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When a patient survives the first 24 h in intensive care, outcome prediction is

crucial for further treatment decisions. As recent advances have shown that

Artificial Intelligence (AI) outperforms clinicians in prognostication, and

especially generative AI has developed rapidly in the past ten years, this

scoping review aimed to explore the use of generative AI models for outcome

prediction in intensive care medicine. Of the 481 records found in the search,

119 studies were subjected to abstract screening and, when necessary,

full-text review for eligibility assessment. Twenty-two studies and two review

articles were finally included. The studies were categorized into three

prototypical use cases for generative AI in outcome prediction in intensive

care: (i) data augmentation, (ii) feature generation from unstructured data, and

(iii) prediction by the generative model. In the first two use cases, the

generative models worked together with downstream predictive models. In

the third use case, the generative models made the predictions themselves.

The studies within data augmentation either fell into the area of compensation

for class imbalances by producing additional synthetic cases or imputation of

missing values. Overall, Generative Adversarial Network (GAN) was the most

frequently used technology (8/22 studies; 36%), followed by Generative

Pretrained Transformer (GPT) (7/22 studies; 32%). All publications except one

were from the last four years. This review shows that generative AI has

immense potential in the future, and continuous monitoring of new

technologies is necessary to ensure that patients receive the best possible care.
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1 Introduction

The first medical decision in critical care is whether or not to admit a patient to the

Intensive Care Unit (ICU). If this decision is positive and the patient survives the first

24 h, outcome prediction is essential for future treatment over the next few days (1). At

this stage, the outcomes of interest include not only short- and long-term survival in

and out of the hospital, but also organ or body functioning, the occurrence of new

comorbidities and symptoms, quality of life, and the ability to master everyday activities

after hospital discharge (2). The latter is vital for patients and their caregivers.
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Until now, mainly clinical scores were used to estimate the

probabilities of certain outcomes in intensive care. However, in

recent years, several studies have shown that prognostications

based on Artificial Intelligence (AI) deliver better results than

clinical scores (3–5).

Previous AI studies used primarily predictive models to

forecast outcomes. However, even state-of-the-art predictive AI

methods, such as gradient-boosted trees, are still far from perfect

outcome prediction in intensive care (6). With the increasing

development of generative models and the more extensive

availability of the necessary computing power and large enough

datasets, the question arises as to whether generative models or a

combination of predictive and generative methods could

significantly improve prognostication in intensive care medicine

(7). Generative AI comprises data synthesis models, such as

Generative Adversarial Networks (GANs) (8), Autoencoders,

Variational Autoencoders (VAEs) (9), diffusion models (10), and

transformer-based Large Language Models (LLMs) (11).

Two recent reviews on generative AI and outcome prediction

in intensive care were published. However, one limited its scope

to LLMs (12) and the other focused specifically on critical care

nursing (13). No review described the general tasks and

applications of generative AI in predicting outcomes in intensive

care medicine. Therefore, this was defined as the objective of the

present study.

2 Methods

2.1 Study design and search strategy

A scoping review (14) was conducted due to the exploratory

nature of this study and our aim to provide an overview of the

diverse use of generative AI in predicting outcomes in ICU,

rather than synthesizing all relevant empirical evidence to answer

a specific research question, which would be better suited to a

systematic review.

Our goal was to provide information on the use of generative

models to predict outcomes in intensive care. The search strategy

was based on a two-level keyword tree (15) covering the areas of

intensive care, outcome prediction, generative AI in general, and

specific generative AI applications (Figure 1). The search strings

were adapted to the respective databases and ran between

February 28 and March 17, 2025, in IEEE Xplore, PubMed,

CINAHL, Google Scholar, and arXiv (Supplementary Table S1).

No limit for publication date was set, and only articles in

English were included. We did not limit our scoping review to

any level of technical progression. We also included studies

dealing with unimodal and multimodal data, time series

analyses, as well as studies that used images or medical text.

Genetic studies were excluded due to the rare availability of

these data in electronic health records. Although outcome

predictions in intensive care came most often from tabular data,

we did not exclude studies that used images or text.

Furthermore, all study designs were included, except for

commentaries and opinion letters.

