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Digital mental health interventions (DMHIs) have become increasingly 

prominent as scalable solutions to address global mental health needs. 

However, many existing tools lack the emotional sensitivity required to foster 

meaningful engagement and therapeutic effectiveness. Affective computing, 

a field focused on designing systems capable of detecting and responding to 

human emotions, offers promising advancements to the emotional 

responsiveness of these digital interventions. This narrative review examines 

how affective computing methods such as emotion recognition, sentiment 

analysis, emotion synthesis, and audiovisual and physiological signal 

processing, are being integrated into DMHIs to enhance user engagement 

and improve clinical outcomes. The findings suggest that emotionally 

adaptive systems can strengthen user engagement, simulate empathy, and 

support more personalized care. Early studies indicate potential benefits in 

terms of symptom reduction and user satisfaction, though clinical validation 

remains limited. Challenges such as algorithmic bias, privacy concerns, and 

the need for ethical design frameworks continue to shape the development 

of this emerging field. By synthesizing current trends, technological 

advancements, and ethical considerations, this review highlights the potential 

of affective computing in digital mental health and identifies key directions 

for future research and implementation.
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1 Introduction

Affective computing, which is considered as the development of computational 

systems that detect, interpret, and respond to human emotions (1), has rapidly 

advanced digital mental health (2–4). Emotion-aware technologies are increasingly 

used to personalize care, enhance engagement, and improve outcomes across 

psychological conditions. Digital mental health interventions (DMHIs), which 

encompass technology-based tools such as mobile apps, wearable sensors, and 

conversational agents, aim to assess, monitor, or treat mental health disorders (5, 6). 

When integrated with affective computing, these systems gain the ability to 

dynamically adjust to users’ emotional states, offering more responsive and 
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individualized support (7). From stress-sensing wearables (8) to 

sentiment-aware chatbots (9), this fusion reshapes human– 

technology interaction, particularly in clinical contexts where 

emotional understanding is critical to therapeutic success.

Despite its growing importance, comprehensive reviews 

focused specifically on affective computing within digital mental 

health remain scarce. Existing literature tends to either survey 

affective computing broadly without focusing on psychological 

interventions (10–12), or examine DMHIs without considering 

the application or the underlying mechanisms of affective 

computing (13–15). As a result, the unique opportunities, 

challenges, and ethical implications of integrating affective 

computing into mental health care remain underexplored.

This narrative review addresses that gap by critically 

examining emotionally responsive DMHIs—systems that extend 

beyond emotion detection to adapt their behavior in real time 

based on users’ affective states. We present several use-cases 

targeted directly at patients, but also at supporting clinicians. 

The focus is on monitoring systems and AI-driven chatbots, 

while evaluating their technical foundations, clinical evaluation, 

and level of emotional reactivity.

By centering on emotionally adaptive systems, we aim to 

bridge the gap between computational emotion modeling and 

the practical realities of digital mental health care. We also 

highlight ethical considerations, including transparency, 

emotional manipulation, privacy, and cultural validity. 

Ultimately, this review offers an interdisciplinary roadmap for 

researchers and clinicians seeking to responsibly apply affective 

computing to improve digital mental health outcomes.

2 Methods

To investigate annual publication trends and describe the 

growth of research at the intersection of affective computing 

and mental health, a structured literature search was conducted 

using the Web of Science Core Collection and Scopus databases; 

with 2,106 and 3,353 results respectively. Query terms were 

applied to titles, abstracts, and keywords. The search period 

spans from 1997, when Rosalind Picard first introduced the 

term affective computing (1), to the end of 2024. To focus on 

computational models designed to train machines in emotion 

recognition, rather than on studies aimed at understanding 

human emotion recognition abilities, we restricted the subject 

areas to Computer Science and Engineering. Duplicate records 

(2,569) were identified and removed using the systematic review 

tool Rayyan (16). The search strategy is summarized in Table 1.

3 Background

To highlight the growing applicability and scientific interest in 

affective computing within digital mental health, a comprehensive 

overview of its evolution is provided, followed by an examination 

of its key components: emotion modeling, sensing, and 

adaptation. This foundation offers the necessary context for 

understanding current challenges and emerging trends in 

affective computing-based technologies for DMHIs.

3.1 The evolution of affective computing in 
digital mental health

To provide an illustrative overview of the rapidly increasing 

trend in annual scientific production concerning affective 

computing and mental health, the progression of publications is 

shown in Figure 1. Prior to 2010, the number of publications 

was sparse, reAecting the early theoretical phase of affective 

computing, which had yet to find concrete applications in 

mental health. This first stage (1997–2010) was summarized by 

Picard’s seminal work, which formally defined affective 

computing as the study of systems capable of recognizing, 

interpreting, expressing, and regulating human emotions (1). 

During this phase, research focused primarily on human– 

computer interaction, with Ekman’s theory of six basic emotions 

(17) serving as the primary labeling framework. Early studies 

explored various overt modalities: Lyons et al. (18) applied 

Gabor wavelets to facial image analysis; Schuller et al. (19) 

employed prosodic and acoustic features to classify speech-based 

emotion; and Pang et al. (20) introduced machine learning for 

sentiment polarity detection in textual film reviews to give but a 

few examples. The Kismet robot developed at the MIT Media 

Lab (21) integrated facial motor expressions and vocal prosody, 

demonstrating a prototype of “affective dialogue” between 

humans and machines. While foundational for validating 

whether machines could perceive emotional cues, these efforts 

remained largely confined to controlled environments and 

healthy populations, with limited integration into real-world 

mental health contexts or deeper affective state modeling.

The second stage (2011–2017) marks a shift from theoretical 

exploration to practical application. In 2010, the launch of the 

IEEE Transactions on Affective Computing signified the formal 

recognition of affective computing as an independent research 

TABLE 1 Search strategy for bibliometric analysis of publications at the 
intersection of affective computing and mental health.

