
EDITED BY  

Sikandar Ali,  

Inje University, Republic of Korea

REVIEWED BY  

Ellen-Wien Augustijn,  

University of Twente, Netherlands  

H. M. Shahzad,  

Superior University, Pakistan

*CORRESPONDENCE  

Kennedy Senagi  

ksenagi@icipe.org

RECEIVED 24 June 2025 

ACCEPTED 22 September 2025 

PUBLISHED 10 October 2025

CITATION 

Senagi K, Nzilani M, Omondi E, Tchouassi DP, 

Landmann T, Matoke-Muhia D, Okunga E, 

Gesimba B, Abdel-Rahman EM, Maranga D, 

Ndungu JM and Masiga D (2025) Spatial 

analytics to elucidate the incubation period 

and drivers of visceral leishmaniasis: case of 

Turkana County in Kenya.  

Front. Digit. Health 7:1643314. 

doi: 10.3389/fdgth.2025.1643314

COPYRIGHT 

© 2025 Senagi, Nzilani, Omondi, Tchouassi, 

Landmann, Matoke-Muhia, Okunga, Gesimba, 

Abdel-Rahman, Maranga, Ndungu and 

Masiga. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Spatial analytics to elucidate the 
incubation period and drivers of 
visceral leishmaniasis: case of 
Turkana County in Kenya

Kennedy Senagi
1*, Maureen Nzilani

1,2
, Evans Omondi

2,3
,  

David P. Tchouassi
1
, Tobias Landmann

1
, Damaris Matoke-Muhia

4
,  

Emmanuel Okunga
5
, Barrington Gesimba

1
,  

Elfatih M. Abdel-Rahman
1
, Dawn Maranga

6
, Joseph M. Ndungu

6 

and Daniel Masiga
1

1International Centre of Insect Physiology and Ecology, Nairobi, Kenya, 2Institute of Mathematical 

Sciences, Strathmore University, Nairobi, Kenya, 3African Population and Health Research Center, 

Nairobi, Kenya, 4Kenya Medical Research Institute, Nairobi, Kenya, 5Ministry of Health, Nairobi, Kenya, 
6Foundation for Innovative New Diagnostics, Geneva, Switzerland

Introduction: Visceral leishmaniasis (VL) is a severe and neglected tropical disease 

of public health concern. VL is fatal if not treated. Kenya has experienced multiple 

outbreaks of the disease since 2017. The underlying drivers of the disease risk 

dynamics, as well as the incubation period, are not well understood. 

Methods: We implemented statistical (spatial logistic regression and Bayesian 

spatial) and machine learning (random forest, support vector machine, 

AdaBoost, logistic regression, and extra trees) models to estimate the incubation 

period and predict areas of low/high risk in Turkana County, an endemic VL 

foci in Kenya. Two-year (2019–2020) patient data were sourced from 12 VL 

treatment centers in Turkana County. Environmental and weather data were 

sourced from satellites, while demographic data were extracted from the 

Kenyan Population and Housing Census 2019 dataset. The environmental and 

weather data were lagged up to 8 months to mimic the disease incubation period.

Results: The AdaBoost was the best-performing classifier with an area under 

the curve of the receiver operating characteristic value of 71.2%. The model 

predicted three months as the optimal incubation period. Age, distance to a 

healthcare facility, mean monthly humidity, greenness, and total precipitation 

were identified as the five main predictors. The epidemiological risk map (for 

December 2024) was generated and deployed on the Web (https:// 

dudumapper.icipe.org/). The Kerio Delta, Lokori, and the shores of the Lake 

Turkana regions were predicted to have a mid to high risk/number of cases.

Discussion: These data-driven findings can improve the understanding of VL 

risk dynamics and support decision makers in the preparation, mitigation, and 

elimination of VL.
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1 Introduction

Leishmaniases are a group of diseases caused by protozoan parasites of the genus 

Leishmania, transmitted by sand�ies. Leishmaniases affect humans. The three main 

forms of leishmaniasis are visceral, cutaneous, and mucocutaneous. Visceral 

leishmaniasis (VL), known as kala-azar, is the most severe form of leishmaniasis 
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and is fatal if left untreated. The bites of an infected female 

phlebotomine sand�y infect humans with the Leishmania 

donovani or Leishmania infantum parasites, which cause VL. 

Leishmania donovani is the main causative parasite species of 

VL, especially in Sub-Saharan Africa, while Leishmania 

infantum is common in the Americas. VL is fatal if it is not 

treated in time. VL is endemic in about 80 countries around 

the world. It is estimated that 50,000 to 90,000 new VL cases 

are reported annually (1, 2).

In 2022, approximately 66% of the global cases of VL were 

reported from the eastern African corridor, and the disease is 

targeted for elimination by 2030 (3). Approximately half or 

more of these cases were children under 15 years of age. 

However, globally, up to 45% of VL cases are estimated to 

remain unreported, probably due to the epidemiological and 

clinical diversity of the disease, which poses significant 

challenges for surveillance, diagnosis, and treatment. In humans, 

VL is characterized by weight loss, irregular bouts of fever, 

anemia, and enlarged spleen and liver (2, 4–6).

VL is a climate-sensitive disease in that changes in weather 

patterns (mainly temperature, rainfall, and relative humidity) 

in�uence the geographic distribution and population of 

phlebotomine sand�ies (7–11). Specifically, temperature affects 

the developmental cycle of Leishmania promastigotes in 

sand�ies and the life cycle of vectors. Consequently, warmer 

climates alter the distribution, survival, population size, and 

competency of phlebotomine sand�ies. Lower rainfall increases 

the probability of invasion (2). In addition, environmental 

(such as the presence of vegetation (11–13), type of soils (13, 

14), and presence of ant-hill mounds (15, 16)), demographic 

[such as population density (17, 18), and age structure (19, 

20)], socio-economic (such as types of houses (11, 16)), and 

many other factors, contribute to the transmission and (in/re) 

surgency of VL. The presence of VL hosts (humans or 

animals), termite hills, acacia trees, and water bodies is a risk 

factor as they create suitable habitats for the feeding, breeding, 

and resting for vectors (21–23). However, the interaction and 

impact of these variables on VL’s geographical transmission 

are not fully understood.

