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sighals using convolutional
neural networks across multiple
physiological scenarios

Daniel Foronda-Pascual®*, Carmen Camara and
Pedro Peris-Lopez

Department of Computer Science, Carlos Ill University of Madrid, Madrid, Spain

Introduction: In recent years, contactless identification methods have gained
prominence in enhancing security and user convenience. Radar-based
identification is emerging as a promising solution due to its ability to perform
non-intrusive, seamless, and hygienic identification without physical contact
or reliance on optical sensors. However, being a relatively new technology,
research in this domain remains limited. This study investigates the feasibility
of secure subject identification using heart dynamics acquired through a
continuous wave radar. Unlike previous studies, our work explores
identification across multiple physiological scenarios, representing, to the best
of our knowledge, the first such exploration.

Methods: We propose and compare two identification methods in a controlled
Resting scenario: a traditional machine learning pipeline and a deep learning-
based approach. The latter consists of using a Convolutional Neural Network
(CNN) to extract features from scalograms, followed by a Support Vector
Classifier (SVC) for final classification. We further assess the generalizability of
the system in multiple scenarios, evaluating performance both when the
physiological state is known and when it is not.

Results: In the Resting scenario, the deep learning-based method
outperformed the traditional pipeline, achieving 97.70% accuracy. When
extending the identification task to various physiological scenarios, 82% of
predictions exceeded scenario-specific confidence thresholds, achieving
98.6% accuracy within this high-confidence subset.

Discussion: Our findings suggest that radar-based identification systems can
match the performance of established biometric methods such as
electrocardiography (ECG) or photoplethysmography (PPG), while offering
the additional benefit of being contactless. This demonstrates the potential of
radar heart signal analysis as a reliable and practical solution for secure
human identification across diverse conditions.
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1 Introduction

Some of the most prevalent and transformative advancements
in the field of cybersecurity arise from the integration of biometric
identification techniques. Biometric identification uses unique
physiological and behavioral characteristics of individuals,
offering a robust and multifaceted approach to identification,
while simultaneously enhancing and streamlining the user
experience. At the same time, these techniques hold relevance in
the realm of modern healthcare, where the utilization of
electronic health information plays a crucial role as a
fundamental element.

Among various biometric techniques, Electrocardiogram (ECG or
EKG) monitors the heart’s electrical activity, Electroencephalogram
(EEG) measures brain activity, and Electromyography (EMG)
captures muscle activity, enhancing biometric identification with
diverse layers of uniqueness. Facial recognition, widely adopted,
analyzes facial features, fingerprints with their distinct ridge patterns
are already a standard in identification, and retina scanning examines
eye blood vessel patterns enriching the spectrum of biometric
identification techniques.

However, biometric identification methods that require
contact, such as ECG and EEG, come with inherent drawbacks.
Firstly, the need for specialized devices for signal acquisition can
be inconvenient and limiting in terms of accessibility and
portability. Additionally, direct physical contact with the user
may lead to reluctance due to comfort or hygiene concerns or
even provoke skin issues, for example, in the case of monitoring
the heartbeat in premature babies [1]. Therefore, the ability to
obtain cardiac motion without physical contact, particularly
through radar technology, becomes highly compelling.

Furthermore, the integration of Doppler radar technology
introduces a transformative dimension to non-contact biometric
identification. Doppler radar, known for its efficacy in various
applications such as weather forecasting [2] and physiological
monitoring [3], extends its utility to the area of cybersecurity.
subtle
movements in the chest surface caused by heartbeat and

By utilizing the Doppler principle, which detects
respiration, radar technology enables non-intrusive cardiac
motion detection. Doppler radar not only can ensure a secure
and efficient identification process but also enhances user
comfort by providing contactless means of capturing unique
physiological characteristics. The versatility of Doppler radar
positions it as a promising technology in advancing the
capabilities of biometric identification systems, offering a
compelling solution for the evolving landscape of digital security
and opens up novel, user-friendly identification methods, such
as heartbeat detection through Wi-Fi signals [4]. In the scientific
literature on this topic, most studies on heart signal-based
identification rely on contact-based techniques such as ECG.
However, the field of identification using heart signals extracted
without physical contact remains largely unexplored, with only a
methods like
technology, which is the main motivation of this paper. In [5], a

few studies employing non-contact radar

review of radar-based authentication methods is provided, where
the majority rely on identifying individuals through their
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respiratory characteristics. In contrast, only five studies focus on
cardiac signals, most of which were conducted on datasets with
a relatively small number of subjects (4, 10, 11, 20, and 78
people, respectively). Therefore, studies in this field are still
scarce and often performed on a limited number of subjects,
mainly due to the shortage of available datasets. Moreover, most
of these studies are carried out in laboratory settings with very
stable conditions, which may differ from those in which this
technology might eventually be applied. The aim of this article
is twofold: first, to contribute to the study of this identification
method by providing additional evidence of its viability and
potential for good results using a dataset with 30 people; and
second, to investigate its performance in scenarios where the
subject is not necessarily in a resting position, thus assessing its
applicability in more diverse situations—a novel aspect of
this research.

In this case, data are collected with the assistance of medical
experts in a laboratory setting. However, this approach does not
need to be the only one. The technology could also be
implemented in home environments, representing a significant
area within the home health-care monitoring market [6]. For
example, in the field of security, a potential application could be
user authentication for logging into and maintaining an active
session on a computer. A radar device installed on, for instance,
the computer screen could capture the user’s cardiac signal while
seated without requiring medical experts or physical contact.
Additionally, the feasibility of obtaining cardiac signals from
commodity Wi-Fi devices has been explored [4], and various
portable systems and integrated radar chips have been
demonstrated [3]. On the other hand, it is crucial to highlight
that the sensitivity of medical data necessitates stringent security
measures, which can complicate the deployment of various
potential applications. However, this challenge is not exclusive to
this technology; for example, other biometric methods, such as
ECG, encounter similar issues but have still been successfully
employed for real-time data collection and monitoring [7-9].
Moreover, several solutions, including encryption, have been
proposed to safeguard this data. Given these precedents, it is
reasonable to expect that the security measures for cardiac signals
obtained via radar could follow analogous procedures, enabling
their application in various contexts while ensuring the required
level of security. On the other hand, the fact that this technique is
contactless can facilitate the development of real-time applications.

Moreover, this study is based on radar-recorded cardiac
signals from 30 healthy patients in a laboratory setting where
random body movements were minimized. In a real-world
environment, the presence of such movements would pose an
additional challenge for the system’s applicability, similar to
what happens with other biometric techniques like ECG or
EMG, although there are currently no public datasets with these
characteristics to study such effects. However, some studies have
already begun investigating different methods to suppress these
interferences and noise in the signal, thus enabling random
body movement cancellation [10, 11].

The primary applications of this technology are likely in the
field of security. Traditionally, many identification methods rely
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on tokens, such as passwords, which are vulnerable to theft. Other
authentication systems utilize biometric data, including iris scans,
fingerprints, or palm prints, and typically employ a one-time login
process, with no subsequent security checks. In contrast,
contactless identification supports a continuous and convenient
identification process, enabling periodic verification of the user
without causing disruption, thereby enhancing both security and
usability. In clinical settings, this method could have the
potential to substantially improve the collection and storage of
patient medical data, including heart rate, respiratory rate, and
blood pressure, for further analysis. By removing the need to
manually enter patient identities into the system, this technology
facilitates a more efficient and streamlined data collection
process. Consequently, it leads to a more comprehensive and
accurate database, thereby supporting better informed medical
decisions and more effective patient management. The correct
identification of patients in hospitals and healthcare centers is
also critical in many cases, and an efficient and simple method
to achieve this could help reduce errors in important processes
such as the administration of medications [12]. Moreover, the
trend in identification systems, as well as in the monitoring of
physiological signals, is to eliminate physical contact in order to
be as non-intrusive as possible, as is already the case, for
example, with pacemakers, whose heart signals can now be
read wirelessly.

The main contributions of this article can be summarized in
three key points. First, we propose an efficient identification
method based on radar sensing of cardiac motion in a resting
scenario, a research area that has received little attention so far,
and achieve an accuracy exceeding 97%. Second, we provide a
comparative analysis between traditional machine learning and
deep learning approaches for this task, demonstrating the clear
advantage of deep learning methods and further examining their
explainability. Finally, and most importantly, we advance beyond
existing works by investigating subject identification across
different scenarios in which the human body exhibits varied
behaviors, thereby addressing the challenge of how identification
models adapt to changes in physiological conditions.

The article is organized as follows. In the Section 2, we conduct
a comprehensive review of existing literature pertaining to the
detection of cardiac signals for person identification, with a
specific focus on radar-detected cardiac signals. The Section 3
discusses the dataset employed for our study detailing the
preprocessing steps and feature extraction methods applied.
Moving on to the Section 4, we analyze the key findings derived
from various experiments that were carried out. Finally, in
Section 5, we draw some conclusions based on the obtained results.