Category Search terms/filters

Search keywords

Affective 

computing

Affective recognition OR mood recognition OR affective 

computing OR artificial emotional intelligence OR emotion 

AI OR expression recognition OR emotion recognition OR 

emotion learning OR sentiment analysis OR sentiment 

recognition

Mental health Mental health OR psychological wellbeing OR mental 

wellbeing OR emotional wellbeing OR mental state OR 

psychological health OR depression OR anxiety OR stress OR 

mood disorder OR bipolar disorder OR psychological stress

Web of science (WoS) filters

Document types Article, proceedings paper, review article, early access

Categories Engineering, computer science, informatics, robotics

Scopus filters

Document types Article, conference paper, conference review, review

Subject area Computer science, engineering
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domain comprising multiple subfields (22). This milestone 

elevated the academic standing of the field and laid the 

groundwork for its expansion into healthcare and mental well- 

being. This is reAected in a steady increase in publications over 

these years. On the technical front, the proliferation of mobile 

devices and wearable sensors provided a viable data foundation 

for affective computing in digital mental health. For example, 

devices like the Empatica E4 enabled continuous capture of 

physiological signals such as electrodermal activity and 

photoplethysmography (23). Similarly, the Affectiva SDK 

facilitated real-time facial expression analysis on mobile 

platforms, expanding the capacity for in-situation emotion 

sensing (24). These technologies led to the development of 

several representative datasets, including DAIC-WOZ for 

assessing anxiety, depression, and PTSD symptoms (25); AVEC 

2016 for multimodal depression risk modeling (26); and 

SWELL-KW for stress recognition and contextual behavior 

analysis (27). Based on these datasets, a number of empirical 

studies related to mental health have been conducted (28–30).

This period also benefited from increased accessibility to 

traditional machine learning techniques. Models based on 

support vector machines, random forests, and k-nearest 

neighbors were widely used for early affect classification across 

speech, text, and physiological modalities (31). However, these 

approaches typically relied on static feature representations and 

lacked the capacity to model temporal dynamics, contextual 

dependencies, or individual variability in affective responses. As 

noted by D’Mello (32), affective systems that do not account for 

emotion trajectories and situational antecedents fall short of the 

needs within mental health contexts. This limitation 

underscored a broader debate within the field: whether affective 

computing should remain focused on perceptual signal 

classification or evolve toward deeper emotional intelligence, 

involving causal modeling and semantic understanding. Since 

2018, affective computing has entered a new phase in digital 

mental health, driven by the adoption of deep learning. As these 

methods matured, various neural architectures, including 

convolutional neural networks, recurrent neural networks, and 

transformers, have increasingly been applied to recognizing 

emotion-related mental health conditions such as depression, 

anxiety, and stress, as well as to clinical alignment tasks. Rejaibi 

et al. (33) employed MFCC features and a recurrent neural 

network on the DAIC-WOZ depression detection task. Their 

model achieved state-of-the-art performance at the time, 

demonstrating the practical value of acoustic features for 

predicting emotional severity. Ray et al. (34) proposed a multi- 

layer attention network for AVEC 2019, using convolutional 

neural networks to extract audio features and LSTMs for textual 

encoding. A multi-level attention mechanism fused audio, 

visual, and textual inputs, achieving notable improvements over 

the original baselines in depression regression. Wu et al. (35) 

developed a transformer-based self-supervised learning 

framework for emotion recognition using wearable signals. Their 

results demonstrated superior performance in classifying stress- 

related states compared to fully supervised methods, with 

improved generalizability.

More recently, transformer and then large language models 

(LLMs) have begun to play a role in affective computing for 

digital mental health (36). In social media contexts, Bucur et al. 

(37) introduced a time-enhanced multimodal transformer model 

that integrates CLIP image embeddings with EmoBERTa textual 

representations and applies time2vec encoding to model posting 

intervals, aiming to predict user-level depression risk. The 

model achieved state-of-the-art F1 scores of 0.931 on a popular 

multimodal Twitter corpus and 0.902 on the MultiRedditDep 

dataset. Additionally, LLMs have been used for interactive 

emotional intervention (3). These technological advancements, 

along with increased recognition of mental health due to the 

FIGURE 1 

Annual publication counts from Web of Science and Scopus illustrating the growth of research at the intersection of affective computing and mental 

health from 1997 to 2024.
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COVID-19 pandemic, explain the exponential growth in scientific 

output after 2018.

In sum, the evolution of affective computing in digital mental 

health reAects not only algorithmic progress but also the 

beginning of a broader shift from recognizing surface-level 

emotional cues to aspiring to understand their generative 

mechanisms and enabling adaptive interventions. While much 

of the field still relies on direct mappings between (multimodal) 

cues and emotion states, the increasing integration of context, 

temporality, and personalized dynamics suggests a transition 

toward richer, semantically informed affective computing; 

moving from the perceptual layer (“What you feel”), through 

the modeling layer (“Why you feel”), toward the intervention 

layer (“What should be done”). Therefore, affective computing 

now plays an increasingly central role in the development of 

digital mental health closed-loop systems, which are cybernetic 

frameworks that continuously sense mood, update personalized 

models, and deliver adaptive interventions in real time (38, 39). 

Nonetheless, realizing this loop still presents substantial 

theoretical and methodological challenges.

3.2 Technical key components of affective 
computing

We complement existing works, such as the systematic review 

by Wang et al. (12) and the survey by Afzal et al. (40), which 

comprehensively cover the technical properties and quantitative 

performance of key affective computing methods across various 

modalities like voice and text, by introducing affective 

computing from a human–computer interaction perspective.

3.2.1 Emotion modeling

Emotion modeling provides the theoretical foundation for 

affective computing systems to understand human psychological 

states. Current approaches are primarily grounded in two major 

emotion theories. Basic emotion theory categorizes emotions 

into discrete classes, such as Ekman’s six universal emotions 

(17). Due to its clear label structure and low annotation cost, 

this framework has been widely adopted in classification tasks 

across speech, image, and text modalities. It is also integrated 

into many mental health monitoring systems. However, the 

theory originates from Western emotional expressions and fails 

to capture the diversity of emotional signals in clinical or cross- 

group contexts: Pampouchidou et al. (41) found notable 

performance differences across gender subgroups in automatic 

depression detection using discrete labels; Alghowinem et al. 

