
EDITED BY  

Hadi Akbarzadeh Khorshidi,  

The University of Melbourne, Australia

REVIEWED BY  

Kai Liu,  

Keio University, Japan  

Rafid Umayer Murshed,  

University of Illinois at Urbana-Champaign, 

United States

*CORRESPONDENCE  

Daniel Foronda-Pascual  

daniel.foronda@uc3m.es

RECEIVED 29 May 2025 

ACCEPTED 23 September 2025 

PUBLISHED 07 October 2025

CITATION 

Foronda-Pascual D, Camara C and 

Peris-Lopez P (2025) Non-contact human 

identification through radar signals using 

convolutional neural networks across multiple 

physiological scenarios.  

Front. Digit. Health 7:1637437. 

doi: 10.3389/fdgth.2025.1637437

COPYRIGHT 

© 2025 Foronda-Pascual, Camara and 

Peris-Lopez. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.
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Introduction: In recent years, contactless identification methods have gained 

prominence in enhancing security and user convenience. Radar-based 

identification is emerging as a promising solution due to its ability to perform 

non-intrusive, seamless, and hygienic identification without physical contact 

or reliance on optical sensors. However, being a relatively new technology, 

research in this domain remains limited. This study investigates the feasibility 

of secure subject identification using heart dynamics acquired through a 

continuous wave radar. Unlike previous studies, our work explores 

identification across multiple physiological scenarios, representing, to the best 

of our knowledge, the first such exploration.

Methods: We propose and compare two identification methods in a controlled 

Resting scenario: a traditional machine learning pipeline and a deep learning- 

based approach. The latter consists of using a Convolutional Neural Network 

(CNN) to extract features from scalograms, followed by a Support Vector 

Classifier (SVC) for final classification. We further assess the generalizability of 

the system in multiple scenarios, evaluating performance both when the 

physiological state is known and when it is not.

Results: In the Resting scenario, the deep learning-based method 

outperformed the traditional pipeline, achieving 97.70% accuracy. When 

extending the identification task to various physiological scenarios, 82% of 

predictions exceeded scenario-specific confidence thresholds, achieving 

98.6% accuracy within this high-confidence subset.

Discussion: Our findings suggest that radar-based identification systems can 

match the performance of established biometric methods such as 

electrocardiography (ECG) or photoplethysmography (PPG), while offering 

the additional benefit of being contactless. This demonstrates the potential of 

radar heart signal analysis as a reliable and practical solution for secure 

human identification across diverse conditions.
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1 Introduction

Some of the most prevalent and transformative advancements 

in the field of cybersecurity arise from the integration of biometric 

identification techniques. Biometric identification uses unique 

physiological and behavioral characteristics of individuals, 

offering a robust and multifaceted approach to identification, 

while simultaneously enhancing and streamlining the user 

experience. At the same time, these techniques hold relevance in 

the realm of modern healthcare, where the utilization of 

electronic health information plays a crucial role as a 

fundamental element.

Among various biometric techniques, Electrocardiogram (ECG or 

EKG) monitors the heart’s electrical activity, Electroencephalogram 

(EEG) measures brain activity, and Electromyography (EMG) 

captures muscle activity, enhancing biometric identification with 

diverse layers of uniqueness. Facial recognition, widely adopted, 

analyzes facial features, fingerprints with their distinct ridge patterns 

are already a standard in identification, and retina scanning examines 

eye blood vessel patterns enriching the spectrum of biometric 

identification techniques.

However, biometric identification methods that require 

contact, such as ECG and EEG, come with inherent drawbacks. 

Firstly, the need for specialized devices for signal acquisition can 

be inconvenient and limiting in terms of accessibility and 

portability. Additionally, direct physical contact with the user 

may lead to reluctance due to comfort or hygiene concerns or 

even provoke skin issues, for example, in the case of monitoring 

the heartbeat in premature babies [1]. Therefore, the ability to 

obtain cardiac motion without physical contact, particularly 

through radar technology, becomes highly compelling.

Furthermore, the integration of Doppler radar technology 

introduces a transformative dimension to non-contact biometric 

identification. Doppler radar, known for its efficacy in various 

applications such as weather forecasting [2] and physiological 

monitoring [3], extends its utility to the area of cybersecurity. 

By utilizing the Doppler principle, which detects subtle 

movements in the chest surface caused by heartbeat and 

respiration, radar technology enables non-intrusive cardiac 

motion detection. Doppler radar not only can ensure a secure 

and efficient identification process but also enhances user 

comfort by providing contactless means of capturing unique 

physiological characteristics. The versatility of Doppler radar 

positions it as a promising technology in advancing the 

capabilities of biometric identification systems, offering a 

compelling solution for the evolving landscape of digital security 

and opens up novel, user-friendly identification methods, such 

as heartbeat detection through Wi-Fi signals [4]. In the scientific 

literature on this topic, most studies on heart signal-based 

identification rely on contact-based techniques such as ECG. 

However, the field of identification using heart signals extracted 

without physical contact remains largely unexplored, with only a 

few studies employing non-contact methods like radar 

technology, which is the main motivation of this paper. In [5], a 

review of radar-based authentication methods is provided, where 

the majority rely on identifying individuals through their 

respiratory characteristics. In contrast, only five studies focus on 

cardiac signals, most of which were conducted on datasets with 

a relatively small number of subjects (4, 10, 11, 20, and 78 

people, respectively). Therefore, studies in this field are still 

scarce and often performed on a limited number of subjects, 

mainly due to the shortage of available datasets. Moreover, most 

of these studies are carried out in laboratory settings with very 

stable conditions, which may differ from those in which this 

technology might eventually be applied. The aim of this article 

is twofold: first, to contribute to the study of this identification 

method by providing additional evidence of its viability and 

potential for good results using a dataset with 30 people; and 

second, to investigate its performance in scenarios where the 

subject is not necessarily in a resting position, thus assessing its 

applicability in more diverse situations—a novel aspect of 

this research.

In this case, data are collected with the assistance of medical 

experts in a laboratory setting. However, this approach does not 

need to be the only one. The technology could also be 

implemented in home environments, representing a significant 

area within the home health-care monitoring market [6]. For 

example, in the field of security, a potential application could be 

user authentication for logging into and maintaining an active 

session on a computer. A radar device installed on, for instance, 

the computer screen could capture the user’s cardiac signal while 

seated without requiring medical experts or physical contact. 

Additionally, the feasibility of obtaining cardiac signals from 

commodity Wi-Fi devices has been explored [4], and various 

portable systems and integrated radar chips have been 

demonstrated [3]. On the other hand, it is crucial to highlight 

that the sensitivity of medical data necessitates stringent security 

measures, which can complicate the deployment of various 

potential applications. However, this challenge is not exclusive to 

this technology; for example, other biometric methods, such as 

ECG, encounter similar issues but have still been successfully 

employed for real-time data collection and monitoring [7–9]. 

Moreover, several solutions, including encryption, have been 

proposed to safeguard this data. Given these precedents, it is 

reasonable to expect that the security measures for cardiac signals 

obtained via radar could follow analogous procedures, enabling 

their application in various contexts while ensuring the required 

level of security. On the other hand, the fact that this technique is 

contactless can facilitate the development of real-time applications.

Moreover, this study is based on radar-recorded cardiac 

signals from 30 healthy patients in a laboratory setting where 

random body movements were minimized. In a real-world 

environment, the presence of such movements would pose an 

additional challenge for the system’s applicability, similar to 

what happens with other biometric techniques like ECG or 

EMG, although there are currently no public datasets with these 

characteristics to study such effects. However, some studies have 

already begun investigating different methods to suppress these 

interferences and noise in the signal, thus enabling random 

body movement cancellation [10, 11].

The primary applications of this technology are likely in the 

field of security. Traditionally, many identification methods rely 
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on tokens, such as passwords, which are vulnerable to theft. Other 

authentication systems utilize biometric data, including iris scans, 

fingerprints, or palm prints, and typically employ a one-time login 

process, with no subsequent security checks. In contrast, 

contactless identification supports a continuous and convenient 

identification process, enabling periodic verification of the user 

without causing disruption, thereby enhancing both security and 

usability. In clinical settings, this method could have the 

potential to substantially improve the collection and storage of 

patient medical data, including heart rate, respiratory rate, and 

blood pressure, for further analysis. By removing the need to 

manually enter patient identities into the system, this technology 

facilitates a more efficient and streamlined data collection 

process. Consequently, it leads to a more comprehensive and 

accurate database, thereby supporting better informed medical 

decisions and more effective patient management. The correct 

identification of patients in hospitals and healthcare centers is 

also critical in many cases, and an efficient and simple method 

to achieve this could help reduce errors in important processes 

such as the administration of medications [12]. Moreover, the 

trend in identification systems, as well as in the monitoring of 

physiological signals, is to eliminate physical contact in order to 

be as non-intrusive as possible, as is already the case, for 

example, with pacemakers, whose heart signals can now be 

read wirelessly.

