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Introduction: Clinical monitoring of functional decline in amyotrophic lateral 

sclerosis (ALS) relies on periodic assessments, which may miss critical changes 

that occur between visits when timely interventions are most beneficial.

Methods: To address this gap, semi-supervised regression models with 

pseudo-labeling were developed; these models estimated rates of decline by 

targeting Revised Amyotrophic Lateral Sclerosis Functional Rating Scale 

(ALSFRS-R) trajectories with continuous in-home sensor data from a three- 

patient ALS case series. Three model paradigms were compared (individual 

batch learning and cohort-level batch vs. incremental fine-tuned transfer 

learning) across linear slope, cubic polynomial, and ensembled self-attention 

pseudo-label interpolations.

Results: Results showed cohort-level homogeneity across functional domains. 

For ALSFRS-R subscales, transfer learning reduced the prediction error in 28 of 

34 contrasts [mean root mean square error (RMSE) = 0.20 (0.14–0.25)]. 

However, for composite ALSFRS-R scores, individual batch learning was 

optimal for two of three participants [mean RMSE = 3.15 (2.24–4.05)]. Self- 

attention interpolation best captured non-linear progression, providing the 

lowest subscale-level error [mean RMSE = 0.19 (0.15–0.23)], and 

outperformed linear and cubic interpolations in 21 of 34 contrasts. 

Conversely, linear interpolation produced more accurate composite 

predictions [mean RMSE = 3.13 (2.30–3.95)]. Distinct homogeneity- 

heterogeneity profiles were identified across domains, with respiratory and 

speech functions showing patient-specific progression patterns that improved 

with personalized incremental fine-tuning, while swallowing and dressing 

functions followed cohort-level trends suited for batch transfer modeling.

Discussion: These findings indicate that dynamically matching learning and 

pseudo-labeling techniques to functional domain-specific homogeneity- 

heterogeneity profiles enhances predictive accuracy in tracking ALS 

progression. As an exploratory pilot, these results reflect case-level 

observations rather than population-wide effects. Integrating adaptive model 

selection into sensor platforms may enable timely interventions as a method 

for scalable deployment in future multi-center studies.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 

disease affecting the motor neuron system, with patients 

experiencing significant difficulties performing across a range of 

functions, resulting in a reduced ability for self-care. Decline in 

function is measured regularly at provider visits using clinical 

instruments like the Revised Amyotrophic Lateral Sclerosis 

Functional Rating Scale (ALSFRS-R) (1). However, acute 

functional decline may go undetected by clinicians until the 

next follow-up due to the long duration between office visits. 

Sensor monitoring, which has been shown to be effective in 

supporting care for older adults living independently, offers a 

possible solution for tracking functional changes related to 

disease progression in those living with ALS. Sensor 

measurements may serve as predictive features to target 

instrument scales over interim periods between clinic visits, 

thereby increasing the fidelity of functional measures to aid 

clinicians in making better, more informed care strategies to 

guide interventions. In this study, we trained and evaluated 

three semi-supervised learning models (participant-level batch, 

cohort-level transfer with batch, and incremental fine-tuning) 

across three pseudo-label techniques (linear, cubic, and self- 

attention interpolation) to predict ALSFRS-R scale trajectories 

from in-home sensor health features using root mean square 

error (RMSE) and Pearson’s correlation (r) as primary metrics 

of model accuracy and fit.

1.1 Sensor monitoring of ALS progression

Sensor-based health monitoring has been shown to improve 

clinical outcomes in older adult independent living residents 

through early illness detection, enabling them to maintain their 

independence longer (2). Physical deficits in older adults may 

mirror the functional declines observed in ALS, with 

community-dwelling older adults experiencing a stable physical 

function until a steep decline 1–3 years before death (3). 

Additionally, age-related frailty may involve motor unit loss 

(denervation) similar to ALS, which contributes to muscle 

wasting and could further exacerbate ALS progression in older 

patients (4). This evidence indicates that remote sensor 

monitoring technologies effective for improving care in elder 

populations may identify digital biomarkers for tracking ALS 

disease progression. Recent research has found that combining 

wearable sensor data with self-reported clinic assessments and 

environmental metrics improves predictive models targeting 

ALSFRS-R scales (5). Similarly, work evaluating wearable 

accelerometer, ECG, and digital speech sensors for tracking ALS 

has shown that changes in physical activity, heart rate, and 

speech features correlate with a decline in ALSFRS-R scales (6). 

More frequent, remote sensor-based tracking of changes in 

ALSFRS-R scales would enable clinicians to better target 

interventions and detect acute events, such as falls or 

medication changes, between clinic visits.

1.2 Clinical use of ALSFRS-R scales

ALS disease progression rates vary between patients due to a 

number of clinical factors including baseline functional status, 

disease stage at diagnosis and diagnostic delay, co-occurrence of 

frontotemporal dementia, gender, age and site at onset, 

particularly respiratory-onset, and a number of genetic and 

environmental factors (7–9). Disease progression also varies 

across functional domains within ALS patients, following non- 

linear rates of decline in specific areas (10). ALS progression is 

tracked longitudinally using the ALSFRS-R instrument as a 

qualitative, subjective self-reported measure of performance in 

functional tasks. ALSFRS-R scales are collected during clinic 

visits to determine the amount of change in bulbar, fine motor, 

gross motor, and respiratory functional domains over time. 

Scales are rated between 0 and 4, with 0 indicating dependence 

and 4 indicating no difficulty. The composite score and linear 

slope serve as primary metrics of functional change and decline 

progression and for measuring intervention effects within 

individuals or across treatment groups in clinical trials, with 

more frequent assessment improving slope estimation (11, 12). 

Due to the multi-dimensional aspect of the aggregate ALSFRS-R 

composite score, it has been suggested to use the component 

scales independently for measuring treatment outcomes (13). As 

such, there is not a one-size-fits-all approach for monitoring 

progression, as decline varies non-linearly among patients, and 

individualized clinical models are needed for tracking across 

ALSFRS-R functional domains.

2 Materials and methods

2.1 Parent study

Participants were recruited for a single-site, single-cohort 

prospective study overseen by the MU Institutional Review 

Board through the MU Health ALS Clinic, investigating 

continuous, in-home sensor monitoring for tracking between- 

visit functional decline (14). The in-home sensor monitoring 

systems, licensed by the University of Missouri to Foresite 

Healthcare, LLC, are composed of three modalities for 

continuous contactless data collection: bed mattress hydraulic 

transducers for recording ballistocardiogram (BCG)-derived 

respiration, pulse, and sleep restlessness measures (15, 16); 

privacy-preserving thermal depth sensors (17, 18), which detect 

falls and collect walking speed, stride time, and stride length 

measurements, although gait data were excluded due to 

wheelchair use; and passive infrared (PIR) motion sensors that 

provide room activity counts.

Inclusion criteria required an ALS diagnosis, residence within 

100 miles of the clinic, and either a home caregiver or a Montreal 

Cognitive Assessment (MoCA, 8.1 Blind Version) cutoff score of 

�19 out of 22, corresponding to the standard cutoff of �26/30 

on the full MoCA. ALSFRS-R scores were collected monthly by 

telephone and quarterly as pre-clinic assessments. After 
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accounting for length of enrollment, data from three participants 

were of sufficient duration (at least 6 months) for case series 

modeling, as shown in Table 1. All three participants were non- 

Hispanic, white, male, Medicare recipients, who left the study 

due to death. At the time of enrollment, their ALSFRS-R 

composite scores ranged from 30 to 35, indicating moderate 

functional impairment. P1 presented with lateral onset 

(extremity weakness and spasms), P2 with cervical-bulbar and 

limb weakness, and P3 with bulbar speech changes accompanied 

by lateral weakness. Diagnosis was determined in the clinic 

using the revised El Escorial and Awaji diagnostic criteria 

workBow for ALS (19) and confirmed for study participation by 

the presence of SNOMED CT codes for ALS (86044005, 

142653015, 62293019) and ICD10 (G12.21) in the patient’s 

medical chart. With regard to disease progression timelines, the 

interval from diagnosis to enrollment varied among participants 

(from 24 to 623 days), reBecting the heterogeneous nature of 

the disease. The use of assistive devices and non-invasive 

ventilation (NIV) also differed, with P1 requiring ankle-foot 

orthosis (AFO), walker/wheelchair, and eventually a powered 

wheelchair over a prolonged period (504–763 days from 

diagnosis). P2 and P3 were diagnosed at a later ALS stage and 

had more rapid progressions with shorter intervals to assistive 

device use (P2: powered wheelchair at 247 days, P3: walker or 

wheelchair at 76 days) and death. NIV initiation ranged from 14 

to 1,127 days post-diagnosis.

Given the small sample, these findings should be interpreted 

as case-level observations with limited generalizability, rather 

than being extrapolated to population-level ALS progression. 

The limited sample size (n ¼ 3) of this study reBects both the 

rarity and rapid progression of ALS, as well as practical 

limitations specific to remote sensor research within this patient 

population. Participants were screened for eligibility during the 

study recruitment period, as outlined in Figure 1. Individuals 

were excluded for inpatient status, lack of ALS diagnosis, and 

residing further than 100 miles from the MU ALS Clinic. 

Additional exclusions occurred due to non-response to 

recruitment or by declining consent. The inclusion criterion 

requiring residence within 100 miles of the clinic was selected 

due to logistical considerations for sensor installation and 

maintenance rather than intent to restrict sampling. Only those 

having at least 6 months of monitoring data were included in 

the analytic sample. Of the 16 individuals who passed eligibility 

criteria, 10 declined participation due to privacy or structural 

concerns about sensor installation, 2 did not respond to 

recruiting materials, and only 3 of the 4 enrolled completed at 

least 6 months of data collection sufficient for analysis. Despite 

the small cohort size, participants contributed extensive clinical 

and sensor-based data, offering within-individual longitudinal 

detail that is characteristic of ALS observational studies. 