(42) further showed that models trained on single-cultural 

datasets underperform in cross-cultural settings. This can be 

explained by the currently dominating opinion that emotions 

are not entirely universal across cultures, but can be perceived 

differently (43). However, basic emotion theory does not 

account for such variability. Additionally, there is strong 

evidence that Ekman’s six emotions do not sufficiently capture 

the complexity of facial expression (44–46), highlighting the 

limitations of this framework.

Alternatively, the dimensional emotion theory following 

Wilhelm Wundt’s foundational work represents emotional states 

along three axes (valence and arousal, which are popularly used) 

and sometimes a third axis of dominance (47). This framework 

is widely used in subfields of affective computing such as speech 

emotion recognition (48) and text-based emotion recognition 

(49), where it serves as a regression target in deep learning 

models. In digital mental health, several studies have extended 

this approach to clinical emotion modeling. For instance, 

Ahmed et al. (50) used wearable physiological data (e.g., 

electrodermal activity, heart rate variability) to predict both 

depression severity and valence—arousal scores. Their tri-modal 

model reached high accuracy and F1 score performance for 

severity classification and valence detection, demonstrating the 

feasibility of dimensional emotion tracking, though explainability 

and annotation costs remain problematic.

Beyond these two mainstream models, compound emotion 

theory was proposed by Du et al. (51). It argues that humans 

express not only basic emotions but also blends of them, such 

as “joy–surprise” or “anger–surprise.” Their team identified 21 

compound emotions using the Facial Action Coding System 

(FACS), showing distinct muscular patterns and high inter-rater 

agreement. While empirical applications in mental health 

remain limited, compound emotions offer a more fine-grained 

representational framework for clinical emotion monitoring. 

Nevertheless, a certain facial movement can express more than 

one emotional category and conveys besides emotional further 

social information (52). Similarly, the psychological 

constructionist theory proposes that emotions are made of 

several components that are not specific to emotion such as 

sensory stimulation (53). These different perspectives show that 

modeling emotions is far from trivial and can contain additional 

layers that are currently rarely considered in affective 

computing. Therefore, emotion modeling in digital mental 

health must carefully consider which psychological framework is 

most appropriate in the given setting and try to balance label 

interpretability, expressive granularity, and cross- 

cultural adaptability.

In current digital mental health applications, emotion 

modeling typically serves as a theoretical and representational 

backbone rather than a direct supervision signal. Most clinical 

systems rely on standardized psychological scales as primary 

labels or evaluation endpoints, such as PHQ-9 for depression, 

GAD-7 for anxiety, and DSM-5 for PTSD (54). These 

instruments quantify persistent symptom severity, whereas 

emotion models capture momentary affective dynamics. Some 

studies have begun to explore how emotional labels can 

complement or predict changes in longer-term symptom scores 

(55, 56). This dual-layer structure, combining real-time emotion 

inference with validated clinical assessment tools, offers a 

promising direction for personalized, longitudinal mental health 

monitoring.

3.2.2 Emotion sensing and recognition
Emotion sensing and recognition constitutes a central 

component of affective computing based on emotion modeling. It 
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aims to objectively identify and quantify individuals’ emotional 

states through multimodal signals. Facial expression analysis today 

typically employs deep neural network architectures, increasingly 

enhanced by self-supervised pretraining methods to extract salient 

static and dynamic features (57). Speech emotion recognition has 

evolved from traditional acoustic representations (e.g., MFCCs, 

mel-spectrograms) combined with deep models to capture local 

temporal patterns, to the use of pretrained frameworks such as 

wav2vec 2.0 for richer contextual modeling (58, 59).

Physiological emotion modeling leverages biosignals such as 

electrodermal activity and photoplethysmography, with deep 

learning techniques used to construct personalized affective 

representations (60). Text-based emotion recognition has also 

advanced significantly. Early approaches relied on handcrafted 

features such as bag-of-words, TF-IDF, and sentiment lexicons. 

More recent models based on pretrained language transformers 

(e.g., BERT, LLaMA) have achieved superior performance by 

capturing semantic ambiguity and emotional metaphor through 

contextual learning and prompt-based adaptation (61).

Additionally, multimodal systems integrate visual, vocal, 

physiological, and textual cues, often employing cross-attention 

or alignment mechanisms to achieve semantic fusion (62). 

Empirical studies suggest that multimodal approaches generally 

outperform unimodal models, showing promise in modeling 

complex psychological states and facilitating more precise 

affective alignment (63).

Despite these advances, the generalizability of emotion sensing 

techniques to clinical settings remains limited. For example, a cross- 

corpus study found that emotion recognition models trained 

exclusively on data from healthy individuals performed at or 

below chance level when applied to clinical corpora such as 

DAIC-WOZ. Minimal fine-tuning on target data was necessary to 

restore performance, underscoring the presence of strong 

distributional shifts between source and target domains (42).

Further studies reveal that environmental variables, such as 

background noise and room reverberation, can reduce unweighted 

recall by up to 20%, indicating limited robustness in real-world 

deployment (64). These results suggest that general-purpose 

models cannot be reliably applied to populations with conditions 

such as anxiety, depression, or PTSD, where emotional 

expression, linguistic style, and physiological responses often 

diverge markedly from those of healthy individuals. Moreover, 

pharmacological interventions may further alter these 

manifestations (65), potentially rendering standard annotation 

schemes inadequate or biased. To address these challenges, it is 

necessary to adopt strategies such as few-shot adaptation, domain 

transfer, and subject-specific baseline modeling, at both the 

representation and label-design levels, to improve robustness, 

fairness, and interpretability in clinical applications.

3.2.3 Affective adaptation

Affective adaptation, also referred to as emotional 

responsiveness, describes the ability of affective computing 

systems to dynamically adjust their behavior or responses in real 

time based on a user’s emotional state and context. Unlike 

passive emotion recognition, affective adaptation enables 

personalized and contextually relevant interactions. This is 

typically achieved through techniques such as domain 

adaptation, few-shot and/or fine-tuning, or individual baseline 

calibration (66, 67).