The main contributions of this article can be summarized in 

three key points. First, we propose an efficient identification 

method based on radar sensing of cardiac motion in a resting 

scenario, a research area that has received little attention so far, 

and achieve an accuracy exceeding 97%. Second, we provide a 

comparative analysis between traditional machine learning and 

deep learning approaches for this task, demonstrating the clear 

advantage of deep learning methods and further examining their 

explainability. Finally, and most importantly, we advance beyond 

existing works by investigating subject identification across 

different scenarios in which the human body exhibits varied 

behaviors, thereby addressing the challenge of how identification 

models adapt to changes in physiological conditions.

The article is organized as follows. In the Section 2, we conduct 

a comprehensive review of existing literature pertaining to the 

detection of cardiac signals for person identification, with a 

specific focus on radar-detected cardiac signals. The Section 3

discusses the dataset employed for our study detailing the 

preprocessing steps and feature extraction methods applied. 

Moving on to the Section 4, we analyze the key findings derived 

from various experiments that were carried out. Finally, in 

Section 5, we draw some conclusions based on the obtained results.

2 Related work

In this section, we review some scientific literature relevant to 

our study, grounded in the domain of heart biometrics [13]. 

Within the field of user identification based on cardiac signals, 

the most extensively studied method is based on the ECG as 

analyzed in [14]. Remarkable results have been achieved, with 

evidence dating back to 2001 [15] demonstrating the efficacy of 

using a single-lead ECG for individual identification. A notable 

contribution in this domain is the work presented in [16], 

wherein ECG signals are transformed into scalograms. These 

scalograms are subsequently subjected to analysis using a CNN 

comprising seven convolutional layers, followed by classification 

using an SVC. The outcome of this approach yields an accuracy 

of 99.21%. Similarly, [17] reports comparable results by 

leveraging a heatmap derived from the ECG of multiple beats, 

referred to as Elektrokardiomatrix (EKM) as introduced in [18]. 

Employing a CNN with just a single convolutional layer on this 

heatmap achieves a high accuracy of up to 99.53% in a database 

comprising 18 individuals. Reference [19] employs a dual-path 

residual neural network alongside a split attention mechanism 

for ECG-based identification, achieving an accuracy of 99.6%. In 

[20] authors propose a 2-stage user identification system that 

integrates ECG signals with status information, addressing the 

challenges posed by signal variability due to physical and 

cognitive stress, achieving accuracies of up to 95.83%. More 

generally, ECG can be combined with other biosignals to 

achieve more comprehensive identification, as demonstrated in 

[21], where ECG and EMG signals are transformed into 2D 

spectrograms and analyzed using a multi-stream CNN, 

achieving an average accuracy of 96.8% in driver identification 

under various driving conditions.

While ECG captures variations in body surface potential, the 

Microwave Doppler sensor takes a different approach by 

attempting to extract heartbeat and individual feature quantities 

through time-frequency analysis without direct skin contact. The 

utilization of a 24-GHz microwave Doppler sensor is motivated 

by its capability to detect subtle chest surface vibrations induced 

by heartbeats. A critical challenge lies in the separation of 

signals associated with breathing and heartbeat. In various 

studies such as [22, 23] a Butterworth filter is used to extract 

the cardiac signal, eliminating the lower frequencies 

corresponding to respiration. However, in [24], the authors use 

Wavelet Packet Decomposition (WPD) to separate both signals, 

achieving errors less than 2% or 3.5% for respiration and heart 

rate, respectively, improving the accuracy of vital signals 

detection compared to Bandpass filter and Peak Detection. 

Subsequently, in [25], various methods are compared to 

determine which one extracts the cardiac signal better from the 

radar signal, among which Discrete Wavelet Transform (DWT) 

obtains the best results of all, including WPD. Moreover, the 

relationship between ECG and the cardiac signal extracted via 

radar has been previously explored, as in [26], where ECG 

signals are generated from cardiac activity detected using 

Doppler radar.

Within the area of cardiac signal detection, one of the initial 

objectives among researchers was to determine the heart rate 

using different techniques such as Fast Fourier Transform 

(FFT), Auto-Regressive Model (AR), or the detection of each 

single beat [27, 28]. But already in 2017, in [29], a method for 

identification based on the identification of the cardiac signal by 

a Continuous Wave (CW) radar was developed based on a 

fiduciary analysis of the cardiac signal. Fiduciary analysis refers 
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to a method of signal processing or data interpretation that relies 

on distinctive fiducial points or features within the signal. These 

points serve as reference markers, aiding in the identification 

and extraction of specific information. On the other hand, non- 

fiduciary analysis involves alternative approaches that may not 

rely on specific fiducial points, often exploring broader 

characteristics or patterns within the signal for analysis. In this 

study, in order to avoid unwanted Random Body Movement 

(RBM), two radars are placed on each side of the patient. As a 

classifier, they use k-Nearest Neighbors (KNN) and SVC, 

obtaining a 98.61% balanced accuracy. In [30], instead of 

conducting a fiduciary analysis of the signal, the signal is 

segmented into individual heartbeats and resampled to a fixed 

number of samples. These samples are then fed into the 

classification algorithm. Each window is classified by the beats it 

contains through voting. However, the study is conducted on 

only a sample of 4 people. More recently, in [31], they 

transform the signal with Short Time Fourier Transform 

(STFT), creating spectrograms that are then classified with a 

Deep Convolutional Neural Network (DCNN).

Some of the current limitations of this technology include the 

still high price of the devices, although lower prices and greater 

availability are expected in the near future [32], and its 

sensitivity to RBM. Among the future challenges are capturing 

cardiac signals in multi-subject environments, enhancing the 

security of this data, and RBM cancellation [33]. In [1], for 

example, this latter point is investigated, where Non-negative 

Matrix Factorization is used to try to eliminate body movements 

in recordings of premature infants in the neonatal intensive care 

unit. In [34] a fiduciary identification method using radar is 

developed, focusing more on respiration than on the cardiac 

signal in order to perform subject identification in environments 

with more than one person. Other related areas being explored 

include the robustness to noisy bio-signals [35] or emotion 

recognition [36].

3 Materials and methods

3.1 Data

The study utilized a publicly available dataset provided by [37], 

collected by physicians at the University Hospital of Erlangen 

(Germany) from 30 healthy participants (14 males and 16 

females) with an average age of 30.7 years. The radar system 

employed in the study had its focal point designed for a distance 

of around 40 cm from the region of interest (the thorax). It is 

based on Six-Port technology, designed for portable use. The 

measurements included five different physiological scenarios in 

which the patient may be during the recording: 

• Resting scenario: Participants lay in a relaxed position for a 

minimum of 10 min. Calm breathing was instructed during 

this phase.

• Valsalva maneuver scenario: The Valsalva maneuver, 

involving forceful expiration against a closed glottis for 20 s, 

was performed three times with intervals of 5 min. Post- 

maneuver, the test person breathed out and resumed 

calm breathing.

• Apnea scenario: Participants held their breath in two defined 

states: inhaling completely before apnea and exhaling 

completely before apnea. Raw signals during the transition 

from normal respiration to apnea were recorded.

• Tilt up scenario: The tilt table was gradually raised to 70� to 

trigger the Autonomic Nervous System (ANS) response. 

Hemodynamic changes, including significant alterations in 

blood pressure and heart rate, were anticipated.

• Tilt down scenario: Starting from the tilt up position with 70�

of inclination, the tilt table was lowered back to the starting 

position, and the recording continued for an additional 

10 min. Similar ANS reactions were expected during 

the descent.

These scenarios, each serving a specific physiological purpose, 

were designed to investigate the impact on vital signs and 

autonomic functions during various physiological states. The 

duration of the recordings in the different scenarios may vary. 

In the Resting, Tilt Down, and Tilt Up scenarios, the recordings 

usually exceed 10 min. On the other hand, in Valsalva, they 

consistently exceed 15 min, while in Apnea, the duration 

typically ranges between 2 and 5 min. These differences in 

duration are due to the experimental design, which varies 

slightly for each scenario as described earlier.

Ethical and privacy considerations are crucial in research 

[38, 39]. The dataset used in this study was approved by the 

ethics committee of the Friedrich-Alexander-Universität 

Erlangen-Nürnberg (No. 85_15B). It is accessible at [40].

3.2 Signal preprocessing

From the recordings provided in the dataset, which include I/ 

Q signals from the radar, the initial step involves decomposing 

these recordings into non-overlapping windows. Subsequently, 

ellipse fitting is applied to the I/Q point sets of each window 

following the method outlined in [41]. With these fitted ellipse 

parameters, arctan demodulation [42] is performed, yielding the 

signal corresponding to thoracic movement. An important 

aspect of preprocessing this type of signal compared to others 

like ECG is the potential increased presence of noise. Therefore, 

the study of its elimination becomes a crucial area to consider. 

In addition to system-related noise such as baseline wander, 

random body movements and chest displacement due to 

respiration must also be taken into account. In this case, from 

the demodulated signal, the cardiac signal is extracted using the 

Maximal Overlap Discrete Wavelet Transform method 

(MODWT), inspired by [25], where it has been demonstrated 

that this approach provides superior results for extracting the 

cardiac signal, at least for detecting peaks and heart rate. The 

Discrete Wavelet Transform (DWT) [43] is commonly employed 

to decompose a signal into distinct frequency components, 

facilitating a multi-resolution analysis while the MODWT [44] 
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serves as an extension to the traditional DWT, introducing 

overlapping wavelet transforms to address specific limitations. 