A larger, multi-site trial is being planned to address scalability 

and generalizability in future research.

2.2 Estimating between-visit change in 
ALSFRS-R scales

ALSFRS-R scales were aligned at matching frequency to daily 

aggregated sensor measurements using pseudo-labels for semi- 

supervised regression, extending prior work evaluating between- 

visit interpolation (20). We incorporated a transformer encoder 

architecture for self-attention interpolation, which we compared 

to polynomial functions, as illustrated in Figure 2a. Linear 1D 

TABLE 1 Participant enrollment and dataset characteristics.

Characteristic P1 P2 P3

ALS profile

Age at enrollment (years) 62 55 45

Onset site Lateral Bulbar Bulbar

Initial study ALSFRS-R composite score 35 33 30

Clinical timeline (days from Dx)

Enrollment 623 24 56

Initial study ALSFRS-R 623 22 50

Assistive device

AFO 504 — —

Walker or wheelchair 714 — 76

Powered wheelchair 763 247 —

NIV 1127 234 14

Death 1222 260 275

Dataset length

ALSFRS-R assessments (n) 15 8 8

Enrollment length (days) 599 236 219

Training dataset (days) 389 128 156

Test dataset (days) 98 33 40

FIGURE 1 

Flowchart depicting the participant inclusion and exclusion process 

for the study.
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piecewise interpolation served as a baseline method, consistent 

with the clinical methodology for tracking ALS progression. 

Non-linear cubic spline interpolations were applied to evaluate 

more gradual rates of decline. The transformer encoder mapped 

date-indexed sensor vectors with known ALSFRS-R scores to 

estimate the amount of change occurring between collection 

points, with the architecture intentionally kept shallow to 

provide continuous values rather than predicting crisp labels 

with a deeper network (21). To further smooth the estimations, 

self-attention interpolation was applied to each sensor feature 

algorithm table and then ensembled by averaging, as shown by 

the dashed plots in Figure 2b. The resulting interpolated slopes 

over time for each pseudo-labeling technique, which are 

summated by functional area in Figure 3, demonstrate varying 

rates of decline unique to each participant.

2.3 Semi-supervised learning of ALSFRS-R 
scales

Three learning approaches for training semi-supervised 

regression models were compared: batch models fit on 

sequential participant-level data (individual) and cohort-level 

(transfer) models initialized on randomized observations and 

fine-tuned on individual-level data using batch or incremental 

learning (22). Participant-subscales exhibiting zero or near-zero 

variance in training samples were not modeled with individual 

batch learning.

2.3.1 Data preprocessing and feature engineering
High-frequency sensor data were preprocessed using the 

pipeline described in Figure 4a, beginning with segmentation of 

the time-indexed features into day and night periods. Summary 

statistics were calculated over each feature channel and period 

for count, minimum, maximum, mean, median, mode, variance, 

range, skew, kurtosis, quantiles, interquartile range (IQR), 

coefficient of variation (CV), and entropy to better capture 

temporal patterns by time-of-day. The selected features were 

chosen based on established use of time-series features in 

clinical prediction and prior wearable sensor research, where 

summary statistics have been shown to effectively capture both 

overall trends and subtle changes in physiological and behavioral 

signals relevant to disease progression (23, 24). As a case series 

pilot for continuous in-home sensor monitoring in ALS, we first 

FIGURE 2 

Interpolation techniques applied to ALSFRS-R subscores for estimating sensor feature pseudo-labels. (a) Self-attention interpolation transformer 

architecture. (b) Comparison of interpolation effects.
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prioritized conventional summary statistics for baseline modeling 

and then relied on native feature selection to identify relevant 

ALSFRS-R predictors. Highly collinear features were then 

removed, and the resulting set was normalized feature-wise 

using a minimum–maximum scaling. ALSFRS-R scores were 

interpolated with each pseudo-labeling technique, resulting in 

three continuous target trajectories per participant per scale. 

Finally, the normalized features and interpolated labels were 

joined by date to produce the pseudo-labeled datasets.

2.3.2 Individual batch and cohort transfer learning
Individual- and cohort-level models were trained using a 

leave-one-participant-out strategy, as shown in Figure 4b. For 

each experiment fold, a single participant (P1, P2, or P3) was 

withheld as the target subject, while data from the remaining 

participants formed the source cohort for transfer model 

training. Each holdout participant’s dataset was split sequentially 

by 80%/20%. The earliest 80% of observations were used for 

both training the individual batch model and fine-tuning the 

cohort transfer model, while the later 20% were set aside as an 

unseen test set for model evaluation. This temporal partitioning 

was chosen to reBect the use case of predicting future ALSFRS- 

R scores based on prior sensor data and prevent data leakage. 

To ensure fair comparison between models, training and test 

splits were defined proportionally to each individual’s data, not 

by group. Individual models were trained using batch learning 

on the holdout participant’s sequential training data. Transfer 

learning was conducted by first training a cohort model on the 

leave-in participants’ data using batch learning with shufBed 

samples to capture generalizable patterns across individuals. 

This cross-individual split simulated the scenario of applying 

knowledge learned from a group to a new, unseen individual. 

The resulting model parameters (including learned weights and 

optimizer state) were serialized by pickling and storing the 

model object. For each participant fold, the initialized transfer 

model was then reloaded and further adapted using the 

sequential training data from the holdout participant. This 

adaptation was done using batch and incremental learning 

routines, comparatively. Transfer batch fine-tuned models were 

updated with a single pass through the entire training set of the 

holdout participant. Conversely, transfer incremental models 

were trained iteratively by predicting the current outcome label 

and then fitting the new observation to simulate between-visit 

model adaptation as additional data become available. All 

transferred model components were included in the fine-tuning 

step. Hyperparameters for these fine-tuned models (e.g., learning 

rate, batch size, optimizer type) were held constant from the 

initialized model during subsequent fine-tuning and were 

selected using cross-validation. As shown in Table 1, 

participants differed in their dataset length and number of 

ALSFRS-R assessments collected. To prevent bias, all model 

evaluations were performed within-participant, and prediction 

errors and outcome correlations were computed only on the 

holdout subject’s test data for each fold. We did not aggregate 

or compare metrics across participants. This approach was 

chosen to focus on the model’s ability to estimate patient- 

specific ALS disease progression and to infer homogeneous– 

heterogeneous profiles across ALSFRS-R scales.

2.3.3 Iterative hyperparameter tuning and feature 
selection

To evaluate the effects of label interpolation and transfer 

learning strategies within a consistent modeling framework, 

rather than to benchmark across diverse machine learning 

algorithms, a single learner experiment design was chosen to 

evaluate pseudo-labeling interpolations and transfer model 

adaptations. We employed an iterative screener-learner approach 

combining hyperparameter optimization with feature selection, 

illustrated in Figure 4c, using the XGBoost algorithm (25). 

Models were initialized on the full set of summary features and 

FIGURE 3 

Participant-aggregated ALSFRS-R subscores by the functional domain and interpolation technique.
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FIGURE 4 

Data processing and model fitting pipeline. (a) Sensor and ALSFRS-R preprocessing steps. (b) Dataset segmentation for individual batch and cohort 

transfer learning models. (c) Iterative model tuning and evaluation stages.
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hyperparameter tuned using RandomizedSearchCV in the Scikit- 

Learn Python package. Following initialization, feature 

importance scores were extracted using feature weight frequency 

internal to XGBoost. Importance scores were then binned 

through iterative precision-rounding, beginning at six decimal 

places and consecutively increasing precision levels to a 

maximum of 200 features to avoid overfitting. For each feature 

subset identified, a new model was fit using the selected features 

and tuned hyperparameters, as specified in Table 2. The root 

mean square error (RMSE) was calculated and compared across 

all iterations, with the model configuration yielding the lowest 

test RMSE selected as the optimized model. The best- 

performing transfer model was then fine-tuned on the holdout 

participant’s training set using the trained booster as a 

checkpoint to resume learning.

2.4 Model evaluation metrics and Taylor 
diagrams

Prediction performance metrics for the RMSE (prediction 

error), Pearson’s r (outcome correlation), and their confidence 

intervals (CIs) were calculated from modeled outcomes (ŷ) 

against the test values (y) that were held out from the model 

training data. Confidence intervals for the Pearson correlation 

were obtained by first applying Fisher’s z-transformation to 

stabilize the sampling distribution and computing the standard 

error, before constructing the 95% limits in z-space, and then 

converting these limits back to the correlation scale. If fewer 

than four points were available, the correlation interval was 

marked as missing. For RMSE confidence intervals, we used the 

non-parametric bootstrap method with 1,000 resamples of the 

paired true and predicted values, recalculated the RMSE for 

each resample using the standard deviation of true and 

predicted values along with their absolute correlation, and then 

took the 2.5% and 97.5% percentiles of the resulting RMSE 

distribution as the confidence bounds. Average summary metrics 

for ALSFRS-R subscales and the composite score were calculated 

by taking the mean value across participants, with the 95% 

confidence interval estimated using the standard error of the 

mean and the t-distribution. This provides an interval estimate 

that reBects the expected variability in case series cohort model 

performance. Comparisons between pseudo-labeling techniques 

and learning methods were made using Taylor diagrams to 

assess prediction accuracy, correlation, and variability at the 

cohort level by averaging outcomes across participants for each 

subscale. In these Taylor diagrams, the reference point on the 

X-axis represents the actual values (the estimated ALSFRS-R 

scale) plotted at coordinates (sref , 0), where sref is the 

standard deviation of the actual values, while the origin (0, 0) 

represents a modeled prediction with SD ¼ 0 and r ¼ 0 to the 

reference vector (26).

3 Results

Models were evaluated across pseudo-labeling techniques 

(linear, cubic, self-attention interpolation) and learning methods 

(individual batch, transfer batch fine-tuned, transfer incremental 

fine-tuned) for predicting ALSFRS-R component and composite 

scales using in-home health sensor features; an asterisk (*) was 

used to mark significant improvements in these comparisons. 