2 Related work

In this section, we review some scientific literature relevant to
our study, grounded in the domain of heart biometrics [13].
Within the field of user identification based on cardiac signals,
the most extensively studied method is based on the ECG as
analyzed in [14]. Remarkable results have been achieved, with
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evidence dating back to 2001 [15] demonstrating the efficacy of
using a single-lead ECG for individual identification. A notable
contribution in this domain is the work presented in [16],
wherein ECG signals are transformed into scalograms. These
scalograms are subsequently subjected to analysis using a CNN
comprising seven convolutional layers, followed by classification
using an SVC. The outcome of this approach yields an accuracy
of 99.21%. Similarly, [17]
leveraging a heatmap derived from the ECG of multiple beats,
referred to as Elektrokardiomatrix (EKM) as introduced in [18].
Employing a CNN with just a single convolutional layer on this

reports comparable results by

heatmap achieves a high accuracy of up to 99.53% in a database
comprising 18 individuals. Reference [19] employs a dual-path
residual neural network alongside a split attention mechanism
for ECG-based identification, achieving an accuracy of 99.6%. In
[20] authors propose a 2-stage user identification system that
integrates ECG signals with status information, addressing the
challenges posed by signal variability due to physical and
cognitive stress, achieving accuracies of up to 95.83%. More
generally, ECG can be combined with other biosignals to
achieve more comprehensive identification, as demonstrated in
[21], where ECG and EMG signals are transformed into 2D
multi-stream CNN,
achieving an average accuracy of 96.8% in driver identification

spectrograms and analyzed using a
under various driving conditions.

While ECG captures variations in body surface potential, the
Microwave Doppler sensor takes a different approach by
attempting to extract heartbeat and individual feature quantities
through time-frequency analysis without direct skin contact. The
utilization of a 24-GHz microwave Doppler sensor is motivated
by its capability to detect subtle chest surface vibrations induced
by heartbeats. A critical challenge lies in the separation of
signals associated with breathing and heartbeat. In various
studies such as [22, 23] a Butterworth filter is used to extract
the cardiac signal, eliminating the lower frequencies
corresponding to respiration. However, in [24], the authors use
Wavelet Packet Decomposition (WPD) to separate both signals,
achieving errors less than 2% or 3.5% for respiration and heart
rate, respectively, improving the accuracy of vital signals
detection compared to Bandpass filter and Peak Detection.
Subsequently, in [25], various methods are compared to
determine which one extracts the cardiac signal better from the
radar signal, among which Discrete Wavelet Transform (DWT)
obtains the best results of all, including WPD. Moreover, the
relationship between ECG and the cardiac signal extracted via
radar has been previously explored, as in [26], where ECG
signals are generated from cardiac activity detected using
Doppler radar.

Within the area of cardiac signal detection, one of the initial
objectives among researchers was to determine the heart rate
using different techniques such as Fast Fourier Transform
(FFT), Auto-Regressive Model (AR), or the detection of each
single beat [27, 28]. But already in 2017, in [29], a method for
identification based on the identification of the cardiac signal by
a Continuous Wave (CW) radar was developed based on a

fiduciary analysis of the cardiac signal. Fiduciary analysis refers
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to a method of signal processing or data interpretation that relies
on distinctive fiducial points or features within the signal. These
points serve as reference markers, aiding in the identification
and extraction of specific information. On the other hand, non-
fiduciary analysis involves alternative approaches that may not
rely on specific fiducial points, often exploring broader
characteristics or patterns within the signal for analysis. In this
study, in order to avoid unwanted Random Body Movement
(RBM), two radars are placed on each side of the patient. As a
classifier, they use k-Nearest Neighbors (KNN) and SVC,
obtaining a 98.61% balanced accuracy. In [30], instead of
conducting a fiduciary analysis of the signal, the signal is
segmented into individual heartbeats and resampled to a fixed
number of samples. These samples are then fed into the
classification algorithm. Each window is classified by the beats it
contains through voting. However, the study is conducted on
only a sample of 4 people. More recently, in [31], they
transform the signal with Short Time Fourier Transform
(STFT), creating spectrograms that are then classified with a
Deep Convolutional Neural Network (DCNN).

Some of the current limitations of this technology include the
still high price of the devices, although lower prices and greater
availability are expected in the near future [32], and its
sensitivity to RBM. Among the future challenges are capturing
cardiac signals in multi-subject environments, enhancing the
security of this data, and RBM cancellation [33]. In [1], for
example, this latter point is investigated, where Non-negative
Matrix Factorization is used to try to eliminate body movements
in recordings of premature infants in the neonatal intensive care
unit. In [34] a fiduciary identification method using radar is
developed, focusing more on respiration than on the cardiac
signal in order to perform subject identification in environments
with more than one person. Other related areas being explored
include the robustness to noisy bio-signals [35] or emotion
recognition [36].

3 Materials and methods

3.1 Data

The study utilized a publicly available dataset provided by [37],
collected by physicians at the University Hospital of Erlangen
(Germany) from 30 healthy participants (14 males and 16
females) with an average age of 30.7 years. The radar system
employed in the study had its focal point designed for a distance
of around 40 cm from the region of interest (the thorax). It is
based on Six-Port technology, designed for portable use. The
measurements included five different physiological scenarios in
which the patient may be during the recording:

o Resting scenario: Participants lay in a relaxed position for a
minimum of 10 min. Calm breathing was instructed during
this phase.

The Valsalva maneuver,

¢ Valsalva maneuver scenario:

involving forceful expiration against a closed glottis for 20s,
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was performed three times with intervals of 5min. Post-
maneuver, the test person breathed out and resumed
calm breathing.

o Apnea scenario: Participants held their breath in two defined
states: inhaling completely before apnea and exhaling
completely before apnea. Raw signals during the transition
from normal respiration to apnea were recorded.

o Tilt up scenario: The tilt table was gradually raised to 70° to
trigger the Autonomic Nervous System (ANS) response.
Hemodynamic changes, including significant alterations in
blood pressure and heart rate, were anticipated.

« Tilt down scenario: Starting from the tilt up position with 70°
of inclination, the tilt table was lowered back to the starting
position, and the recording continued for an additional
10 min. Similar ANS reactions

were expected during

the descent.

These scenarios, each serving a specific physiological purpose,
were designed to investigate the impact on vital signs and
autonomic functions during various physiological states. The
duration of the recordings in the different scenarios may vary.
In the Resting, Tilt Down, and Tilt Up scenarios, the recordings
usually exceed 10 min. On the other hand, in Valsalva, they
consistently exceed 15min, while in Apnea, the duration
typically ranges between 2 and 5min. These differences in
duration are due to the experimental design, which varies
slightly for each scenario as described earlier.

Ethical and privacy considerations are crucial in research
[38, 39]. The dataset used in this study was approved by the
ethics committee of the Friedrich-Alexander-Universitat
Erlangen-Niirnberg (No. 85_15B). It is accessible at [40].

3.2 Signal preprocessing

From the recordings provided in the dataset, which include 1/
Q signals from the radar, the initial step involves decomposing
these recordings into non-overlapping windows. Subsequently,
ellipse fitting is applied to the I/Q point sets of each window
following the method outlined in [41]. With these fitted ellipse
parameters, arctan demodulation [42] is performed, yielding the
signal corresponding to thoracic movement. An important
aspect of preprocessing this type of signal compared to others
like ECG is the potential increased presence of noise. Therefore,
the study of its elimination becomes a crucial area to consider.
In addition to system-related noise such as baseline wander,
random body movements and chest displacement due to
respiration must also be taken into account. In this case, from
the demodulated signal, the cardiac signal is extracted using the
Maximal Overlap Discrete Wavelet Transform method
(MODWT), inspired by [25], where it has been demonstrated
that this approach provides superior results for extracting the
cardiac signal, at least for detecting peaks and heart rate. The
Discrete Wavelet Transform (DWT) [43] is commonly employed
to decompose a signal into distinct frequency components,
facilitating a multi-resolution analysis while the MODWT [44]
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serves as an extension to the traditional DWT, introducing
overlapping wavelet transforms to address specific limitations.
Unlike the DWT, which decomposes a signal through successive
non-overlapping segments, the MODWT utilizes overlapping
segments in its decomposition process mitigating boundary
effects that often occur in the standard DWT, particularly near
the signal’s edges. In this study, the calculations employ the
Morlet wavelet, similar to the methodology followed in [45].
However, instead of selecting just levels 4 and 5, we achieved
better results by choosing levels from 1 to 5. After isolating the
cardiac signal for each window, we proceed to decompose these
signals into shorter-length frames, allowing for potential overlap
between them. At this stage, the preprocessing varies based on
whether traditional machine learning methods or a CNN will
be used.

