8% of individuals with BD or SZD adhere 

poorly to prescribed treatments in outpatient settings (45). 

Outcome events were mainly collected based on inpatient 

discharge diagnoses that may be affected by underreporting or 

coding inaccuracies (46), which might have affected the results. 

Besides, we did not investigate medication practices after the 

events, questioning the semiologic imputability of those events. 

Our models did not account for how adverse events might 

contribute to the development of subsequent adverse events. For 

instance, constipation can predispose individuals to urinary 

retention, potentially mediating some of the effects of 

psychotropics on urinary retention. Additionally, we did not 

match case and control individuals on somatic comorbidities 

not included in the Charlson comorbidity index, which might 

limit comparability between the individuals. Our database lacked 

several clinically relevant information, such as body mass index, 

smoking status or indicators of renal function, which may 

mediate or confound the effects of psychotropics on the events. 

A higher proportion of our sample had a non-zero Charlson 

Comorbidity Index (44.9%) compared to the general adult 

population (29.6%) (47). This discrepancy may limit the 

generalizability of the results to the general adult population 

with BD or SZD. Additionally, the greater frailty may have 

participated in the underestimation of our risk estimates. 

Finally, SHAP values for neural networks are likely sensitive to 

noise due to the stochastic nature of the gradient. We partially 

addressed this issue by focusing on the top 10 features with the 

highest absolute SHAP values. While this approach prioritized 

the most significant factors, it may have led to the omission of 

less prominent but potentially interesting associations, which 

could be valuable for pharmacovigilance. Although Shapley 

values have been identified as the most effective post-hoc, 

model-agnostic method for explainability (19, 24), less 

computationally expensive and time-consuming XAI methods 

exist and may also provide valuable insights (48).

Data availability statement

The data analyzed in this study is subject to the following 

licenses/restrictions: Datasets cannot be made publicly available 

as access is restricted to authorized individuals only. Requests to 

access these datasets should be directed to https://www.snds. 

gouv.fr/SNDS/Processus-d-acces-aux-donnees.

Vidal et al.                                                                                                                                                              10.3389/fdgth.2025.1633220 

Frontiers in Digital Health 10 frontiersin.org

https://www.snds.gouv.fr/SNDS/Processus-d-acces-aux-donnees
https://www.snds.gouv.fr/SNDS/Processus-d-acces-aux-donnees


Ethics statement

The requirement of ethical approval was waived by INSERM 

(DR Paris 11, project CACPSY), authorized by the CNIL 

(Commission Nationale de l’Informatique et des Libertés, the 

French data protection authority) for the studies involving 

humans. INSERM was granted direct and permanent access to all 

anonymized individual SNDS data by the CNIL and French 

National Health Insurance by a decree published on June 30, 2021 

through a secure platform. Accordingly, we preregistered our 

project to INSERM, outlining our analysis framework and 

expected outcomes, and the project was accepted prior to 

accessing the data. The studies were conducted in accordance with 

the local legislation and institutional requirements. The ethics 

committee/institutional review board also waived the requirement 

of written informed consent for participation from the 

participants or the participants’ legal guardians/next of kin 

because data was anonymized. INSERM must make information 

on research projects involving such data publicly available.

Author contributions

NV: Conceptualization, Data curation, Formal analysis, 

Investigation, Methodology, Resources, Software, Validation, 

Visualization, Writing – original draft, Writing – review & editing. 

MS: Conceptualization, Methodology, Project administration, 

Software, Supervision, Validation, Writing – original draft, 

Writing – review & editing. NY: Funding acquisition, Project 

administration, Resources, Supervision, Writing – original draft, 

Writing – review & editing. HB: Project administration, Validation, 

Writing – original draft, Writing – review & editing. PR: 

Conceptualization, Funding acquisition, Methodology, Project 

administration, Resources, Supervision, Validation, Writing – 

original draft, Writing – review & editing. EB-G: Conceptualization, 

Data curation, Funding acquisition, Investigation, Methodology, 

Project administration, Resources, Software, Supervision, Validation, 

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received 

for the research and/or publication of this article.