Prediction errors and outcome correlations for ALSFRS-R 

subscales are illustrated by participant as Taylor diagrams in 

Figure 5 and cohort average in Figure 6. Low variances in 

collected scores, provided in Table 3, prevented the fitting of 

participant-subscale models for salivation in P1, speech in P2, 

dyspnea and respiratory for P1 and P2 for all interpolations, 

dyspnea and respiratory in P3 with linear and cubic 

interpolation, and cutting with self-attention interpolation. As 

P1’s salivation and respiratory scales had zero variance with 

static scores of 4, transfer models were not fit for these subscales.

3.1 Performance contrast between learning 
methods

Individual batch and cohort-level transfer learning methods 

were compared to determine their effectiveness in improving 

prediction error (RMSE) and outcome correlation (r) within 

participants, as detailed in Tables 4 and 5 and as averaged 

across participants in Table 6. Results from individual batch and 

transfer incremental models revealed participant-specific 

heterogeneity in certain subscales. Comparing the lowest and 

next lowest model errors, transfer learning generally 

outperformed individual batch learning across most participant- 

scale combinations; however, there were exceptions where 

individual batch models provided lower prediction error (P1: 

walking, stairs, composite; P2: composite; P3: cutting, 

turning, orthopnea).

TABLE 2 Hyperparameter search spaces for tuning the XGBoost 
classifier algorithm.

Hyperparameter Description Search space

eta (learning rate) Learning rate to scale the 

contribution of each tree

[0.001, 0.01, 0.1, 

0.3, 0.5]

n_estimators Number of boosting rounds 

(trees) to build

[32, 64, 128, 192, 

256, 384, 512]

gamma Minimum loss reduction required 

to perform a split

[0, 0.25, 0.5, 1]

max_depth Maximum depth of trees to 

prevent overfitting

[2, 3, 4, 6, 8, 10, 12, 

16, 24]

min_child_weight Minimum sum of instance 

weights needed in a child node

[0.5, 1, 3, 5, 7, 10]

subsample Fraction of training data used for 

building each tree

[0.8, 0.9, 1.0]

colsample_bytree Fraction of features randomly 

sampled for each tree

[0.6, 0.7, 0.8, 0.9]

lambda (reg_lambda) L2 regularization to penalize large 

weights

[0.01, 0.1, 1, 5, 10, 

50, 100]

alpha (reg_alpha) L1 regularization to encourage 

sparsity in feature weight

[0, 0.001, 0.01, 0.1]
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3.1.1 Mean performance across interpolations
The bulbar ALSFRS-R scales (speech, salivation, swallowing) 

demonstrated cohort-level trends, with both transfer learning 

models outperforming individual batch models. For speech, 

transfer incremental learning led to improved mean prediction 

error and correlation compared to transfer batch learning in 

P1 (RMSE ¼ 0:08 ! 0:04�, r ¼ �0:02 ! 0:22) and P2 

(RMSE ¼ 0:27 ! 0:26, r ¼ 0:56 ! 0:75�), while P3 showed an 

increase in mean prediction error and a slight change in 

correlation (RMSE ¼ 0:15 ! 0:19, r ¼ 0 ! 0:04), indicating 

that speech function has shared cohort-level substrates, with 

participant-specific changes better captured by transfer 

incremental fine-tuning than by individual or transfer batch 

models. For salivation, transfer incremental learning resulted 

in a negligible change in mean prediction error in P2 

(RMSE ¼ 0:21 ! 0:20), while the error increased in P3 

(RMSE ¼ 0:15� ! 0:34) compared to transfer batch learning. 

P2 showed a minor decrease in prediction correlation 

(r ¼ �0:28 ! �0:20) with a slight change in P3 

(r ¼ 0 ! 0:03), suggesting slight participant heterogeneity in 

salivation decline. For swallowing, transfer incremental fine- 

tuning increased the prediction error with decreased 

correlation for P1 (RMSE ¼ 0:21 ! 0:23, r ¼ 0:80 ! 0:62) and 

with no change in correlation for P3 [RMSE ¼ 0:10� ! 0:16, 

r ¼ 0 (0–0)]. P2 showed no change in error or correlation 

[RMSE ¼ 0:04 (0.04–0.05), r ¼0 (0–0)].

Fine-motor subscales (handwriting, cutting, and dressing) 

showed variable responses to individual batch and transfer 

incremental fine-tuning across participants, indicating an overall 

weak participant-level heterogeneity. The fact that transfer 

learning models outperformed individual batch models implies 

that fine-motor decline progression patterns are relatively 

FIGURE 5 

Participant-level Taylor diagrams depicting the mean RMSE, absolute correlation (jrj), and standard deviation of the predicted outcomes for each 

ALSFRS-R scale, annotated by negative (�) correlation.
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homogeneous across the cohort. For handwriting, transfer 

incremental fine-tuning improved mean prediction error and 

correlation for P1 (RMSE ¼ 0:35 ! 0:15, r ¼ �0:02 ! 0:08) 

and P2 (RMSE ¼ 0:12 ! 0:10, r ¼ 0:32 ! 0:46), whereas P3 

exhibited a slight increase in prediction error (RMSE 

¼ 0:06� ! 0:10) with no change in correlation [r ¼ 0(0–0)]. In 

contrast, the cutting subscale exhibited more cohort 

homogeneity, as only P2 showed improvement with transfer 

incremental learning (RMSE ¼ 0:08 ! 0:05, r ¼ �0:22 ! 0:28), 

while P1 (RMSE ¼ 0:09 ! 0:12) and P3 (RMSE ¼ 0:02 ! 0:03) 

demonstrated increased prediction error without correlation 

improvement [r ¼ 0(0–0)] compared to the transfer batch 

model. The dressing subscale showed a moderate level of 

heterogeneity between participants and the cohort, with slight 

improvements from transfer incremental learning in mean 

RMSE and r for P2 (RMSE ¼ 0:11 ! 0:06�, r ¼ 0:94 ! 0:99�) 

and P3 (RMSE ¼ 0:16 ! 0:15, r ¼ 0:31 ! 0:37). Conversely, 

both error and correlation worsened for P1 (RMSE 

¼ 0:27 ! 0:35, r ¼ 0:40 ! �0:20).

For the gross motor ALSFRS-R scales (turning, walking, 

stairs), individual batch models outperformed transfer batch 

models in a few instances, indicating heterogeneity in these 

cases. Individual batch learning demonstrated lower error but 

with a minor correlation decrease in the turning subscale for P3 

(RMSE ¼ 0:15 ! 0:16, r ¼ �0:08 ! 0:08) compared to transfer 

batch. Similarly, individual batch models had better error with 

lower correlation than transfer batch learning in the walking 

subscale for P1 (RMSE ¼ 0:05� ! 0:25, r ¼ 0:10 ! 0:24) and a 

marginal improvement in stairs for P1 [RMSE ¼ 0� ! 0:04, 

r ¼ 0(0–0)]. For turning, transfer incremental improved both 

error and correlation in P1 (RMSE ¼ 0:32 ! 0:26�, 

r ¼ �0:03 ! 0:09) and increased both error and correlation in 

FIGURE 6 

Cohort-averaged Taylor diagrams depicting the mean RMSE, absolute correlation (jrj), and standard deviation of the predicted outcomes for each 

ALSFRS-R scale, annotated by negative (�) correlation.
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P2 (RMSE ¼ 0:03� ! 0:12, r ¼ 0:24 ! 0:67�) compared to 

transfer batch. The walking subscale also showed mixed results 

between the transfer methods. Transfer incremental learning 

improved both mean error and correlation over transfer batch 

for P2 (RMSE ¼ 0:14 ! 0:06�, r ¼ 0:93 ! 0:98) and only 

slightly improved for P3 (RMSE ¼ 0:17 ! 0:16, 

r ¼ �0:38 ! �0:37) but with a minor error increase with no 

change in correlation for P1 (RMSE ¼ 0:25 ! 0:26, r ¼ 0:24). 

For stairs, transfer batch and incremental models 

showed a marginal difference in error and increased correlation 

for P2 (RMSE ¼ 0:24 ! 0:23, r ¼ 0:88 ! 0:92), while the 

model error increased with transfer incremental learning for P3 

[RMSE ¼ 0:03� ! 0:19, r ¼ 0(0–0)].

Within the respiration-related ALSFRS-R scales (dyspnea, 

orthopnea, respiratory), the collected orthopnea and respiratory 

scores for P1 and P2 exhibited low variance, as presented in 

Table 3, which prevented the fitting of individual batch models 

for those participants. For dyspnea, transfer incremental 

learning significantly improved correlation for all participants 

and reduced prediction error for P1 (RMSE ¼ 0:50 ! 0:42, 

r ¼ 0:23 ! 0:75); however, it increased the error for P2 

(RMSE ¼ 0:46 ! 0:54, r ¼ 0:88 ! 0:94) and P3 (RMSE 

¼ 0:14� ! 0:36, r ¼ �0:03 ! 0:47). For orthopnea, transfer 

incremental models resulted in marginal differences in 

prediction error and a slight improvement in correlation for P1 

(RMSE ¼ 0:12 ! 0:11, r ¼ 0:98 ! 0:99) and P2 (RMSE 

¼ 0:31 ! 0:30, r ¼ 0:67 ! 0:73). However, individual batch 

models had slightly better error but lower correlation than 

transfer batch models in P3 (RMSE ¼ 0:10 ! 0:12, 

r ¼ 0:39 ! 0:60), indicating that the P3 orthopnea trajectory 

was not fully captured by the shared model, pointing toward 

participant heterogeneity, given the small improvements seen in 

P1 and P2 and the benefit P3 showed from individual batch 

learning. Similar to orthopnea, respiratory function also 

displayed participant heterogeneity, with transfer incremental 

learning resulting in a slight change in error but an increase in 

correlation between transfer batch and incremental learning for 

P2 (RMSE ¼ 0:30 ! 0:31, r ¼ 0:28 ! 0:48), while P3 had 

improved error and a significant increase in correlation (RMSE 

¼ 0:16 ! 0:12, r ¼ �0:27 ! 0:79).