Based on accumulated cases (from 2007 to 2022) and 

meteorological data, (24) explored the applications of machine 

learning models to predict leishmaniasis outbreaks in selected 

cities in Brazil. The machine learning models were evaluated by 

the root mean squared error, showing the potential of the 

models in predicting leishmaniasis outbreaks. In Western and 

Central China, from 2007 to 2017, data collection, (25), analyzed 

the spatiotemporal patterns of annual human VL cases using the 

boosted regression tree model and spatial correlation techniques. 

This gave a better understanding of the spatial risk factors 

driving the spread of VL and identified potential endemic risk 

regions. Kumar et al. (26) configured the support vector 

regressor with the radial basis function kernel to assess the 

impact of climate change on disease outbreaks in Bihar, India. 

The model effectively identified temperature, wind speed, 

rainfall, and population density as significant contributors to 

VL risk.

In Kenya, 11 of the 47 counties are endemic to VL, which is 

approximately 62% of the total land area of the country. These 

counties are disproportionately poor, marginalized, (semi-)arid, 

and undeserved (27). In the country, VL cases are increasing 

and outbreaks have become recurrent in 2008, 2019, and 2025. 

New foci of the disease have been reported (e.g., Tharaka Nithi 

County), with sporadic cases reported in areas such as Kitui, 

Kajiado, and Marsabit counties, indicating an expanding 

geographical spread. There could be other new foci and cases 

that are unknown due to poor surveillance, diagnosis, 

treatment, and knowledge of drivers (which are mainly 

ecological and environmental). In the middle of the effects of 

climate change, new foci have been established and the 

increased incidence of VL infections reported, especially in 

arid and semi-arid areas of Kenya (such as Kajiado, Turkana, 

Marsabit, West Pokot, Isiolo, Garissa, Mandera, and Baringo). 

The control of the disease is mainly reactionary and targets 

humans already affected by the disease and seeking treatment 

in hospitals. There are hardly any epidemiological predictive 

models to inform various stakeholders about potential areas of 

high/low risk of the disease to targeted interventions (such as 

diagnosis and treatment, vector surveillance, integration of 

vector control mechanisms (e.g., pesticides), etc.). Neither is 

the optimal incubation period of the disease well known, since 

the infection to the onset of symptoms spans between a few 

weeks and 9 months. Turkana County is known to be one of 

the traditional and endemic sites of the disease (4, 27, 28). 

Taking into account epidemiological, environmental, and 

weather data from this county, this research developed 

statistical and machine learning models that unraveled the 

possible optimal incubation period (optimal time) in the future 

when we could anticipate the surge (increase) in human VL 

cases and the respective drivers. This information could be 

vital for various stakeholders (such as the Kenya Ministry of 

Health) in managing and controlling the disease.

2 Materials and methods

2.1 Study site

The study was carried out in Turkana County, which is the 

second largest of the 47 counties in the Republic of Kenya (29). 

Turkana County has an area of 71,597.6 km2 and represents 

13.5% of the total land area in Kenya (30–32). Turkana County 

lies between 10� 30’N and 50� 30’N latitudes and 34� 30’E and 

36� 40’E longitudes. The county is located in the Northwest of 

Kenya and borders Uganda to the west, South Sudan to the 

north, and Ethiopia to the northeast. The counties bordering 

Turkana County are West Pokot in the southwest, Baringo in 

the south, Samburu in the southeast, and Marsabit in the east 

(32). The vast eastern African Rift Valley traverses Turkana 

County. The county’s topography consists of low-lying plains 

and isolated hills and mountain ranges. The altitude extends 

from 369 m in Lake Turkana in the east to the highest point at 

around 900 m near the Ugandan border in the west (33). 
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Turkana has a hot and dry climate with an annual temperature 

range between 20 �C and 41 �C, and a mean annual temperature 

of 30:5 �C. Rainfall in the area is bimodal and highly variable. 

Long rains occur between April and July, and short rains occur 

between October and November. The annual rainfall is low, 

ranging between 52 and 480 mm with a mean rainfall of 

200 mm (34). Rain patterns and distributions are unpredictable 

and unreliable. The county is prone to drought. Eighty percent 

of the county is classified as arid or very arid (33).

2.2 Data collection

The raw data consisted of patient, weather, environment, and 

demographic variables. Patient data were collected from 12 public 

hospitals that offered VL diagnosis and treatment services in 

Turkana County between 2019 and 2020. The data had a total 

of 1,673 records; positive and negative cases were 770 and 903, 

respectively. Patients’ data contained age, sex, patient village 

geo-coordinates, hospital name, date the patient was seen in the 

hospital by a physician, and VL test (determined by the rK39 

rapid diagnostic test (RDT) or direct agglutination test (DAT) 

test kits) status variables. Furthermore, we obtained monthly 

weather data on temperature (minimum, maximum, and mean), 

average humidity, and average total precipitation from 

OpenMeteo (35) and EnviDat (36). We also used environmental 

data, with a 20 m satellite resolution, including derived tasseled 

cap vegetation index (wetness, greenness, and brightness), water 

bodies, land use and land cover (LULC), and soil type variables 

from the National Aeronautics and Space Administration (37). 

Demographic data had population density, which was obtained 

from the Kenyan National Bureau of Statistics (Population and 

Housing Census 2019) (38). Weather, environment, and 

demographic data were collected in reference to the villages of 

the patients and were dated 8 months before the date the 

patients were seen in the hospital; this was to align with the 

incubation period of VL that can last from a few weeks up to 9 

months (39, 40).