Acknowledgments

We thank the French national health insurance organization 

(CNAM) for providing the data, and the Centre Hospitalier 

de Versailles.

Conflict of interest

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could 

be construed as a potential conMict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 

creation of this manuscript.

Any alternative text (alt text) provided alongside figures 

in this article has been generated by Frontiers with the 

support of artificial intelligence and reasonable efforts have 

been made to ensure accuracy, including review by the 

authors wherever possible. If you identify any issues, please 

contact us.

Publisher’s note

All claims expressed in this article are solely those of the 

authors and do not necessarily represent those of their 

affiliated organizations, or those of the publisher, the 

editors and the reviewers. Any product that may be 

evaluated in this article, or claim that may be made 

by its manufacturer, is not guaranteed or endorsed by 

the publisher.

Supplementary material

The Supplementary Material for this article can be found 

online at: https://www.frontiersin.org/articles/10.3389/fdgth.2025. 

1633220/full#supplementary-material

References

1. Tiihonen J, Lönnqvist J, Wahlbeck K, Klaukka T, Niskanen L,  Tanskanen A, 
et al. 11-year follow-up of mortality in patients with schizophrenia: a population- 
based cohort study (FIN11 study). Lancet Lond Engl. (2009) 374:620–7. doi: 10. 
1016/S0140-6736(09)60742-X

2. Angst J, Angst F, Gerber-Werder R, Gamma A. Suicide in 406 mood-disorder 
patients with and without long-term medication: a 40 to 44 years’ follow-up. Arch 
Suicide Res. (2005) 9:279–300. doi: 10.1080/13811110590929488

3. Douzenis A, Seretis D, Nika S, Nikolaidou P, Papadopoulou A,  Rizos EN, 
et al. Factors affecting hospital stay in psychiatric patients: the role of 
active comorbidity. BMC Health Serv Res. (2012) 12:166. doi: 10.1186/1472- 
6963-12-166

4. . Van Der Linden CMJ, Jansen PAF, Van Marum RJ, Grouls RJE, Korsten EHM, 
Egberts ACG. Recurrence of adverse drug reactions following inappropriate Re- 
prescription: better documentation, availability of information and monitoring are 
needed. Drug Saf. (2010) 33:535–8. doi: 10.2165/11532350-000000000-00000

5. Truedson P, Ott M, Wahlström L, Lundqvist R, Maripuu M,  Lindmark K, et al. 
Serious adverse drug events associated with psychotropic treatment of bipolar or 
schizoaffective disorder: a 17-year follow-up on the LiSIE retrospective cohort 
study. Front Psychiatry. (2024) 15:1358461. doi: 10.3389/fpsyt.2024.1358461

6. Hampton LM, Daubresse M, Chang H-Y, Alexander GC, Budnitz DS. 
Emergency department visits by adults for psychiatric medication adverse events. 
JAMA Psychiatry. (2014) 71:1006. doi: 10.1001/jamapsychiatry.2014.436

Vidal et al.                                                                                                                                                              10.3389/fdgth.2025.1633220 

Frontiers in Digital Health 11 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fdgth.2025.1633220/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1633220/full#supplementary-material
https://doi.org/10.1016/S0140-6736(09)60742-X
https://doi.org/10.1016/S0140-6736(09)60742-X
https://doi.org/10.1080/13811110590929488
https://doi.org/10.1186/1472-6963-12-166
https://doi.org/10.1186/1472-6963-12-166
https://doi.org/10.2165/11532350-000000000-00000
https://doi.org/10.3389/fpsyt.2024.1358461
https://doi.org/10.1001/jamapsychiatry.2014.436