Emotionally adaptive virtual agents such as Woebot 

dynamically adjust their dialogue strategies to deliver empathetic 

and psychologically safe interactions (68). These systems 

demonstrate that affective adaptation enhances not only model 

performance but also user engagement, trust, and therapeutic 

effectiveness. As such, affective adaptation represents a critical 

step in moving from emotion sensing to active, personalized 

intervention in digital mental health.

However, cross-domain studies have shown that facial and 

textual emotion recognition models experience substantial 

performance degradation when cultural or population-specific 

variations are not accounted for. Domain adaptation methods 

have proven effective in mitigating these biases and restoring 

model performance (69). In physiological modalities, multi- 

source alignment frameworks (particularly for EEG and 

electrodermal activity) have enabled successful cross-subject 

transfer while reducing reliance on large-scale annotations (70). 

These findings highlight that general-purpose models alone are 

insufficient to capture the emotional variability observed in 

clinical populations. As such, adaptation techniques are essential 

for improving robustness, fairness, and inclusivity in emotion- 

aware digital health systems.

4 Affective computing applications in 
the mental health domain

Building on the historical and technical background, we now 

turn to a structured overview of how affective computing is 

applied across different use cases in digital mental health.

4.1 Typology

To structure the possible applications of affective computing 

in digital mental health systems, we define a typology 

considering the following dimensions: for whom the system is 

primarily designed, what the purpose of the system is, and how 

it responds to the patient’s emotional states. An illustration of 

this typology can be seen in Figure 2, where the first dimension 

distinguishes between patient-facing systems, which are used 

directly by individuals for self-monitoring or therapeutic 

support, and therapist-facing systems, which assist clinicians 

with affective insights or decision support.

The second dimension differentiates between the clinical 

objectives: early identification via screening, detection of existing 

mental disorders, and interventions to improve the mental state. 

Often, several of these goals are coupled in one system, as for 

instance, screening the current state of the patient enables 

adaptive interventions. Affective computing can be leveraged in 

screening by automatically detecting subtle emotional and 

behavioral markers indicative of early mental health changes 
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through multimodal sensing. For diagnosis, it can provide 

objective, continuous assessments of emotional states to 

complement clinical evaluation, helping to identify symptom 

severity or subtype differentiation. In intervention, affective 

computing enables systems to respond dynamically to users’ 

emotional states by adapting content, providing empathic 

feedback, or delivering personalized therapeutic strategies with 

the goal of improving user engagement and treatment outcomes.

The third dimension concerns the system’s level of affective 

adaptivity. Passive systems simply detect or log emotional states 

without adapting their behavior; reactive systems adjust 

responses based on detected emotions, such as shifting tone; 

while active systems aim to guide the user in their emotional 

experience, by, for instance, offering personalized emotional 

coaching to promote regulation and behavior change. In the 

following, we will focus on the application of affective 

computing in interventions, as this often entails the technical 

implementations given in screening or diagnosis.

4.2 Patient-facing passive adaptivity

When considering passive patient-facing systems that aim to 

increase mental health by capturing emotional states, the 

primary application is digital self-monitoring. Research indicates 

that people who regularly monitor their emotions are better at 

managing stress and controlling emotional reactions (71, 72). 

Additionally, monitoring emotions over time can be part of 

screening or diagnosis as (early) signs of illnesses can be 

detected, which in turn allows for earlier and potentially more 

effective interventions. Conventional self-monitoring often 

requires individuals to manually track their emotions, behaviors, 

and surrounding circumstances using tools like paper diaries, 

mood logs, or structured symptom checklists, then, these 

records can later be examined with clinicians during therapy 

(73, 74). Despite their clinical value, such traditional approaches 

can be time-consuming, prone to memory inaccuracies, and 

often fail to capture emotional experiences as they happen.

Therefore, passive and semi-passive digital tools, including 

smartphones, wearable devices, and experience sampling apps 

are employed to track emotional states continuously and in real 

time (75). For example, studies using real-time emotional 

tracking methods have found that individuals with mood 

disorders experience greater emotional stability when they 

engage in self-monitoring (76) and adolescents that use mobile 

self-monitoring tools can reduce symptoms of depression (77).

Affective computing systems, explained in Figure 3, leverage 

such multi-modal data sources. They integrate diverse streams 

of input such as facial expressions (e.g., detecting smiles, frowns, 

or expressions of surprise or distress), vocal tone (e.g., pauses, 

pitch, speed, and tone), physiological signals (e.g., heart rate 

variability, galvanic skin response, respiration rate, and EEG), 

and behavioral data (e.g., app usage, movement patterns via 

accelerometers, typing speed), and digital journaling inputs 

(textual capture of emotions, experiences, or personal thoughts 

using digital tools), to detect emotional states with greater 

accuracy and contextual awareness (1, 78). Affective computing 

technologies not only reduce the burden of manual tracking, but 

also facilitate self-awareness by enabling continuous data 

collection and trend analysis, and furthermore hold potential for 

early prediction of mental health deterioration or disease onset. 

The analysis results allow for instantaneous feedback, helping 

users to become aware of mood Auctuations and potential 

emotional triggers as they happen (79). Furthermore, users and 

clinicians can be notified of concerning trends, surpassing the 

delayed feedback typical of conventional approaches.

Therefore, machine learning algorithms are applied to identify 

mood patterns, behavioral signals, and emotional irregularities. 

For example, facial recognition algorithms can analyze micro- 

expressions to identify emotions like sadness or anger (80), 

while voice analysis tools detect affective cues from pitch, 

tempo, and intonation (81). Wearable devices can capture 

FIGURE 2 

Topology for affective computing-based systems in mental health care.
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physiological signals such as heart rate variability or galvanic skin 

response, which are strongly correlated with emotional arousal 

and stress (82). Additionally, natural language processing can 

interpret emotional valence in textual or spoken language (83). 

Overall, a solid technological foundation exists, to detect affect 

from diverse modalities.