2.2 Study selection

Duplicates were removed. The first author (TS) screened the

titles and abstracts for eligibility. Full-text records were consulted

when necessary. A second automated abstract screening was

conducted for quality control using ChatGPT’s freely accessible

GPT-3.5 model. The prompt used for this computerized

eligibility assessment was as follows: “You are a critical

researcher. Below is an abstract of a study. Please tell me if you

would include this in a literature review. This review aims to

FIGURE 1

Two-level keyword tree and research field classification diagram.
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describe the applications of generative artificial intelligence in

outcome prediction in critical care. Only studies that used

generative AI models and focused on outcome prediction in

critical care must be included.” In case of disagreement between

the human and machine assessments, ChatGPT’s arguments were

discussed in a study team meeting, and a joint decision was

made. Human judgment was prioritized.

2.3 Data extraction and reporting

Full texts of suitable publications were obtained. The publication

year, the name of the journal or conference, the aim and outcome

domains of the research, the dataset, and the generative models

were extracted from the full text records using a custom data

extraction sheet. There was no overlap across all three use cases in

any one study. We used the Prediction model Risk Of Bias

ASsessment Tool (PROBAST) +AI (16) to assess the quality of the

studies in terms of the selection of participants and data sources,

predictors, outcomes and analysis. The Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

(17) were followed when presenting the results.

3 Results

Of the 481 records found in the search, 119 studies were

subjected to abstract screening and, where necessary, also full-text

review. Twenty-two studies and two review articles were finally

included in the present scoping review (Figure 2; Tables 1, 2). The

FIGURE 2

PRISMA Flow Chart for study selection and assessment.
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papers excluded during abstract screening and full text review are

shown in Supplementary Table S2.

The studies were categorized into three prototypical use cases for

the use of generative AI models in the prediction of outcomes in

intensive care medicine: (i) data augmentation, (ii) feature

generation from unstructured data, and (iii) prediction by the

generative model. In the first two use cases, the generative models

worked together with downstream predictive models that

performed the prediction. In the third use case, the generative

models made the predictions themselves (Figure 3). While studies

predominantly fitted one use case, some integrated multiple

generative approaches [e.g., (18)].

3.1 Use case 1 – data augmentation

As expected, generative AI was used to compensate for class

imbalances by producing additional synthetic data to improve the

performance of downstream classical predictive models. Two

studies (19, 20) focused on in-ICU mortality prediction and used

TABLE 1 Details of the 21 studies included in this review.

# Authors Year Journal or conference Aim Dataset Generative
model

1 Wei et al. (19) 2021 IEEE Access In-ICU mortality prediction MIMIC-IV GAN

2 Yang et al. (20) 2023 Heliyon In-ICU mortality prediction MIMIC-III Variant of GAN (c-

med GAN)

3 Shariat et al. (21) 2024 International Conference on Web

Research (ICWR)

Prediction of neonatal

infections

113,378 neonates admitted in the

year 2022

GAN

4 Wang et al. (22) 2024 Inter. Conf. on Biomed. Engineering

and Applications (ICBEA)

Acute pain prediction UNBC-McMaster shoulder pain

dataset

GAN

5 Ravikumar et al. (23) 2024 IEEE Access Skin infection prediction HAM10000, ISIC 2018 challenget GAN

6 Ryan et al. (24) 2013 Biomedical Sciences and Engineering

Conference (BSEC)

In-ICU mortality prediction Physionet/CinC 2012 Challenge

data

Deep Boltzmann

machine

7 Apalak and Kiasaleh (25) 2022 IEEE Access Sepsis prediction 2019 PhysioNet Computing in

Cardiology Challenge dataset

Recurrent

conditional GAN

8 Kim et al. (26) 2020 Intern. Conf. on Pattern Recognition

(ICPR)

In-ICU mortality prediction Physionet Challenge 2012 – 4,000

ICU stays with 80.5% missings)

GAN

9 Zhang et al. (18) 2023 International Conference on Tools with

Artificial Intelligence (ICTAI)

In-ICU mortality prediction MIMIC-III MedCT-BERT

10 Mesinovic et al. (27) 2024 Journal of the American Medical

Informatics Association

Survival analysis MIMIC-IV Conditional VAE

11 Ramos et al. (28) 2021 Ann. Inter. Conf. of the IEEE Engin. in

Med. and Bio. Soc. (EMBC)

Sepsis prediction MIMIC-III VAE

12 Rao et al. (29) 2024 IEEE Int. Conf. on Industry 4.0, AI and

Comm. Tech. (IAICT)

Anomaly detection MIMIC-III/IV GAN

13 Vurgun et al. (30) 2024 Advan. in Med. Found. Mod.:

Explainab., Robustn., Secur., a. B.