7. Lintunen J, Hamina A, Lähteenvuo M, Paljärvi T, Tanskanen A,  Tiihonen J, 
et al. Dosing levels of antipsychotics and mood stabilizers in bipolar disorder: a 
nationwide cohort study on relapse risk and treatment safety. Acta Psychiatr Scand. 
(2025) 151:81–91. doi: 10.1111/acps.13762

8. Young SL, Taylor M, Lawrie SM. First do no harm.” A systematic review of the 
prevalence and management of antipsychotic adverse effects. J Psychopharmacol 
(Oxf). (2015) 29:353–62. doi: 10.1177/0269881114562090

9. Nielsen J, Graff C, Kanters JK, Toft E, Taylor D, Meyer JM. Assessing QT interval 
prolongation and its associated risks with antipsychotics. CNS Drugs. (2011) 
25:473–90. doi: 10.2165/11587800-000000000-00000

10. Luykx JJ, Correll CU, Manu P, Tanskanen A, Hasan A,  Tiihonen J, et al. 
Pneumonia risk, antipsychotic dosing, and anticholinergic burden in 
schizophrenia. JAMA Psychiatry. (2024) 81:967. doi: 10.1001/jamapsychiatry.2024. 
1441

11. Minoc E-M, Villain C, Benbrika S, Chrétien B, Descatoire P,  Heraudeau M, 
et al. Association between antidepressant use and delirium in older adults: an 
analysis of the world health organization’s global pharmacovigilance database. 
BMC Geriatr. (2024) 24:600. doi: 10.1186/s12877-024-05022-0

12. Kim E, Kim S, Suh HS. Use of gastrointestinal prokinetics and the risk of 
parkinsonism: a population-based case-crossover study. Pharmacoepidemiol Drug 
Saf. (2023) 32:1378–86. doi: 10.1002/pds.5668

13. Stephenson A, Seitz D, Bell CM, Gruneir A, Gershon AS,  Austin PC, et al. 
Inhaled anticholinergic drug therapy and the risk of acute urinary retention in 
chronic obstructive pulmonary disease: a population-based study. Arch Intern Med. 
(2011) 171:914–20. doi: 10.1001/archinternmed.2011.170

14. Chalasani SH, Syed J, Ramesh M, Patil V, Pramod Kumar TM. Artificial 
intelligence in the field of pharmacy practice: a literature review. Explor Res Clin 
Soc Pharm. (2023) 12:100346. doi: 10.1016/j.rcsop.2023.100346

15. Yalçın N, Kaşıkcı M, Çelik HT, Allegaert K, Demirkan K,  Yiğit Ş, et al. An 
artificial intelligence approach to support detection of neonatal adverse drug 
reactions based on severity and probability scores: a new risk score as web-tool. 
Children. (2022) 9:1826. doi: 10.3390/children9121826.

16. Saheb Sharif-Askari F, Syed Sulaiman SA, Saheb Sharif-Askari N, Al Sayed 
Hussain A. Development of an adverse drug reaction risk assessment score among 
hospitalized patients with chronic kidney disease. PLoS One (2014) 9:e95991. 
doi: 10.1371/journal.pone.0095991

17. Squires M, Tao X, Elangovan S, Gururajan R, Zhou X,  Acharya UR, et al. Deep 
learning and machine learning in psychiatry: a survey of current progress in 
depression detection, diagnosis and treatment. Brain Inform. (2023) 10:10. doi: 10. 
1186/s40708-023-00188-6

18. Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the 
Predictions of Any Classifier. arXiv:1602.04938 (2016).