Unlike the DWT, which decomposes a signal through successive 

non-overlapping segments, the MODWT utilizes overlapping 

segments in its decomposition process mitigating boundary 

effects that often occur in the standard DWT, particularly near 

the signal’s edges. In this study, the calculations employ the 

Morlet wavelet, similar to the methodology followed in [45]. 

However, instead of selecting just levels 4 and 5, we achieved 

better results by choosing levels from 1 to 5. After isolating the 

cardiac signal for each window, we proceed to decompose these 

signals into shorter-length frames, allowing for potential overlap 

between them. At this stage, the preprocessing varies based on 

whether traditional machine learning methods or a CNN will 

be used.

In what we refer to as the “machine learning approach,” we 

use traditional machine learning methods that do not include 

deep learning, such as SVC, Random Forest, Extra-Trees, or 

Dense Neural Network (DNN). After segmenting the cardiac 

signal into frames, the Fast Fourier Transform (FFT) [46] is 

applied to the signal. A fixed grid of 361 points between 0 and 

1 is established based on the frequency values derived from the 

FFT of the cardiac signals. This grid allows us to capture FFT 

values, resulting in a series of 361 points for each frame. In 

Figure 1, we can see an example of 4 s of a cardiac signal and 

its corresponding FFT, including the points that were selected as 

they belong to the fixed grid. Later with these points, to 

enhance subsequent efficiency, Principal Component Analysis 

(PCA) is applied for dimensionality reduction, reducing the data 

from 361 to 74 columns while explaining approximately 95% of 

their variance. The goal of using PCA is to reduce the 

dimensionality of the data and thus subsequently improve the 

performance of the different classification algorithms we will 

use, as studied in [47] and applied in [48–50]. With these 74 

resulting points, which represent a cardiac signal frame 

corresponding to a patient, the objective is to use a classifier to 

determine which patient the frame corresponds to. Therefore, 

these 74 points will be the input to the classifier, while the 

output will be the class corresponding to the patient to whom 

the frame pertains.

In the deep learning approach, we use the normalized cardiac 

signal to generate a scalogram for each frame. The result after 

preprocessing is a scalogram, that visually summarizes the 

frequency content and time-varying characteristics of each 

frame. In addition to the scalogram, there are other signal-to- 

image conversion methods. In [51], the efficiency of several of 

them was compared for extracting signal features, such as 

Gramian Angular Field, Markov Transition Field, Recurrence 

Plot, Grey Scale Encoding, Spectrogram, and Scalogram, where 

in that case, the scalogram yielded the best results. However, the 

authors noted that the performance of each method can vary 

depending on the type of dataset used. While studies on cardiac 

radar signals are scarce, the scalogram has been extensively and 

successfully used in the field of ECG, as it performs well with 

signals sensitive to noise [52–56]. Specifically, the methodology 

followed in this study is very similar to [16], where ECG signals 

were converted to scalograms and subsequently classified using 

CNN and SVM. Given the successful outcomes that the 

scalogram has demonstrated in this field, we have chosen to 

apply this method in our study. The complete preprocessing 

workQow can be observed in Figure 2.

3.3 Train and test segmentation

Since this is a classification problem, the train/test split is not 

done by dividing the 30 subjects into two groups. Instead, we split 

each subject’s windows into training and testing sets, aiming to 

classify the test windows according to the patient they belong as 

accurately as possible. As we have conducted several different 

types of experiments (Sections 4.2–4.5), the division is slightly 

different in each case. For single-scenario splits, where the 

algorithm is trained using samples from the same scenario it is 

intended to predict, the last 25% of the windows in the 

recording has been selected as the test set, while the remaining 

windows (the first 75% of them) form the training set. The 

temporal split of the windows set appears to be a more 

appropriate approach, closely resembling what could be 

encountered in a real-world use case, as opposed to employing a 

random split of the windows. Naturally, with a random split, 

there is a possibility of having windows in the train set that are 

very similar to those in the test set, as they may be contiguous, 

thereby potentially improving results but deviating from reality 

applications. In practice, algorithms are expected to be trained 

on samples collected on specific dates, while the test set 

FIGURE 1 

Example of a 4-second cardiac signal frame and its corresponding 

Fast Fourier Transform (FFT). Selected points on a fixed grid of 361 

frequencies are highlighted.

Foronda-Pascual et al.                                                                                                                                             10.3389/fdgth.2025.1637437 

Frontiers in Digital Health 05 frontiersin.org



comprises samples, most likely, from subsequent days. Therefore, 

this temporal split seems more reasonable. In fact, it would be 

desirable to have recordings from different dates to allow for a 

more significant temporal separation between train and test 

samples, thus achieving a closer resemblance to the processes 

employed in practical applications of this kind of identification 

methods. In the case of trying to classify windows from 

unknown scenarios, one scenario is designated as the test set, 

and the others serve as the training set. It should be noted that, 

as the windows are non-overlapping, the risk of data leakage 

between partitions is effectively eliminated.

Another crucial aspect to consider is segmentation when 

performing cross-validation for hyper-parameter optimization 

(HPO). To achieve this, the training set must be divided into 

different splits. When dealing with a single scenario, this is 

accomplished by temporally dividing the windows of each 

patient. However, when working with multiple scenarios, two 

options have been considered: homogeneous cross-validation or 

heterogeneous cross-validation. In the former, windows from 

each scenario are divided into partitions, and then 

corresponding partitions from other scenarios are aggregated, 

ensuring that each fold contains windows from all scenarios. On 

the other hand, in heterogeneous cross-validation, splits are 

created without intermixing windows from different scenarios, 

with this latter option yielding superior results.

3.4 Feature extraction with CNN

Currently, CNNs are the predominant choice for feature 

extraction in the field of computer vision [57, 58]. The notable 

success achieved by CNNs in processing image data is attributed 

to their ability to extract crucial features from images, coupled 

with the computational prowess of Graphics Processing Units 

(GPUs) as processors. In our case, to extract features from the 

scalograms, we used a CNN composed of five convolutional 

layers followed by two fully connected layers. We applied batch 

normalization after each convolutional layer to normalize the 

input and mitigate internal covariate shift [59], and Rectified 

Linear Unit (ReLU) activation functions to introduce non- 

linearity after each batch normalization layer, facilitating the 

learning of complex patterns in the data. The fully connected 

layers consist of a linear layer with 1,024 output features 

followed by a dropout layer to mitigate overfitting [60]. The 

final linear layer produces the output logits, which are passed 

through a LogSoftmax activation for probability estimation 

during inference. This architecture is illustrated in Figure 3 and 

was implemented using the PyTorch framework. To train the 

network, the scalograms of each frame are provided as inputs in 

200 � 200 pixel images, while the ground truth corresponds to 

the subject to whom that frame belongs, numerically coded.

After training, the final lineal layer is removed to obtain 

features, resulting in 1,024 features for each scalogram. In the 

CNN structure, convolutional layers are responsible for capturing 

hierarchical representations of the input scalograms, while the 

linear layers contribute to further refining these representations. 

The removal of the last classification layer ensures that the 

network functions as a feature extractor, providing a rich set of 

features that encapsulate the relevant information from the 

scalograms [61]. This feature representation is then fed into the 

subsequent SVC for classification.

The choice of this five-layer CNN is supported by prior studies 

in physiological signal classification. For example, [62] demonstrated 

that even moderate-depth CNNs can extract highly discriminative 

features for non-image physiological data when combined with 

PCA and SVM. Similarly, [63, 64] showed that features from 

scalogram-based CNNs effectively capture time–frequency 

information in real-world signals, significantly improving SVM 

classification performance. In [16], one-dimensional ECG signals 

were transformed into scalograms and classified with a seven-layer 

CNN, outperforming AlexNet and SqueezeNet as a deep feature 

extractor combined with SVM. Building on this work, we 

performed a comparative experiment with CNN architectures 

containing 3, 5, 7, and 9 convolutional layers to jointly evaluate 

FIGURE 2 

Preprocessing workflow for radar-derived I/Q signals.
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performance and computational cost. The results, averaged over six 

repetitions, indicate that the five-layer CNN achieves the best trade- 

off between accuracy, number of trainable parameters, and inference 

time per sample. This model delivers the highest and most stable 

performance. Moreover, its inference time remains very low 

(0.29 ms per sample), which makes it well suited for real-time 

applications. For these reasons, we selected the five-layer CNN as 

the final architecture, as it balances model complexity and 

computational efficiency while preserving strong feature 

representation and classification performance.

3.5 Frame size optimization

Among the several hyper-parameters in consideration, two are 

particularly significant. Firstly, there is the selected temporal 

window width. As expected, in general terms, a larger window 

size will lead to higher accuracy in class predictions, as the 

algorithm has access to more data. Secondly, we divide each 

window into different frames that overlap. The size of these 

frames is a crucial hyper-parameter that requires optimization. 