In what we refer to as the “machine learning approach,” we
use traditional machine learning methods that do not include
deep learning, such as SVC, Random Forest, Extra-Trees, or
Dense Neural Network (DNN). After segmenting the cardiac
signal into frames, the Fast Fourier Transform (FFT) [46] is
applied to the signal. A fixed grid of 361 points between 0 and
1 is established based on the frequency values derived from the
FFT of the cardiac signals. This grid allows us to capture FFT
values, resulting in a series of 361 points for each frame. In
Figure 1, we can see an example of 4s of a cardiac signal and
its corresponding FFT, including the points that were selected as
they belong to the fixed grid. Later with these points, to
enhance subsequent efficiency, Principal Component Analysis
(PCA) is applied for dimensionality reduction, reducing the data

— Cardiac Signal

Amplitude

20 25 30 35 40
Time (s)

— Normalized FFT
+ Selected Points

Normalized magnitude

M,

30
Frequency (Hz)

FIGURE 1

Example of a 4-second cardiac signal frame and its corresponding
Fast Fourier Transform (FFT). Selected points on a fixed grid of 361
frequencies are highlighted.
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from 361 to 74 columns while explaining approximately 95% of
their variance. The goal of using PCA is to reduce the
dimensionality of the data and thus subsequently improve the
performance of the different classification algorithms we will
use, as studied in [47] and applied in [48-50]. With these 74
resulting points, which represent a cardiac signal frame
corresponding to a patient, the objective is to use a classifier to
determine which patient the frame corresponds to. Therefore,
these 74 points will be the input to the classifier, while the
output will be the class corresponding to the patient to whom
the frame pertains.

In the deep learning approach, we use the normalized cardiac
signal to generate a scalogram for each frame. The result after
preprocessing is a scalogram, that visually summarizes the
frequency content and time-varying characteristics of each
frame. In addition to the scalogram, there are other signal-to-
image conversion methods. In [51], the efficiency of several of
them was compared for extracting signal features, such as
Gramian Angular Field, Markov Transition Field, Recurrence
Plot, Grey Scale Encoding, Spectrogram, and Scalogram, where
in that case, the scalogram yielded the best results. However, the
authors noted that the performance of each method can vary
depending on the type of dataset used. While studies on cardiac
radar signals are scarce, the scalogram has been extensively and
successfully used in the field of ECG, as it performs well with
signals sensitive to noise [52-56]. Specifically, the methodology
followed in this study is very similar to [16], where ECG signals
were converted to scalograms and subsequently classified using
CNN and SVM. Given the successful outcomes that the
scalogram has demonstrated in this field, we have chosen to
apply this method in our study. The complete preprocessing
workflow can be observed in Figure 2.

3.3 Train and test segmentation

Since this is a classification problem, the train/test split is not
done by dividing the 30 subjects into two groups. Instead, we split
each subject’s windows into training and testing sets, aiming to
classify the test windows according to the patient they belong as
accurately as possible. As we have conducted several different
types of experiments (Sections 4.2-4.5), the division is slightly
different in each case. For single-scenario splits, where the
algorithm is trained using samples from the same scenario it is
intended to predict, the last 25% of the windows in the
recording has been selected as the test set, while the remaining
windows (the first 75% of them) form the training set. The
temporal split of the windows set appears to be a more
could be
encountered in a real-world use case, as opposed to employing a

appropriate approach, closely resembling what
random split of the windows. Naturally, with a random split,
there is a possibility of having windows in the train set that are
very similar to those in the test set, as they may be contiguous,
thereby potentially improving results but deviating from reality
applications. In practice, algorithms are expected to be trained

on samples collected on specific dates, while the test set
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1/Q signals
l Split in windows

Window /Q signals

Ellipse fitting + arctan
demodulation

Thorax displacement
l MODWT
Cardiac signal

l Split in frames

Frames with cardiac

signals
.y . \
Traditional machine Deep learning approact.
learning approach

X Normalization
FFT + grid

Scalogram

‘ 361 points

.

PCA (dimension
reduction)

‘ 74 points ‘

Frames {

74 columns

FIGURE 2
Preprocessing workflow for radar-derived I/Q signals.

comprises samples, most likely, from subsequent days. Therefore,
this temporal split seems more reasonable. In fact, it would be
desirable to have recordings from different dates to allow for a
more significant temporal separation between train and test
samples, thus achieving a closer resemblance to the processes
employed in practical applications of this kind of identification
methods. In the case of trying to classify windows from
unknown scenarios, one scenario is designated as the test set,
and the others serve as the training set. It should be noted that,
as the windows are non-overlapping, the risk of data leakage
between partitions is effectively eliminated.

Another crucial aspect to consider is segmentation when
performing cross-validation for hyper-parameter optimization
(HPO). To achieve this, the training set must be divided into
different splits. When dealing with a single scenario, this is
accomplished by temporally dividing the windows of each
patient. However, when working with multiple scenarios, two
options have been considered: homogeneous cross-validation or
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heterogeneous cross-validation. In the former, windows from
divided into then
corresponding partitions from other scenarios are aggregated,

each scenario are partitions, and
ensuring that each fold contains windows from all scenarios. On
the other hand, in heterogeneous cross-validation, splits are
created without intermixing windows from different scenarios,

with this latter option yielding superior results.

3.4 Feature extraction with CNN

Currently, CNNs are the predominant choice for feature
extraction in the field of computer vision [57, 58]. The notable
success achieved by CNNs in processing image data is attributed
to their ability to extract crucial features from images, coupled
with the computational prowess of Graphics Processing Units
(GPUs) as processors. In our case, to extract features from the
scalograms, we used a CNN composed of five convolutional
layers followed by two fully connected layers. We applied batch
normalization after each convolutional layer to normalize the
input and mitigate internal covariate shift [59], and Rectified
Linear Unit (ReLU) activation functions to introduce non-
linearity after each batch normalization layer, facilitating the
learning of complex patterns in the data. The fully connected
layers consist of a linear layer with 1,024 output features
followed by a dropout layer to mitigate overfitting [60]. The
final linear layer produces the output logits, which are passed
through a LogSoftmax activation for probability estimation
during inference. This architecture is illustrated in Figure 3 and
was implemented using the PyTorch framework. To train the
network, the scalograms of each frame are provided as inputs in
200 x 200 pixel images, while the ground truth corresponds to
the subject to whom that frame belongs, numerically coded.

After training, the final lineal layer is removed to obtain
features, resulting in 1,024 features for each scalogram. In the
CNN structure, convolutional layers are responsible for capturing
hierarchical representations of the input scalograms, while the
linear layers contribute to further refining these representations.
The removal of the last classification layer ensures that the
network functions as a feature extractor, providing a rich set of
features that encapsulate the relevant information from the
scalograms [61]. This feature representation is then fed into the
subsequent SVC for classification.

The choice of this five-layer CNN is supported by prior studies
in physiological signal classification. For example, [62] demonstrated
that even moderate-depth CNNs can extract highly discriminative
features for non-image physiological data when combined with
PCA and SVM. Similarly, [63, 64] showed that features from
scalogram-based CNNs effectively capture time-frequency
information in real-world signals, significantly improving SVM
classification performance. In [16], one-dimensional ECG signals
were transformed into scalograms and classified with a seven-layer
CNN, outperforming AlexNet and SqueezeNet as a deep feature
extractor combined with SVM. Building on this work, we
performed a comparative experiment with CNN architectures
containing 3, 5, 7, and 9 convolutional layers to jointly evaluate
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conv1

FIGURE 3
Architecture of the CNN used for feature extraction from scalograms.
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3 4 5 6
Frame size (s)

——— Extra Trees
—— DNN

Effect of frame size on classification accuracy in the Resting scenario using traditional machine learning models. Average frame-level accuracy (%) is
shown for SVC, Random Forest, Extra-Trees, and DNN, while the yellow line represents window-level accuracy obtained via soft voting

7 8 9 10

Window-level voting

performance and computational cost. The results, averaged over six
repetitions, indicate that the five-layer CNN achieves the best trade-
off between accuracy, number of trainable parameters, and inference
time per sample. This model delivers the highest and most stable
performance. Moreover, its inference time remains very low
(0.29ms per sample), which makes it well suited for real-time
applications. For these reasons, we selected the five-layer CNN as
the final architecture, as it balances model complexity and
computational efficiency  while feature

preserving  strong

representation and classification performance.