19. Turbé H, Bjelogrlic M, Lovis C, Mengaldo G. Evaluation of post-hoc 
interpretability methods in time-series classification. Nat Mach Intell. (2023) 
5:250–60. doi: 10.1038/s42256-023-00620-w

20. Correll CU, Detraux J, De Lepeleire J, De Hert M. Effects of antipsychotics, 
antidepressants and mood stabilizers on risk for physical diseases in people with 
schizophrenia, depression and bipolar disorder. World Psychiatry Off J World 
Psychiatr Assoc WPA. (2015) 14:119–36. doi: 10.1002/wps.20204

21. Tanskanen A, Taipale H, Koponen M, Tolppanen A-M, Hartikainen S,  Ahonen 
R, et al. From prescription drug purchases to drug use periods—a second generation 
method (PRE2DUP). BMC Med Inform Decis Mak. (2015) 15:21. doi: 10.1186/ 
s12911-015-0140-z

22. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying 
prognostic comorbidity in longitudinal studies: development and validation. 
J Chronic Dis. (1987) 40:373–83. doi: 10.1016/0021-9681(87)90171-8

23. Cho K, Van Merrienboer B, Bahdanau D, Bengio Y. On the Properties of Neural 
Machine Translation: Encoder-Decoder Approaches. arXiv:1409.1259 (2014).

24. Allgaier J, Mulansky L, Draelos RL, Pryss R. How does the model make 
predictions? A systematic literature review on the explainability power of machine 
learning in healthcare. Artif Intell Med. (2023) 143:102616. doi: 10.1016/j.artmed. 
2023.102616

25. Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions. 
arXiv:1705.07874 (2017).

26. Falconer N, Barras M, Cottrell N. Systematic review of predictive risk models 
for adverse drug events in hospitalized patients. Br J Clin Pharmacol. (2018) 
84:846–64. doi: 10.1111/bcp.13514

27. Prendin F, Pavan J, Cappon G, Del Favero S, Sparacino G, Facchinetti A. The 
importance of interpreting machine learning models for blood glucose prediction in 
diabetes: an analysis using SHAP. Sci Rep. (2023) 13:16865. doi: 10.1038/s41598-023- 
44155-x

28. Tjoa E, Guan C. Quantifying explainability of saliency methods in deep neural 
networks with a synthetic dataset. IEEE Trans Artif Intell. (2023) 4:858–70. doi: 10. 
1109/TAI.2022.3228834

29. Jeon SM, Park S, Kim D, Kwon J-W. Risk of seizures associated with 
antipsychotic treatment in pediatrics with psychiatric disorders: a nested case– 
control study in Korea. Eur Child Adolesc Psychiatry. (2021) 30:391–9. doi: 10. 
1007/s00787-020-01525-4

30. Frye MA, Denicoff KD, Bryan AL, Smith-Jackson EE, Ali SO,  Luckenbaugh D, 
et al. Association between lower serum free T4 and greater mood instability and 
depression in lithium-maintained bipolar patients. Am J Psychiatry. (1999) 
156:1909–14. doi: 10.1176/ajp.156.12.1909

31. Xu Y, Amdanee N, Zhang X. Antipsychotic-induced constipation: a review of 
the pathogenesis, clinical diagnosis, and treatment. CNS Drugs. (2021) 35:1265–74. 
doi: 10.1007/s40263-021-00859-0

32. Kadakia A, Brady BL, Dembek C, Williams GR, Kent JM. The incidence and 
economic burden of extrapyramidal symptoms in patients with schizophrenia 
treated with second generation antipsychotics in a medicaid population. J Med 
Econ. (2022) 25:87–98. doi: 10.1080/13696998.2021.2019501

33. Peng P, Li J, Chen Y, Li M, Ma F,  Ji S, et al. Associations between antipsychotics 
and the risk of incident cardiovascular diseases in individuals with schizophrenia: a 
nested case–control study. BMJ Ment Health. (2023) 26:e300501. doi: 10.1136/ 
bmjment-2022-300501

34. Sahoo S, Grover S. Hyponatremia and psychotropics. J Geriatr Ment Health. 
(2016) 3:108. doi: 10.4103/2348-9995.195604

35. Verhamme KMC, Sturkenboom MCJM, Stricker BHC, Bosch R. Drug-induced 
urinary retention: incidence, management and prevention. Drug Saf. (2008) 
31:373–88. doi: 10.2165/00002018-200831050-00002

36. National Institute for Health and Clinical Excellence. Psychosis and 
Schizophrenia in Adults: Prevention and Management. NICE Clinical Guideline 
178 (Update of NICE Clinical Guideline 82) (2014).

37. Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Bond DJ,  Frey BN, et al. 
Canadian network for mood and anxiety treatments (CANMAT) and international 
society for bipolar disorders (ISBD) 2018 guidelines for the management of 
patients with bipolar disorder. Bipolar Disord. (2018) 20:97–170. doi: 10.1111/bdi. 
12609

38. Vanegas-Arroyave N, Caroff SN, Citrome L, Crasta J, McIntyre RS,  Meyer JM, 
et al. An evidence-based update on anticholinergic use for drug-induced movement 
disorders. CNS Drugs. (2024) 38:239–54. doi: 10.1007/s40263-024-01078-z

39. Raedler TJ, Reimer J, Wiedemann K. Dose-dependent constipation with higher 
doses of quetiapine: a case series. Int Clin Psychopharmacol. (2007) 22:244–6. doi: 10. 
1097/YIC.0b013e32805b71a3

40. Trinchieri M, Perletti G, Magri V, Stamatiou K, Montanari E, Trinchieri A. 
Urinary side effects of psychotropic drugs: a systematic review and metanalysis. 
Neurourol Urodyn. (2021) 40:1333–48. doi: 10.1002/nau.24695

41. Khoodoruth MAS, Abdo AKA, Ouanes S. Quetiapine-induced thyroid dysfunction: 
a systematic review. J Clin Pharmacol. (2022) 62:20–35. doi: 10.1002/jcph.1960

42. National Health Services. Guidelines on Choice and Selection of Antipsychotics 
for the Management of Psychosis and Schizophrenia in Adults (2023). Available 
online at: https://www.hpft.nhs.uk/media/6435/guidance-on-choice-and-selection- 
of-antipsychotics-for-the-management-of-psychosis-and-schizophrenia-in-adults- 
feb-2023.pdf

43. Yang S-Y, Liao Y-T, Liu H-C, Chen WJ, Chen C-C, Kuo C-J. Antipsychotic 
drugs, mood stabilizers, and risk of pneumonia in bipolar disorder: a nationwide 
case-control study. J Clin Psychiatry (2013) 74:e79–86. doi: 10.4088/JCP.12m07938

44. Davies EC, Green CF, Mottram DR, Rowe PH, Pirmohamed M. Emergency re- 
admissions to hospital due to adverse drug reactions within 1 year of the index 
admission. Br J Clin Pharmacol. (2010) 70:749–55. doi: 10.1111/j.1365-2125.2010. 
03751.x

45. Karpov B, Joffe G, Aaltonen K, Oksanen J, Suominen K,  Melartin T, et al. Self- 
reported treatment adherence among psychiatric in- and outpatients. Nord 
J Psychiatry. (2018) 72:526–33. doi: 10.1080/08039488.2018.1538387

46. McCoy THJ, Snapper L, Stern TA, Perlis RH. Underreporting of delirium in 
statewide claims data: implications for clinical care and predictive modeling. 
Psychosomatics. (2016) 57:480–8. doi: 10.1016/j.psym.2016.06.001

47. Bannay A, Chaignot C, Blotière P-O, Basson M, Weill A,  Ricordeau P, et al. 
The best use of the charlson comorbidity index with electronic health care 
database to predict mortality. Med Care. (2016) 54:188–94. doi: 10.1097/MLR. 
0000000000000471

48. Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. Interpretability of 
machine learning-based prediction models in healthcare. WIREs Data Min Knowl 
Discov. (2020) 10:e1379. doi: 10.1002/widm.1379

Vidal et al.                                                                                                                                                              10.3389/fdgth.2025.1633220 