2.3 Data pre-processing

Figure 1 outlines the variables studied and the respective data 

pre-processing steps. The 8-month-lagged hospital, weather, and 

environmental data were stored in different comma-separated 

values (CSV) files. The geographical coordinates (latitude and 

longitude) of the village of patients and the VL treatment 

hospitals were identified and integrated into the dataset. In the 

hospital, the missing age was imputed using the mean age. We 

computed the Euclidean distance between (a) the patient village 

and the hospital visited, and (b) the patient village and the 

water bodies. These new distance variables were appended to 

the dataset. The hospital, weather, environment, and 

demographic data were augmented into 8 different CSV lagged 

files. The set of variables is listed and described in Table 1.

The distribution of positive and negative VL cases in the 

different hospitals in Turkana County is illustrated Figure 2. 

The majority of positive VL cases were reported at the County 

Referral Hospital (350 cases), followed by the Namoruputh PAG 

Health Center (71 cases), Kakuma Mission Hospital (44 cases), 

and the International Rescue Committee (IRC) Hospital (35 

cases). The number of negative cases of VL was the most 

frequent in the Turkana County Referral Hospital (266 cases), 

the Namoruputh PAG Health Center (114 cases), IRC Hospital 

(51 cases), and the Loping Sub-County Hospital (43 cases).

The distribution of positive VL cases over different months 

throughout the study period is shown in Figure 3. The trend 

shows variation in monthly case reports, with the highest 

3-month peaks observed in September 2019 (52 cases), April 

2020 (45 cases), and January 2020 (43 cases). The 3 months 

with low VL case numbers were in February 2019 (4 cases), 

December 2020 (6 cases), and January 2019 (8 cases).

FIGURE 1 

Steps involved in (a) raw data collection of respective variables and (b) data pre-processing. At the end of the data pre-processing step, the data was 

analysis-ready.
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2.4 Modelling

Figure 4 explains the phases of model implementation for both 

machine learning and statistical models. During the 

implementation process, the pre-processed dataset (from Section 

2.3) was scaled using the Z-score, stated in Equation 1. In the 

equation, z, x, m, and s denote the Z-score, the raw score, the 

mean of the data, and the standard deviation of the data, 

respectively. After scaling the data, it was randomized and split 

into train (80%) and test sets (20%). Splitting the data allowed 

the models to learn from a representative portion (train set) of 

the data, while the test set (unseen) was used for performance 

assessment.

z ¼
x � m

s
(1) 

2.4.1 Machine learning modelling
The machine algorithms can determine the most important 

and relevant drivers/variables (41–45). Considering the 8-month 

lagged dataset, we implemented several machine learning 

classification algorithms to identify the optimal lag and predict 

other possible areas where VL could occur. The machine 

learning algorithms were RF, AdaBoost, DT, SVM, logistic 

regression, and extra trees. The Sklearn (46) library in Python 

was used to implement machine learning algorithms. We note 

that the geo-location (latitude and longitude) was not used in 

training the algorithms, but the prediction results were 

associated with the geo-location and mapped.

i. Random forest classifier: The RF classifier is a machine learning 

algorithm that uses the bagging approach to generate multiple 

decision trees. The class voted for by the majority of each tree is 

taken as the final predicted class (47). The probability of the 

trees making the final prediction is represented in Equation 

2. In the equation, y represents the label of the class for 

which the probability is estimated, T is the total number of 

trees, and Pi(y) denotes the probability assigned to the class y 

by the ith tree.

RF(y) ¼
1

T

X

T

i¼1

Pi(y) (2) 

ii. Support vector machine classifier: The SVM classifier is a 

supervised machine learning algorithm that identifies the 

optimal hyperplane in a high-dimensional space to separate 

the classes in a dataset (48). When training a dataset, new 

points are classified based on their positions relative to the 

hyperplane (49). The SVM decision function is described in 

Equation 3. In the equation, ai are the coefficients (Lagrange 

multipliers), yi are the class labels, K(x, xi) is the kernel 

FIGURE 2 

Distribution of positive and negative cases in hospitals. Map from: 

https://dudumapper.icipe.org/, licensed under MIT License.

TABLE 1 A list and description of analysis data variables.

Item Variable Description

1 Gender The sex (male or female) of the patient.

2 Age Age of the individual

3 Latitude Geographic latitude coordinate

4 Longitude Geographic longitude coordinate

5 Distance to water 

bodies

Euclidean distance from the patients’ villages to 

the nearest water source in kilometers (km)

6 Population density Number of people per square km

7 Mean temperature Average monthly temperature in degrees Celsius

8 Minimum 

temperature

Average monthly lowest recorded temperature in 

degrees Celsius

9 Maximum 

temperature

Average monthly highest recorded temperature in 

degrees Celsius

10 Mean humidity Average monthly humidity percentage%

11 Total monthly 

precipitation

Average monthly total rainfall in millimeters

12 Distance to 

healthcare

Euclidean distance from the patients’ villages to 

the nearest healthcare facility in km

13 Elevation Height above sea level in meters

14 Soil type Classification of soil at each patient village

15 Land use land cover 

(LULC)

Classification of a geographic area based on 

human activities, physical and natural features

16 Tasseled cap Constitutes of greenness (which measures 

vegetation health and density), brightness (which 

measures the re�ectance of the soil), and wetness 

(which measures moisture content in vegetation 

and soil)

17 Forest height The average forest’s vertical structures at a radius 

of 5 km from the patients’ village

18 VL test results Results of Rapid Diagnostic Test (RDT) using the 

rk39 antigen or Direct Agglutination Test (DAT). 

These are tests that detect whether the patient was 

infected with VL or not.
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function, x is the test data point, xi is any support vector, and b 

is the bias term.

SVM(x) ¼ sign
X

n

i¼1

aiyiK(x, xi) þ b

 !

(3) 

iii. AdaBoost classifier: AdaBoost is a supervised machine 

learning algorithm that works by combining multiple weak 

classifiers into a stronger classifier. Initially, the algorithm 

assigns all data points the same weight. A weak classifier is 

trained on the dataset, and its errors are identified. 

Misclassified points are assigned higher weights to give 

FIGURE 3 

The count of VL positive cases across different months.

