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Introduction: Clinical monitoring of functional decline in amyotrophic lateral
sclerosis (ALS) relies on periodic assessments, which may miss critical changes
that occur between visits when timely interventions are most beneficial.
Methods: To address this gap, semi-supervised regression models with
pseudo-labeling were developed; these models estimated rates of decline by
targeting Revised Amyotrophic Lateral Sclerosis Functional Rating Scale
(ALSFRS-R) trajectories with continuous in-home sensor data from a three-
patient ALS case series. Three model paradigms were compared (individual
batch learning and cohort-level batch vs. incremental fine-tuned transfer
learning) across linear slope, cubic polynomial, and ensembled self-attention
pseudo-label interpolations.

Results: Results showed cohort-level homogeneity across functional domains.
For ALSFRS-R subscales, transfer learning reduced the prediction error in 28 of
34 contrasts [mean root mean square error (RMSE) = 0.20 (0.14-0.25)].
However, for composite ALSFRS-R scores, individual batch learning was
optimal for two of three participants [mean RMSE = 3.15 (2.24-4.05)]. Self-
attention interpolation best captured non-linear progression, providing the
lowest subscale-level error [mean RMSE = 0.19 (0.15-0.23)], and
outperformed linear and cubic interpolations in 21 of 34 contrasts.
Conversely, linear interpolation produced more accurate composite
predictions [mean RMSE = 3.13 (2.30-3.95)]. Distinct homogeneity-
heterogeneity profiles were identified across domains, with respiratory and
speech functions showing patient-specific progression patterns that improved
with personalized incremental fine-tuning, while swallowing and dressing
functions followed cohort-level trends suited for batch transfer modeling.
Discussion: These findings indicate that dynamically matching learning and
pseudo-labeling techniques to functional domain-specific homogeneity-
heterogeneity profiles enhances predictive accuracy in tracking ALS
progression. As an exploratory pilot, these results reflect case-level
observations rather than population-wide effects. Integrating adaptive model
selection into sensor platforms may enable timely interventions as a method
for scalable deployment in future multi-center studies.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease affecting the motor neuron system, with patients
experiencing significant difficulties performing across a range of
functions, resulting in a reduced ability for self-care. Decline in
function is measured regularly at provider visits using clinical
instruments like the Revised Amyotrophic Lateral Sclerosis
Functional Rating Scale (ALSFRS-R) (1).
functional decline may go undetected by clinicians until the

However, acute
next follow-up due to the long duration between office visits.
Sensor monitoring, which has been shown to be effective in
supporting care for older adults living independently, offers a
possible solution for tracking functional changes related to
those living with ALS.
measurements may serve as predictive features to target

disease progression in Sensor
instrument scales over interim periods between clinic visits,
thereby increasing the fidelity of functional measures to aid
clinicians in making better, more informed care strategies to
guide interventions. In this study, we trained and evaluated
three semi-supervised learning models (participant-level batch,
cohort-level transfer with batch, and incremental fine-tuning)
across three pseudo-label techniques (linear, cubic, and self-
attention interpolation) to predict ALSFRS-R scale trajectories
from in-home sensor health features using root mean square
error (RMSE) and Pearson’s correlation (r) as primary metrics
of model accuracy and fit.

1.1 Sensor monitoring of ALS progression

Sensor-based health monitoring has been shown to improve
clinical outcomes in older adult independent living residents
through early illness detection, enabling them to maintain their
independence longer (2). Physical deficits in older adults may
in ALS, with
community-dwelling older adults experiencing a stable physical

mirror the functional declines observed
function until a steep decline 1-3years before death (3).
Additionally, age-related frailty may involve motor unit loss
(denervation) similar to ALS, which contributes to muscle
wasting and could further exacerbate ALS progression in older
patients (4). This

monitoring technologies effective for improving care in elder

evidence indicates that remote sensor
populations may identify digital biomarkers for tracking ALS
disease progression. Recent research has found that combining
wearable sensor data with self-reported clinic assessments and
environmental metrics improves predictive models targeting
ALSFRS-R

accelerometer, ECG, and digital speech sensors for tracking ALS

scales (5). Similarly, work evaluating wearable
has shown that changes in physical activity, heart rate, and
speech features correlate with a decline in ALSFRS-R scales (6).
More frequent, remote sensor-based tracking of changes in
ALSFRS-R scales would enable clinicians to better target
such as falls or

interventions and detect acute events,

medication changes, between clinic visits.
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1.2 Clinical use of ALSFRS-R scales