Cardiac arrest identification Data from the Hospital of the

University of Pennsylvania

GPT-4 and 51 open-

source LLMs

14 Pathak et al. (31) 2024 IEEE Journal of Biomedical and Health

Informatics

Acute respiratory distress

syndrome identification

Data from two hospital in Altanta NLP Pipeline with

BERT model

15 Madden et al. (32) 2023 Intensive care medicine Creation of patient

summaries

Two sets of medical notes GPT-4

16 Lin et al. (33) 2025 Journal of the American Medical

Informatics Association

In-ICU mortality prediction MIMIC-IV BERT

17 Pabon et al. (34) 2024 European Journal of Heart Failure Feature extraction 6,263 patients enrolled in the

DELIVER trial

GPT-3.5

18 Parizad et al. (35) 2024 Intern. Conf. on Soft Comput. and

Mach. Intell. (ISCMI)

Prediction of hospital

readmission

MIMIC-III ChatGPT

19 Chung et al. (36) 2024 JAMA surgery Prediction of perioperative

risks and prognosis

Retrosp. collected data from

electronic health records

GPT-4 Turbo

20 Amacher et al. (37) 2024 Resuscitation Plus Prediction of outcomes after

cardiac arrest

Data of Swiss cardiac arrest patients

admitted to ICU

ChatGPT-4

21 Yoon et al. (38) 2025 Journal of the American Medical

Informatics Association

Prediction of 30-day out-of-

hospital mortality

MIMIC-IV GPT-4

22 Contreras et al. (39) 2024 arXiv Prediction of delirium in the

ICU

Three ICU datasets: eICU, MIMIC,

and UFH

New LLM-based

model (DeLLiriuM)

TABLE 2 Details of the 2 review papers included in this review.

# Authors Year Journal or conference Scope Number of papers included Design

1 Shi et al. (12) 2024 arXiv LLMs in critical care 24 Scoping review

2 Porcellato et al. (13) 2025 Nursing reports Generative AI in critical care nursing 24 Systematic review
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GAN to supplement data in the minority class. In the first study,

Wei et al. (19) applied GAN for tabular data augmentation to

improve the performance of a downstream extreme gradient boost

tree (XGBoost), leading to an Area Under the Receiver Operating

Curve (AUROC) of greater than 0.90. Additional synthetic cases

were needed in this study because the number of deceased

patients in the original dataset was considerably lower than that of

survivors. Moreover, a classifier layer was added to the GAN that

reduced falsely non-binary GAN-generated values to binary ones.

The missing values were imputed by filling in mean values or the

majority subtype for the categorical features. Finally, age and

blood urea nitrogen (BUN) contributed the most to the XGBoost

model, shown in a Shapley additive explanation (SHAP) analysis.

From a medical perspective, the results are meaningful, as age and

kidney function play an important role in survival. In the second

study on mortality prediction in critical care, Yang et al. (20)

developed and evaluated the conditional medical GAN (c-med

GAN) to improve the synthesis of discrete parameters consisting

of an additional autoencoder that generated the new data

separately from their labels and a functionality that added the

class labels as constraints. The autoencoder network was used

because GAN generally had difficulties in synthesizing discrete

data that are often included in electronic health records to a

satisfactory quality. Similar to the first study, the AUROC of the

model that included the c-med GAN was >0.90. Shariat et al. (21)

used imbalanced tabular data to predict neonatal infections and

applied a simple GAN to synthesize additional data in the

minority class to improve the performance of downstream

predictive models, including Random Forest (RF), Support Vector

Machine (SVM), Bagging, and Boosting. RF and Bagging

outperformed the other models achieving an F1-score of >0.95.

Two further studies utilized GAN to augment image datasets.