FIGURE 4 

A workflow showing the data preparation and learning processes.
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them more importance in the next iteration. The process is 

repeated with multiple weak classifiers, and their outputs 

are combined by weighted voting to create a strong final 

model (50). Mathematically, AdaBoost is represented as 

Equations 4, 5 where at is the weight assigned to the 

classifier t, E is the error rate of the weak classifier, ht(x) is 

the output of the weak classifier t for input x.

at ¼ 0:5 ln
1 � E

E

� �

(4) 

H(x) ¼ sign
X

T

t¼1

atht(x)

 !

(5) 

iv. Logistic regression: Logistic regression is a supervised 

classification learning algorithm that transforms the 

response variables into a probability using the sigmoid 

function and converts the target/outcome variable into 0 

or 1. Logistic regression estimates how a change in an 

independent variable affects the log odds of the predicted 

class, holding other variables constant. Ultimately, this 

model finds an optimal set of weights by minimizing the 

negative log-likelihood (51). Mathematically, logistic 

regression is expressed as Equation 6. In Equation 6, p(x) is 

the probability that Y ¼ 1 given X, ln p(x)
1�p(x)

� �

is the logit 

function that transforms the probability into an unbounded 

value.

logit(p(x)) ¼ ln
p(x)

1 � p(x)

� �

¼ b0 þ b1x1 þ . . .þ bpxp (6) 

v. Extra trees: The extra trees is a supervised learning algorithm. 

Like RF, this algorithm predicts by combining decisions from 

multiple trees. Extra trees work by generating random splits 

without looking for an optimal threshold, which the random 

forest does with bootstrapping sampling. This algorithm uses 

the entire dataset for each tree and then selects random 

splits to maintain randomization (52).

2.4.2 Statistical modelling
Spatial autocorrelation test: This study used spatial 

autocorrelation to measure the similarity or dissimilarity of a 

spatially mapped variable. Spatial autocorrelation can be positive 

or negative. Positive spatial autocorrelation indicates that similar 

values are closer together (i.e., clustered), while negative spatial 

autocorrelation indicates that dissimilar values are dispersed and 

not clustered. The global Moran’s I statistic measures the overall 

spatial autocorrelation of a variable throughout a study area. 

This study used this statistic to assess whether VL occurrence 

(i.e., positive and negative cases) exhibited spatial clustering 

or dispersion.

Collinearity test: The correlation coefficient (r) between the 

variables was also calculated to reduce the redundancy problem 

that could arise due to collinearity. Redundancy makes it 

challenging for the model to isolate the individual effect of each 

predictor, leading to unstable coefficient estimates, and, in some 

cases, the “not available” (NA) error occurs. Furthermore, 

collinearity in variables presents a challenge to model 

interpretability, especially when trying to determine the 

importance of each correlated variable. In this study, one of the 

two highly collinear variables with an r of +0.7 was dropped 

from the study.

Considering the assumption of spatial autocorrelation and 

collinearity test, the following statistical models were selected:

i. Spatial logistic regression: The logistic regression model 

calculates the relationship between the independent variables 

and the probability of a categorical outcome by transforming 

the odds into logarithmic odds. Coefficients are estimated 

using maximum likelihood estimation, which iteratively 

identifies the optimal fit by maximizing the log-likelihood 

function. Once the optimal coefficients are determined, the 

conditional probabilities are calculated to predict the 

outcome variable. Spatial logistic regression extends this 

approach by incorporating spatial effects through a 

covariance function to account for spatial dependencies (53). 

In this study, spatial logistic regression was used to assess the 

relationship between covariates and the probability of the 

occurrence of VL while accounting for spatial autocorrelation 

in the data. This was implemented in the spaMM package 

version 4.5.0 in the R statistical software. The spatial logistic 

equation is defined in Equation 7; where log P(Yi¼1)
1�P(Yi¼1)

� �

is the 

logit (log-odds) of the binary outcome, b1, . . . , bk are fixed 

effect coefficients, b0 is the intercept, x1i, . . . , xki are the 

independent variables (predictors) for the observation i, gi is 

the random effect for the monthly variation, b1, . . . , bk are 

the coefficients for the corresponding predictors, and S(xi) 

the spatial random effect which captures the spatial 

correlation in the data.

log
P(Yi ¼ 1)

1 � P(Yi ¼ 1)

� �

¼ b0 þ b1x1i þ b2x2i þ � � � þ bkxki

þ gi þ S(xi) (7) 

ii. Bayesian spatial model: The Bayesian spatial model integrates 

spatial correlation into data analysis across geographical 

regions, making it particularly effective for data exhibiting 

spatial dependence, where nearby locations share similar 

outcomes due to unobserved factors. Bayesian inference 

estimates posterior distributions by updating prior 

distributions with observed data. While Markov Chain 

Monte Carlo (MCMC) methods have traditionally been used 

for this purpose, they can be computationally intensive, 

especially in high-dimensional parameter spaces like spatial 

data analysis, due to long burn-in periods and the need for 

subsampling to ensure convergence. More efficient methods, 

such as integrated nested Laplace approximations (INLA) 

and stochastic partial differential equation (SPDE) 

approaches, have emerged to address these limitations. 
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INLA, in particular, provides a computationally efficient 

alternative for latent Gaussian models, improving the 

feasibility and speed of model fitting in complex high- 

dimensional analyses (54). The INLA and SPDE approaches 

were implemented in the R-INLA package version 24.06.27 

in R statistical software. The Bayesian spatial model is 

defined in Equation 8; where yi is the response variable for 

the i-th observation, b0 is the intercept, 
PM

m¼1 [bmXm,i] 

represents the sum of covariates Xm,i multiplied by their 

respective coefficients bm, S(xi) is the spatial random effect 

associated with location si, and gi is the random effect for 

the monthly variation.

yi ¼ b0 þ

X

M

m¼1

bmXm,i þ S(xi) þ gi (8) 

2.5 Performance evaluation and model 
tuning

At different lags, the performance of the models (statistical 

and machine learning) was evaluated using the accuracy, 

precision, recall, F1 score, and the area under the curve of the 

receiver operating characteristic curve (AUC-ROC). Accuracy 

was measured by the proportion of correctly classified VL cases 

out of all cases. Precision measured how many of the predicted 

positive VL cases were positive. Recall measured how well the 

model identified actual positive VL cases. F1-score was the 

harmonic mean of precision and recall, which balanced the 

trade-off between false positives and false negatives in VL cases. 