Due to time constraints in computations, we employed the 

classical machine learning approach at this step.

Setting an arbitrary window width of 12 s and a stride of 0.5 s 

between contiguous frames, we conducted the prediction process 

on the resting scenario with various frame sizes. The results are 

illustrated in Figure 4. In this figure, it is essential to note that 

the four models (SVC, Random Forest, Extra Trees, and DNN) 

are not predicting the class for each window but for each 

individual frame. Generally, we observe that, logically, when 

frames are very short, algorithms tend to make poorer 

predictions compared to longer frames, given the reduced 

amount of information. On the other hand, the yellow line 

represents the accuracy in window prediction obtained through 

FIGURE 3 

Architecture of the CNN used for feature extraction from scalograms.

FIGURE 4 

Effect of frame size on classification accuracy in the Resting scenario using traditional machine learning models. Average frame-level accuracy (%) is 

shown for SVC, Random Forest, Extra-Trees, and DNN, while the yellow line represents window-level accuracy obtained via soft voting 

across frames.
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soft voting with predictions for each frame from the four 

aforementioned models. While individual models may exhibit 

higher accuracy in predicting frames with longer duration, the 

predictions for windows are not as robust. Conversely, the 

highest accuracy in predicting window classes is achieved with 

4 s frames. Thus, although the frames are somewhat shorter and 

consequently the model may not classify them as accurately 

individually, having more frames within each window results in 

more reliable predictions for the window class, leading to better 

overall results. For this reason, the frame size that we will use 

for the remainder of the study will be 4 s.

3.6 Explainability

To enhance the transparency and interpretability of our 

models, we analyzed their decision-making processes using 

explainability techniques. This approach aims to provide a 

deeper understanding of which features of cardiac signals are 

unique to each individual, enabling their identification. This 

study is framed within the domain of Explainable Artificial 

Intelligence (XAI) [65], which seeks to make machine 

learning models more interpretable without compromising 

their performance. XAI involves the development and 

application of methods that elucidate model behavior, 

bridging the gap between complex algorithms and 

human understanding.

We employed two techniques to interpret the outputs of our 

models: the Convolutional Block Attention Module (CBAM) and 

Shapley values. CBAM, first introduced in [66], is an attention 

mechanism that enhances CNNs by sequentially applying 

channel and spatial attention. The channel attention module 

identifies the most significant feature maps, while the spatial 

attention module highlights the most relevant regions within 

those feature maps. By focusing on these critical features and 

regions, CBAM provides an interpretable view of the model’s 

decision-making process, allowing us to better understand the 

patterns and characteristics captured by the CNN. CBAM has 

also been successfully applied in previous studies to explain 

models handling other types of biosignals, such as ECG 

[67–69]. To complement this, we used Shapley values to gain 

insights into the behavior of the model within the traditional 

machine learning approach. Shapley values [70], rooted in 

cooperative game theory, offer a robust method for explaining 

model predictions by quantifying the contribution of each 

feature to the output. In this context, features are treated as 

“players” in a coalition, and the prediction of the model is 

considered the “payout.” The Shapley value of a feature 

represents its average marginal contribution to the prediction, 

calculated over all possible subsets of features. This ensures a 

fair evaluation of each feature’s importance, accounting for its 

interactions with other features. The inclusion of these 

explainability techniques in this study substantiates the 

importance of specific features, ensuring that our 

methodologies remain transparent and rooted in domain- 

specific knowledge.

4 Results

Once we have completed the data preprocessing, we have each 

4 s frame of cardiac signal from a specific subject synthesized into 

74 values (traditional machine learning approach) or into a 

scalogram (deep learning approach). The goal of the different 

identification models we have tested is always to classify this 

information among the various patients in the study to 

determine which patient it corresponds to. In order to assess the 

model’s capability in user identification across the various 

scenarios available in the data, we conducted different 

experiments grouped into four sections. Firstly, we compared 

approaches using traditional machine learning and deep learning 

in a resting scenario and subsequently analyzed their results. In 

the “Identification in well-known scenario” section, we trained a 

model for each different scenario and studied its effectiveness in 

identifying patients in that specific scenario. On the other hand, 

in the “Identification in unknown scenario” section, we 

attempted to identify subjects in a scenario for which the model 

has not been trained, aiming to evaluate the model’s adaptability 

to new situations. Later, we trained a common model for all 

scenarios and attempted to identify patients with it. In addition, 

we conducted an open-set evaluation to investigate the system’s 

ability to reject previously unseen subjects, simulating real-world 

conditions where potential impostors may attempt to access the 

system. Finally, in the section “Feature Importance,” we present 

the results regarding the explainability of the models employed.

4.1 Performance metrics

In evaluating the effectiveness of each multi-class classification 

model, we employ a comprehensive set of metrics that collectively 

try to provide a good understanding of its performance across 

various dimensions. First of all, we must point out that in all 

scenarios the classes are balanced since the recordings of each 

one of the patients have approximately the same duration. 

Therefore, accuracy is the metric to which we pay the greatest 

attention, as it provides a fairly accurate insight into how the 

model is performing.

Given that we are addressing an identification problem, it is 

important to also consider both the False Acceptance Rate 

(FAR) and the False Rejection Rate (FRR). In our multiclass 

setting, these are computed on a one-vs-rest basis, making them 

directly comparable to precision and recall, respectively. FAR 

reQects the proportion of non-matching instances incorrectly 

accepted as a given class, while FRR captures the proportion of 

matching instances that are erroneously rejected.

Finally, to facilitate comparison with the results of other 

studies, we also provide precision, recall, and F1-Score. Precision 

is a metric that assesses the accuracy of positive predictions, 

representing the ratio of true positive predictions to the total 

number of instances predicted as positive. Recall, also known as 

Sensitivity or True Positive Rate, measures the model’s ability to 

identify all relevant instances, and the F1 score is a harmonic 

mean of precision and recall, providing a balanced assessment 

Foronda-Pascual et al.                                                                                                                                             10.3389/fdgth.2025.1637437 

Frontiers in Digital Health 08 frontiersin.org



of the model’s performance. It is particularly useful when there is 

an uneven class distribution. We express all these metrics 

in percentages.

4.2 Identification in resting scenario

The first step that was attempted to identify patients has been 

solely based on samples taken in the resting scenario, which 

undoubtedly involves fewer complexities than the others. In this 

context, we possess recordings of approximately 10 min’ 

duration for each of the 30 patients. These recordings are 

divided into non-overlapping windows, with the last 25% of 

them allocated for testing and the initial 75% for training. The 

objective extends beyond assessing the feasibility of reliably 

identifying individuals through this method; it also seeks to 

compare the efficiency of traditional machine learning models 

against CNNs.

In the machine learning approach, we tried several 

classification algorithms such as Support Vector Classifier 

(SVC), Random Forest (RF), Extra-Trees, Histogram-Based 

Gradient Boosting (HGB), K-Nearest Neighbors (KNN), Dense 

Neural Network (DNN), and X-Gradient Boosting (XGB). 

Notably, SVC, RF, Extra-Trees, and DNN demonstrate superior 

results. Subsequently, based on predictions from these four 

models, an assessment is made to determine if accuracy 

improves through the construction of a voting algorithm, 

incorporating both soft and hard voting. This approach has 

proven effective in enhancing results. After aggregating the 

probabilities for each frame in the test set from the four 

algorithms, we subsequently determine the predicted class for 

each window. As illustrated in Figure 4, the accuracy can 

experience a notable increase. Despite the aggregation of the 

four methods failing for certain frames, this shortcoming is 

attenuated by other frames within the same window. In 

Figure 5, we observe the effectiveness of this method based on 

the selected window width. In general terms and as expected, as 

the window width increases, the accuracy of the predictions also 

tends to increase. However, we can observe that the accuracy 

never reaches 90% with this method.

In the deep learning approach, we follow established 

methodologies for signal classification [16, 62–64], consisting of 

converting signals to scalograms, extracting features with a 

CNN, and classifying with an SVC. We used a five-layer CNN 

(Figure 3) to extract 1,024 features per scalogram by removing 

the final linear layer after training. Dimensionality reduction 

with PCA was then applied, reducing the features to 210 

components while retaining approximately 95% of the variance, 

to accelerate SVC training. Lastly, we performed Hyper- 

parameter Optimization (HPO) on the SVC model and trained 

the classifier, which predicts the class of each frame. To 

determine the class of each window, a subsequent voting process 

is conducted with the predicted classes of each frame, both in 

soft and hard voting modalities. The results of both the 

traditional machine learning models and this latter approach are 

depicted in Figure 5.

As observed in the graph, the results obtained using CNN plus 

SVC are significantly superior reaching for 10 s windows 97.7% of 

accuracy. The specific outcomes for 10 s windows using both 

approaches are detailed in Table 1. Therefore, for the remainder 

of the study, we focus exclusively on this approach, discarding 

more conventional machine learning algorithms. Regarding the 

window size we will use, in general, a larger window size is 

anticipated to improve the model’s ability to identify the patient 

FIGURE 5 

Effect of window size on classification accuracy in the Resting scenario comparing traditional machine learning models with the CNN 

+SVC approach.
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with greater reliability as more information is provided, which is 

consistent with our results using both approaches (Figure 5). 