In the first study, Wang et al. (22) used synthetic, GAN-created

pictures of facial expressions of ventilated ICU patients whose

faces were often obscured by intubation or masks to predict

acute pain. However, while a tool to evaluate pain would be

useful both for patient experience and potential avoidance of

some physical complications of critical illness, sedation regimes

may include deep muscle relaxation, and thus, facial movement

could be attenuated or abolished altogether. In the second study,

Ravikumar et al. (23) reviewed approaches to create synthetic

images of skin lesions and tested a conditional GAN that,

together with a downstream DenseNet-201, outperformed Visual

Geometry Group 16 and Support Vector Machine in predicting

skin infections, achieving an accuracy of approximately 82%.

While this approach could indicate specific symptoms, it would

probably contribute little to the prediction of the general state of

health of critically ill patients.

Another task of generative models in the area of data

augmentation was imputation. A major problem with ICU data

is the frequently large proportion of missing measured values.

The first of the studies in this area and, at the same time, the

oldest of the ones included in this entire review, used a

generative model, a deep Boltzmann machine, to learn the

distribution of time series data and impute missing values to

improve the performance of a downstream neural network to

predict in-hospital mortality in ICU patients (24). Apalak and

Kiasaleh (25) applied a conditional GAN where the generator

and discriminator were Long Short-Term Memory networks

(LSTMs) to impute missing tabular time series data. They

showed that this approach improved the performance of

another downstream predictive LSTM in forecasting sepsis,

leading to AUROC values between 0.93 and 0.94. LSTM could

be a promising approach, as it can process the sequential

medical measurement data. Kim et al. (26) used GAN to

impute missing values by applying a slightly different

FIGURE 3

Prototypical use cases for the use of generative AI in outcome prediction in intensive care medicine.
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approach. By randomly dropping a certain percentage a of

values from an original multivariate time series input dataset

X , they constructed a corrupted dataset �X while retaining the

original labels [Equation 1; (26)]:

�X � Drop
a
( �X=X) (1)

�X was then used as input data instead of X , and the generator

replaced the dropped values with the average values in each

iteration, thus reducing noise during imputation. Kim et al. (26)

showed that the synthesized dataset worked similarly in a

downstream predictive model to forecast in-ICU mortality

compared to the original data. They measured imputation

performance using mean squared error and mean absolute error

and achieved the highest values with their new approach of 0.48

and 0.37, respectively. Zhang et al. (18) proposed a multimodal

learning model for in-ICU mortality prediction in critical care.

They first used a Bidirectional Encoder Representations from

Transformers (BERT) model to generate text embeddings of the

medical records of each patient. This created missing values due

to irregularities in intervals in time series data. Therefore, the

authors adapted a GAN to interpolate the time series data and

used feature correlations in the original dataset to assess the

appropriateness of the interpolated data. This new approach,

called MedCT-BERT outperformed several other generative and

predictive approaches, achieving an AUROC of 0.89, including

BioBERT. The textual embeddings of the data could capture

nuances that plain structured data might miss.

Two further studies used VAE to augment tabular data.

Mesinovic et al. (27) imputed serial lab value data from the ICU

using a conditional VAE and combined this model with a right-

censored time-to-event survival analysis instead of just a discrete

outcome label. The conditional VAE was used in this study to

learn the latent representation of the input dataset. This

approach led to a mean AUROC > 0.67. In another study,

Ramos et al. (28) first imputed missing data with a forward-

filling strategy, then applied VAE to learn the latent

representation of the input data and, lastly, used unsupervised

clustering to detect rare abnormal events and, thus, predicted

septic shocks; this model showed a comparable performance as a

supervised LSTM network, achieving an AUROC of 0.82. This

study differs from many others because no labeled dataset was

used. Overall, it proposed a potentially useful tool to prompt the

initiation of preventive measures, such as the prescription

of antibiotics.

Rao et al. (29) attempted to filter out abnormal values in

physiological parameters that could lead to false alarms during

data synthesis. The authors used distance-related anomaly

scores calculated at the generator and the discriminator of the

GAN, leading to an accuracy of 0.97. The new model

outperformed a Convolutional Neural Network-autoencoder-

based anomaly detection model. From a medical perspective,

this new method could have the potential to detect risks of

events other than sepsis and shock onset, for example, sudden

cardiac arrest.