The AUC curve evaluated the model’s ability to distinguish 

between classes by plotting the true positive rate (Recall) against 

the false positive rate (FPR) at various threshold values, with the 

AUC representing the model’s overall discrimination power. The 

FPR was the proportion of all actual negative VL cases that were 

incorrectly classified as positive VL cases.

The AUC metric is widely considered a more robust and reliable 

evaluation metric compared to accuracy, recall, precision, and 

F1-score. AUC evaluates the discriminative ability of the model 

across all possible thresholds, accounting for true positive and false 

positive rates (55, 56). Moreover, AUC incorporates both sensitivity 

and specificity across multiple thresholds, offering a more 

comprehensive assessment (57). AUC is advantageous compared to 

the other metrics (accuracy, recall, precision, and F1-score) in that it 

is threshold independent, robust to class imbalance, and capable of 

revealing subtle but statistically significant differences when 

comparing the performance of various models that other metrics 

may overlook (55, 56). Therefore, this research relied on AUC as 

the primary performance evaluation metric.

The statistical models we tuned while setting them up, as 

stated in Section 2.4.2. For the case of machine learning models 

(discussed in Section 2.4.1), their hyper-parameters were tuned 

using the grid search method (from the Scikit-learn library). 

The grid search was implemented to perform an exhaustive 

search and identify the possible combination of hyper- 

parameters that gave the best AUC score from the pre-defined 

list of hype-parameter ranges defined in Table 2.

Thereafter, all (statistical and machine learning) models were 

rigorously tested on unseen datasets using cross-validation 

(from the Scikit-learn library). In the cross-validation 

implementation, the data was divided 5 times (that is, k ¼ 5 

folds) without shuf�ing; the model was trained with one fold 

and evaluated with the remaining unseen folds (validation). As 

shown in Figure 5, each model was trained using k � 1 of the 

five folds as training data, and then the resulting model was 

validated on the remaining (unseen) part of the dataset that was 

used as a test set, where the AUC was calculated to measure the 

performance of the model. Subsequently, the AUC scores were 

averaged. Lastly, for each model, the highest AUC score was 

recorded across the lagged datasets, and the subsequent lagged 

month value (0 to 8) was also recorded. The model with the 

highest AUC value across all models was selected to generate 

the epidemiological risk map; Section 2.6. Afterward, important 

features were drawn and discussed; Section 2.7. The less 

competitive models were ignored.

2.6 Risk map generation

This research generated the December 2024 epidemiological 

risk map using the model that performed best. Taking into 

account the lag in the dataset (created in Section 2.2) that gave 

the best performance, the best performing model (from those 

trained in Section 2.4) generated the (positive) probability 

output of each observation (in view of some of the variables in 

Table 1) in the month before (considering the optimal value of 

the lag month) December 2024. The probabilistic outputs 

(predictions) were associated with the geo-location of the 

record. This provided a future (considering the identified lag 

month of the model) assessment of a possible VL risk across the 

Turkana region. The future predictions, along with their 

geo-locations, were stored and used to create a continuous 

TABLE 2 Hyper-parameters search ranges of the different machine 
learning models implemented.

Machine 
classifier

Parameter Grid search 
range

Random forest The number of trees 

(n_estimators)

[10, 20, 40, 80, 160, 

320, 640]

The maximum depth of the tree 

(max_depth)

[None, 5, 10, 15, 20]

Support vector 

classifier

Regularization parameter (C) [0.5, 1, 1.5]

Kernel type [radial basis function, 

sigmoid]

AdaBoost The number of trees 

(n_estimators)

[10, 20, 40, 80, 160, 

320, 640]

learning_rate [0.1, 0.2, 0.3, 0.4, 0.5]

Logistic regression Inverse of regularization strength 

(C)

[0.5, 1, 1.5]

Extra trees The number of trees 

(n_estimators)

[10, 20, 40, 80, 160, 

320, 640]

The maximum depth of the tree 

(max_depth)

[None, 5, 10, 15, 20]
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spatial map using the inverse distance weighting (idw) 

interpolation function. The Turkana shapefile was also loaded 

into the R or Python programming environment to define the 

area of interest. Using this shape file, a resolution of 1 km was 

defined to create an empty raster that served as the surface of 

interpolation for the output. The idw() function was used to 

interpolate the infection probabilities to make them continuous 

on the raster grid. The resulting interpolated grid raster was 

then saved as a Tag Image File Format (TIFF) and then loaded 

into the Quantum Geographic Information System (QGIS) to 

generate the lagged risk map for December 2024.

2.7 Explainability and interpretation of the 
model

The SHapley Additive exPlanations (SHAP) were used to 

interpret the performance of the best model. Based on game 

theory, SHAP quantifies the contribution of each feature to the 

final prediction, which is similar to how the impact of a player 

is assessed in a cooperative game (58). In this study, considering 

the best-performing model, SHAP values were used to explain 

how individual features in�uenced the outcome (predicted) 

variables. This interpreted and explained the relative importance 

of different features and revealed the magnitude/interactions of 

their values to inform the outcome/response variable.

3 Results

3.1 Performance scores

3.1.1 Statistical models

i. Spatial autocorrelation score: The global Moran’s I statistics 

indicate positive spatial autocorrelation for infections across 

the study area as well as in the residuals of the logistic 

model. The global Moran’s I for infections gave a statistic of 

0.0710, and a P-value of 0.0. In contrast, the global Moran’s 

I test applied to the residuals of the logistic regression 

produced a statistic of 0.0572 and a P-value of 0.0007.

ii. Collinearity scores: There was a high correlation (r + 0.7) 

among maximum temperature, mean temperature, minimum 

temperature, and the elevation. The maximum temperature 

was retained, and the others were excluded from the analysis. 