3.5 Frame size optimization
Among the several hyper-parameters in consideration, two are

particularly significant. Firstly, there is the selected temporal
window width. As expected, in general terms, a larger window
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size will lead to higher accuracy in class predictions, as the
algorithm has access to more data. Secondly, we divide each
window into different frames that overlap. The size of these
frames is a crucial hyper-parameter that requires optimization.
Due to time constraints in computations, we employed the
classical machine learning approach at this step.

Setting an arbitrary window width of 12's and a stride of 0.5 s
between contiguous frames, we conducted the prediction process
on the resting scenario with various frame sizes. The results are
illustrated in Figure 4. In this figure, it is essential to note that
the four models (SVC, Random Forest, Extra Trees, and DNN)
are not predicting the class for each window but for each
individual frame. Generally, we observe that, logically, when
frames are very short, algorithms tend to make poorer
predictions compared to longer frames, given the reduced
amount of information. On the other hand, the yellow line
represents the accuracy in window prediction obtained through
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soft voting with predictions for each frame from the four
aforementioned models. While individual models may exhibit
higher accuracy in predicting frames with longer duration, the
predictions for windows are not as robust. Conversely, the
highest accuracy in predicting window classes is achieved with
4s frames. Thus, although the frames are somewhat shorter and
consequently the model may not classify them as accurately
individually, having more frames within each window results in
more reliable predictions for the window class, leading to better
overall results. For this reason, the frame size that we will use
for the remainder of the study will be 4s.

3.6 Explainability

To enhance the transparency and interpretability of our
models, we analyzed their decision-making processes using
explainability techniques. This approach aims to provide a
deeper understanding of which features of cardiac signals are
unique to each individual, enabling their identification. This
study is framed within the domain of Explainable Artificial
(XAI) [65], which
learning models more interpretable without compromising
their XAI
application of methods

Intelligence seeks to make machine
involves the
that

gap between

performance. development and

elucidate model behavior,

bridging the complex algorithms and
human understanding.

We employed two techniques to interpret the outputs of our
models: the Convolutional Block Attention Module (CBAM) and
Shapley values. CBAM, first introduced in [66], is an attention
mechanism that enhances CNNs by sequentially applying
channel and spatial attention. The channel attention module
identifies the most significant feature maps, while the spatial
attention module highlights the most relevant regions within
those feature maps. By focusing on these critical features and
regions, CBAM provides an interpretable view of the model’s
decision-making process, allowing us to better understand the
patterns and characteristics captured by the CNN. CBAM has
also been successfully applied in previous studies to explain
models handling other types of biosignals, such as ECG
[67-69]. To complement this, we used Shapley values to gain
insights into the behavior of the model within the traditional
machine learning approach. Shapley values [70], rooted in
cooperative game theory, offer a robust method for explaining
model predictions by quantifying the contribution of each
feature to the output. In this context, features are treated as
“players” in a coalition, and the prediction of the model is
considered the “payout.” The Shapley value of a feature
represents its average marginal contribution to the prediction,
calculated over all possible subsets of features. This ensures a
fair evaluation of each feature’s importance, accounting for its
with other features. The
explainability techniques in this

interactions inclusion of these
study substantiates the
importance of specific features, ensuring that our
methodologies remain transparent and rooted in domain-

specific knowledge.
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4 Results

Once we have completed the data preprocessing, we have each
4 s frame of cardiac signal from a specific subject synthesized into
74 values (traditional machine learning approach) or into a
scalogram (deep learning approach). The goal of the different
identification models we have tested is always to classify this
information among the various patients in the study to
determine which patient it corresponds to. In order to assess the
model’s capability in user identification across the various
data,
experiments grouped into four sections. Firstly, we compared

scenarios available in the we conducted different
approaches using traditional machine learning and deep learning
in a resting scenario and subsequently analyzed their results. In
the “Identification in well-known scenario” section, we trained a
model for each different scenario and studied its effectiveness in
identifying patients in that specific scenario. On the other hand,
in the

attempted to identify subjects in a scenario for which the model

“Identification in unknown scenario” section, we
has not been trained, aiming to evaluate the model’s adaptability
to new situations. Later, we trained a common model for all
scenarios and attempted to identify patients with it. In addition,
we conducted an open-set evaluation to investigate the system’s
ability to reject previously unseen subjects, simulating real-world
conditions where potential impostors may attempt to access the
system. Finally, in the section “Feature Importance,” we present

the results regarding the explainability of the models employed.

4.1 Performance metrics

In evaluating the effectiveness of each multi-class classification
model, we employ a comprehensive set of metrics that collectively
try to provide a good understanding of its performance across
various dimensions. First of all, we must point out that in all
scenarios the classes are balanced since the recordings of each
one of the patients have approximately the same duration.
Therefore, accuracy is the metric to which we pay the greatest
attention, as it provides a fairly accurate insight into how the
model is performing.

Given that we are addressing an identification problem, it is
important to also consider both the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR). In our multiclass
setting, these are computed on a one-vs-rest basis, making them
directly comparable to precision and recall, respectively. FAR
reflects the proportion of non-matching instances incorrectly
accepted as a given class, while FRR captures the proportion of
matching instances that are erroneously rejected.

Finally, to facilitate comparison with the results of other
studies, we also provide precision, recall, and F1-Score. Precision
is a metric that assesses the accuracy of positive predictions,
representing the ratio of true positive predictions to the total
number of instances predicted as positive. Recall, also known as
Sensitivity or True Positive Rate, measures the model’s ability to
identify all relevant instances, and the FI1 score is a harmonic
mean of precision and recall, providing a balanced assessment
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of the model’s performance. It is particularly useful when there is  experience a notable increase. Despite the aggregation of the
an uneven class distribution. We express all these metrics four methods failing for certain frames, this shortcoming is
in percentages. attenuated by other frames within the same window. In
Figure 5, we observe the effectiveness of this method based on
the selected window width. In general terms and as expected, as
4.2 |dentification in resting scenario the window width increases, the accuracy of the predictions also
tends to increase. However, we can observe that the accuracy
The first step that was attempted to identify patients has been  never reaches 90% with this method.

solely based on samples taken in the resting scenario, which In the deep learning approach, we follow established
undoubtedly involves fewer complexities than the others. In this  methodologies for signal classification [16, 62-64], consisting of
context, we possess recordings of approximately 10min’  converting signals to scalograms, extracting features with a
duration for each of the 30 patients. These recordings are ~ CNN, and classifying with an SVC. We used a five-layer CNN
divided into non-overlapping windows, with the last 25% of  (Figure 3) to extract 1,024 features per scalogram by removing
them allocated for testing and the initial 75% for training. The  the final linear layer after training. Dimensionality reduction
objective extends beyond assessing the feasibility of reliably — with PCA was then applied, reducing the features to 210
identifying individuals through this method; it also seeks to  components while retaining approximately 95% of the variance,
compare the efficiency of traditional machine learning models  to accelerate SVC training. Lastly, we performed Hyper-
against CNNs. parameter Optimization (HPO) on the SVC model and trained
In the machine learning approach, we tried several the classifier, which predicts the class of each frame. To
classification algorithms such as Support Vector Classifier  determine the class of each window, a subsequent voting process
(SVC), Random Forest (RF), Extra-Trees, Histogram-Based s conducted with the predicted classes of each frame, both in
Gradient Boosting (HGB), K-Nearest Neighbors (KNN), Dense  soft and hard voting modalities. The results of both the
Neural Network (DNN), and X-Gradient Boosting (XGB).  traditional machine learning models and this latter approach are

Notably, SVC, RF, Extra-Trees, and DNN demonstrate superior  depicted in Figure 5.
results. Subsequently, based on predictions from these four As observed in the graph, the results obtained using CNN plus
models, an assessment is made to determine if accuracy  SVC are significantly superior reaching for 10 s windows 97.7% of
improves through the construction of a voting algorithm, accuracy. The specific outcomes for 10s windows using both
incorporating both soft and hard voting. This approach has  approaches are detailed in Table 1. Therefore, for the remainder
proven effective in enhancing results. After aggregating the  of the study, we focus exclusively on this approach, discarding
probabilities for each frame in the test set from the four more conventional machine learning algorithms. Regarding the
algorithms, we subsequently determine the predicted class for  window size we will use, in general, a larger window size is
each window. As illustrated in Figure 4, the accuracy can  anticipated to improve the model’s ability to identify the patient

—8— Deep learning approach (CNN + SVC) P —e
Machine learning approach | e ®
95
90
=
3
©
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FIGURE 5
Effect of window size on classification accuracy in the Resting scenario comparing traditional machine learning models with the CNN
+SVC approach.
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TABLE 1 Classification metrics for 10 s windows in the Resting scenario for different approaches: Machine Learning (ML) and Deep Learning (DL),
including a subset of DL predictions with confidence greater than Youden threshold.