To summarize overall functional status across bulbar, fine 

motor, gross motor, and respiratory items, the composite 

ALSFRS-R scale captures decline trends as a single index. For 

the composite ALSFRS-R scale, individual batch learning models 

resulted in a lower mean prediction error compared to transfer 

batch learning, with a marginal difference in outcome 

correlation for P1 (RMSE ¼ 2:76 ! 3:29, r ¼ 0:03 ! �0:04) 

and with significant improvements in error and correlation for 

P2 (RMSE ¼ 3:52� ! 6:03, r ¼ 0:48� ! 0:11), demonstrating 

that modeled composite scores are mostly participant-specific. 

Transfer incremental learning slightly improved prediction error 

and decreased correlation for P3 (RMSE ¼ 3:01 ! 2:97, 

r ¼ �0:54 ! �0:41) over transfer batch models. This 

performance was also comparable to individual batch learning 

[RMSE ¼ 3:17 (2.27–4.62), r ¼ �0:18 (�0.29–�0.04)].
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3.1.2 Mean group-level performance across 

interpolations
Contrasting the mean model performances across participants 

and learning methods provided evidence for whether functional 

domains exhibit patient-specific heterogeneity or cohort-level 

homogeneity. Bulbar area functions demonstrated mixed patterns, 

with speech exhibiting a combination of cohort homogeneity and 

participant heterogeneity. This was evidenced by transfer 

incremental learning improving outcome error and correlation over 

individual batch models (RMSE � 0:29 ! 0:16, 

r � �0:09 ! 0:34�). In contrast, salivation showed near-zero 

correlation for the individual model and persistent negative 

correlations for transfer models, suggesting high noise or complex 

participant-level patterns. Swallowing showed more cohort 

homogeneity, with transfer batch models [RMSE � 0:12 (0.05– 

0.19), r � 0:27 (�0.04–0.58)] outperforming both individual batch 

and incremental fine-tuned models. Fine motor area functions 

similarly demonstrated mixed results, as handwriting exhibited 

cohort patterns benefiting from transfer learning and participant 

heterogeneity, with incremental fine-tuning improving error and 

correlation over individual batch models (RMSE � 0:31 ! 0:12�, 

r � 0:07 ! 0:18). Cutting displayed similar heterogeneity, with 

incremental fine-tuning improving correlation performance over 

transfer batch models (r � �0:07 ! 0:09) with nearly equal 

TABLE 4 Mean model error (RMSE) across pseudo-label interpolations for each learning method.

Pt. Domain ALSFRS-R Individual batch Transfer batch Transfer incremental

RMSE (95% CI) RMSE (95% CI) RMSE (95% CI)

1 Speech 0.20 (0.14–0.28) 0.08 (0.07–0.10)a
0.04 (0.03–0.04)a, b

Bulbar Salivation — — —

Swallowing 0.34 (0.19–0.49) 0.21 (0.11–0.29) 0.23 (0.17–0.28)

Handwriting 0.37 (0.20–0.54) 0.35 (0.12–0.47) 0.15 (0.11–0.17)a

Fine motor Cutting 0.14 (0.10–0.18) 0.09 (0.07–0.12) 0.12 (0.03–0.16)

Dressing 0.29 (0.22–0.33) 0.27 (0.21–0.31) 0.35 (0.28–0.42)

Turning 0.28 (0.23–0.32) 0.32 (0.29–0.35) 0.26 (0.24–0.28)b

Gross motor Walking 0.05 (0.02–0.12)b, c 0.25 (0.16–0.29) 0.26 (0.15–0.32)

Stairs 0.00 (0.00–0.01)b, c 0.04 (0.04–0.04) 0.08 (0.08–0.08)

Dyspnea — 0.50 (0.41–0.55) 0.42 (0.30–0.49)

Respiratory Orthopnea 0.48 (0.45–0.52) 0.12 (0.11–0.14)a
0.11 (0.11–0.13)a

Respiratory — — —

Composite Composite 2.76 (1.69–4.72) 3.29 (2.15–4.21) 3.24 (3.02–3.39)

2 Speech – 0.27 (0.20–0.30) 0.26 (0.20–0.29)

Bulbar Salivation 0.49 (0.45–0.52) 0.21 (0.17–0.27)a
0.20 (0.16–0.28)a

Swallowing 0.17 (0.15–0.18) 0.04 (0.04–0.05)a 0.04 (0.04–0.05)a

Handwriting 0.45 (0.34–0.51) 0.12 (0.08–0.15)a
0.10 (0.09–0.12)a

Fine motor Cutting 0.36 (0.30–0.43) 0.08 (0.06–0.11)a
0.05 (0.03–0.07)a

Dressing 0.35 (0.31–0.38) 0.11 (0.10–0.12)a
0.06 (0.04–0.08)a, b

Turning 0.30 (0.30–0.30) 0.03 (0.02–0.05)a, c 0.12 (0.08–0.14)a

Gross motor Walking 0.30 (0.26–0.33) 0.14 (0.08–0.19)a
0.06 (0.05–0.07)a, b

Stairs 0.30 (0.21–0.36) 0.24 (0.24–0.25) 0.23 (0.23–0.24)

Dyspnea — 0.46 (0.38–0.51) 0.54 (0.44–0.63)

Respiratory Orthopnea 0.34 (0.29–0.42) 0.31 (0.30–0.32) 0.30 (0.29–0.33)

Respiratory — 0.30 (0.19–0.40) 0.31 (0.19–0.40)

Composite Composite 3.52 (3.01–4.41)b 6.03 (4.86–8.28) 4.41 (3.92–4.66)b

3 Speech 0.38 (0.21–0.49) 0.15 (0.13–0.19)a 0.19 (0.17–0.21)a

Bulbar Salivation 0.20 (0.10–0.39) 0.15 (0.11–0.20)c 0.34 (0.30–0.36)

Swallowing 0.12 (0.00–0.24) 0.10 (0.09–0.10)c 0.16 (0.15–0.18)

Handwriting 0.12 (0.00–0.18) 0.06 (0.05–0.06)c 0.10 (0.08–0.10)

Fine motor Cutting 0.02 (0.01–0.02)c
0.02 (0.02–0.02) 0.03 (0.02–0.03)

Dressing 0.35 (0.18–0.46) 0.16 (0.13–0.18) 0.15 (0.12–0.16)a

Turning 0.15 (0.07–0.20) 0.16 (0.15–0.18)c 0.22 (0.18–0.29)

Gross motor Walking 0.39 (0.22–0.51) 0.17 (0.15–0.20)a 0.16 (0.14–0.20)a

Stairs 0.09 (0.00–0.16) 0.03 (0.02–0.05)c 0.19 (0.06–0.26)

Dyspnea 0.20 (0.20–0.20)c
0.14 (0.10–0.21)c 0.36 (0.32–0.39)

Respiratory Orthopnea 0.10 (0.00–0.18) 0.12 (0.05–0.16) 0.22 (0.11–0.32)

Respiratory 0.22 (0.22–0.22) 0.16 (0.11–0.22) 0.12 (0.09–0.16)a

Composite Composite 3.17 (2.27–4.62) 3.01 (2.60–3.67) 2.97 (2.21–4.44)

Best model for each column-wise comparison per row is provided in bold.
aSignificantly better than Individual Batch (p , 0:05).
bSignificantly better than Transfer Batch (p , 0:05).
cSignificantly better than Transfer Incremental (p , 0:05).
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prediction error. Dressing had moderate cohort homogeneity, with 

transfer batch showing a stronger correlation than incremental fine- 

tuning (r � 0:55 ! 0:39) with no change in error. The gross motor 

area functions were predominantly cohort homogeneous but 

showed selective participant heterogeneity, particularly in walking, 

where incremental fine-tuning marginally improved error and 

correlation over fine-tuning (RMSE � 0:19 ! 0:16, 

r � 0:26 ! 0:28), and in stairs, where incremental fine-tuning 

improved both error and correlation over individual batch models 

(RMSE � 0:13 ! 0:17, r � 0:17 ! 0:33). These results indicate 

that participant variations exist within the predominant cohort 

patterns. Respiratory functions exhibited the strongest evidence of 

patient heterogeneity, with incremental fine-tuning of transfer 

models improving negative correlations from individual batch in 

dyspnea (r � �0:30 ! 0:72), orthopnea (r � 0:41 ! 0:79), and 

respiratory (r � �0:31 ! 0:64).

3.1.3 Mean group-level performance across 
interpolations and ALSFRS-R scales

As shown in the Subscale Mean row of Table 6, transfer batch 

models demonstrated the best subscale performance with the 

lowest mean prediction error [RMSE � 0:18 (0.14–0.22)], 

outperforming transfer incremental [RMSE � 0:20 (0.14–0.25)] 

and individual batch learning (RMSE � 0:25 (0.22–0.29)]. 

TABLE 5 Mean model outcome correlation (r) across pseudo-label interpolations for each learning method.