4.3 Patient-facing reactive adaptivity

While passive affective computing systems support emotional 

self-monitoring by detecting and presenting emotional states to 

users, reactive systems take this further by adapting their 

behavior in response to those detected emotions. This is 

achieved by analyzing affective data in real time and 

dynamically adjusting the system’s outputs, interface, or 

prompts based on the user affect. The adaptivity in speaking 

tone can be used to simulate empathy, as for instance, 

emotionally aware conversational agents like Wysa,1 and 

Replika2 to create safe environments that enable users to 

articulate their feelings and engage in structured emotional 

reAection (68).

One of the key approaches to improving emotional human- 

computer interaction is to simulate mirroring, which refers to 

the unconscious tendency to reAect or mimic another 

individual’s emotions. This psychological phenomenon can be 

leveraged in affective computing-based systems to assist users in 

self-reAection and emotional awareness. For example, Rajcic and 

McCormack (84) discuss how artificially intelligent systems 

equipped with mirroring capabilities can foster empathy and 

promote deeper emotional engagement.

In addition to mirroring, active listening constitutes another 

central strategy. Unlike passive reception, active listening 

involves attentively processing users’ verbal and emotional cues 

to facilitate meaningful exchanges of ideas and emotions. 

According to Roshanaei et al. (85), artificial intelligence (AI) 

that actively listens can better navigate empathy, making 

interactions more personalized and emotionally resonant. The 

importance of active listening in communication has also been 

emphasized by Bodie et al. (86), who highlights its central role 

in fostering understanding and rapport. Furthermore, Oertel 

et al. (87) propose an engagement-aware, attentive AI listener 

designed specifically for multi-user interactions, thereby 

extending active listening’s benefits to more complex 

social settings.

Technically, reactive systems often operate via rule-based logic 

or machine learning models that personalize feedback based on 

real-time affective data (88, 89). These adaptive mechanisms rely 

on predefined thresholds or models trained on longitudinal data 

to decide when and how to intervene. By aligning system 

FIGURE 3 

Affective computing systems in DMHI.

1https://www.wysa.com/

2https://replika.com/

Schlicher et al.                                                                                                                                                        10.3389/fdgth.2025.1657031 

Frontiers in Digital Health 07 frontiersin.org

https://www.wysa.com/
https://replika.com/


behavior with users’ affective states, reactive systems help bridge 

the gap between emotional awareness and behavioral 

adjustment, providing more targeted and relevant support 

compared to passive feedback alone.

4.4 Patient-facing active adaptivity

In contrast to passive self-monitoring or reactive feedback 

systems, active affective computing systems go beyond 

recognizing and responding to emotional states: They intervene 

deliberately to guide users through structured emotional 

development processes. These systems are designed to promote 

behavioral change, emotional regulation, and therapeutic 

progress. On a short term basis, this can include recommending 

just-in-time micro-interventions, which are small behavioral 

suggestions that aim to increase the well-being in the moment. 

For instance, the system may recommend listening to AI- 

generated music based on the patient’s current emotion state 

(90), or a conversational agent can guide through mindfulness 

and breathing exercises (91) when stress is detected.

Long-term interventions are often drawing on established 

psychological frameworks like Cognitive Behavioral Therapy 

(CBT), where the users can receive personalized support based 

on AI-driven analysis of their emotional patterns, language use, 

and engagement levels (7), such as adaptive feedback, tailored 

coping strategies, and dynamically adjusted task difficulty (92). 

A prime example of active emotional adaptivity is the 

aforementioned Woebot, a CBT-based conversational agent3 that 

offers users structured mental health support by combining 

mood tracking with real-time psychoeducation and cognitive 

restructuring techniques. Unlike reactive systems that offer 

situational prompts, Woebot initiates therapeutic exercises, 

challenges cognitive distortions, and tracks progress over time, 

representing an active attempt to inAuence emotional and 

behavioral outcomes.

Another important emotional adaptive approach is emotion 

regulation coaching. Shi (93) present frameworks in which AI 

assists users in managing their emotions effectively through 

personalized coaching techniques. It has been also extensively 

reviewed by Sadka and Antle (94), who demonstrate its 

widespread application across different domains. Furthermore, 

empirical studies provide evidence of the effectiveness of AI- 

driven emotion regulation coaching applied in schools, where 

such systems help cultivate an adaptive emotional atmosphere 

conducive to learning and well-being (95, 96).

Additionally, Badia et al. (97) proposed the Emotional 

Labyrinth, an architecture designed for affective-driven 

procedural content generation in virtual reality environments, 

aimed at facilitating more effective emotional regulation. 

Alipour et al. (98) explored Model-Free Reinforcement Learning 

mechanisms through which these systems can induce behavioral 

change in users. For example, the adaptive user interface can 

intelligently guide users toward safe areas during emergency 

training by responding to their emotional states, helping them 

make calm and effective decisions under stress. Numerous 

efforts have focused on these aspects, with comprehensive 

surveys of user-centered design approaches and evaluation 

methodologies provided by Martins et al. (99). Owing to their 

adaptability, such systems are more readily accepted by users 

and yield considerable gains in both task performance and 

perceived usability.

Moreover, affective computing can be leveraged to directly 

target the treatment of emotional disorders (100), and patient 

surveys indicate a proportion of openness to such collaboration 

in mental health care (101, 102). Research includes methods 

based on multimodal data, gated sequential modeling 

architectures to extract continuous features of the data, and end- 

to-end learning systems with video as the direct input and 

emotion as output (19, 103). Such AI is now being incorporated 

into therapeutic interventions themselves and offering support 

(104). These systems can deliver CBT modules, track patient 

mood over time, and even provide real-time feedback during 

sessions, which in turn strengthens the foundation for 

personalized and adaptive therapy, as emotional insights enable 

therapeutic systems to dynamically tailor interventions to an 

individual’s current affective state, thereby enhancing treatment 

relevance and engagement (78). This shift also highlights the 

technological capabilities of AI in the broader landscape of 

mental health treatment, reshaping how care is accessed 

and delivered.

4.5 Therapist facing applications

While digital mental health interventions are generally 

conceptualized as direct-to-user technologies, therapists remain 

the conventional and central providers of psychological care. 