Frontiers in Digital Health 12 frontiersin.org

https://doi.org/10.1111/acps.13762
https://doi.org/10.1177/0269881114562090
https://doi.org/10.2165/11587800-000000000-00000
https://doi.org/10.1001/jamapsychiatry.2024.1441
https://doi.org/10.1001/jamapsychiatry.2024.1441
https://doi.org/10.1186/s12877-024-05022-0
https://doi.org/10.1002/pds.5668
https://doi.org/10.1001/archinternmed.2011.170
https://doi.org/10.1016/j.rcsop.2023.100346
https://doi.org/10.3390/children9121826.
https://doi.org/10.1371/journal.pone.0095991
https://doi.org/10.1186/s40708-023-00188-6
https://doi.org/10.1186/s40708-023-00188-6
https://doi.org/10.1038/s42256-023-00620-w
https://doi.org/10.1002/wps.20204
https://doi.org/10.1186/s12911-015-0140-z
https://doi.org/10.1186/s12911-015-0140-z
https://doi.org/10.1016/0021-9681(87)90171-8
https://doi.org/10.1016/j.artmed.2023.102616
https://doi.org/10.1016/j.artmed.2023.102616
https://doi.org/10.1111/bcp.13514
https://doi.org/10.1038/s41598-023-44155-x
https://doi.org/10.1038/s41598-023-44155-x
https://doi.org/10.1109/TAI.2022.3228834
https://doi.org/10.1109/TAI.2022.3228834
https://doi.org/10.1007/s00787-020-01525-4
https://doi.org/10.1007/s00787-020-01525-4
https://doi.org/10.1176/ajp.156.12.1909
https://doi.org/10.1007/s40263-021-00859-0
https://doi.org/10.1080/13696998.2021.2019501
https://doi.org/10.1136/bmjment-2022-300501
https://doi.org/10.1136/bmjment-2022-300501
https://doi.org/10.4103/2348-9995.195604
https://doi.org/10.2165/00002018-200831050-00002
https://doi.org/10.1111/bdi.12609
https://doi.org/10.1111/bdi.12609
https://doi.org/10.1007/s40263-024-01078-z
https://doi.org/10.1097/YIC.0b013e32805b71a3
https://doi.org/10.1097/YIC.0b013e32805b71a3
https://doi.org/10.1002/nau.24695
https://doi.org/10.1002/jcph.1960
https://www.hpft.nhs.uk/media/6435/guidance-on-choice-and-selection-of-antipsychotics-for-the-management-of-psychosis-and-schizophrenia-in-adults-feb-2023.pdf
https://www.hpft.nhs.uk/media/6435/guidance-on-choice-and-selection-of-antipsychotics-for-the-management-of-psychosis-and-schizophrenia-in-adults-feb-2023.pdf
https://www.hpft.nhs.uk/media/6435/guidance-on-choice-and-selection-of-antipsychotics-for-the-management-of-psychosis-and-schizophrenia-in-adults-feb-2023.pdf
https://doi.org/10.4088/JCP.12m07938
https://doi.org/10.1111/j.1365-2125.2010.03751.x
https://doi.org/10.1111/j.1365-2125.2010.03751.x
https://doi.org/10.1080/08039488.2018.1538387
https://doi.org/10.1016/j.psym.2016.06.001
https://doi.org/10.1097/MLR.0000000000000471
https://doi.org/10.1097/MLR.0000000000000471
https://doi.org/10.1002/widm.1379

	Neural network analysis of the contribution of psychotropic prescription sequences to the risk of non-psychiatric adverse events in bipolar and schizophrenia spectrum disorders
	Introduction
	Methods
	Participants
	Outcome
	Medications
	Statistical analyses
	Matching
	Preprocessing variables
	Classification models
	Training and selection of hyperparameters
	Testing the models
	Explaining the predictions
	Estimating the associated risks


	Results
	Description of the sample
	Performance of the models
	Iatrogenic risk factors of adverse events
	Estimating the iatrogenic risks of adverse events

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