Specifically, for the deep learning-based approach we observed 

an increase in accuracy as the window size extended from 6 to 

10 s. Beyond the 10 s mark, however, the improvement in 

accuracy tends to plateau, suggesting that additional increases in 

window size yield diminishing returns. For this reason we have 

selected a 10 s window size as the standard for our study. 

Additionally, the window size most commonly used in the 

literature for biometric systems based on ECG or 

photoplethysmography (PPG) ranges from 3 to 10 s [14, 17, 71], 

being this result consistent with it.

This model not only provides class predictions for each 

window but also quantifies the confidence of these predictions, 

which is particularly valuable when defining thresholds for 

decision-making in identification tasks. The predicted 

confidences were calibrated using Platt scaling [72] to mitigate 

the miscalibration inherent in the model’s raw outputs, thereby 

ensuring that the reported probabilities more faithfully represent 

the true likelihood of correct classification. The effectiveness of 

this calibration is evidenced by a reduction in the Expected 

Calibration Error (ECE) from 0.087 before calibration to 0.011 

after calibration. An optimal decision threshold for this scenario 

was determined from the ROC curve using Youden’s index [73], 

yielding a value of 0.952. This threshold provides an objective 

criterion for distinguishing between correct and incorrect 

classifications, complementing the calibrated confidence values. 

Notably, 88.03% of the windows exceed the Youden threshold, 

achieving perfect accuracy with no false acceptances or 

rejections, as reported in the corresponding row of Table 1. 

These results underscore the reliability and practical applicability 

of the proposed approach in real-world scenarios.

Furthermore, to assess the statistical significance of these 

results, we compared the proposed CNN+SVC model with a 

benchmark baseline. The baseline was constructed by computing 

the Fourier transform of the radar-derived cardiac signals, 

extracting points on a uniform grid, applying PCA for 

dimensionality reduction, and classifying with a multilayer 

perceptron (MLP). McNemar’s test yielded a p-value < 0.001, 

confirming that the improvement achieved by the proposed 

model is statistically significant.

4.3 Identification in other well-known 
scenarios

In this section, we undertake a similar process to the one 

described previously, but this time applied to different scenarios 

present in the database. By training the model on the initial 

75% of the patient recordings within a particular scenario, our 

objective is to subsequently identify the windows within the 

remaining 25% of that same scenario. Same as before, in order 

to enhance the experiment to closely simulate the potential 

deployment of the system in a real-world setting, we are 

temporarily splitting the recordings. This division serves to 

amplify the variability between both partitions, ultimately 

yielding more reliable metrics.

The results, presented in Table 2, are grouped by three 

configurations: Random Split, Temporal Split, and Temporal Split 

(Confidence > 90%), shown from left to right. Focusing on the 

Temporal Split columns, we observe that the Resting scenario 

yields the most accurate predictions. This is to be expected 

given that the resting scenario maintains homogeneity, unlike 

other scenarios where certain processes induce physiological 

alterations in the patient either throughout the entire recording 

or during specific segments. Secondly, the results for the 

Valsalva scenario are also favorable. This may be attributed to 

two reasons: firstly, this scenario encompasses recordings with 

notably longer duration thus, having more training data; 

secondly, the periods of disturbances (Valsalva maneuver) are 

relatively short, lasting 20 s, and thus have limited impact on the 

final outcome. Conversely, the least favorable results are 

observed in the Apnea scenario, potentially due to similar 

reasons but in the opposite direction. Recordings in the Apnea 

scenario are notably shorter than those in other scenarios, 

reducing the amount of data used to train the algorithm. 

Additionally, unlike the Valsalva scenario, the moments when 

the patient experiences apneas during the recording (in total, 

two apneas occur) may occupy a larger portion of the overall 

recording, significantly inQuencing the outcome. Furthermore, 

the apneas are not identical, occurring after inhalation and 

exhalation, respectively.

If we analyze the results from a temporal perspective, Figure 6

is obtained, where windows located in the same temporal period 

of the test set for each scenario are depicted as squares. The 

color denotes the average accuracy in that temporal window 

while transparency reQects the quantity of windows existing at 

that moment (not all recordings have identical duration). 

Overall, accuracy remains consistent throughout the test set for 

each scenario. Perhaps only in Apnea, we can observe a 

concentration of worse results at the beginning of the test set. 

It’s possible that this is partly because those are the moments 

when the second apnea occurs.

As mentioned, the temporal split that we are using throughout 

this study provides greater similarity of experiments to a real- 

world scenario. This is because, in this approach, the test 

windows are temporally distant from the training set, resulting 

in comparatively lower accuracy. If we were to adopt a random 

TABLE 1 Classification metrics for 10 s windows in the Resting scenario for different approaches: Machine Learning (ML) and Deep Learning (DL), 
including a subset of DL predictions with confidence greater than Youden threshold.

Approach Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) F1-score (%)

ML (All windows) 84.27 12.93 15.74 87.07 84.27 84.51

DL (All windows) 97.70 1.99 2.30 98.00 97.70 97.69

DL (Confidence > Youden thr.) 100.00 0.00 0.00 100.00 100.00 100.00
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split, dividing all windows into training and testing sets, as 

commonly done in various studies, we would likely achieve 

higher accuracies. However, these results might be somewhat 

artificial. This contrast is clearly observable in Table 2, where 

the random split (left section) shows notably better 

performance, albeit with potentially reduced reliability.

Since the model provides a confidence level for each 

prediction, Figure 7 illustrates the distribution of windows 

according to prediction confidence and correctness, together 

with the Youden threshold computed for each scenario. Across 

all scenarios, 82.43% of the predictions exceed the Youden 

threshold for their respective scenario, achieving an accuracy of 

98.59% within this subset. The rightmost section of Table 2

presents scenario-specific results for these high-confidence 

windows, confirming that focusing on predictions above the 

Youden thresholds substantially improves accuracy in all 

scenarios. These thresholds provide data-driven operating points 

derived from ROC analysis, offering an objective criterion for 

decision-making. To further evaluate the reliability of the 

model’s confidence estimates, Table 3 reports the Expected 

Calibration Error (ECE) before and after Platt scaling for each 

scenario, alongside the corresponding Youden thresholds. The 

results demonstrate that Platt scaling consistently reduces the 

ECE across all scenarios, indicating that the calibrated 

confidence values accurately reQect the true likelihood of 

correct classification.

As we mentioned, within this experiment, we assume that the 

scenario to which the window belongs is known. To enable the 

application of these results in a practical environment, it would 

be necessary to first classify to which scenario (or group of 

scenarios) a given window corresponds, something that has 

already been explored in fields such as human activity using 

Doppler radar [74], acoustics [75], or autonomous driving [76].

4.4 Identification in unknown scenarios

Given that the dataset has patient recordings in five different 

scenarios, one way to study the robustness of this type of 

identification is to attempt predictions in novel situations for the 

algorithm. The objective is to predict the class for each window 

within the test scenario without prior exposure to data from 

that specific scenario. To achieve this, we utilized all other 

scenarios as training data. The approach involved training a 

CNN on a random sample of windows from the training 

scenarios, subsequently we extracted features from all windows 

within those scenarios and trained a SVC on these features. The 

obtained results are presented in Table 4. For this part of the 

study, based on conclusions drawn from the resting scenario 

predictions we used 10 s wide windows and 4 s frames.

When interpreting the findings presented in this table, it is 

crucial to consider that the models made predictions for each 

scenario without prior training on that specific scenario, 

meaning they had not observed it before. It is not surprising 

that the most favorable results were achieved for the resting 

scenario, as instances of resting windows are inherent in T
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scenarios such as Valsalva or Apnea. In these scenarios, there are 

intervals during the recordings where the patient is simply at rest, 

contributing to the algorithm’s familiarity with similar patterns in 

its training set.

The noteworthy performance for the Valsalva scenario can be 

attributed to this same fact. Each recording of this scenario 

includes three 20 s periods of executing the Valsalva maneuver, 

while the remainder of the time the patient is at rest. 

Consequently, a significant portion of this scenario aligns with 

the resting state, leveraging the model’s knowledge.

A significant divergence is observed in the results between Tilt 

Up and Tilt Down. It is important to note that in the Tilt Up 

scenario, the patient’s lying surface is elevated to 70� and 

maintained for 10 min, whereas in Tilt Down, the surface 

returns to a horizontal position, and an additional 10 min are 

recorded. Unlike other scenarios recorded in a horizontal 

position, Tilt Up is unique in its almost vertical orientation. 

Furthermore, the body’s vital organs with the highest blood 

consumption are predominantly situated in the upper part. The 

transition from horizontal to vertical may likely induce a more 

pronounced alteration in cardiac effort compared to the reverse 

transition. These factors may contribute to the poorer results 

observed in the Tilt Up scenario, though other factors should 

not be ruled out. To further investigate this performance drop 

in the Tilt Up scenario, we analyzed several physiological 

indicators across the five scenarios. From the available dataset, 

FIGURE 6 

Temporal distribution of window-level classification accuracy across different well-known scenarios using the CNN+SVC approach. Each square 

represents a window in the test set, with color indicating average accuracy and transparency reflecting the number of windows at that 

temporal position.