Therefore, a system is considered therapist-facing when the core 

interpretation and decision-making responsibilities lies with the 

therapist. Also, in these cases affective computing can be used 

for improvement.

Effective and timely intervention in mental health care relies 

heavily on continuous monitoring of patients, as explained in a 

previous section. This monitoring can be done in-session and 

out-of-session. Remote monitoring performed out-of-session 

allows the therapist to gain new insights beyond the boarder of 

their direct contact with the patients. Recent advancements have 

introduced wearable technologies integrated with AI, such as 

electronic skin devices, which can continuously monitor 

physiological indicators like cortisol levels and skin conductance 

to assess stress responses (8). The passive monitoring of 

emotional states during daily activities, such as studying or 

working, provides the clinician with a broader context for 

intervention (105). With in-session monitoring affective 

computing can enhance the therapeutic process by analyzing 

unstructured clinical session data using models such as 3https://woebothealth.com/
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ChatGPT (106) to provide the clinicians with real-time insights 

into patient emotions as the session progresses (107, 108).

Therapeutic support can also be provided remotely through 

teletherapy: The mental health services and counseling that are 

provided via the video or phone call. It enables the delivery of 

care beyond traditional in-person sessions. Teletherapy not only 

facilitates continuous monitoring of patients when they are not 

physically present but also offers real-time feedback and 

intervention during virtual interactions. Affective computing 

models have been increasingly integrated into teletherapy 

platforms to enhance these capabilities, enabling more scalable 

mental health care delivery by for instance providing real-time 

facial emotional recognition (109). Lenartowicz (110) reviewed the 

role of AI in teletherapy, emphasizing its potential to improve 

accessibility and convenience, including the use of virtual reality 

(VR) interventions to target specific psychological conditions. For 

instance, simulating feared environments to help treat phobias, or 

providing immersive scenarios to support PTSD therapy (111, 

112). Therefore, research and implementation of AI-assisted 

teletherapy continue to progress (113).

Furthermore, previous studies have explored potential in 

assisting clinicians by recommending personalized therapy 

through large-scale data analysis (68, 114). Deep learning 

approaches have been investigated for selecting appropriate 

therapies such as CBT and predicting the relationship between 

CBT and social anxiety to inform future treatment choices (115). 

A notable example is that facial expression-based depression 

detection methods have been proposed to enhance depression 

diagnosis and improve the quality of counseling (116). Overall, 

these use-cases show that affective computing does not only carry 

a lot of potential in directly interacting with patients to improve 

their well-being, but also to support clinicians in their work.

4.6 Clinical evaluation

As affective computing-based DMHIs become more integrated 

into mental health applications, clinical evaluation of their 

appropriateness and effectiveness in outcomes is central. 

However, only a small number of studies have clinically assessed 

recent solutions. An overview of performed clinical evaluations 

is presented in Table 2. For example, Heinz et al. (3) conducted 

a randomized controlled trial using a chatbot named Therabot 

with individuals experiencing depression, anxiety, or eating 

disorders. Results indicated significant reductions in depressive 

and anxious symptoms, with improvements in emotional 

recovery and therapeutic alliance comparable to traditional 

psychological treatments. Similarly, (68) demonstrated that 

Woebot reduced symptoms for depression and anxiety 

significantly within two weeks. Likewise, the chatbot Wysa was 

found effective in real-world usage, lowering psychological 

distress through guided journaling and reAective dialogue (9). 

Limbic Access, deployed in the United Kingdom’s National 

Health Service, utilizes AI-driven assessments to support 

clinicians based on patient text inputs and clinical records to 

screen for depression, anxiety, and PTSD while offering a 

conversational agent to improve recovery rates (4). In the case 

of psychosis, Avatar Therapy (2) employs virtual avatars to 

represent hallucinatory voices; randomized controlled trials 

demonstrate that this approach can significantly reduce distress 

and hallucination frequency compared to standard treatment.

Applications for monitoring, which have been evaluated for 

performance rather than clinical outcome, include 

PhysioFormer, which integrates physiological signals (e.g., 

electrocardiogram and electrodermal activity) from the WESAD 

dataset to detect stress and affective states, achieving close to 

perfect classification accuracy in controlled lab settings (117) 

clearly indicating an overly optimistic experimental design, and 

FacePsy, a mobile tool, which analyzes facial expressions and 

eye-tracking data to identify depressive symptoms, shows 

promising clinical accuracy (AUROC 81%) in patient trials 

(118). MoodRhythm, which was assessed in a pilot study (119), 

combines passive sensing (e.g., GPS, accelerometer) with mood 

self-reports to provide rhythm-based mood feedback, leading to 

better self-awareness in bipolar patients. Overall, the actual 

application of affective computing-based systems in mental 

healthcare is only emerging. While the technological 

performance is increasing, large scale studies on the effect on 

clinical outcome and user engagement are missing.

4.7 Ethical concerns and considerations for 
clinical applications

The gap between affective computing research and its clinical 

application is besides ethical skepticism rooted in limited 

TABLE 2 Clinical evaluations of representative affective computing applications for mental health.

Application Targeted 
condition

Used data Intervention strategy Evaluation type

Avatar therapy 

(2)

Psychosis (auditory 

hallucinations)

User-created avatars 

representing internal voices

Therapist-guided conversations with 

avatars to reduce distress

Clinical trials in the UK; participants reported 

improved mood and reduced voice severity after 16 

weeks

Limbic access (4) Depression, anxiety, 

PTSD

Text-based inputs during e- 

triage assessments

AI-driven diagnostic support for 

clinicians

Deployed in UK health systems; over 210,000 patients 

screened with 93% accuracy

Therabot (3) Depression, anxiety, 

eating disorder

Chat inputs (text) CBT chatbot responses RCT

Woebot (68) Depression, anxiety Chat inputs (text) CBT chatbot responses RCT

Wysa (9) Psychological distress Textual journaling, app 

interactions

AI-led reAective dialog, coping 

suggestions

Real-world study
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technological performance. Although, reviews for specific 