‘ Approach Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) | Fl-score (%)

ML (All windows) 84.27 12.93
DL (All windows) 97.70 1.99
DL (Confidence > Youden thr.) 100.00 0.00

with greater reliability as more information is provided, which is
consistent with our results using both approaches (Figure 5).
Specifically, for the deep learning-based approach we observed
an increase in accuracy as the window size extended from 6 to
10s. Beyond the 10s mark, however, the improvement in
accuracy tends to plateau, suggesting that additional increases in
window size yield diminishing returns. For this reason we have
selected a 10s window size as the standard for our study.
Additionally, the window size most commonly used in the
ECG or
photoplethysmography (PPG) ranges from 3 to 10s [14, 17, 71],

literature for biometric systems based on
being this result consistent with it.

This model not only provides class predictions for each
window but also quantifies the confidence of these predictions,
which is particularly valuable when defining thresholds for
tasks. The

confidences were calibrated using Platt scaling [72] to mitigate

decision-making in identification predicted
the miscalibration inherent in the model’s raw outputs, thereby
ensuring that the reported probabilities more faithfully represent
the true likelihood of correct classification. The effectiveness of
this calibration is evidenced by a reduction in the Expected
Calibration Error (ECE) from 0.087 before calibration to 0.011
after calibration. An optimal decision threshold for this scenario
was determined from the ROC curve using Youden’s index [73],
yielding a value of 0.952. This threshold provides an objective
criterion for distinguishing between correct and incorrect
classifications, complementing the calibrated confidence values.
Notably, 88.03% of the windows exceed the Youden threshold,
achieving perfect accuracy with no false acceptances or
rejections, as reported in the corresponding row of Table 1.
These results underscore the reliability and practical applicability
of the proposed approach in real-world scenarios.

Furthermore, to assess the statistical significance of these
results, we compared the proposed CNN+SVC model with a
benchmark baseline. The baseline was constructed by computing
the Fourier transform of the radar-derived cardiac signals,
extracting points on a uniform grid, applying PCA for
dimensionality reduction, and classifying with a multilayer
perceptron (MLP). McNemar’s test yielded a p-value < 0.001,
confirming that the improvement achieved by the proposed
model is statistically significant.

4.3 Identification in other well-known
scenarios

In this section, we undertake a similar process to the one

described previously, but this time applied to different scenarios
present in the database. By training the model on the initial
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15.74 87.07 84.27 84.51
2.30 98.00 97.70 97.69
0.00 100.00 100.00 100.00

75% of the patient recordings within a particular scenario, our
objective is to subsequently identify the windows within the
remaining 25% of that same scenario. Same as before, in order
to enhance the experiment to closely simulate the potential
deployment of the system in a real-world setting, we are
temporarily splitting the recordings. This division serves to
amplify the variability between both partitions, ultimately
yielding more reliable metrics.

The results, presented in Table 2, are grouped by three
configurations: Random Split, Temporal Split, and Temporal Split
(Confidence > 90%), shown from left to right. Focusing on the
Temporal Split columns, we observe that the Resting scenario
yields the most accurate predictions. This is to be expected
given that the resting scenario maintains homogeneity, unlike
other scenarios where certain processes induce physiological
alterations in the patient either throughout the entire recording
or during specific segments. Secondly, the results for the
Valsalva scenario are also favorable. This may be attributed to
two reasons: firstly, this scenario encompasses recordings with
notably longer duration thus, having more training data;
secondly, the periods of disturbances (Valsalva maneuver) are
relatively short, lasting 20's, and thus have limited impact on the
final outcome. Conversely, the least favorable results are
observed in the Apnea scenario, potentially due to similar
reasons but in the opposite direction. Recordings in the Apnea
scenario are notably shorter than those in other scenarios,
reducing the amount of data used to train the algorithm.
Additionally, unlike the Valsalva scenario, the moments when
the patient experiences apneas during the recording (in total,
two apneas occur) may occupy a larger portion of the overall
recording, significantly influencing the outcome. Furthermore,
the apneas are not identical, occurring after inhalation and
exhalation, respectively.

If we analyze the results from a temporal perspective, Figure 6
is obtained, where windows located in the same temporal period
of the test set for each scenario are depicted as squares. The
color denotes the average accuracy in that temporal window
while transparency reflects the quantity of windows existing at
that moment (not all recordings have identical duration).
Overall, accuracy remains consistent throughout the test set for
each scenario. Perhaps only in Apnea, we can observe a
concentration of worse results at the beginning of the test set.
It’s possible that this is partly because those are the moments
when the second apnea occurs.

As mentioned, the temporal split that we are using throughout
this study provides greater similarity of experiments to a real-
world scenario. This is because, in this approach, the test
windows are temporally distant from the training set, resulting
in comparatively lower accuracy. If we were to adopt a random
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TABLE 2 Classification metrics (in %) for 10 s windows in well-known scenarios. Comparison between: Random Split, Temporal Split, and Temporal Split restricted to windows with prediction confidence greater

than Youden threshold.
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split, dividing all windows into training and testing sets, as
commonly done in various studies, we would likely achieve
higher accuracies. However, these results might be somewhat
artificial. This contrast is clearly observable in Table 2, where
the random split (left section) shows notably better
performance, albeit with potentially reduced reliability.

Since the model provides a confidence level for each
prediction, Figure 7 illustrates the distribution of windows
according to prediction confidence and correctness, together
with the Youden threshold computed for each scenario. Across
all scenarios, 82.43% of the predictions exceed the Youden
threshold for their respective scenario, achieving an accuracy of
98.59% within this subset. The rightmost section of Table 2
presents scenario-specific results for these high-confidence
windows, confirming that focusing on predictions above the
Youden thresholds substantially improves accuracy in all
scenarios. These thresholds provide data-driven operating points
derived from ROC analysis, offering an objective criterion for
decision-making. To further evaluate the reliability of the
model’s confidence estimates, Table 3 reports the Expected
Calibration Error (ECE) before and after Platt scaling for each
scenario, alongside the corresponding Youden thresholds. The
results demonstrate that Platt scaling consistently reduces the
ECE across all scenarios, indicating that the calibrated
confidence values accurately reflect the true likelihood of
correct classification.

As we mentioned, within this experiment, we assume that the
scenario to which the window belongs is known. To enable the
application of these results in a practical environment, it would
be necessary to first classify to which scenario (or group of
scenarios) a given window corresponds, something that has
already been explored in fields such as human activity using
Doppler radar [74], acoustics [75], or autonomous driving [76].

4.4 |dentification in unknown scenarios

Given that the dataset has patient recordings in five different
scenarios, one way to study the robustness of this type of
identification is to attempt predictions in novel situations for the
algorithm. The objective is to predict the class for each window
within the test scenario without prior exposure to data from
that specific scenario. To achieve this, we utilized all other
scenarios as training data. The approach involved training a
CNN on a random sample of windows from the training
scenarios, subsequently we extracted features from all windows
within those scenarios and trained a SVC on these features. The
obtained results are presented in Table 4. For this part of the
study, based on conclusions drawn from the resting scenario
predictions we used 10 s wide windows and 4 s frames.

When interpreting the findings presented in this table, it is
crucial to consider that the models made predictions for each
scenario without prior training on that specific scenario,
meaning they had not observed it before. It is not surprising
that the most favorable results were achieved for the resting
scenario, as instances of resting windows are inherent in
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FIGURE 6

Temporal distribution of window-level classification accuracy across different well-known scenarios using the CNN+SVC approach. Each square
represents a window in the test set, with color indicating average accuracy and transparency reflecting the number of windows at that
temporal position.
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FIGURE 7
Distribution of window-level prediction confidences across different scenarios, indicating correct and incorrect predictions and the Youden
threshold for each scenario.

scenarios such as Valsalva or Apnea. In these scenarios, there are  maintained for 10 min, whereas in Tilt Down, the surface
intervals during the recordings where the patient is simply at rest,  returns to a horizontal position, and an additional 10 min are
contributing to the algorithm’s familiarity with similar patterns in ~ recorded. Unlike other scenarios recorded in a horizontal
its training set. position, Tilt Up is unique in its almost vertical orientation.

The noteworthy performance for the Valsalva scenario can be ~ Furthermore, the body’s vital organs with the highest blood
attributed to this same fact. Each recording of this scenario  consumption are predominantly situated in the upper part. The
includes three 20s periods of executing the Valsalva maneuver, transition from horizontal to vertical may likely induce a more
while the remainder of the time the patient is at rest.  pronounced alteration in cardiac effort compared to the reverse
Consequently, a significant portion of this scenario aligns with  transition. These factors may contribute to the poorer results
the resting state, leveraging the model’s knowledge. observed in the Tilt Up scenario, though other factors should

A significant divergence is observed in the results between Tilt  not be ruled out. To further investigate this performance drop
Up and Tilt Down. It is important to note that in the Tilt Up  in the Tilt Up scenario, we analyzed several physiological
scenario, the patient’s lying surface is elevated to 70° and indicators across the five scenarios. From the available dataset,
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TABLE 3 Calibration errors (ECE) before and after Platt scaling, and
optimal thresholds (Youden index) for each test scenario.