3.2 Use case 2 – feature generation using
unstructured data

In this use case, generative AI was used to create new features

based on unstructured textual data for a downstream predictive

model. Vurgun et al. (30) tested 51 open-source LLMs against

GPT-4.0 to extract in-hospital cardiac arrest events using

discharge summaries, progress notes, and tabular data, with

several other open-source models demonstrating competitive

results, such as Mistral-Nemo-Instruct-2407. The highest

AUROCs achieved were between 0.91 and 0.90. However, this

was not a prediction of a future event, as the cardiac arrest had

already been determined by the care team. Pathak et al. (31)

used BERT to classify radiology reports to predict acute

respiratory distress syndrome (ARDS). However, while

technically novel, applications like ARDS identification from

radiology reports may offer limited added value if clinicians

already documented these diagnoses. Maden et al. (32) used

GPT-4 to create patient summaries from daily free-text medical

notes, thereby making this information accessible for critical care

decisions and outcome prediction. The study concluded that the

clarity of the prompts determined the quality of the summaries.

The highest AUROCs were between 0.75 and 0.88. Moreover,

writing patient summaries would tie up considerable resources

and could therefore be usefully replaced by AI. Lin et al. (33)

predicted in-hospital mortality based on radiology reports, chest

x-rays, and clinical ICU data. Convolutional neural network

processed the image data. The token embeddings from the last

layer of a BERT model were used as latent representations of the

radiology reports. Feature fusion from all three data sources,

clinical data, chest x-rays and radiology reports, led to a slightly

better AUROC than only one or two feature sources alone

(+0.01). Pabon et al. (34) applied GPT-3.5 to extract information

on the left ventricular ejection fraction from medical records.

However, tabular data were used in this study for data extraction

and not the unstructured text.

Parizad et al. (35) used ChatGPT in a different way than the

studies described above. The authors of this study first asked

ChatGPT for advice on which features to include in a frailty

index, but then extracted the actual data from the clinical notes

using non-generative natural language processing techniques.

3.3 Use case 3 – prediction by the
generative model

Generative models were also used to forecast outcomes in

intensive care medicine. GPT-4 Turbo showed an acceptable

performance in predicting mortality (F1 = 0.86) and clinical

scores of the American Society of Anesthesiologists (F1 = 0.50)

using medical notes on the instructions. However, temporal

predictions (e.g., ICU stay duration) performed poorly (MAE =

1.1 days) (36). While the two F1 scores were 76% and 194%

better than a random classifier at baseline, the mean absolute

error of 1.1 days was the same as the dummy regressor baseline.
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Moreover, a comparison with the actual decision of an intensive

care physician would have been desirable here, too. Amacher

et al. (37) asked ChatGPT-4 to predict the occurrence of poor

neurological outcome and the likelihood of survival of cardiac

arrest patients from a Swiss ICU dataset, but used, in contrast to

the previous study, the tabular data in the prompts. In

Amacher’s study, ChatGPT-4 showed only a similar performance

(AUROC = 0.85) as clinical scores derived from health

professionals (AUROC = 0.83). Furthermore, Yoon et al. (38)

tested LLMs tuned with instructions to predict mortality from

discharge notes at 30 days after the patients had left the hospital;

in this study, GPT-4 showed the best result (32.2% in F1 metrics

compared to 28.9% for best-performing supervised model).

Contreras et al. (39) trained a novel LLM-based delirium

prediction model using electronic health record data from the

first 24 h of ICU admission from three openly accessible

databases. The new model used a clinical 345 million-parameter

LLM (GatorTronS) as the backbone and performed better

(AUROC ranging being 0.77 and 0.82 in two external validation

datasets) than three other deep learning models, namely a Neural

Network, a Transformer model, and Mamba. The features

identified in the SHAP analysis were consistent with the usual

accepted risk factors for delirium, and only urine specific gravity

was unexpected and new.

Furthermore, the two narrative reviews (12, 13) outlined

several clinical areas where LLMs and other AI methods could

show their advantages, such as the integration of multimodal and

unstructured data, the creation of patient summaries and the

prediction and prognostication, the second review specifically

highlighting how these applications could support critical

care nursing.

3.4 Technology used and bibliometric
findings

GAN was the most frequently used technology (8/22 studies;

36%), followed by GPT (7/21 studies; 32%). All publications

except one were from the last four years; the oldest was

published in 2013. Medical Information Mart for Intensive Care

(MIMIC) in different versions was the most frequently used

dataset (10/22 studies; 45%). No study predicted long-term

outcomes in intensive care medicine using generative AI.