Pt. Domain ALSFRS-R Individual batch Transfer batch Transfer incremental

r (95% CI) r (95% CI) r (95% CI)

1 Speech �0.05 (�0.15 to 0.00) �0.02 (�0.04 to 0.00) 0.22 (0.00 to 0.66)

Bulbar Salivation — — —

Swallowing �0.05 (�0.22 to 0.18) 0.80 (0.75 to 0.84)a 0.62 (0.15 to 0.86)

Handwriting �0.07 (�0.20 to 0.00) �0.02 (�0.06 to 0.00) 0.08 (0.00 to 0.25)

Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dressing 0.53 (0.33 to 0.68)c 0.40 (�0.13 to 0.85) �0.20 (�0.29 to �0.06)

Turning �0.07 (�0.41 to 0.28) �0.03 (�0.11 to 0.05) 0.09 (�0.01 to 0.16)

Gross motor Walking 0.10 (0.00 to 0.31) 0.24 (0.00 to 0.73) 0.24 (0.00 to 0.73)

Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dyspnea — 0.23 (�0.20 to 0.51) 0.75 (0.60 to 0.85)b

Respiratory Orthopnea 0.30 (0.20 to 0.38) 0.98 (0.97 to 0.99)a
0.99 (0.99 to 0.99)a

Respiratory — — —

Composite Composite 0.03 (�0.07 to 0.10) �0.04 (�0.49 to 0.74) 0.57 (0.50 to 0.71)a

2 Speech — 0.56 (0.46 to 0.72) 0.75 (0.72 to 0.78)b

Bulbar Salivation 0.09 (�0.13 to 0.36) �0.28 (�0.40 to �0.13) �0.20 (�0.35 to �0.10)

Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Handwriting 0.27 (�0.01 to 0.56) 0.32 (0.00 to 0.62) 0.46 (0.14 to 0.84)

Fine motor Cutting 0.15 (�0.13 to 0.52) �0.22 (�0.48 to 0.01) 0.28 (�0.07 to 0.60)

Dressing 0.21 (0.03 to 0.46) 0.94 (0.92 to 0.96)a
0.99 (0.98 to 0.99)a, b

Turning 0.21 (0.07 to 0.45) 0.24 (�0.14 to 0.45) 0.67 (0.52 to 0.91)a, b

Gross motor Walking 0.20 (0.05 to 0.31) 0.93 (0.87 to 0.96)a
0.98 (0.96 to 0.99)a

Stairs 0.46 (0.32 to 0.65) 0.88 (0.80 to 0.93)a
0.92 (0.89 to 0.94)a

Dyspnea — 0.88 (0.84 to 0.90) 0.94 (0.92 to 0.95)b

Respiratory Orthopnea 0.55 (0.50 to 0.62) 0.67 (0.56 to 0.84) 0.73 (0.66 to 0.87)a

Respiratory — 0.28 (�0.26 to 0.61) 0.48 (0.31 to 0.64)

Composite Composite 0.48 (0.34 to 0.66)b 0.11 (�0.12 to 0.23) 0.63 (0.61 to 0.68)b

3 Speech �0.13 (�0.23 to �0.04) 0.00 (�0.57 to 0.31) 0.04 (�0.41 to 0.26)

Bulbar Salivation �0.06 (�0.22 to 0.22) 0.00 (�0.01 to 0.00) 0.03 (0.00 to 0.08)

Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dressing �0.20 (�0.35 to 0.03) 0.31 (0.02 to 0.75) 0.37 (0.09 to 0.79)a

Turning �0.08 (�0.25 to 0.00) 0.08 (0.00 to 0.24) 0.10 (0.00 to 0.32)

Gross motor Walking �0.18 (�0.25 to �0.08) �0.38 (�0.43 to �0.33)a �0.37 (�0.43 to �0.32)a

Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dyspnea �0.30 (�0.30 to �0.30)b �0.03 (�0.09 to 0.07) 0.47 (0.18 to 0.63)a, b

Respiratory Orthopnea 0.39 (0.00 to 0.59) 0.60 (0.00 to 0.94) 0.64 (0.00 to 0.96)

Respiratory �0.31 (�0.31 to �0.31) �0.27 (�0.32 to �0.20) 0.79 (0.76 to 0.83)a, b

Composite Composite �0.18 (�0.29 to �0.04) �0.54 (�0.58 to �0.50)a �0.41 (�0.69 to 0.08)

Best model for each column-wise comparison per row is provided in bold.
aSignificantly better than individual batch (p , 0:05).
bSignificantly better than transfer batch (p , 0:05).
cSignificantly better than transfer incremental (p , 0:05).
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Overall, across all participants and interpolation techniques, 

transfer incremental learning showed the highest mean 

correlation [r � 0:35 (0.20–0.49)] compared to transfer batch 

[r � 0:22 (0.08–0.37)] and individual batch learning (r � 0:02 

(�0.09–0.13)] for subscale prediction. On composite scales, 

individual batch models showed the lowest error [RMSE � 3:15 

(2.24–4.05)] but only weak correlation [r � 0:11 (�0.13–0.35)], 

while transfer batch resulted in the highest error [RMSE � 4:11 

(2.69–5.53)] and a negative correlation [r � �0:16 (�0.51– 

0.20)]. Transfer incremental models had the best balance 

between error and correlation for the composite scale, with a 

moderate error (RMSE � 3:54 (2.81–4.27)], slightly higher than 

the error from individual batch models but lower than transfer 

batch models, and improved correlation [r � 0:27 (�0.16–0.69)].

3.2 Performance contrast between 
pseudo-label interpolations

To evaluate how the pseudo-labeling interpolation approach 

affects model performance, prediction error and outcome 

correlation were averaged across learning methods, as detailed in 

Tables 7 and 8 and across participants in Table 9. Results 

demonstrate that the non-linear cubic polynomial and self- 

attention interpolation of ALSFRS-R scales follow more closely 

with daily changes in in-home sensor health measurements, 

with a few exceptions where linear interpolation resulted in 

lower errors (P1: composite; P2: dressing, orthopnea, composite; 

P3: turning, respiratory, composite), as illustrated by the Taylor 

diagrams in Figure 5.

3.2.1 Mean performance across learning methods
The bulbar ALSFRS-R scales (speech, salivation, swallowing) 

resulted in mean improvements to model error from non-linear 

cubic and self-attention interpolation compared to linear 

interpolation. For speech, cubic reduced model error for P1 

[RMSE ¼ 0:14 ! 0:09, r ¼ 0 (0–0)], while self-attention 

provided improved error and correlation for P2 (RMSE 

¼ 0:30 ! 0:20�, r ¼ 0:59 ! 0:75�) and improved error and 

correlation for P3 (RMSE ¼ 0:25 ! 0:20, r ¼ 0:13 ! �0:34). 

Salivation performed only marginally better with cubic 

interpolation over linear interpolation, with an increase in 

TABLE 6 Mean model prediction error (RMSE) and outcome correlation (r) across pseudo-label interpolations and participants for each 
learning method.

Domain ALSFRS-R Individual batch Transfer batch Transfer incremental

RMSE (95% CI) RMSE (95% CI) RMSE (95% CI)

Speech 0.29 (0.14 to 0.44) 0.16 (0.10 to 0.24) 0.16 (0.08 to 0.24)

Bulbar Salivation 0.35 (0.14 to 0.55) 0.18 (0.12 to 0.24) 0.27 (0.18 to 0.36)

Swallowing 0.21 (0.10 to 0.31) 0.12 (0.05 to 0.19) 0.14 (0.08 to 0.21)

Handwriting 0.31 (0.17 to 0.46) 0.17 (0.04 to 0.30) 0.12 (0.09 to 0.14)a

Fine motor Cutting 0.19 (0.06 to 0.32) 0.07 (0.04 to 0.10) 0.07 (0.02 to 0.12)

Dressing 0.33 (0.26 to 0.40) 0.18 (0.12 to 0.24)a
0.18 (0.08 to 0.29)

Turning 0.24 (0.18 to 0.30) 0.17 (0.07 to 0.27) 0.20 (0.14 to 0.26)

Gross motor Walking 0.25 (0.12 to 0.38) 0.19 (0.14 to 0.24) 0.16 (0.08 to 0.24)

Stairs 0.13 (0.03 to 0.27) 0.11 (0.02 to 0.20) 0.17 (0.11 to 0.26)

Dyspnea 0.20 — 0.36 (0.22–0.50) 0.44 (0.36–0.52)

Respiratory Orthopnea 0.31 (0.17–0.45) 0.18 (0.11–0.26) 0.22 (0.14–0.29)

Respiratory 0.22 – 0.23 (0.11–0.35) 0.22 (0.08–0.35)

Subscale Mean 0.25 (0.22–0.29) 0.18 (0.14–0.22) 0.20 (0.14–0.25)

Composite 3.15 (2.24–4.05) 4.11 (2.69–5.53) 3.54 (2.81–4.27)

r (95% CI) r (95% CI) r (95% CI)

Speech �0.09 (�0.19 to 0.01) 0.18 (�0.11 to 0.48) 0.34 (0.01–0.66)a

Bulbar Salivation 0.02 (�0.22 to 0.26) �0.14 (�0.32 to 0.04) �0.08 (�0.24 to 0.08)

Swallowing �0.02 (�0.10 to 0.07) 0.27 (�0.04 to 0.58) 0.21 (�0.08 to 0.50)

Handwriting 0.07 (�0.10 to 0.23) 0.10 (�0.07 to 0.28) 0.18 (�0.04 to 0.40)

Fine motor Cutting 0.06 (�0.11 to 0.22) �0.07 (�0.23 to 0.06) 0.09 (�0.09 to 0.29)

Dressing 0.18 (�0.10 to 0.46) 0.55 (0.22–0.88) 0.39 (�0.04 to 0.81)

Turning 0.02 (�0.18 to 0.22) 0.10 (�0.07 to 0.26) 0.29 (0.04–0.53)

Gross motor Walking 0.04 (�0.12 to 0.20) 0.26 (�0.20 to 0.73) 0.28 (�0.20 to 0.76)

Stairs 0.17 (�0.04 to 0.39) 0.33 (�0.05 to 0.71) 0.35 (�0.05 to 0.74)

Dyspnea �0.30 (—) 0.36 (0.01 to 0.70) 0.72 (0.52 to 0.91)

Respiratory Orthopnea 0.41 (0.25 to 0.57) 0.75 (0.50 to 1.00) 0.79 (0.54 to 1.03)

Respiratory �0.31 (—) 0.01 (�0.44 to 0.45) 0.64 (0.42 to 0.84)

Subscale Mean 0.02 (�0.09 to 0.13) 0.22 (0.08 to 0.37) 0.35 (0.20 to 0.49)

Composite 0.11 (�0.13 to 0.35) �0.16 (�0.51 to 0.20) 0.27 (�0.16 to 0.69)

Best model for each column-wise comparison per row is provided in bold.
aSignificantly better than individual batch (p , 0:05).
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correlation for P2 (RMSE ¼ 0:29 ! 0:28, r ¼ �0:13 ! �0:30) and 

a minor correlation change for P3 (RMSE ¼ 0:20 ! 0:19, 

r ¼ �0:07 ! �0:05). For the swallowing subscale, self-attention 

interpolation provided lower error across all participants, with 

a decreased correlation for P1 (RMSE ¼ 0:27 ! 0:16�, 

r ¼ 0:49 ! 0:36) and no change in correlation for P3 

[RMSE ¼ 0:12 ! 0:09, r ¼ 0(0–0)], while cubic and self-attention 

performed the same, with a very minor difference in error for P2 

[RMSE ¼ 0:09 ! 0:08, r ¼ 0(0–0)] compared to linear interpolation.