10.3389/fdgth.2025.1637437

these results are presented, where we can observe, for example,
how in the Valsalva scenario, windows related to the resting

Test ECE before ECE after Optimal breaks between maneuvers are predicted accurately, while during
scenario | calibration | calibration threshold the moments when the three maneuvers are typically executed,
the prediction accuracy decreases. We have adjusted the
A 0.159 0.084 0.781 .
pnea transparency of each window based on the number of samples
Resting 0.087 0.011 0.952 in th . f In the Tilt U io. it is ob d th
Tilt Down o110 0033 0.960 in that time frame. In the Tilt Up scenario, it is observed that at
Tilt Up 0.160 0.041 0813 the beginning of the recording, when the platform has not yet
Valsalva 0.118 0.026 0.889 started tilting, the algorithm is able to correctly identify the

which contains both ECG and blood pressure in addition to radar-
derived cardiac signals, we extracted 30 random segments of 60 s
from each subject and scenario, yielding a total of 4,048 samples.
For each segment, we computed the mean heart rate (HR), the
heart rate variability (HRV, measured as the root mean square
of successive differences), and the mean blood pressure (BP).
The analysis revealed that Tilt Up is indeed markedly different
from the other scenarios: it exhibited a much higher mean HR
(82.35bpm, while all other scenarios ranged between 64 and
70 bpm), a substantially lower HRV (49.84, compared to values
around 90-110 in the other scenarios), and the highest mean BP
(92.19 mmHg, slightly above the remaining conditions). These
differences provide quantitative evidence that Tilt Up constitutes
a singular physiological condition compared to the other
scenarios. This helps explain why the identification performance
in this experimental setting is especially poor for Tilt Up, as the
model trained on data from the remaining conditions is exposed
to physiological patterns that differ significantly.

Finally, given that several of the different scenarios are based
on the execution of an experiment over time, we can analyze
the prediction effectiveness of each window depending on the
temporal moment, independently of the patient. In Figure 8,

TABLE 4 Classification metrics for 10 s windows in unknown scenarios.

patient, whereas when the experiment begins, this capability is
lost. Conversely, in the Tilt Down scenario, the first windows
are predicted with lower accuracy, probably because the body is
still influenced by the Tilt Up state, which is where the
recording begins, while as it returns to the horizontal position,
the predictions improve considerably. In the Resting scenario,
accuracy is quite homogeneous, as expected in a scenario
without alterations. Finally, in the Apnea scenario, especially in
the windows corresponding to the first Apnea (after inhaling),
predictions are not accurate.

Overall, these results indicate the model’s ability to identify the
patient whenever the scenario is, if not the same, at least similar.
As clearly observed, there is one scenario, Tilt Up, that is markedly
different from the others, at least in terms of predictability by our
model. However, others such as Tilt Down and Resting do not
seem too dissimilar.

4.5 Common model for all scenarios

In previous experiments we developed individual models to
predict each of the five distinct testing scenarios. Seeking to
evaluate the efficiency of a model in recognizing subjects across
diverse contexts, we extended our approach by training a unified

Test scenario Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) Fl-score (%)
Apnea 60.51 29.84 44.86 70.16 60.51 62.50
Resting 90.68 7.46 8.12 92.54 90.68 89.92
Tilt down 83.96 13.82 15.86 86.18 83.96 83.90
Tilt up 14.96 77.90 85.01 22.10 14.96 14.58
Valsalva 84.35 13.54 16.23 86.46 84.35 84.84
Valsalva | HH/EEEIE T0 ENESTNE 000 O 0 - 1.0 =
Tiltu o5
itUp @ 1700 I PRV 5
-06 3
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FIGURE 8
Temporal evolution of window-level prediction accuracy in unseen scenarios using CNN feature extraction and SVC classification. Each square
represents a window in the test set, with color indicating average accuracy and transparency reflecting the number of windows at that
temporal position.
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model using data encompassing all scenarios. Subsequently, we
assessed its capacity to identify the patient in any of the five
scenarios. As noted earlier, there is a substantial imbalance in
scenario durations, with the Apnea scenario being particularly
underrepresented compared to the others. This imbalance can
bias model training and reduce accuracy for shorter scenarios.
To mitigate this, we implemented a synthetic up-sampling
strategy targeting the Apnea recordings. Additional frames were
generated by applying controlled augmentations to the existing
cardiac signals, including slight Gaussian noise, temporal shifts,
and amplitude scaling. These augmented signals were then
converted into scalograms using the same wavelet and
preprocessing parameters as the original frames, ensuring
consistency across the dataset.

Similar to the previous approach, we employed a temporal
split between training and testing data, using the first 75% of
recordings for training and the last 25% for testing. The
obtained results are disaggregated by test scenario, as shown in
Table 5. In Table 6, we further compare accuracy across three
different experiments: scenario-specific models for well-known
scenarios, models applied to unknown scenarios, and the
common model. As expected, identification performance in
unknown scenarios is the least favorable. However, a more
nuanced comparison emerges when contrasting the common
model with individual scenario predictions. Accuracy remains
approximately similar for four of the five scenarios, while a
substantial improvement is observed in the Apnea scenario,
likely due to the up-sampling strategy. Nonetheless, Apnea
still remains the scenario with the lowest performance, followed
by Tilt Up.

To provide a comprehensive evaluation of biometric system
performance, Table 7 reports additional metrics beyond
accuracy, including Area Under the Curve (AUC) and Equal
Error Rate (EER), both with 95% confidence intervals obtained
via bootstrap methods. These metrics indicate that the common
model maintains strong discriminative performance in
straightforward scenarios such as Resting and Valsalva, with
high AUC and low EER. In the underrepresented Apnea
scenario, the common model benefits from knowledge transfer
across scenarios, showing improved AUC and reduced EER,
whereas in Tilt Up, performance slightly deteriorates, with lower
AUC and higher EER, reflecting increased confusion between
subjects across scenarios. Tilt Down exhibits intermediate
behavior, with modest improvement under the common model.
These trends are further illustrated in Figure 9, where ROC
curves disaggregated by scenario provide a visual representation

TABLE 5 Classification metrics for 10 s windows using a common model.

10.3389/fdgth.2025.1637437

of the trade-off between true positive and false positive rates
across all thresholds. The curves confirm that the common
model can enhance identification in underrepresented scenarios
such as Apnea, while performance in other scenarios such as
Tilt Up may slightly deteriorate. Overall, these results highlight
the potential of a unified model to leverage knowledge across
scenarios, particularly for scarce data, while also revealing that
model performance can vary depending on scenario-
specific characteristics.

4.6 Performance in open set conditions

In real-world applications, biometric systems often encounter
subjects not present in the training set. To assess the robustness of
our cardiac signal-based identification approach in such scenarios,
we evaluated its performance under open-set conditions, where 5
individuals in the test set were completely unseen during training.
These unseen subjects can be interpreted as adversaries attempting
an impersonation attack, which requires the system to correctly
reject impostors while accurately recognizing enrolled users.
This evaluation allows quantifying the system’s ability to
discriminate known subjects from unknown ones. Key metrics,
such as the Equal Error Rate (EER) and associated Detection
Error Trade-off (DET) curves, systematically characterize the
trade-off between false acceptances and false rejections in this
challenging context.

To implement this evaluation, we followed the experimental
design of the well-known scenario described in Section 4.3. For
each physiological scenario, a subset of five subjects was
designated as unseen impostors, while the remaining subjects
were used to train a CNN model. Using this CNN trained
exclusively on the seen subjects of a given scenario, features
were extracted for the training set, the scenario-specific test set,
and the windows corresponding to the unseen subjects. An SVC
classifier was then trained using the training set of seen subjects,
and probability scores for each class were predicted for both the

TABLE 6 Accuracies for different scenarios and models.

| ScenarioWell-known

Apnea 65.57 60.51 80.67
Resting 97.70 90.68 97.52
Tilt down 93.15 83.96 94.95
Tilt up 84.55 14.96 83.45
Valsalva 96.18 84.35 96.16

‘ Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) F1-score (%)

Apnea 80.67 20.86 25.32
Resting 97.52 2.37 2.44
TiltDown 94.95 5.04 5.09
TiltUp 83.45 17.19 16.39
Valsalva 96.16 3.76 3.97
Aggregated 92.75 7.05 7.30
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79.14 71.70 73.38
97.63 97.56 97.52
94.96 94.91 94.76
82.81 83.61 82.28
96.24 96.03 96.04
92.95 92.70 92.75
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TABLE 7 Performance comparison between scenario-specific models and the common model across all scenarios, including Accuracy with 95%
confidence intervals, Area Under the Curve (AUC), and Equal Error Rate (EER) with 95% confidence intervals.