3.5 Risk of bias assessment

While the predictors, outcome and analysis were described

transparently in most studies (Table 3), information regarding

the selection of the study participants and datasets was often

lacking (22, 27, 31). Moreover, pragmatically defined sample sizes

(26) and the use of commercial models on a smaller scale, due to

cost constraints, compared to the unrestricted use of freely

accessible models (30), could have introduced additional bias.

TABLE 3 Risk of bias assessment according to Prediction model Risk Of Bias ASsessment Tool (PROBAST) +AI (16).

# Authors Year Risk of bias introduced by the

Selection of participants
and data sources

Predictors or their
assessment

Outcome or its
determination

Analysis

1 Wei et al. (19) 2021 ? + + +

2 Yang et al. (20) 2023 ? + + +

3 Shariat et al. (21) 2024 ? + + +

4 Wang et al. (22) 2024 � + + +

5 Ravikumar et al. (23) 2024 + + + +

6 Ryan et al. (24) 2013 + + + +

7 Apalak and Kiasaleh (25) 2022 + + + +

8 Kim et al. (26) 2020 ? + + +

9 Zhang et al. (18) 2023 ? + + +

10 Mesinovic et al. (27) 2024 � + + +

11 Ramos et al. (28) 2021 + + + +

12 Rao et al. (29) 2024 � + + +

13 Vurgun et al. (30) 2024 ? ? + +

14 Pathak et al. (31) 2024 ? + + +

15 Madden et al. (32) 2023 � + ? +

16 Lin et al. (33) 2025 + + + +

17 Pabon et al. (34) 2024 + ? + ?

18 Parizad et al. (35) 2024 ? + + +

19 Chung et al. (36) 2024 ? + + +

20 Amacher et al. (37) 2024 + + + +

21 Yoon et al. (38) 2025 + + + +

22 Contreras et al. (39) 2024 + + + +

Review 1 Shi et al. (12) 2024 NA NA NA NA

Review 2 Porcellato et al. (13) 2025 NA NA NA NA

“+” refers to a low; “�” to high risk of bias; “?” indicates unclear information.
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4 Discussion

Although generative models have been used in many areas,

primarily for images and text, our results clearly show their value

in tabular data from electronic health records in outcome

prognostication in intensive care medicine. The recent publication

dates of the studies highlight the topicality of this research field

and the immense innovation potential in using new technologies

for unusual tasks, such as making a generative model take over

prediction tasks on its own. However, generative AI research still

remains narrowly focused on short-term mortality. Future work

should target patient-centered long-term outcomes.

Although some technologies have rarely been used in outcome

prediction in intensive care medicine, they could be adapted and

applied to this field even more in the future. Examples are

Retrieval Augmented Generation (RAG) or diffusion models.

A study, for example, using RAG to retrieve information from

medical reports, was excluded from this review because it did not

focus on predicting outcomes in intensive care medicine (40).

Likewise, another study applied a novel combination of a

diffusion model with an upstream autoencoder block to forecast

time series data on heart rate and blood pressure (41), but did

not forecast outcomes in critical care either.

Generative AI further showed that it had the potential to enrich

tabular data with additional information from different sources. In

the reviewed studies, the source of information was mainly

medical notes. Images were used less frequently and only in

special contexts, e.g., to predict facial expressions of pain or skin

lesions. A special category of studies did not use the generative

model to extract features from medical notes, but rather asked the

generative model, such as ChatGPT for features to extract from

medical notes (35). Similarly, other studies also used ChatGPT to

obtain medical advice (42). However, there are controversial views

on the quality and evidence-based nature of the recommendations

derived from ChatGPT (43, 44). Unrelated work (45) suggested

potential options for psychosocial feature extraction; however, the

actual feature extraction was performed by experts in this study (45).

An interesting distinction is whether the approaches in the

studies are two-stage approaches or end-to-end approaches. All

studies that we classified as use cases 1 and 2 contain two-stage

approaches per se, as the generative model was used in the first

case to supplement incomplete or infrequently available data or

to generate new parameters from unstructured data. For this

purpose, a generative model was always used first, followed by a

predictive model. Only in the third use case, the predictive

model made the prediction itself (end-to-end approach).