For fine-motor subscales (handwriting, cutting, and dressing), 

self-attention interpolation provided the lowest model error, with 

the exception of cutting for P3 and dressing for P2. For the 

handwriting scale, self-attention reduced error and either 

increased or maintained correlation for P1 [RMSE 

¼ 0:39 ! 0:14, r ¼ 0 (0–0)], P2 (RMSE ¼ 0:23 ! 0:20, 

r ¼ 0:24 ! 0:67�), and P3 [RMSE ¼ 0:11 ! 0:05, r ¼ 0 (0–0)]. 

Cutting also performed better on self-attention pseudo-labels, 

reducing error for P1 [RMSE ¼ 0:15 ! 0:07�, r ¼ 0 (0–0)] and 

for P2 (RMSE ¼ 0:15 ! 0:14, r ¼ �0:01 ! 0:21) with 

improved correlation, while cubic and linear models performed 

equally for P3 [RMSE ¼ 0:02(0.01–0.02), r ¼ 0 (0–0)]. Dressing 

models fit on self-attention interpolated labels had decreased 

model error but with lower correlation for P1 (RMSE 

¼ 0:32 ! 0:27, r ¼ 0:19 ! 0:09) and significantly better 

TABLE 7 Mean model prediction error (RMSE) across learning methods for each pseudo-labeling interpolation.

Pt. Domain ALSFRS-R Linear slope Cubic polynomial Self-attention

RMSE (95% CI) RMSE (95% CI) RMSE (95% CI)

1 Speech 0.14 (0.04–0.28) 0.09 (0.04–0.14) 0.10 (0.03–0.18)

Bulbar Salivation — — —

Swallowing 0.27 (0.24–0.33) 0.36 (0.28–0.49) 0.16 (0.11–0.19)a, b

Handwriting 0.39 (0.17–0.54) 0.33 (0.17–0.47) 0.14 (0.11–0.20)

Fine motor Cutting 0.15 (0.12–0.18) 0.12 (0.07–0.16) 0.07 (0.03–0.10)a

Dressing 0.32 (0.29–0.34) 0.32 (0.21–0.42) 0.27 (0.22–0.31)

Turning 0.31 (0.27–0.35) 0.26 (0.23–0.32) 0.28 (0.27–0.29)

Gross motor Walking 0.21 (0.02–0.32) 0.21 (0.02–0.32) 0.14 (0.12–0.16)

Stairs 0.04 (0.01–0.08) 0.04 (0.00–0.08) —

Dyspnea 0.51 (0.49–0.54) 0.51 (0.47–0.55) 0.36 (0.30–0.41)a, b

Respiratory Orthopnea 0.26 (0.11–0.52) 0.22 (0.11–0.47) 0.23 (0.12–0.45)

Respiratory — — —

Composite Composite 2.79 (1.86–3.50) 2.38 (1.69–3.31)c 4.11 (3.39–4.72)

2 Speech 0.30 (0.29–0.30) 0.30 (0.29–0.30) 0.20 (0.20–0.20)a, b

Bulbar Salivation 0.29 (0.16–0.52) 0.28 (0.16–0.51) 0.33 (0.27–0.45)

Swallowing 0.08 (0.04–0.17) 0.09 (0.04–0.18) 0.09 (0.04–0.15)

Handwriting 0.23 (0.08–0.51) 0.25 (0.12–0.50) 0.20 (0.10–0.34)

Fine Motor Cutting 0.15 (0.03–0.37) 0.20 (0.07–0.43) 0.14 (0.05–0.30)

Dressing 0.16 (0.05–0.31) 0.17 (0.04–0.38) 0.18 (0.08–0.36)

Turning 0.15 (0.03–0.30) 0.16 (0.05–0.30) 0.13 (0.02–0.30)

Gross motor Walking 0.17 (0.05–0.31) 0.19 (0.07–0.33) 0.14 (0.07–0.26)

Stairs 0.28 (0.24–0.36) 0.27 (0.24–0.33) 0.22 (0.21–0.24)a, b

Dyspnea 0.55 (0.48–0.63) 0.52 (0.51–0.54) 0.41 (0.38–0.44)a, b

Respiratory Orthopnea 0.29 (0.29–0.30)b, c 0.31 (0.31–0.31)c 0.36 (0.32–0.42)

Respiratory 0.34 (0.34–0.34)b 0.40 (0.40–0.40) 0.19 (0.19–0.19)a, b

Composite Composite 4.21 (3.01–4.97) 4.22 (3.14–4.86) 5.54 (3.92–8.28)

3 Speech 0.25 (0.14–0.44) 0.26 (0.13–0.49) 0.20 (0.19–0.21)

Bulbar Salivation 0.20 (0.10–0.36) 0.19 (0.10–0.36) 0.30 (0.20–0.39)

Swallowing 0.12 (0.09–0.15) 0.16 (0.10–0.24) 0.09 (0.00–0.18)

Handwriting 0.11 (0.05–0.16) 0.12 (0.06–0.18) 0.05 (0.00–0.08)

Fine motor Cutting 0.02 (0.02–0.02) 0.02 (0.01–0.02) —

Dressing 0.25 (0.16–0.41) 0.27 (0.16–0.46) 0.14 (0.12–0.18)

Turning 0.17 (0.15–0.19) 0.18 (0.15–0.20) 0.18 (0.07–0.29)

Gross motor Walking 0.24 (0.14–0.43) 0.27 (0.14–0.51) 0.21 (0.20–0.22)

Stairs 0.13 (0.02–0.26) 0.15 (0.03–0.26) 0.04 (0.00–0.06)

Dyspnea 0.24 (0.10–0.38) 0.25 (0.11–0.39) 0.24 (0.20–0.32)

Respiratory Orthopnea 0.20 (0.13–0.32) 0.19 (0.16–0.24) 0.05 (0.00–0.11)a, b

Respiratory 0.10 (0.09–0.11)c 0.12 (0.10–0.14)c 0.20 (0.16–0.22)

Composite Composite 2.38 (2.27–2.60)c 2.53 (2.21–2.76)c 4.24 (3.67–4.62)

Best model for each column-wise comparison per row is provided in bold.
aSignificantly better than the linear slope (p , 0:05).
bSignificantly better than the cubic polynomial (p , 0:05).
cSignificantly better than self-attention (p , 0:05).
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correlation for P3 (RMSE ¼ 0:25 ! 0:14, r ¼ �0:06 ! 0:52), 

while the linear slope provided the best error and correlation 

compared to non-linear interpolations for P2 [RMSE ¼ 0:16 

(0.05–0.31), r ¼ 0:80 (0.46–0.99)].

For gross motor ALSFRS-R scales (turning, walking, stairs), 

self-attention interpolation again resulted in improved model 

error in most cases. The turning subscale had mixed outcomes: 

cubic interpolation improved error over linear but with 

decreased correlation for P1 (RMSE ¼ 0:31 ! 0:26, 

r ¼ �0:01 ! �0:10) and self-attention improved error and 

correlation for P2 (RMSE ¼ 0:15 ! 0:13, r ¼ 0:36 ! 0:41) and 

showed a minor change in error with improved correlation for 

P3 (RMSE ¼ 0:17 ! 0:18, r ¼ 0 ! 0:10). For walking, self- 

attention interpolation resulted in the lowest error for all 

participants, with significantly improved correlation for P1 

(RMSE ¼ 0:21 ! 0:14, r ¼ 0 ! 0:59�), a moderate decrease in 

correlation for P2 (RMSE ¼ 0:17 ! 0:14, r ¼ 0:75 ! 0:66), and 

an increase for P3 (RMSE ¼ 0:24 ! 0:21, r ¼ �0:29 ! �0:37). 

The stairs models had the lowest prediction error with self- 

attention interpolation, with a slight improvement in correlation 

for P2 (RMSE ¼ 0:28 ! 0:22�, r ¼ 0:73 ! 0:78) and no change 

for P3 [RMSE ¼ 0:13 ! 0:04, r ¼ 0 (0–0)]. However, linear 

slope and cubic interpolation performed equally for P1 [RMSE 

¼ 0:04 (0.01–0.08), r ¼ 0(0–0)].

TABLE 8 Mean model outcome correlation (r) across learning methods for each pseudo-labeling interpolation.