FIGURE 7 

Distribution of window-level prediction confidences across different scenarios, indicating correct and incorrect predictions and the Youden 

threshold for each scenario.
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which contains both ECG and blood pressure in addition to radar- 

derived cardiac signals, we extracted 30 random segments of 60 s 

from each subject and scenario, yielding a total of 4,048 samples. 

For each segment, we computed the mean heart rate (HR), the 

heart rate variability (HRV, measured as the root mean square 

of successive differences), and the mean blood pressure (BP). 

The analysis revealed that Tilt Up is indeed markedly different 

from the other scenarios: it exhibited a much higher mean HR 

(82.35 bpm, while all other scenarios ranged between 64 and 

70 bpm), a substantially lower HRV (49.84, compared to values 

around 90–110 in the other scenarios), and the highest mean BP 

(92.19 mmHg, slightly above the remaining conditions). These 

differences provide quantitative evidence that Tilt Up constitutes 

a singular physiological condition compared to the other 

scenarios. This helps explain why the identification performance 

in this experimental setting is especially poor for Tilt Up, as the 

model trained on data from the remaining conditions is exposed 

to physiological patterns that differ significantly.

Finally, given that several of the different scenarios are based 

on the execution of an experiment over time, we can analyze 

the prediction effectiveness of each window depending on the 

temporal moment, independently of the patient. In Figure 8, 

these results are presented, where we can observe, for example, 

how in the Valsalva scenario, windows related to the resting 

breaks between maneuvers are predicted accurately, while during 

the moments when the three maneuvers are typically executed, 

the prediction accuracy decreases. We have adjusted the 

transparency of each window based on the number of samples 

in that time frame. In the Tilt Up scenario, it is observed that at 

the beginning of the recording, when the platform has not yet 

started tilting, the algorithm is able to correctly identify the 

patient, whereas when the experiment begins, this capability is 

lost. Conversely, in the Tilt Down scenario, the first windows 

are predicted with lower accuracy, probably because the body is 

still inQuenced by the Tilt Up state, which is where the 

recording begins, while as it returns to the horizontal position, 

the predictions improve considerably. In the Resting scenario, 

accuracy is quite homogeneous, as expected in a scenario 

without alterations. Finally, in the Apnea scenario, especially in 

the windows corresponding to the first Apnea (after inhaling), 

predictions are not accurate.

Overall, these results indicate the model’s ability to identify the 

patient whenever the scenario is, if not the same, at least similar. 

As clearly observed, there is one scenario, Tilt Up, that is markedly 

different from the others, at least in terms of predictability by our 

model. However, others such as Tilt Down and Resting do not 

seem too dissimilar.

4.5 Common model for all scenarios

In previous experiments we developed individual models to 

predict each of the five distinct testing scenarios. Seeking to 

evaluate the efficiency of a model in recognizing subjects across 

diverse contexts, we extended our approach by training a unified 

TABLE 3 Calibration errors (ECE) before and after Platt scaling, and 
optimal thresholds (Youden index) for each test scenario.

Test 
scenario

ECE before 
calibration

ECE after 
calibration

Optimal 
threshold 
(Youden)

Apnea 0.159 0.084 0.781

Resting 0.087 0.011 0.952

Tilt Down 0.110 0.033 0.960

Tilt Up 0.160 0.041 0.813

Valsalva 0.118 0.026 0.889

TABLE 4 Classification metrics for 10 s windows in unknown scenarios.

Test scenario Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) F1-score (%)

Apnea 60.51 29.84 44.86 70.16 60.51 62.50

Resting 90.68 7.46 8.12 92.54 90.68 89.92

Tilt down 83.96 13.82 15.86 86.18 83.96 83.90

Tilt up 14.96 77.90 85.01 22.10 14.96 14.58

Valsalva 84.35 13.54 16.23 86.46 84.35 84.84

FIGURE 8 

Temporal evolution of window-level prediction accuracy in unseen scenarios using CNN feature extraction and SVC classification. Each square 

represents a window in the test set, with color indicating average accuracy and transparency reflecting the number of windows at that 

temporal position.
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model using data encompassing all scenarios. Subsequently, we 

assessed its capacity to identify the patient in any of the five 

scenarios. As noted earlier, there is a substantial imbalance in 

scenario durations, with the Apnea scenario being particularly 

underrepresented compared to the others. This imbalance can 

bias model training and reduce accuracy for shorter scenarios. 

To mitigate this, we implemented a synthetic up-sampling 

strategy targeting the Apnea recordings. Additional frames were 

generated by applying controlled augmentations to the existing 

cardiac signals, including slight Gaussian noise, temporal shifts, 

and amplitude scaling. These augmented signals were then 

converted into scalograms using the same wavelet and 

preprocessing parameters as the original frames, ensuring 

consistency across the dataset.

Similar to the previous approach, we employed a temporal 

split between training and testing data, using the first 75% of 

recordings for training and the last 25% for testing. The 

obtained results are disaggregated by test scenario, as shown in 

Table 5. In Table 6, we further compare accuracy across three 

different experiments: scenario-specific models for well-known 

scenarios, models applied to unknown scenarios, and the 

common model. As expected, identification performance in 

unknown scenarios is the least favorable. However, a more 

nuanced comparison emerges when contrasting the common 

model with individual scenario predictions. Accuracy remains 

approximately similar for four of the five scenarios, while a 

substantial improvement is observed in the Apnea scenario, 

likely due to the up-sampling strategy. Nonetheless, Apnea 

still remains the scenario with the lowest performance, followed 

by Tilt Up.

To provide a comprehensive evaluation of biometric system 

performance, Table 7 reports additional metrics beyond 

accuracy, including Area Under the Curve (AUC) and Equal 

Error Rate (EER), both with 95% confidence intervals obtained 

via bootstrap methods. These metrics indicate that the common 

model maintains strong discriminative performance in 

straightforward scenarios such as Resting and Valsalva, with 

high AUC and low EER. In the underrepresented Apnea 

scenario, the common model benefits from knowledge transfer 

across scenarios, showing improved AUC and reduced EER, 

whereas in Tilt Up, performance slightly deteriorates, with lower 

AUC and higher EER, reQecting increased confusion between 

subjects across scenarios. Tilt Down exhibits intermediate 

behavior, with modest improvement under the common model. 

These trends are further illustrated in Figure 9, where ROC 

curves disaggregated by scenario provide a visual representation 

of the trade-off between true positive and false positive rates 

across all thresholds. The curves confirm that the common 

model can enhance identification in underrepresented scenarios 

such as Apnea, while performance in other scenarios such as 

Tilt Up may slightly deteriorate. Overall, these results highlight 

the potential of a unified model to leverage knowledge across 

scenarios, particularly for scarce data, while also revealing that 

model performance can vary depending on scenario- 

specific characteristics.

4.6 Performance in open set conditions

In real-world applications, biometric systems often encounter 

subjects not present in the training set. To assess the robustness of 

our cardiac signal-based identification approach in such scenarios, 

we evaluated its performance under open-set conditions, where 5 

individuals in the test set were completely unseen during training. 

These unseen subjects can be interpreted as adversaries attempting 

an impersonation attack, which requires the system to correctly 

reject impostors while accurately recognizing enrolled users. 

This evaluation allows quantifying the system’s ability to 

discriminate known subjects from unknown ones. Key metrics, 

such as the Equal Error Rate (EER) and associated Detection 

Error Trade-off (DET) curves, systematically characterize the 

trade-off between false acceptances and false rejections in this 

challenging context.

To implement this evaluation, we followed the experimental 

design of the well-known scenario described in Section 4.3. For 

each physiological scenario, a subset of five subjects was 

designated as unseen impostors, while the remaining subjects 

were used to train a CNN model. Using this CNN trained 

exclusively on the seen subjects of a given scenario, features 

were extracted for the training set, the scenario-specific test set, 

and the windows corresponding to the unseen subjects. An SVC 

classifier was then trained using the training set of seen subjects, 

and probability scores for each class were predicted for both the 

TABLE 5 Classification metrics for 10 s windows using a common model.

Scenario Accuracy (%) FAR (%) FRR (%) Precision (%) Recall (%) F1-score (%)

Apnea 80.67 20.86 25.32 79.14 71.70 73.38

Resting 97.52 2.37 2.44 97.63 97.56 97.52

TiltDown 94.95 5.04 5.09 94.96 94.91 94.76

TiltUp 83.45 17.19 16.39 82.81 83.61 82.28

Valsalva 96.16 3.76 3.97 96.24 96.03 96.04

Aggregated 92.75 7.05 7.30 92.95 92.70 92.75

TABLE 6 Accuracies for different scenarios and models.