applications like monitoring mental health with smart wearable 

report high performance values ranging from 78%–97% (120), 

more recent work criticizes the lack of standardized approaches 

to validate systems, which complicates independent verification 

and comparison of systems, and also empathizes that current 

emotion recognition models often perform well under controlled 

laboratory conditions but face significant performance reduction 

when applied to in-the-wild data (121). Furthermore, Monteith 

et al. (122) caution that the commercial deployment of emotion 

AI may exacerbate social stigma and discrimination because AI 

models may be biased. Similarly, Hernandez et al. (123) point 

out that the increasing scale of AI deployment and the shift in 

agency from experts to lay users, coupled with regulatory 

shortcomings, may lead to unforeseen risks. A related concern is 

raised by Shimo (124), who argue that current affective AI 

systems are often developed and deployed under the assumption 

of minimal variation in emotional expression across human 

populations. This limited understanding of human and cultural 

diversity may compromise the systems’ ability to accurately 

recognize and interpret the emotions of marginalized or 

underrepresented groups. From a data ethics perspective, 

Durovic and Corno (125) emphasize the privacy risks posed by 

affective computing-based systems, particularly due to its 

reliance on large volumes of personal data for training and 

inference. In addition, Chu et al. (126) explore the psychological 

implications of emotional attachment to AI, warning that 

perceived relationships between users and machines could lead 

to confusion and emotional dependency. More critically, Devi 

et al. (127) suggest that such attachments may even pose threats 

to personal identity and self-conception.

Besides the technical limitations large ethical concerns exist, 

particularly regarding patient privacy, informed consent, and 

emotional manipulation (128, 129). Moreover, a critical debate 

persists regarding whether AI systems can genuinely exhibit 

authentic emotions. Vyas (130) has investigated the levels of trust 

and satisfaction among AI users, revealing complex and nuanced 

perspectives on this issue. Moreover, Glikson and Woolley (131) 

and Yang and Rau (132) provide comprehensive reviews of the 

literature on human trust in affective computing systems, 

demonstrating that the display of adaptive emotional responses by 

AI can considerably inAuence users’ trust, with appropriately 

aligned emotional expressions generally enhancing perceived 

trustworthiness and user satisfaction. However, discrepancies or 

perceived inauthenticity in the AI’s emotional adaptation may 

foster skepticism and ultimately diminish user trust in the system 

(131). Similarly, Rubin et al. (133) recently found that identical 

empathic responses are rated more empathic and supportive when 

believed to be human-generated than AI-generated, highlighting 

potential challenges in integrating affective computing systems 

into emotional caring situations.

Furthermore, the display of emotions does not only inAuence 

the user’s trust, but also their engagement. Yu et al. (134) 

examined the effects of emotional displays on user engagement, 

demonstrating that emotionally expressive content can enhance 

user attention and promote a wider range of products through 

visually captivating designs. Similarly, Maduku et al. (135) 

investigated the relationship between customer emotions and 

engagement in the context of AI assistant usage, concluding that 

positive emotional experiences and engagement with digital 

voice assistants considerably inAuence customer loyalty. In line 

with these findings, Chang and Herath (136) showed that AI 

systems capable of recognizing, interpreting, and responding to 

human emotions can effectively strengthen emotional 

engagement and foster greater trust in human-AI interactions. 

Beyond assessment of the users, the opinion of clinicians is of 

high importance, as they can recommend and apply systems. 

Research conducted in Japan indicates that attitudes toward the 

use of affective computing systems in healthcare positively 

correlate with individuals’ familiarity with the technology (137). 

On a global scale, Doraiswamy et al. (138) found opinions from 

791 psychologists from 22 different countries showing that while 

healthcare professionals do not oppose the integration of such 

tools, many maintain that these technologies are unlikely to 

replace human clinicians in delivering truly empathetic care.

In order to improve the application of affective computing, 

Mohammad (139) provided a structured ethical checklist, 

highlighting the risks of privacy violations, emotional exploitation, 

and societal division. He advised integrating fairness, 

accountability, and explainability at early design stages. Saeidnia 

et al. (140) further argues that AI-driven emotional interventions 

should embed ongoing ethical review processes and stakeholder 

participation. They also call for regular assessments of algorithmic 

bias, data protection, and stratified impact. In response to these 

issues, regulatory bodies worldwide are gradually introducing 

relevant legislation (141). Furthermore, Löchner et al. (142) 

propose the TEQUILA framework to guide responsible 

development of digital mental health interventions, and Latif et al. 

(143) present promises and perils of AI-based emotion 

recognition to encourage prosocial development. Consequently, 

future efforts must prioritize improving emotion detection 

accuracy in-the-wild, while maintaining ethical standards and user 

privacy, as well as ensuring a level transparency that increases 

patient and clinician’s trust.

5 Future directions

With the ongoing evolution of affective computing in digital 

mental health, we suggest that future development should 

prioritize four key directions: multimodal interaction, 

explainable modeling, personalized models, and integration with 

healthcare systems.

First, multimodal input and output will be central to the next 

stage of development, as affective content is distributed across 

multiple channels. Compared to unimodal systems, multimodal 

architectures offer improved recognition accuracy and better 

contextual awareness (144). Nevertheless, this introduces the 

challenge of fusing incongruent modalities; for example, a 

patient may verbally express that they are feeling good but at 

the same time shake their head. That said, this obstacle can still 

carry potential, as from a psychological perspective such 
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incoherencies can indicate discrepancies between expressed and 

experienced emotions, or conAicting self-states (145), and might 

therefore highlight content that is of therapeutic interest. On the 

other hand, multimodal output can introduce embodied agents, 

such as social robots or avatars that respond to the detected 

emotions through multiple channels like facial expressions, 

gestures, and gaze while answering verbally. Such agents may 

serve as empathic companions, co-therapists, or emotion 

regulation aids, supporting users during stress or therapy by 

mirroring affect or maintaining calming behavior. Research 

suggests they can improve engagement, reduce loneliness, and 

support emotional awareness, particularly in vulnerable 

populations such as children or older adults (93). However, such 

systems introduce new risks such as over-attachment and 

emotional dependency, which require careful application.