Therefore, the variable fed into the spatial models was 

infections (i.e., both positive and negative) as the outcome/ 

target/dependent variable, and the independent/feature 

variables were sex, age groups, proximity to healthcare, 

population density, canopy height, maximum temperature, 

mean humidity, total precipitation, and distance to water 

bodies. Spatial autocorrelation was factored into the models 

by adding a spatial covariate function. The month of infection 

was also included in the models as a random effect to account 

for the monthly variability of the disease.

iii. Evaluation scores: The Bayesian spatial model and the spatial 

logistic model were trained and tested, and the results were 

recorded as shown in Table 3.

The Bayesian spatial model and the spatial logistic regression 

model recorded an AUC of 67.3% and 68.4%, respectively. 

Moreover, the Bayesian spatial model recorded an accuracy, 

precision, recall, and F1-score of 60.6%, 67.7%, 29.9%, and 

41.3%. The spatial logistic regression recorded an accuracy, 

precision, recall, and F1-score of 64.4%, 63.3%, 57.0%, and 

59.8%. Both models recorded their highest AUC scores at lag 

5. Considering AUC, the spatial logistic model performed better 

compared to the Bayesian spatial model. The same model also 

performed considerably well on accuracy, recall, and F1-score.

3.1.2 Machine learning models
The performance of the five machine learning models is 

presented in Table 3. Considering AUC, all the models recorded 

their highest scores at lag 3. From the five models, the AdaBoost 

model recorded the best AUC score of 71.2%. The AdaBoost 

accuracy, precision, recall, and F1-score deviated minimally 

compared to the extra trees, which had the highest scores. 

FIGURE 5 

An illustration of the cross-validation strategy with 5 folds while being evaluated using area under the curve performance metrics.
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Generally, across the statistical and machine learning models, the 

AdaBoost algorithm gave the highest AUC performance score. The 

algorithm was then used to generate epidemiological risk maps as 

explained in the following section. The other models were ignored, 

since they recorded a relatively low AUC performance.

3.2 Risk map generation and ground 
truthing—the AdaBoost model

As discussed in the previous section, ideally, the AdaBoost 

machine learning model identified an optimal lag (incubation 

period) of 3 months to predict the surge (increase in) VL cases 

in hospitals in Turkana County. The 3-month period could be 

the optimal lead time for decision-making and preparations 

against VL. To predict future scenarios with the identified 

3-month lead time, this research generated a December 2024 VL 

epidemiological risk map, shown in Figure 6. Taking into 

account the optimal 3-month lag prior to December 2024, the 

AdaBoost model was ingested with variables in October 2024 

(mainly environmental and demographic), namely, minimum 

temperature, elevation, greenness, wetness, brightness, soil type, 

mean temperature, maximum temperature, population density, 

LULC, forest height, distance from water bodies, humidity, and 

precipitation; the data were collected and cleaned using the data 

protocol described in Sections 2.2, 2.3. Patient data (mainly age 

and sex) were not considered, since realistically this cannot be 

known in the future. The risk map was deployed on a web 

application (https://dudumapper.icipe.org/). We note that the 

December 2024 positive VL cases from the 12 treatment centers 

in Turkana County were overlayed on the map to ground-truth 

(validate) the model. The model identified some points in the 

relative mid- to high-risk zone, above the 0.4 suitability bands.

3.3 Explainability and interpretation—the 
AdaBoost model

The SHAP summary plot, in Figure 7, provides a detailed 

instance-level interpretation of how different features in�uenced 

the occurrence of VL. The red or blue points in the plot 

represent atomic observations/values. The color gradient, which 

varies from blue to red, represents the actual values of each 

feature. Blue signifies low feature values, while red represents 

high values. The x-axis shows the SHAP value, which indicates 

the impact of a given feature on the model’s output. A positive 

SHAP value means that the feature increases the likelihood of 

VL occurrence, whereas a negative SHAP value suggests a 

TABLE 3 Area under the curve and confusion metrics percentage performance metrics scores of statistical and machine learning models.

Category Model ROC 
percentage 

score

Confusion matrix percentage scores

AUC Best lag Accuracy Precision Recall F1-score Best lag

(a) Statistical models (i) Bayesian Spatial 67.3 5 60.6 67.7 29.9 41.3 8

(ii) Spatial logistic 68.4 5 64.4 63.3 57.0 59.8 5

(b) Machine learning (i) Random forest 66.6 3 63.9 64.4 63.9 63.5 4

(ii) Support vector classifier 68.7 3 64.0 65.3 64.0 62.9 4

(iii) AdaBoost 71.2 3 67.0 67.4 67.0 66.7 4

(iv) Logistic regression 66.6 3 63.6 64.5 63.6 62.7 4

(v) Extra trees 70.1 3 67.4 68.3 67.4 66.9 4

In bold is the best performing model and the best performance metrics values of respective models.

FIGURE 6 

The predicted December 2024 Turkana County. Different colors on 

the map highlight different types of risk for the areas. The December 

2024 visceral leishmaniasis cases from the same region were 

overlaid (the red points/markers) to ground truth the model. Map 

from: https://dudumapper.icipe.org/, licensed under MIT License.
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reduced likelihood. The y-axis lists the features in descending 

order of importance, which implies that the features at the top 

had the greatest in�uence on the model predictions and were 

equally of greater importance as VL drivers. A SHAP summary 

plot of the AdaBoost model was generated as shown in Figure 7. 

In descending order, the AdaBoost model informs us that the 

following variables (top 9) were important (significant drivers) 

for VL, namely, age (mixture of positive and negative SHAP 

values), distance to healthcare (negative SHAP values), mean 

humidity (mixture of positive and negative SHAP values), 

greenness (positive SHAP values), total precipitation (negative 

SHAP values), sex (male) (positive SHAP values), maximum 

temperature (negative SHAP values), minimum temperature 

(negative SHAP values), and brightness (positive SHAP values).