Scenario Well-known scenario Common model
Accuracy | Acc. Cl 95% | AUC EER | EER CI 95% @ Accuracy @ Acc. Cl 95% @ AUC EER  EER CI 95%
Apnea 65.57 57.37-73.76 0.517 0.503 0.429-0.546 80.67 72.88-87.16 0.554 0.477 0.398-0.524
Resting 97.70 95.94-99.27 0.999 0.007 0.000-0.011 97.52 95.95-98.88 0.999 0.009 0.001-0.010
TiltDown 93.15 90.64-95.21 0.749 | 0.245 0.231-0.259 94.95 92.69-96.82 0.778 | 0.219 0.207-0.237
TiltUp 84.55 81.08-87.90 0.788 0.226 0.211-0.248 83.45 79.97-86.63 0.766 0.258 0.235-0.275
Valsalva 96.18 94.79-97.48 0.914 | 0.095 0.084-0.102 96.16 94.65-97.50 0.906 | 0.102 0.091-0.110
1.0~
0.8
[}
T
S o6
()
=
=
%]
o
a
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—==- Resting Common model
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FIGURE 9
ROC curves across scenarios for well-known scenario and common model experiments.

test set and the unseen subjects. To perform open-set evaluation, a
one-vs-all strategy was applied, treating each seen subject as a
positive class and all other subjects—including the unseen
impostors—as negatives. The Equal Error Rate (EER) and
Detection Error Trade-off (DET) curves were computed using
all unseen subjects as impostors for each seen subject, and the
EER was subsequently averaged across all seen subjects to
provide a concise representation of open-set performance for
each scenario.

The results of the open-set evaluation reveal a generally high
robustness of the proposed identification system against unseen
subjects. Specifically, the Tilt Down, Valsalva, and Resting
scenarios exhibit very low EERs (1.45%, 1.26%, and 0.14%,
respectively), indicating that the system reliably rejects impostors
while correctly identifying enrolled users. The Tilt Up scenario
shows a moderately higher EER of 5.63%, while the Apnea
scenario presents the highest EER (19.15%), reflecting increased
challenge in correctly discriminating users in this scenario.

Frontiers in Digital Health

Overall, these findings confirm that the system maintains strong
with

performance varying according to the physiological complexity

discrimination capabilities in an open-set context,
of each scenario. The corresponding DET curves are illustrated
in Figure 10, providing a visual representation of the trade-off
between false acceptance and false rejection rates across

different thresholds.

4.7 Feature importance

Building on the explainability framework described in Section
3.6, we leveraged the CBAM module to further investigate the
specific regions and features that our deep learning model
considers most significant when analyzing scalograms. The
integration of CBAM, as detailed previously, provides a means
to interpret the spatial and channel-level focus of the network.
In our network, we incorporated the CBAM module following
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False Acceptance Rate (FAR)

Detection Error Trade-off (DET) curves for open-set evaluation of cardiac signal-based identification. Each curve represents the average DET across
all seen subjects within a physiological scenario, with unseen subjects treated as impostors.

0.6

the activation function of the fourth convolutional layer in order
to preserve sufficient resolution for identifying the regions of
the scalograms where the network focuses its attention. After
retraining the model for the Resting scenario, we obtained, for
the
concentrates its attention and the feature maps that are most

each scalogram, specific regions where the network
relevant. In Fig. 11A, we present a random sample of four
scalograms (left) along with their corresponding spatial attention
maps (center) and the feature map with the highest attention
weight (right). In the central column of this figure, we observe
that in all four cases, the network focuses particularly on the
medium and high frequencies in the scalograms (horizontal axis
in a scalogram represents time, while the vertical axis represents
This that the

information the model relies on to distinguish each subject is

frequency). could suggest most relevant
concentrated within these frequency ranges.

We further investigated feature importance by analyzing
Shapley values within the traditional machine learning approach.
This complementary analysis provides a detailed perspective on
the the

predictions, enhancing our understanding of the decision-

contribution of individual features to model’s
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behind
Specifically, we evaluated Shapley values using two of the four

making  processes certain  ensemble classifiers.
models in the ensemble: Random Forest and Extra-Trees, both
of which led to similar conclusions. This analysis, conducted in
the Resting scenario, provides a measure of feature importance
for each of the 74 variables resulting from dimensionality
reduction with PCA. Additionally, by applying the inverse of the
projection matrix, we can assess the importance of each of the
361 frequencies extracted from the FFT of the cardiac signal
(see Figure 1). This enables us to identify which frequencies
have the greatest influence on predicting the subject associated
with each signal. In Figure 11B, we present the absolute mean of
the Shapley values of these frequencies for both classifiers. Both
models highlight specific frequency ranges that significantly
influence the predictions, with a particular focus on medium
frequencies between 1 and 6 Hz. Notably, six frequency intervals
within this range stand out, as emphasized in the figure. These
intervals may represent the key frequency bands essential for
distinguishing between subjects based on their cardiac signals.

In summary, these techniques have allowed us to gain insight

into the factors that both models rely on to make their predictions.
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FIGURE 11
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For the Random Forest and Extra-Trees classifiers, we identified
specific frequency ranges that play a more significant role in
determining the subject to which the sample belongs, all of
which are located between 1 and 6 Hz. On the other hand, our
CNN model demonstrates an internal focus on medium and
high frequencies, which may indicate the presence of critical
information necessary for accurate identification. The differences
in the frequency ranges highlighted by each approach can be
attributed to the distinct representations and methodologies
employed: the traditional classifiers analyze features derived
from the FFT, while the CNN focuses on patterns in the
scalograms. These complementary insights reinforce the value of
using diverse techniques to achieve a more comprehensive
understanding of the problem.

5 Discussion & conclusions

In this study, we propose a contactless person identification
method based on cardiac signal detection with a Continuous
Wave radar and investigate its performance across different
scenarios. The most promising approach in a Resting scenario
involves extracting features from scalograms using a CNN and
subsequently applying SVC for classification. This method
outperforms traditional machine learning approaches, such as a
voting classifier considering SVC, Random Forest, Extra-Trees,
and Deep Neural Network. With Deep Learning, we achieve
around a 10% improvement in prediction accuracy (see

10.3389/fdgth.2025.1637437

Figure 5) in the Resting scenario, reaching an accuracy
exceeding 97% in a group of 30 individuals. Notably, this
contactless and continuously authenticating method does not
rely on fiducial point detection or analysis, aligning with
findings in studies such as [77, 78], where superior results are
reported for non-fiducial methods compared to fiducial-based
approaches. The fact that there are no disturbances in this
scenario and homogeneity is maintained throughout the
recording allows for achieving good results, something that does
not always occur in real-world cases.

In the literature, there are several proposals aiming to identify
individuals based on cardiac signals. However, since it is a field in
early development, there are not many studies yet that employ
The most
commonly used technique is based on ECG, while radar signals

radar-acquired cardiac signals for this purpose.

are often used to monitor and track subjects according to their
position, movement and gait features. In Table 8 we can see
some results in identification through cardiac signal extracted
with radar compared to ours. Due to the scarcity of studies in
this area, we have completed the table with some results from
subject identification based on ECG.

When analyzing the results in the table, we must comment on
two aspects that differentiate our study from previous ones. First,
our approach differs from others in the temporal division of
windows. In other studies, such as [79], the procedure followed
is random splitting, which causes the test set to have windows
very similar to those in the training set, as they can be

contiguous. Our splitting methodology may slightly worsen

TABLE 8 Comparative results of some radar-based and ECG-based identification proposals.

vear  paper __RefSubjects Results _Signal _ Comments |

2017 | Cardiac scan: a non-contact and continuous heart-based user [29]
authentication system

2017 | Non-contact biometric identification and authentication using [28]
microwave doppler sensor

2018 | Contactless person identification using cardiac radar signals [30]

2019 | Heart ID: human identification based on radar micro-doppler [31]
signatures of the heart using deep learning

2022 | Heart signatures: open-set person identification based on cardiac radar | [79]
signals

2015 | ECG based human identification using logspace grid analysis of second | [88]
order difference plot

2017 | HeartID: a multiresolution convolutional neural network for ECG- [89]
based biometric human identification in smart health applications

2020 | Toward improving ECG biometric identification using cascaded [90]
convolutional neural networks

2020 | An LSTM-based model for person identification using ECG signal [91]

2022 | ECGsound for human identification [92]

2022 | ELEKTRA: ELEKTRokardiomatrix application to biometric [17]
identification with convolutional neural networks

2022 | BAED: a secured biometric authentication system using ECG signal [93]
based on deep learning techniques