Pt. Domain ALSFRS-R Linear slope Cubic polynomial Self-attention

r (95% CI) r (95% CI) r (95% CI)

1 Speech 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.16 (�0.15 to 0.66)

Bulbar Salivation — — —

Swallowing 0.49 (�0.22 to 0.86) 0.53 (�0.11 to 0.86) 0.36 (0.15 to 0.75)

Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (�0.20 to 0.25)

Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dressing 0.19 (�0.26 to 0.49) 0.46 (�0.06 to 0.85) 0.09 (�0.29 to 0.68)

Turning �0.01 (�0.11 to 0.16) �0.10 (�0.41 to 0.12) 0.11 (�0.01 to 0.28)

Gross motor Walking 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.59 (0.31 to 0.73)a, b

Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) —

Dyspnea 0.68 (0.51 to 0.85) 0.59 (0.39 to 0.79) 0.20 (�0.20 to 0.60)

Respiratory Orthopnea 0.79 (0.38 to 0.99) 0.76 (0.31 to 0.99) 0.73 (0.20 to 0.99)

Respiratory — — —

Composite Composite 0.08 (�0.36 to 0.51) �0.02 (�0.49 to 0.50) 0.50 (0.06 to 0.74)

2 Speech 0.59 (0.46 to 0.72) 0.63 (0.50 to 0.75) 0.75 (0.72 to 0.78)a

Bulbar Salivation �0.13 (�0.31 to 0.05) �0.30 (�0.40 to �0.13)c 0.04 (�0.13 to 0.36)

Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Handwriting 0.24 (�0.01 to 0.38) 0.13 (0.00 to 0.25) 0.67 (0.56 to 0.84)a, b

Fine motor Cutting �0.01 (�0.20 to 0.30) 0.00 (�0.07 to 0.05) 0.21 (�0.48 to 0.60)

Dressing 0.80 (0.46 to 0.99) 0.69 (0.13 to 0.99) 0.64 (0.03 to 0.98)

Turning 0.36 (0.11 to 0.57) 0.35 (0.07 to 0.52) 0.41 (�0.14 to 0.91)

Gross Motor Walking 0.75 (0.31 to 0.99) 0.70 (0.23 to 0.99) 0.66 (0.05 to 0.96)

Stairs 0.73 (0.32 to 0.94) 0.76 (0.40 to 0.94) 0.78 (0.65 to 0.89)

Dyspnea 0.91 (0.88 to 0.95) 0.89 (0.84 to 0.95) 0.92 (0.90 to 0.92)

Respiratory Orthopnea 0.62 (0.56 to 0.67) 0.59 (0.50 to 0.66) 0.75 (0.53 to 0.87)

Respiratory 0.63 (0.61 to 0.64)b, c 0.48 (0.48 to 0.48)c 0.03 (�0.26 to 0.31)

Composite Composite 0.39 (0.21 to 0.61) 0.43 (0.23 to 0.61) 0.41 (�0.12 to 0.68)

3 Speech 0.13 (�0.13 to 0.26) 0.11 (�0.23 to 0.31) �0.34 (�0.57 to �0.04)

Bulbar Salivation �0.07 (�0.22 to 0.00) �0.05 (�0.16 to 0.00) 0.10 (�0.01 to 0.22)

Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) —

Dressing �0.06 (�0.29 to 0.09) 0.01 (�0.35 to 0.23) 0.52 (0.03 to 0.79)

Turning 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.10 (�0.25 to 0.32)

Gross motor Walking �0.29 (�0.33 to �0.22) �0.27 (�0.37 to �0.08) �0.37 (�0.43 to �0.25)

Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Dyspnea 0.35 (0.07 to 0.63) 0.25 (�0.08 to 0.59) �0.07 (�0.30 to 0.18)

Respiratory Orthopnea 0.81 (0.58 to 0.95)c
0.82 (0.59 to 0.96)c 0.00 (0.00 to 0.00)

Respiratory 0.24 (�0.28 to 0.76) 0.29 (�0.20 to 0.77) 0.07 (�0.32 to 0.83)

Composite Composite �0.52 (�0.69 to �0.29) �0.46 (�0.63 to �0.20) �0.15 (�0.50 to 0.08)

Best model for each column-wise comparison per row is provided in bold.
aSignificantly better than the linear slope (p , 0:05).
bSignificantly better than the cubic polynomial (p , 0:05).
cSignificantly better than self-attention (p , 0:05).
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Within the respiration-related ALSFRS-R scales (dyspnea, 

orthopnea, respiratory), models fit on linear slope demonstrated 

better error than non-linear interpolations among all functional 

domains. For the dyspnea scale, self-attention interpolation 

improved error but with a decreased correlation for P1 (RMSE 

¼ 0:52 ! 0:36�, r ¼ 0:68 ! 0:20) and a marginal correlation 

change for P2 (RMSE ¼ 0:55 ! 0:41�, r ¼ 0:92 ! 0:91). Self- 

attention interpolation had equal prediction error to the baseline 

linear slope but at a decreased correlation for P3 [RMSE ¼ 0:24 

(0.20–0.32), r ¼ 0:35 ! �0:07]. For orthopnea models, transfer 

batch interpolation improved error but with a slight reduction in 

correlation for P1 (RMSE ¼ 0:26 ! 0:22, r ¼ 0:79 ! 0:76) 

compared to the linear slope. Self-attention interpolation increased 

model error over linear interpolation but with improved correlation 

for P2 (RMSE ¼ 0:29� ! 0:36, r ¼ 0:62 ! 0:75), while the 

opposite occurred for P3 (RMSE ¼ 0:20 ! 0:05�, r ¼ 0:82� ! 0), 

reducing model error and significantly decreasing correlation in P3. 

Respiratory had the lowest error from self-attention but with a 

significant reduction in correlation for P2 (RMSE ¼ 0:34 ! 0:19, 

r ¼ 0:63� ! 0:03), while the linear slope provided a slight decrease 

in both error and correlation compared to cubic interpolation for P3 

(RMSE ¼ 0:10 ! 0:12, r ¼ 0:24 ! 0:29).

For the composite ALSFRS-R scale, linear slope models 

provided the best prediction error but had a decreased 

outcome correlation compared to self-attention interpolation for 

P1 (RMSE ¼ 2:79 ! 4:11, r ¼ 0:08 ! 0:50), P2 (RMSE =  

4:21 ! 5:54, r ¼ 0:39 ! 0:41), and P3 (RMSE ¼ 2:38 ! 4:24, 

r ¼ �0:52 ! �0:15). The results suggest that while self- 

attention was best at capturing the overall changes within 

individual ALSFRS-R subscales, the summation of the ALSFRS- 

R composite score compensates these changes, resulting in a 

linear trajectory, confirming to clinical practice of using a linear 

slope to estimate the rate of functional change.

3.2.2 Mean group-level performance across 

learning methods and ALSFRS-R scales
Self-attention interpolation had the best subscale-specific 

performance with the lowest mean prediction error [RMSE � 0:19 

(0.15–0.23), r � 0:24 (0.15–0.31)] across participants and ALSFRS- 

R subscales, as shown in the Subscale Mean row of Table 9, 

outperforming linear and cubic interpolation in 21 of 34 subscale 

comparisons excluding ties, reported in bold in Table 7. Linear 

[RMSE � 0:22 (0.18–0.27), r � 0:25 (0.11–0.39)] and cubic 

[RMSE � 0:23 (0.18–0.27), r � 0:23 (0.09–0.37)] interpolations 

TABLE 9 Mean model prediction error (RMSE) and outcome correlation (r) across learning methods and participants for each pseudo- 
labeling interpolation.

Domain ALSFRS-R Linear slope Cubic polynomial Self-attention

RMSE (95% CI) RMSE (95% CI) RMSE (95% CI)

Speech 0.22 (0.11 to 0.33) 0.21 (0.08 to 0.33) 0.16 (0.11 to 0.22)

Bulbar Salivation 0.24 (0.08 to 0.41) 0.24 (0.06 to 0.41) 0.32 (0.22 to 0.41)

Swallowing 0.16 (0.08 to 0.23) 0.20 (0.09 to 0.31) 0.11 (0.06 to 0.16)

Handwriting 0.24 (0.09 to 0.40) 0.23 (0.10 to 0.36) 0.13 (0.06 to 0.20)

Fine motor Cutting 0.11 (0.02 to 0.20) 0.11 (0.01 to 0.21) 0.10 (0.00 to 0.21)

Dressing 0.24 (0.15 to 0.34) 0.25 (0.14 to 0.37) 0.20 (0.12 to 0.28)

Turning 0.21 (0.13 to 0.29) 0.20 (0.14 to 0.26) 0.20 (0.11 to 0.28)

Gross motor Walking 0.20 (0.10 to 0.31) 0.22 (0.11 to 0.34) 0.16 (0.11 to 0.21)

Stairs 0.15 (0.06 to 0.25) 0.15 (0.06 to 0.25) 0.13 (0.02 to 0.24)

Dyspnea 0.43 (0.24 to 0.63) 0.43 (0.25 to 0.60) 0.32 (0.23 to 0.41)

Respiratory Orthopnea 0.25 (0.14 to 0.35) 0.24 (0.15 to 0.34) 0.22 (0.09 to 0.34)

Respiratory 0.22 (0.00 to 0.44) 0.26 (0.00 to 0.52) 0.20 (0.17 to 0.22)

Subscale Mean 0.22 (0.18 to 0.27) 0.23 (0.18 to 0.27) 0.19 (0.15 to 0.23)

Composite 3.13 (2.30 to 3.95) 3.04 (2.20 to 3.88) 4.63 (3.52 to 5.74)

r (95% CI) r (95% CI) r (95% CI)

Speech 0.20 (�0.04 to 0.43) 0.21 (�0.07 to 0.47) 0.12 (�0.33 to 0.56)

Bulbar Salivation �0.10 (�0.25 to 0.05) �0.17 (�0.35 to 0.01) 0.07 (�0.13 to 0.27)

Swallowing 0.16 (�0.14 to 0.47) 0.18 (�0.12 to 0.47) 0.12 (�0.07 to 0.31)

Handwriting 0.08 (�0.04 to 0.20) 0.04 (�0.03 to 0.12) 0.22 (�0.06 to 0.50)

Fine motor Cutting 0.00 (�0.11 to 0.10) 0.00 (�0.02 to 0.02) 0.11 (�0.31 to 0.52)