Denoising referred to irregularly sampled time series values,

abnormally imputed values, and simple errors (26). Denoising

autoencoders were originally designed to prevent the output

sequence of the encoder from being equal to the input data as this

would make the autoencoder obsolete. The denoising autoencoder

would, therefore, use noisy or corrupted input for the decoding,

but calculate the encoder loss based on the original input data.

In some studies, although the data science method was new

and innovative, the medical aim was questionable. Especially

when diagnoses could be made easily or, for example, a chest

X-ray must have been viewed by a specialist anyway, as not only

was a diagnosis made by that, but other parameters were also

assessed. However, it is still possible to use the experiments to

further develop the technology or contribute to the wider

availability of medical knowledge beyond that of experts. This

could be relevant for the automated creation of summaries, but

also for doctors in training or when certain experts are unavailable.

Generative models are computationally resource-intensive.

This might create additional data protection issues, and secure

processing environments would be needed to analyse patient

data. To avoid such problems, the publicly accessible MIMIC

dataset was probably the most often used database in the studies

included. However, perhaps the results should also be validated

in different datasets in the future. In addition, generative models

can help solve data protection problems. Completing missing

data can be extended to a data synthesis problem, and data

synthesised in sufficient quality will be accepted more and more

as a replacement of the original data. Since data synthesis is a

generic task, methods from other fields can also be applied to

predict outcomes based on ICU data. For example, Neves et al.

developed a GAN with only two layers and a hyperbolic tangent

activation function in the output layer for the imputation of

medical data, which could synthesize data faster (46).

The clinical implications of using generative AI in intensive care

units extend beyond outcome prediction, which was the scope of this

review. At present, we are still a long way from automated treatment.

Beyond liability issues, ethical considerations, bias, hallucinations, the

lack of necessary qualifications in healthcare professionals, and

potential changes to work processes, medicine also involves an

element of humanity that AI cannot yet easily replace. However, it

has already been shown that machines can not only provide effective

decision support in treatment, but also engage in more empathetic

dialogues than clinicians when interacting with patients and their

relatives (47). Nevertheless, until now, the final decision on treatment

has always been made by a human, albeit supported by AI.

Ethical implications of using generative AI in real-time critical

care settings, including hallucinations, bias, accountability, and data

privacy, as well as regulatory issues should be addressed through

future research, which should also take into account multi-

stakeholder perspectives. Real-time deployment of generative

models [e.g., ChatGPT-4 (37)] requires rigorous hallucination

safeguards, especially when tabular data inputs may propagate biases.

Practical implementation of generative AI in intensive care

medicine will depend heavily on its effectiveness, regulatory

approval, technical interoperability with electronic health records

and other systems, the skills of health professionals and hospital

policies related to patient pathways and digital medicine. The

detailed discussion of these aspects is beyond the scope of this

review. Further research should focus on addressing them.

Interpretability and explainability of generative AI are crucial

for its acceptance, adoption and deployment in clinical practice

(48). Further research should address this area, incorporating the

perspectives of clinicians, patients and their caregivers.

A limitation of this review might be its static nature, while the

technology is advancing at a high speed. Novel technologies and

new application areas might be published during or after this review.
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Work on the first update of this review is therefore scheduled to begin

one year after the publication date. Following these arguments, more

studies could also have been expected in this review. However, in a

review of scoping reviews, Tricco et al. (48) showed that the average

number of studies included in 494 scoping reviews was 118, ranging

from 1 to 2800. This is comparable to the 119 records that were

assessed in detail in the present study. Moreover, the scoping review

on LLMs in intensive care (but not limited to outcome prediction)

also included in this review (13) ended with a similar number of 24

articles as our final selection. In addition, as also done in the

aforementioned paper, we limited the keyword search to titles and

abstracts in some databases, as we were specifically looking for

studies that used generative methods in outcome prediction and did

not just mention generative AI, for example, in the discussion.

A further limitation of our study could be that preprint studies

without peer review were also considered. However, we were

transparent about this, and the publication origin of the studies is

indicated accordingly in Tables 1, 2. Another limitation of our study

is that the second abstract screening was conducted using ChatGPT’s

3.5 model. Inclusion of a second human review could have

enhanced the methodological rigor of this process. This review

shows that generative AI has immense potential in the future, and

continuous monitoring of new technologies is necessary to ensure

that patients receive the best possible care.
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