Scenario Well-known Unknown Common model

Apnea 65.57 60.51 80.67

Resting 97.70 90.68 97.52

Tilt down 93.15 83.96 94.95

Tilt up 84.55 14.96 83.45

Valsalva 96.18 84.35 96.16
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test set and the unseen subjects. To perform open-set evaluation, a 

one-vs-all strategy was applied, treating each seen subject as a 

positive class and all other subjects—including the unseen 

impostors—as negatives. The Equal Error Rate (EER) and 

Detection Error Trade-off (DET) curves were computed using 

all unseen subjects as impostors for each seen subject, and the 

EER was subsequently averaged across all seen subjects to 

provide a concise representation of open-set performance for 

each scenario.

The results of the open-set evaluation reveal a generally high 

robustness of the proposed identification system against unseen 

subjects. Specifically, the Tilt Down, Valsalva, and Resting 

scenarios exhibit very low EERs (1.45%, 1.26%, and 0.14%, 

respectively), indicating that the system reliably rejects impostors 

while correctly identifying enrolled users. The Tilt Up scenario 

shows a moderately higher EER of 5.63%, while the Apnea 

scenario presents the highest EER (19.15%), reQecting increased 

challenge in correctly discriminating users in this scenario. 

Overall, these findings confirm that the system maintains strong 

discrimination capabilities in an open-set context, with 

performance varying according to the physiological complexity 

of each scenario. The corresponding DET curves are illustrated 

in Figure 10, providing a visual representation of the trade-off 

between false acceptance and false rejection rates across 

different thresholds.

4.7 Feature importance

Building on the explainability framework described in Section 

3.6, we leveraged the CBAM module to further investigate the 

specific regions and features that our deep learning model 

considers most significant when analyzing scalograms. The 

integration of CBAM, as detailed previously, provides a means 

to interpret the spatial and channel-level focus of the network. 

In our network, we incorporated the CBAM module following 

TABLE 7 Performance comparison between scenario-specific models and the common model across all scenarios, including Accuracy with 95% 
confidence intervals, Area Under the Curve (AUC), and Equal Error Rate (EER) with 95% confidence intervals.

Scenario Well-known scenario Common model

Accuracy Acc. CI 95% AUC EER EER CI 95% Accuracy Acc. CI 95% AUC EER EER CI 95%

Apnea 65.57 57.37–73.76 0.517 0.503 0.429–0.546 80.67 72.88–87.16 0.554 0.477 0.398–0.524

Resting 97.70 95.94–99.27 0.999 0.007 0.000–0.011 97.52 95.95–98.88 0.999 0.009 0.001–0.010

TiltDown 93.15 90.64–95.21 0.749 0.245 0.231–0.259 94.95 92.69–96.82 0.778 0.219 0.207–0.237

TiltUp 84.55 81.08–87.90 0.788 0.226 0.211–0.248 83.45 79.97–86.63 0.766 0.258 0.235–0.275

Valsalva 96.18 94.79–97.48 0.914 0.095 0.084–0.102 96.16 94.65–97.50 0.906 0.102 0.091–0.110

FIGURE 9 

ROC curves across scenarios for well-known scenario and common model experiments.
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the activation function of the fourth convolutional layer in order 

to preserve sufficient resolution for identifying the regions of 

the scalograms where the network focuses its attention. After 

retraining the model for the Resting scenario, we obtained, for 

each scalogram, the specific regions where the network 

concentrates its attention and the feature maps that are most 

relevant. In Fig. 11A, we present a random sample of four 

scalograms (left) along with their corresponding spatial attention 

maps (center) and the feature map with the highest attention 

weight (right). In the central column of this figure, we observe 

that in all four cases, the network focuses particularly on the 

medium and high frequencies in the scalograms (horizontal axis 

in a scalogram represents time, while the vertical axis represents 

frequency). This could suggest that the most relevant 

information the model relies on to distinguish each subject is 

concentrated within these frequency ranges.

We further investigated feature importance by analyzing 

Shapley values within the traditional machine learning approach. 

This complementary analysis provides a detailed perspective on 

the contribution of individual features to the model’s 

predictions, enhancing our understanding of the decision- 

making processes behind certain ensemble classifiers. 

Specifically, we evaluated Shapley values using two of the four 

models in the ensemble: Random Forest and Extra-Trees, both 

of which led to similar conclusions. This analysis, conducted in 

the Resting scenario, provides a measure of feature importance 

for each of the 74 variables resulting from dimensionality 

reduction with PCA. Additionally, by applying the inverse of the 

projection matrix, we can assess the importance of each of the 

361 frequencies extracted from the FFT of the cardiac signal 

(see Figure 1). This enables us to identify which frequencies 

have the greatest inQuence on predicting the subject associated 

with each signal. In Figure 11B, we present the absolute mean of 

the Shapley values of these frequencies for both classifiers. Both 

models highlight specific frequency ranges that significantly 

inQuence the predictions, with a particular focus on medium 

frequencies between 1 and 6 Hz. Notably, six frequency intervals 

within this range stand out, as emphasized in the figure. These 

intervals may represent the key frequency bands essential for 

distinguishing between subjects based on their cardiac signals.

In summary, these techniques have allowed us to gain insight 

into the factors that both models rely on to make their predictions. 

FIGURE 10 

Detection Error Trade-off (DET) curves for open-set evaluation of cardiac signal-based identification. Each curve represents the average DET across 

all seen subjects within a physiological scenario, with unseen subjects treated as impostors.
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FIGURE 11 

Explanation and attention analysis. (A) Attention maps: Randomly selected scalograms from the Resting scenario (left), corresponding spatial 

attention map (center), and channel with highest attention (right). (B) Shapley values for ML classifiers: Absolute mean of the Shapley values for 

the Random Forest and Extra-Trees classifiers in Resting scenario.
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For the Random Forest and Extra-Trees classifiers, we identified 

specific frequency ranges that play a more significant role in 

determining the subject to which the sample belongs, all of 

which are located between 1 and 6 Hz. On the other hand, our 

CNN model demonstrates an internal focus on medium and 

high frequencies, which may indicate the presence of critical 

information necessary for accurate identification. The differences 

in the frequency ranges highlighted by each approach can be 

attributed to the distinct representations and methodologies 

employed: the traditional classifiers analyze features derived 

from the FFT, while the CNN focuses on patterns in the 

scalograms. These complementary insights reinforce the value of 

using diverse techniques to achieve a more comprehensive 

understanding of the problem.

5 Discussion & conclusions

In this study, we propose a contactless person identification 

method based on cardiac signal detection with a Continuous 

Wave radar and investigate its performance across different 

scenarios. The most promising approach in a Resting scenario 

involves extracting features from scalograms using a CNN and 

subsequently applying SVC for classification. This method 

outperforms traditional machine learning approaches, such as a 

voting classifier considering SVC, Random Forest, Extra-Trees, 

and Deep Neural Network. With Deep Learning, we achieve 

around a 10% improvement in prediction accuracy (see 

Figure 5) in the Resting scenario, reaching an accuracy 

exceeding 97% in a group of 30 individuals. Notably, this 

contactless and continuously authenticating method does not 

rely on fiducial point detection or analysis, aligning with 

findings in studies such as [77, 78], where superior results are 

reported for non-fiducial methods compared to fiducial-based 

approaches. The fact that there are no disturbances in this 

scenario and homogeneity is maintained throughout the 

recording allows for achieving good results, something that does 

not always occur in real-world cases.

In the literature, there are several proposals aiming to identify 

individuals based on cardiac signals. However, since it is a field in 

early development, there are not many studies yet that employ 

radar-acquired cardiac signals for this purpose. The most 

commonly used technique is based on ECG, while radar signals 

are often used to monitor and track subjects according to their 

position, movement and gait features. In Table 8 we can see 

some results in identification through cardiac signal extracted 

with radar compared to ours. Due to the scarcity of studies in 

this area, we have completed the table with some results from 

subject identification based on ECG.

When analyzing the results in the table, we must comment on 

two aspects that differentiate our study from previous ones. First, 

our approach differs from others in the temporal division of 

windows. In other studies, such as [79], the procedure followed 

is random splitting, which causes the test set to have windows 

very similar to those in the training set, as they can be 

contiguous. Our splitting methodology may slightly worsen 

TABLE 8 Comparative results of some radar-based and ECG-based identification proposals.