Second, explainable AI is essential in digital health 

applications. In clinical systems, lack of explainability can reduce 

clinicians’ trust in system outputs and hinder patients’ 

understanding and acceptance of recommendations, ultimately 

affecting treatment outcomes. Explainable models improve 

transparency, fairness, and communication efficiency, support 

shared decision-making, and promote patient engagement (146). 

Existing studies have explored various techniques such as 

visualizing attention in medical imaging in order to understand 

the central parts of the AI’s decision (147), as well as salient 

features and counterfactual explanations to prevent clinicians 

from over-relying on incorrect AI outputs (148). However, when 

applied to some mental illnesses (such as anxiety and 

depression) where the primary modalities are audio, 

physiological signals or brief facial micro-expressions, general- 

purpose explainable AI methods often struggle. These modalities 

lack visual structures, making outputs hard to interpret and 

inaccessible to non-technical users (149). There is thus a high 

need for task-, modality-, and user-specific explainability 

frameworks that produce clinically relevant explanations.

Third, personalized modeling is critical to long-term 

effectiveness and fairness in affective computing systems, as 

emotional responses vary considerably across individuals, 

inAuenced by factors such as demographic attributes and cultural 

contexts (150). Likewise, mental disorders like depression can 

manifest differently across cultures (151). Additionally, mental 

illnesses like schizophrenia can affect the display of emotions, 

where in the case of Aat affect, there is barely or no external 

emotional display, while the subjective experience of emotions is 

not diminished (152). Such individual and disease-specific 

differences need to be accounted for, as uncertainty in emotion 

recognition could lead to inappropriate emotional adaptation 

from the system. Additionally, mental disorders have an 

individual progression, which is reAected by the moving target 

problem (153). The user’s emotional and mental state evolves due 

to therapeutic progress, life events, or symptom Auctuation, as is 

the case for Aat affect in patients who have suffered from 

psychosis (154). Although these adaptations to culture, disease, 

and personal progression are central for a high-quality therapy, 

such specifications of affective computing models are still only 

under development and require further research.

Finally, the clinical deployment of affective computing 

systems is lacking behind the start-of-the-art in research and 

requires deeper exploration at both system integration and 

application levels. Future models should interface with electronic 

health records, support telemedicine platforms, and be 

embedded within intervention planning workAows (155). 

Ensuring closed-loop mechanisms for data standardization, 

privacy compliance, and clinical acceptability will be essential to 

integration. Recently, privacy-preserving federated learning 

frameworks have been introduced into physiological and speech- 

based emotion recognition. These architectures allow model 

training across distributed devices without sharing raw data, 

enabling a balance between data protection and cross-device 

generalization (156), and therefore pose a promising approach 

for DMHIs. Furthermore, an increase in clinical deployment 

requires clinical validation and large-scale longitudinal studies in 

order to ensure therapeutic value. Concluding, the application of 

affective computing for mental health requires further technical 

improvements such as multimodal integration and 

personalization, as well as an increase in explainability and 

safety to increase trust, while clinical trials are outstanding to 

ensure an actual benefit of the application of affective computing.

6 Discussion and conclusion

This review has outlined how affective computing technologies 

are increasingly integrated in digital mental health interventions, 

spanning both patient- and therapist-facing applications. These 

systems aim to recognize, interpret, and respond to users’ 

emotional states in real-time to support self-monitoring, 

enhancing engagement, and enable more personalized and 

adaptive interventions (107–109). A central distinction in this 

review is between passive, reactive, and active adaptivity. 

Nevertheless, the boundaries between these types are often 

blurred in practice. Despite increasing sophistication, emotion 

detection technologies still face validity and reliability concerns, 

especially across diverse populations. Current algorithms often 

struggle with cultural variation, individual differences, and context 

sensitivity (121, 124). Without accurate and interpretable emotion 

recognition, downstream interventions may misfire and therefore 

undermine user trust and therapeutic efficacy (131, 132).

While much attention in digital mental health has focused on 

direct-to-user tools, we highlight the growing role of therapist- 

facing applications. Affective computing technologies can support 

clinicians by offering real-time emotional insights, informing 

diagnosis, enabling personalized care, and extending monitoring 

beyond therapy sessions (4, 107). Such hybrid models preserve 

the therapist’s expertise while enriching it with algorithmic 

support. However, these systems raise new questions around 

accountability, interpretability, and the therapist’s role in AI- 

augmented decision-making (110, 139). If affective feedback is 

incorrect or biased, how should clinicians interpret or override it? 

Integration of explainable AI methods and clinician-in-the-loop 

frameworks will be essential for ensuring these systems remain 

clinically meaningful and ethically deployable (140).
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Moreover, large ethical challenges are being faced, as 

empathetic AI responses may risk emotional dependency or 

manipulation, especially when systems are designed to mimic 

human emotion (126, 127). Moreover, the commercial 

deployment of affective systems raises concerns around bias, 

privacy, and social inequality, since models trained on non- 

diverse data may misinterpret emotions in marginalized groups 

(122, 124), while real-time affective monitoring could impose 

surveillance risks if not properly regulated (125). Additionally, 

commercial mental health applications face the risk of being 

designed in a way that keeps users attached in order to increase 

customer numbers instead of designing systems that aim to 

promote recovery in the fastest and safest way. Consequently, 

transparency in AI systems as well as their development should 

be of highest interest, to ensure safe deployment with high 

clinical value.

In the future affective computing will likely play an increasing 

role in both patient-facing interventions and clinical workAows. 

Key directions for development include multimodal 

architectures, explainable and personalized models, and 

integration with healthcare infrastructure. In particular, 

embodied agents, such as emotionally expressive avatars and 

robots, may offer new modes of support by combining affective 

sensing with naturalistic, human-like interactions (93). 

Nevertheless, affective computing technologies should be viewed 

not as replacements for human care, but as tools to enhance 

and extend it. To enhance the trust, clinical evaluation of the 

effect of affective computing on the clinical outcome require 

extensive attention in the future, as it has only been done 

scarcely so far. Concluding, the success of affective computing 

for mental health will depend on interdisciplinary collaboration 

across AI, psychology, and clinical practice, as well as robust 

evaluation frameworks.
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