The SHAP feature importance plot, in Figure 8, illustrates a 

global assessment of the relative contribution of each feature to 

the model output. In contrast to the SHAP summary plot, 

which illustrates the impact of feature values at the individual 

observation level, this bar plot aggregates the absolute SHAP 

values across all observations and ranks features based on their 

overall in�uence. The x-axis represents the mean SHAP value, 

quantifying the average contribution of each feature to the 

occurrence of VL, while the y-axis displays the features in 

descending order of importance.

4 Discussion

Lodwar County Referral Hospital recorded the highest 

number of positive VL cases. It is the largest hospital in 

Turkana County and experiences an in�ux of patients from 

other hospitals in the county (59). The WHO strategic 

framework for the elimination of VL, (3), notes that Turkana 

County experiences many transnational cases of VL that are 

diagnosed and treated in Turkana hospitals. For instance, 

Namoruputh PAG Health Centre, Lopiding Sub-County 

Hospital, Kakuma Mission Hospitals, and Kaikor Sub-County 

Hospital treat patients from Uganda, South Sudan, and 

Ethiopia, respectively.

The AUC performance metric was used to test a model’s 

ability to discriminate positive compared to negative cases, 

which was the main aim of this research. Therefore, considering 

the AUC, the AdaBoost was the best-performing model. The 

model was then used to generate the future epidemiological risk 

of VL in Turkana County. The other models were ignored, as 

they provided lower AUC scores. The AdaBoost model 

identified a 3-month lag (incubation) period, that is, the time a 

patient could fall sick and go to the hospital after being infected 

with VL. The 3-month period is within the disease incubation 

period (0 to 8 months) as identified by (39, 40). Based on 

weather and ecological variables for October 2024, the model 

generated the epidemiological risk map for December 2024. The 

resulting risk map can be accessed on the interactive 

DuduMapper platform (https://dudumapper.icipe.org/). The 

map illustrates the epidemiological risk levels predicted for VL 

in Turkana County for December 2024. In the map, areas with 

a predicted probability greater than 0.4 were classified as mid- 

to high-risk zones for VL cases. However, the other regions 

show potential for VL surge, though at a minimal level. Notably, 

the AdaBoost model identified several such regions, including 

areas adjacent to Lake Turkana, the Kerio Delta region, sections 

in Lokori in Turkana East, and some parts of north Turkana 

West. These identified areas align with environmental and 

socio-ecological conditions conducive to VL transmission. As 

highlighted by (60–64), proximity to water bodies supports 

FIGURE 7 

The AdaBoost summary plot showing the order of variable 

importance and directionality.

FIGURE 8 

The AdaBoost feature importance summary and the contribution of 

each variable to the model.
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socio-economic activities such as bathing, fishing, and irrigation, 

which increase human-vector contact. In addition, such 

environments maintain soil moisture and provide resting 

habitats essential for the development and survival of sand�ies, 

the primary vectors of VL.

SHAP analysis drawn by the AdaBoost model trained on the 

lag 3 dataset indicated that the most important variables in 

descending order were age, distance to healthcare, mean 

humidity, greenness, total precipitation, sex (male), maximum 

temperature, minimum temperature, and brightness. Maximum 

and minimum temperatures were associated with an increase in 

infections in Turkana County. Temperature is crucial in the 

transmission dynamics of VL, as it reduces the time required for 

vector development while enhancing biting rate, vector capacity, 

and parasite replication within the vector (65). Previous studies 

carried out in India, Greece, China, Ethiopia, Sudan, and Brazil 

have shown a positive association between temperature and VL 

transmission (9, 11, 66, 67). In the Gangetic Plain, India, a 

temperature range from 25 �C and 27 �C was found to be the 

most ideal for VL transmission (66). In Kashi prefecture, China 

temperature ranges between 21 �C and 28 �C, positively 

associated with VL (9). In Ethiopia, annual temperatures 

ranging from 20 �C and 37 �C were found to be a significant 

predictor of VL in the country (67).

In Southeast Asia, a range of temperatures between 15 and 38 

degrees Celsius was found to alter vegetation and human-vector 

interaction, thus in�uencing the spread of disease in the area (68).

Total precipitation has a significant effect on the presence and 

absence of VL vectors that transmit visceral leishmaniasis. Several 

studies have documented the mixed effects caused by total 

precipitation (15, 65, 69, 70). On the other hand, total 

precipitation can create ideal soil moisture and therefore 

facilitate an ideal breeding environment for sand�ies (15, 65). 

The aftermath of rain is associated with the growth of woody 

plants over time (including fast-growing invasive woody species) 

along swamps and seasonal riverbeds. These plants often 

provide shade for herders during the dry season. Plants also 

cause fissures and crevices that form humid environments in 

which sand�ies can hide and also breed (15). Consequently, 

there is an increased interaction between humans and sand�ies 

along riverbeds and swamps, increasing the risk of VL 

transmission. Too much rainfall is also associated with vector 

expansion in new areas, as seasonal water paths can carry 

sand�y larvae from endemic areas to non-endemic areas (15). In 

Brazil, heavy rain has been associated with �ooding, sewage 

over�ows, and trash accumulation in urban areas (70). These 

poor sanitary conditions provide sand�ies with the necessary 

nutrients for larval development and therefore have been 

associated with VL outbreaks in urban areas (70). However, too 

much rain can destroy immature eggs from sand�ies and 

disrupt the life cycle of the vector, �ying, and resting capacity, 

all of which can lead to a reduction in VL transmission (65, 69).

Approximately 75% of all cases occur in individuals under 19 

years of age, suggesting important implications for vector behavior 

and transmission dynamics. These findings align with previous 

research, which consistently reports that VL affects primarily 

younger populations (20, 71–73). In 2022, the WHO highlighted 

that 66% of all VL cases are concentrated in eastern Africa, half 

of which were observed in children under 15 years of age. 