Year Paper Ref Subjects Results Signal Comments

2017 Cardiac scan: a non-contact and continuous heart-based user 

authentication system

[29] 78 BAC 98.61% EER 

4.42%

Radar Fiducial-based method

2017 Non-contact biometric identification and authentication using 

microwave doppler sensor

[28] 11 TAR 92.8% EER 3.9% Radar Time–frequency analysis with an 

auto-regressive model

2018 Contactless person identification using cardiac radar signals [30] 4 Acc 94.6% Radar Classify individual heartbeats 

with SVM

2019 Heart ID: human identification based on radar micro-doppler 

signatures of the heart using deep learning

[31] 10 Acc higher than 80% Radar Short-time Fourier transform + 

DCNN

2022 Heart signatures: open-set person identification based on cardiac radar 

signals

[79] 30 Acc 99.17% (with 

random split)

Radar Dipole deep learning model

2015 ECG based human identification using logspace grid analysis of second 

order difference plot

[88] 90 Acc 91.52% ECG

2017 HeartID: a multiresolution convolutional neural network for ECG- 

based biometric human identification in smart health applications

[89] 20–47 Acc 93.5% ECG

2020 Toward improving ECG biometric identification using cascaded 

convolutional neural networks

[90] 18–40 Acc 97.1% ECG

2020 An LSTM-based model for person identification using ECG signal [91] 290 Acc 97.3% ECG

2022 ECGsound for human identification [92] 18 Acc 96.6% FAR 0.2% 

FRR 0.4%

ECG

2022 ELEKTRA: ELEKTRokardiomatrix application to biometric 

identification with convolutional neural networks

[17] 47 Acc 98.84% FAR 

0.03% FRR 1.17%

ECG

2022 BAED: a secured biometric authentication system using ECG signal 

based on deep learning techniques

[93] 90 Acc 99.49% FAR 

0.14% FRR 0.99%

ECG

2024 Our proposal in resting scenario 30 Acc 97.70% FAR 

1.99% FRR 2.30%

Radar CNN + SVC

2024 Our proposal in different scenarios 30 Acc 88.18% FAR 

11.27% FRR 11.71%

Radar CNN + SVC

BAC, balanced accuracy; EER, equal error rate; Acc, accuracy; TAR, true acceptance rate; FAR, false acceptance rate; FRR, false rejection rate.
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results but brings the study closer to potential real-world 

applications. Using random splitting, we would achieve an 

accuracy of 99.77% in the Resting scenario (Table 2). 

Nevertheless, with temporal splitting, our results, surpassing 

97% accuracy in Resting scenario, are not below the general 

level of other studies. More importantly, our model has been 

trained and tested with patients in different situations, 

something that previous studies do not consider and is likely the 

most significant novelty of this study.

We specifically evaluate the effectiveness of the identification 

process across different scenarios, considering both cases in 

which the scenario is known in advance and cases in which it is 

unknown. In the former, by applying an objective threshold 

based on the confidence of the predictions (e.g., the Youden 

threshold), highly secure identifications can be achieved, as 

illustrated in the rightmost columns of Table 2, which cover a 

substantial portion of the test cases. Concerning the experiment 

in single well-known scenario (see the Temporal Split column in 

Table 2), in three of them we achieve accuracies above 90%, 

while in Tilt Up and Apnea, the results are not as favorable. 

One factor that may be inQuencing the outcomes is the 

temporal design of the experiment in all scenarios but Resting. 

Since a physiological process takes place throughout the 

recording, and there is heterogeneity during this time, the test 

part is not exactly similar to the training part, making the 

algorithm’s task challenging. This is well evident in the Apnea 

scenario, in which only two apneas occur per patient, with the 

second one in the test set, leaving only one for training 

the algorithm. Additionally, this second apnea is different from 

the first as it occurs after exhaling. Nevertheless, this uncertainty 

of predictions is somehow reQected in the confidence provided 

by the model, as the results for those windows with confidence 

above the Youden threshold still remain satisfactory.

Additionally, we explore the method’s ability to predict patient 

identity in scenarios not previously encountered, a practical 

consideration given the variability in user physical conditions. 

While the outcomes are not unfavorable, they fall short of 

reaching good results. If accuracies in scenarios like Apnea or 

Valsalva are not low, it may be attributed to non-negligible periods 

of patient rest between maneuvers. Clearly, achieving robust results 

in a scenario necessitates prior training with patient data specific 

to that scenario, as exemplified in the Resting prediction section. 

Anyway, from these results we can also conclude the significant 

difference in the Tilt Up scenario compared to the others, 

probably for the reasons mentioned earlier. This scenario is the 

only one in which the body remains in an almost vertical position 

with vital organs with the highest blood consumption elevated 

above the heart, thus requiring a special effort and altering its 

behavior more significantly than in other scenarios.

Finally, we trained a model capable of identifying subjects in 

any scenario. Although the accuracy exceeds 90% in three out of 

the five scenarios, the results are still not sufficiently reliable for 

practical identification purposes. To address this, two potential 

enhancements can be considered. Firstly, by leveraging the 

confidence of model predictions, we can obtain robust results 

for the subset of samples in which predictions are deemed 

reliable. Additionally, another feature that could improve the 

predictive capability of the model in this multi-scenario context 

is incorporating a classifier that provides information about 

which scenario the sample belongs to before identifying the 

subject similarly to some studies like [80]. This way, the model’s 

accuracy could significantly improve.

In summary, using this technology in our dataset of 30 

individuals, we can accurately identify a subject with very high 

precision when they are at rest (97.70% accuracy). This result is 

comparable to other biometric identification techniques, such as 

ECG (see Table 8), and is very close to the performance of 

more established methods like iris scans, facial recognition, or 

fingerprinting. Currently, with this dataset, the primary 

limitation in terms of reliability arises when identifying subjects 

in non-resting positions, where accuracy declines due to the 

increased complexity of these scenarios and potentially 

insufficient training data. However, by setting a confidence 

threshold for the model, we can achieve reliable identification in 

over 82% of cases (see Table 2), provided the scenario is known 

in advance. In this way, we approach accuracy levels comparable 

to more established biometric methods, while also leveraging the 

inherent advantages of this technology, such as not requiring 

light or physical contact, and enabling continuous 

authentication. Furthermore, the open-set evaluation 

demonstrates that the proposed method maintains strong 

resilience against impersonation attempts, with very low EER 

values in most scenarios (e.g., 1.26% in Valsalva and 0.14% in 

Resting), while only Tilt Up presents less favorable values. This 

confirms the system’s ability to reliably reject unseen impostors 

while recognizing enrolled users.

The explainability analysis conducted using a CBAM module 

revealed that our CNN model focuses primarily on medium and 

high frequencies in scalograms, suggesting that these regions 

contain critical information for subject identification. On the 

other hand, the analysis of Shapley values in traditional machine 

learning models (Random Forest and Extra-Trees) highlighted 

specific frequency ranges between 1 and 6 Hz, as the most 

inQuential for accurate predictions. These complementary 

approaches provide a deeper understanding of the decision- 

making processes and the key features leveraged by both deep 

learning and traditional models. Concerning the model’s 

complexity, we adopt a CNN architecture with 5 convolutional 

layers and two linear layers, inspired by [16] but with a slight 

reduction in complexity. A similar case is observed with the use 

of transfer learning to improve the network’s training, 

something that has already been studied with scalograms 

obtained from ECG signals [81]. However, its impact on the 

performance of the CNN in this case has not been explored and 

is left as future research. Furthermore, we address the critical 

aspect of system usability. In this case, a 10 s window of radar- 

detected signals is required to generate a scalogram, extract 

features with CNN, and classify using SVC. Once both models 

are trained, the runtime of the entire process is small, enabling 

seamless continuous identification.

Future research could explore additional strategies to further 

mitigate some of the limitations of the current dataset. In 
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particular, the imbalance in scenario durations—especially the 

notably shorter Apnea recordings—may inQuence the 

performance of a common model due to the limited number of 

training samples. To address this, physiology-aware data 

augmentation techniques, such as those in [82], or deep 

learning-based augmentation methods like [83], could be 

investigated. Furthermore, exploring self-supervised contrastive 

learning (SSCL) could be an effective way to improve future 

models, as it can enhance model generalization and robustness 

by learning representations that are more invariant to subjects 

and postures, thereby facilitating identity discrimination even 

under previously unseen conditions [84].

A limitation of the results presented in this paper is the dataset’s 

small number of subjects, 30. As reQected in Table 8, this is a 

common issue across almost all previous studies in this field to 

date, with 30 patients representing a higher number than most of 

them. According to [85], the majority of datasets incorporating 

radar-based cardiac signals are considerably smaller, with a median 

of 12 subjects. The dataset used in this work is the second largest 

publicly available and uniquely includes data for each subject 

across five different scenarios. The only larger public dataset was 

excluded because it exclusively contains recordings from children 

under 13 years old. Therefore, this study represents a significant 

step forward in this emerging research area. Nevertheless, given 

this limitation, the present work focuses on the feasibility of this 

technique, without drawing definitive conclusions, as a much 

larger number of subjects would be required to do so, similar to 

what has occurred with other biometric techniques, such as ECG, 

which now has public databases containing hundreds of thousands 

of patients. Additionally, datasets with longer-term recordings 

collected across multiple sessions would be highly beneficial, 

enabling inter-session and longitudinal evaluation that better 

reQects realistic deployment conditions and supports robust 

assessment of system reliability over time.

After these results, the capability of this method based on the 

use of a CNN and an SVC to identify users from radar signals in 

various situations seems quite plausible, provided there is 

sufficient data to train the model. To draw more robust and 

generalizable conclusions, it would be beneficial to have 

recordings taken on different dates, varying health conditions, 

or under different external inQuences to verify that it is also 

possible to achieve identification across a broader spectrum of 

situations and over a wider time span. It would also be 

beneficial to assess the applicability of this technology in the real 

world by obtaining recordings of this type of signal in everyday 

settings rather than in a laboratory. Alternatively, this method 

can be integrated with other analogous identification methods 

utilizing radar signals, such as analyzing gait features [86] or 

spatial tracking [87], to enhance precision and robustness.
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