2024 | Our proposal in resting scenario

2024 | Our proposal in different scenarios

78 BAC 98.61% EER Radar Fiducial-based method
4.42%
11 TAR 92.8% EER 3.9% | Radar Time-frequency analysis with an
auto-regressive model
4 Acc 94.6% Radar Classify individual heartbeats
with SVM
10 Acc higher than 80% | Radar Short-time Fourier transform +
DCNN
30 Acc 99.17% (with Radar Dipole deep learning model
random split)
90 Acc 91.52% ECG
20-47 Acc 93.5% ECG
18-40 Acc 97.1% ECG
290 Acc 97.3% ECG
18 Acc 96.6% FAR 0.2% | ECG
FRR 0.4%
47 Acc 98.84% FAR ECG
0.03% FRR 1.17%
90 Acc 99.49% FAR ECG
0.14% FRR 0.99%
30 Acc 97.70% FAR Radar CNN + SVC
1.99% FRR 2.30%
30 Acc 88.18% FAR Radar CNN + SVC

11.27% FRR 11.71%

BAC, balanced accuracy; EER, equal error rate; Acc, accuracy; TAR, true acceptance rate; FAR, false acceptance rate; FRR, false rejection rate.
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results but brings the study closer to potential real-world
applications. Using random splitting, we would achieve an
the 2).
Nevertheless, with temporal splitting, our results, surpassing

accuracy of 99.77% in Resting scenario (Table
97% accuracy in Resting scenario, are not below the general
level of other studies. More importantly, our model has been
trained and tested with patients in different situations,
something that previous studies do not consider and is likely the
most significant novelty of this study.

We specifically evaluate the effectiveness of the identification
process across different scenarios, considering both cases in
which the scenario is known in advance and cases in which it is
unknown. In the former, by applying an objective threshold
based on the confidence of the predictions (e.g., the Youden
threshold), highly secure identifications can be achieved, as
illustrated in the rightmost columns of Table 2, which cover a
substantial portion of the test cases. Concerning the experiment
in single well-known scenario (see the Temporal Split column in
Table 2), in three of them we achieve accuracies above 90%,
while in Tilt Up and Apnea, the results are not as favorable.
One factor that may be influencing the outcomes is the
temporal design of the experiment in all scenarios but Resting.
Since a physiological process takes place throughout the
recording, and there is heterogeneity during this time, the test
part is not exactly similar to the training part, making the
algorithm’s task challenging. This is well evident in the Apnea
scenario, in which only two apneas occur per patient, with the
second one in the test set, leaving only one for training
the algorithm. Additionally, this second apnea is different from
the first as it occurs after exhaling. Nevertheless, this uncertainty
of predictions is somehow reflected in the confidence provided
by the model, as the results for those windows with confidence
above the Youden threshold still remain satisfactory.

Additionally, we explore the method’s ability to predict patient
identity in scenarios not previously encountered, a practical
consideration given the variability in user physical conditions.
While the outcomes are not unfavorable, they fall short of
reaching good results. If accuracies in scenarios like Apnea or
Valsalva are not low, it may be attributed to non-negligible periods
of patient rest between maneuvers. Clearly, achieving robust results
in a scenario necessitates prior training with patient data specific
to that scenario, as exemplified in the Resting prediction section.
Anyway, from these results we can also conclude the significant
difference in the Tilt Up scenario compared to the others,
probably for the reasons mentioned earlier. This scenario is the
only one in which the body remains in an almost vertical position
with vital organs with the highest blood consumption elevated
above the heart, thus requiring a special effort and altering its
behavior more significantly than in other scenarios.

Finally, we trained a model capable of identifying subjects in
any scenario. Although the accuracy exceeds 90% in three out of
the five scenarios, the results are still not sufficiently reliable for
practical identification purposes. To address this, two potential
enhancements can be considered. Firstly, by leveraging the
confidence of model predictions, we can obtain robust results
for the subset of samples in which predictions are deemed
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reliable. Additionally, another feature that could improve the
predictive capability of the model in this multi-scenario context
is incorporating a classifier that provides information about
which scenario the sample belongs to before identifying the
subject similarly to some studies like [80]. This way, the model’s
accuracy could significantly improve.

In summary, using this technology in our dataset of 30
individuals, we can accurately identify a subject with very high
precision when they are at rest (97.70% accuracy). This result is
comparable to other biometric identification techniques, such as
ECG (see Table 8), and is very close to the performance of
more established methods like iris scans, facial recognition, or
with  this the
limitation in terms of reliability arises when identifying subjects

fingerprinting. Currently, dataset, primary
in non-resting positions, where accuracy declines due to the

increased complexity of these scenarios and potentially
insufficient training data. However, by setting a confidence
threshold for the model, we can achieve reliable identification in
over 82% of cases (see Table 2), provided the scenario is known
in advance. In this way, we approach accuracy levels comparable
to more established biometric methods, while also leveraging the
inherent advantages of this technology, such as not requiring
light
authentication.

and continuous
the

demonstrates that the proposed method maintains strong

or physical contact, enabling

Furthermore, open-set evaluation
resilience against impersonation attempts, with very low EER
values in most scenarios (e.g., 1.26% in Valsalva and 0.14% in
Resting), while only Tilt Up presents less favorable values. This
confirms the system’s ability to reliably reject unseen impostors
while recognizing enrolled users.

The explainability analysis conducted using a CBAM module
revealed that our CNN model focuses primarily on medium and
high frequencies in scalograms, suggesting that these regions
contain critical information for subject identification. On the
other hand, the analysis of Shapley values in traditional machine
learning models (Random Forest and Extra-Trees) highlighted
specific frequency ranges between 1 and 6 Hz, as the most
These
approaches provide a deeper understanding of the decision-

influential for accurate predictions. complementary
making processes and the key features leveraged by both deep
learning and traditional models. Concerning the model’s
complexity, we adopt a CNN architecture with 5 convolutional
layers and two linear layers, inspired by [16] but with a slight
reduction in complexity. A similar case is observed with the use
of transfer learning to improve the network’s training,
something that has already been studied with scalograms
obtained from ECG signals [81]. However, its impact on the
performance of the CNN in this case has not been explored and
is left as future research. Furthermore, we address the critical
aspect of system usability. In this case, a 10s window of radar-
detected signals is required to generate a scalogram, extract
features with CNN, and classify using SVC. Once both models
are trained, the runtime of the entire process is small, enabling
seamless continuous identification.

Future research could explore additional strategies to further

mitigate some of the limitations of the current dataset. In
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particular, the imbalance in scenario durations—especially the

notably shorter Apnea recordings—may influence the

performance of a common model due to the limited number of
training samples. To address this, physiology-aware data
augmentation techniques, such as those in [82], or deep
[83], could be

investigated. Furthermore, exploring self-supervised contrastive

learning-based augmentation methods like

learning (SSCL) could be an effective way to improve future
models, as it can enhance model generalization and robustness
by learning representations that are more invariant to subjects
and postures, thereby facilitating identity discrimination even
under previously unseen conditions [84].

A limitation of the results presented in this paper is the dataset’s
small number of subjects, 30. As reflected in Table 8, this is a
common issue across almost all previous studies in this field to
date, with 30 patients representing a higher number than most of
them. According to [85], the majority of datasets incorporating
radar-based cardiac signals are considerably smaller, with a median
of 12 subjects. The dataset used in this work is the second largest
publicly available and uniquely includes data for each subject
across five different scenarios. The only larger public dataset was
excluded because it exclusively contains recordings from children
under 13 years old. Therefore, this study represents a significant
step forward in this emerging research area. Nevertheless, given
this limitation, the present work focuses on the feasibility of this
technique, without drawing definitive conclusions, as a much
larger number of subjects would be required to do so, similar to
what has occurred with other biometric techniques, such as ECG,
which now has public databases containing hundreds of thousands
of patients. Additionally, datasets with longer-term recordings
collected across multiple sessions would be highly beneficial,
enabling inter-session and longitudinal evaluation that better
reflects realistic deployment conditions and supports robust
assessment of system reliability over time.

After these results, the capability of this method based on the
use of a CNN and an SVC to identify users from radar signals in
various situations seems quite plausible, provided there is
sufficient data to train the model. To draw more robust and
generalizable conclusions, it would be beneficial to have
recordings taken on different dates, varying health conditions,
or under different external influences to verify that it is also
possible to achieve identification across a broader spectrum of
situations and over a wider time span. It would also be
beneficial to assess the applicability of this technology in the real
world by obtaining recordings of this type of signal in everyday
settings rather than in a laboratory. Alternatively, this method
can be integrated with other analogous identification methods
utilizing radar signals, such as analyzing gait features [86] or
spatial tracking [87], to enhance precision and robustness.
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