A study carried out in the Amhara region in Ethiopia found 

that children under 15 years of age were 3.3 times more likely 

to be infected with the disease compared to adults (74). Factors 

contributing to VL infection among children can vary between 

different societies. However, immature immune response and 

malnutrition are some of the key factors driving VL infections 

among children (20, 71–73). In some communities, such as 

Ethiopia, children are responsible for herding, which predisposes 

them to areas that are vector-infested, increasing their exposure 

to VL (71). Children playing outside, especially in areas endemic 

to VL, are also at increased risk of getting infected. In addition, 

children who live with large families also have an increased risk 

of infection (21).

In this study, the male gender was an important feature that 

increased the likelihood of VL infection. Previous studies show 

that being male is associated with an increased risk of infection 

(21, 74–76). A study in Ethiopia pointed out that males were 

67% more likely to be infected with VL than females (75). 

Another study in Amhara, Ethiopia, established that males were 

4.6 times more likely to be infected with the disease compared 

to females (74). A study conducted in India and Nepal 

determined that men were 2.4 times more likely to have VL 

compared to women. The increased risk for men can be 

attributed to outdoor activities such as herding, farming, and 

sleeping outside, increasing their risk of exposure to sand�y 

bites (21). Furthermore, volatile profiles of males and females 

need further elucidation as a possible explanation for the 

attraction of sand�ies to a blood meal varies between sexes (77).

Relative humidity plays an important role in the multiplication 

of the leishmania parasite in sand�ies. It in�uences the 

development of larvae, the gonotrophic cycle, the longevity, and 

the duration of the extrinsic cycle of sand�ies (78). In addition, 

relative humidity also in�uences the development and survival 

of eggs until the dormancy stage of the sand�ies (79, 80). How 

relative humidity affects VL transmission is dependent on 

geographic location and its relationship with rainfall and 

temperature. This is because the combined effects of rainfall, 

evaporation, and temperature regulate ambient air humidity, 

which in turn in�uences the survival and activity of sand�ies 

(78). Valero et al. (81) in São Paulo, Brazil, determined that 

relative humidity was dependent on the amount of precipitation, 

and an increase in the amount of rain led to an increase in 

relative humidity and subsequently in vector abundance and VL 

occurrence. Studies by (9) established that relative humidity was 

associated with temperature. An increase in temperature was 

associated with a decrease in relative humidity and ultimately an 

increase in the number of VL occurrences.

From an Earth observation perspective, the greenness 

component of the tasseled cap transformation in remote sensing 

is associated with low to high values of the greenness of 

vegetation, while the brightness component is associated with 

providing insights into bare/partially covered soil, man-made 

and natural features such as asphalt, concrete, rock outcrops, 
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gravel, and other bare areas (82). The SHAP results in this 

investigation indicated low values of greenness (low density of 

vegetation) and moderate brightness (bare soils). This is a 

characteristic of semi-arid regions such as Turkana County. 

Martín et al. (83) noted that vegetation (such as tree cover, 

grassland, and scrubland) provides a conducive habitat for 

vectors and rodent hosts. Scrublands and grasslands provide a 

conducive environment for sand�ies due to a combination of 

vector ecological factors. Areas with vegetation coverage, such as 

those with herbaceous plants and shrubs, offer favorable 

conditions for the development of sand�ies. These environments 

tend to accumulate organic matter and litter, providing breeding 

sites for immature sand�ies, while nectar sources support adult 

sand�ies. In addition, acacia trees offer an attractive food source 

(84) and a resting place (85) for sand�ies. Grassland vegetation 

in�uences human herding patterns and movement, which can 

further increase the risk of exposure (7).

World Health Organization (3) noted that access to VL diagnosis 

and treatment centers is challenging, such that patients have to travel 

a considerable distance to access a VL diagnosis and treatment 

center, and some patients may die of VL complications before 

getting to the healthcare facilities. Turkana County has a vast 

semi-arid land mass. The region is marginalized, underserved, and 

has poor road infrastructure (34). Ideally, the diagnosis and 

treatment centers in that region are not sufficient to serve the 

population. This leads to insufficient access to VL health care. 

Patients infected with VL travel a long distance to seek treatment. 

In the presence of a female Phlebotomus sand�y, sick patients pose 

a risk of transmission of the disease in the population.

5 Conclusion

Epidemiological, ecological, and environmental factors are 

multi-factorial risk drivers in the transmission dynamics of 

visceral leishmaniasis. Understanding the major determinants, the 

incubation period, and areas of high/low risk can be valuable to 

stakeholders in effective disease prevention and control. In this 

research, the AdaBoost machine learning classifier emerged as the 

best-performing model. It identified a lag time of 3 months 

between patient infection and when they seek treatment. The 

model also identified mean temperature, total precipitation, 

distance to healthcare, age, mean humidity, sex (male), and land 

use land cover (LULC) as the most in�uential predictors of 

visceral leishmaniasis (VL) transmission. A future epidemiological 

map (that is, October 2024) was generated from the AdaBoost 

model from the December 2024 weather and environmental 

conditions and deployed on a web application—https:// 

dudumapper.icipe.org/. In the application, registered users receive 

early warning emails of possible future risks of VL. With the 

3-month lead, it is anticipated that the early warning system will 

provide valuable insights into early preparedness. These 

approaches provide an intelligent and resource-effective route to 

identify the disease incubation period and high-risk areas and 

implement specific interventions in a timely and cost-effective 

manner, compared to manual vector and disease surveillance 

strategies, mainly trapping vectors and disease diagnosis and 

treatment. However, future studies can consider the integration of 

socio-economic variables, vector data, and possibly other spatial 

models for long-term monitoring of VL risk factors. Also, the 

models and data can be optimized since we found that soil type 

and population density were ranked as less important; this 

contradicts the understanding of the domain expert and can be 

further investigated. However, these intelligent and dynamic 

approaches can provide timely and cost-effective data-driven 

insights to various stakeholders, such as the Kenya Ministry of 

Health, the International Center for Insect Physiology and 

Ecology, and the Kenya Medical Research Institute. These can be 

invaluable insights in the preparation, control, and elimination of 

VL in disadvantaged and marginalized rural communities in 

Turkana County in Kenya and beyond, and the building of 

resilience against VL.
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