Dressing 0.31 (�0.05 to 0.67) 0.39 (0.02 to 0.75) 0.42 (0.04 to 0.80)

Turning 0.12 (�0.06 to 0.29) 0.08 (�0.13 to 0.29) 0.21 (�0.06 to 0.47)

Gross motor Walking 0.15 (�0.23 to 0.54) 0.14 (�0.23 to 0.51) 0.29 (�0.15 to 0.74)

Stairs 0.24 (�0.07 to 0.55) 0.25 (�0.06 to 0.57) 0.39 (�0.06 to 0.84)

Dyspnea 0.65 (0.30 to 1.00) 0.58 (0.18 to 0.98) 0.29 (�0.19 to 0.77)

Respiratory Orthopnea 0.74 (0.57 to 0.91) 0.72 (0.53 to 0.90) 0.49 (0.15 to 0.83)

Respiratory 0.43 (�0.34 to 1.20) 0.38 (�0.27 to 1.03) 0.05 (�0.58 to 0.68)

Subscale Mean 0.25 (0.11 to 0.39) 0.23 (0.09 to 0.37) 0.24 (0.15 to 0.31)

Composite �0.02 (�0.38 to 0.35) �0.02 (�0.38 to 0.35) 0.25 (�0.10 to 0.60)

Best model for each column-wise comparison per row is provided in bold.
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showed nearly identical mean performance and were optimal in only 

six and five subscale models, respectively. For composite scales, the 

pattern reversed, with linear interpolation having lower error in two 

of three comparisons [RMSE � 3:13 (2.30–3.95)] and cubic in one 

of three [RMSE � 3:04 (2.20–3.88)], while self-attention raised error 

[RMSE � 4:63 (3.52–5.74)], implying that composite trajectories are 

more accurately captured by a stable linear slope than by self- 

attention interpolation, which may potentially have been over- 

responsive. However, choice of evaluation metric also factors into 

pseudo-labeling selection, with self-attention providing the best 

correlation for composite models when prioritizing the prediction– 

outcome trend agreement [r � 0:25 (�0.10 to 0.60)] compared to 

linear and cubic interpolation [r � �0:02 (�0.38 to 0.35)].

4 Discussion

Semi-supervised learning approaches were evaluated for 

predicting ALSFRS-R scale trajectories using in-home sensor 

health features. We compared participant-level batch learning 

and cohort-initialized transfer learning, which used batch and 

incremental fine-tuning strategies. The results demonstrate that 

adapting cohort transfer learning models with additional 

individual-level data through incremental fine-tuning improves 

prediction error (RMSE) and outcome correlation (Pearson’s r).

4.1 ALSFRS-R scales exhibit mixed 
participant-cohort homogeneity

ALS decline progression varies across different ALSFRS-R 

functional areas, creating multi-dimensional trajectories, where some 

subscales decline predictably across the cohort, while others follow 

patient-specific trends. As illustrated in Figure 3, rates of decline in 

bulbar, gross, and respiratory area measures for P1 were marked by 

periods of stability followed by sudden decreases compared to the 

regular decline observed for P2 and P3. Similarly, fine motor 

measures for P1 increased around November 2023 followed by a 

regular rate of decline, mirroring the decreases observed for P2 and 

P3. Cohort-level model performances, when averaged across pseudo- 

label interpolations, confirmed that bulbar and gross motor scales 

largely follow cohort-level patterns. Transfer batch learning provided 

the lowest error for swallowing and gross motor measures, while 

subscales such as speech and handwriting benefited more from 

transfer incremental tuning. Conversely, respiratory functions 

demonstrated more participant-level heterogeneity, with transfer 

incremental fine-tuning inverting outcome correlations from 

negative in individual batch models to strongly positive. These 

findings suggest that tailoring learning methods to the underlying 

homogeneity–heterogeneity profile of each functional domain will 

improve model optimization, with cohort-homogeneous scales 

making better use of transfer learning, participant-heterogeneous 

scales requiring incremental fine-tuning to better capture patient- 

specific patterns. Additionally, mixed-profile subscales could 

potentially benefit from adaptive learning approaches when 

participant-level patterns deviate from the cohort-baseline variability.

4.2 Transfer learning improves 
performance in subscale models

Incremental fine-tuning of transfer learning models provided 

the best balance between predictive accuracy and correlation 

when contrasting the results from the learning technique. The 

Taylor diagram analysis in Figure 6 of model predictions 

aggregated across participants illustrated how transfer learning 

models outperformed participant-level batch learning across most 

subscales, aligning predictions closer to reference vectors with 

improved accuracy and correlation. Performance differences 

between individual batch and transfer learning models were 

particularly pronounced across subscales, as presented in Table 4, 

where transfer batch models reduced the mean prediction error 

in 12 of 34 comparisons and transfer incremental learning did so 

in 16 of 34, excluding ties. Individual batch models exhibited 

increased error and weaker correlations, achieving best 

performance in only four ALSFRS-R scale models (P1: walking, 

stairs; P3: turning, orthopnea). Evaluating outcome correlation, 

transfer incremental learning increased correlation in 20 of 34 

comparisons, as presented in Table 5. As such, although transfer 

incremental learning had a slightly higher mean prediction error, 

it was more effective at capturing individual trajectory patterns 

than transfer batch learning, suggesting that it is better at 

detecting temporal changes in ALS decline. Additionally, the 

improved performance of transfer learning approaches across 

subscales suggests that ALS progression follows cohort-level 

patterns predictive of individual trajectories despite disease 

heterogeneity, supporting the presence of underlying shared 

physiological or functional characteristics that are captured by 

sensor data as detected by cohort-level models. The effectiveness 

of incremental fine-tuning indicates that personalized ALS 

progression tracking should incorporate both group parameters 

and adaptive learning for predicting decline in individual patients.

4.3 Integrating passive sensor analytics into 
personalized ALS clinical care

Although preliminary and limited in generalizability, the 

findings from this case series suggest that integrating passive in- 

home sensor monitoring into routine ALS care may help 

clinicians better detect and anticipate functional changes 

between quarterly assessments, differentiating stable periods 

from more rapid decline. More specifically, this study shows that 

combining semi-supervised transfer learning with continual fine- 

tuning on patient-level sensor data improves the estimation of 

ALSFRS-R subscale trajectories compared to batch learning, 

supporting the use of personalized, adaptive algorithms for 

tracking the course of disease unique to the individual patient 

from models pretrained on group-level data. The improved 

performance of group-initialized transfer models indicates that, 

even with a minimal cohort of three patients, combining data 

across patients as a baseline model of disease progression that 

can be further adapted to new patients over time can leverage 

patterns homogeneous to the case series cohort. The findings 
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also underscore the need for tailoring learning strategies to specific 

clinical problems, whether they are subscales or composite 

measures, to provide more reliable indicators of disease 

progression. In practice, clinicians could receive near real-time 

notifications about deviations in a patient’s functional 

trajectories, as this is being evaluated in the parent study. Such 

notifications may enable proactive adjustments to respiratory 

support, assistive ambulatory devices, nutritional interventions, 

or rehabilitation schedules, which would allow for timely 

interventions, rather than waiting weeks for the next in-person 

assessment. Sensor-based analytics may also reduce the recall 

bias and subjective self-assessment errors common in clinic- 

based evaluations while providing actionable insights into 

patients’ day-to-day variability, especially for those with 

unpredictable subscale trajectories or across ALSFRS-R 

functional areas. The combination of transfer and incremental 

learning has the potential to optimize clinical workBows and 

attention by identifying the specific patients, and at the proper 

time, who need closer monitoring and therapies. Additionally, 

examining modeled outcomes by the pseudo-labeling technique 

showed that the choice of optimal interpolation is largely 

outcome- and metric-specific, with performance varying across 

subscale and composite measures. In the context of clinical ALS 

trial studies, the continuous outcome estimates derived from 

self-supervised models could serve as prognostic endpoints.

5 Conclusion

This study demonstrates that semi-supervised machine learning 

using in-home sensor data can effectively predict ALSFRS-R scale 

trajectories, with incremental fine-tuned transfer learning 

performing well across all functional domains. Given the case series 

cohort (n ¼ 3), the results demonstrate feasibility and within- 

participant accuracy rather than generalizable effectiveness, with 

further confirmation requiring a larger, multi-site cohort. The 

findings indicate that the choice of interpolation techniques for 

estimating between-visit decline should be tailored to specific 

clinical objectives, with self-attention interpolation performing best 

for subscale-level monitoring and polynomial function interpolation 

performing better for the summated composite ALSFRS-R score. 

However, the generalizability of reported modeled outcomes is 

limited by the small participant cohort and reliance on bed sensor 

and motion detection data, which lack comprehensive gait 

measurements that may be particularly important for assessing 

motor function. The low prediction error-low outcome correlation 

models for bulbar and motor-related subscale models (P1: 

handwriting, cutting, stairs; P2: swallowing; P3: swallowing, 

handwriting, cutting, stairs) exemplify the need for motor-related 

measurements. Future research may be conducted to validate the 

learning methods applied in this analysis with a larger, multi-center 

study to establish broader applicability, explore complementary 

clinical measures such as forced volume capacity (FVC), and 

investigate enhanced feature engineering approaches that could 

improve performance for patient-heterogeneous ALSFRS-R 

component scales. Additionally, developing adaptive incremental 

learning algorithms with patient-specific clinical feedback 

mechanisms for ground truth scoring and extending this framework 

through multi-model ensemble approaches are promising directions 

for advancing personalized disease progression monitoring that 

could transform clinical decision-making in neurodegenerative care. 

As part of the parent study, we will expand the participant sample 

and train larger cohort-level transfer models with additional training 

data to improve their sensitivity and specificity to between-visit 

changes. Overall, this work aims to enable earlier detection of 

clinically meaningful changes in ALS progression as support for 

timely interventions that address functional decline.
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