ALS disease progression rates vary between patients due to a
number of clinical factors including baseline functional status,
disease stage at diagnosis and diagnostic delay, co-occurrence of
frontotemporal dementia, gender, age and site at onset,
particularly respiratory-onset, and a number of genetic and
environmental factors (7-9). Disease progression also varies
across functional domains within ALS patients, following non-
linear rates of decline in specific areas (10). ALS progression is
tracked longitudinally using the ALSFRS-R instrument as a
qualitative, subjective self-reported measure of performance in
functional tasks. ALSFRS-R scales are collected during clinic
visits to determine the amount of change in bulbar, fine motor,
gross motor, and respiratory functional domains over time.
Scales are rated between 0 and 4, with 0 indicating dependence
and 4 indicating no difficulty. The composite score and linear
slope serve as primary metrics of functional change and decline
progression and for measuring intervention effects within
individuals or across treatment groups in clinical trials, with
more frequent assessment improving slope estimation (11, 12).
Due to the multi-dimensional aspect of the aggregate ALSFRS-R
composite score, it has been suggested to use the component
scales independently for measuring treatment outcomes (13). As
such, there is not a one-size-fits-all approach for monitoring
progression, as decline varies non-linearly among patients, and
individualized clinical models are needed for tracking across
ALSFRS-R functional domains.

2 Materials and methods

2.1 Parent study

Participants were recruited for a single-site, single-cohort
prospective study overseen by the MU Institutional Review
Board through the MU Health ALS Clinic, investigating
continuous, in-home sensor monitoring for tracking between-
visit functional decline (14). The in-home sensor monitoring
systems, licensed by the University of Missouri to Foresite
Healthcare, LLC,
continuous contactless data collection: bed mattress hydraulic

are composed of three modalities for

transducers for recording ballistocardiogram (BCG)-derived
respiration, pulse, and sleep restlessness measures (15, 16);
privacy-preserving thermal depth sensors (17, 18), which detect
falls and collect walking speed, stride time, and stride length
measurements, although gait data were excluded due to
wheelchair use; and passive infrared (PIR) motion sensors that
provide room activity counts.

Inclusion criteria required an ALS diagnosis, residence within
100 miles of the clinic, and either a home caregiver or a Montreal
Cognitive Assessment (MoCA, 8.1 Blind Version) cutoff score of
>19 out of 22, corresponding to the standard cutoff of >26/30
on the full MoCA. ALSFRS-R scores were collected monthly by
telephone assessments. After

and quarterly as pre-clinic
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accounting for length of enrollment, data from three participants
were of sufficient duration (at least 6 months) for case series
modeling, as shown in Table 1. All three participants were non-
Hispanic, white, male, Medicare recipients, who left the study
due to death. At the time of enrollment, their ALSFRS-R
composite scores ranged from 30 to 35, indicating moderate
P1
(extremity weakness and spasms), P2 with cervical-bulbar and

functional impairment. presented with lateral onset
limb weakness, and P3 with bulbar speech changes accompanied
by lateral weakness. Diagnosis was determined in the clinic
using the revised El Escorial and Awaji diagnostic criteria
workflow for ALS (19) and confirmed for study participation by
the presence of SNOMED CT codes for ALS (86044005,
142653015, 62293019) and ICD10 (G12.21) in the patient’s
medical chart. With regard to disease progression timelines, the
interval from diagnosis to enrollment varied among participants
(from 24 to 623 days), reflecting the heterogeneous nature of
the disease. The use of assistive devices and non-invasive
ventilation (NIV) also differed, with P1 requiring ankle-foot
orthosis (AFO), walker/wheelchair, and eventually a powered
wheelchair over a prolonged period (504-763 days from
diagnosis). P2 and P3 were diagnosed at a later ALS stage and
had more rapid progressions with shorter intervals to assistive
device use (P2: powered wheelchair at 247 days, P3: walker or
wheelchair at 76 days) and death. NIV initiation ranged from 14
to 1,127 days post-diagnosis.

Given the small sample, these findings should be interpreted
as case-level observations with limited generalizability, rather
than being extrapolated to population-level ALS progression.
The limited sample size (n = 3) of this study reflects both the
rarity and rapid progression of ALS, as well as practical
limitations specific to remote sensor research within this patient
population. Participants were screened for eligibility during the
study recruitment period, as outlined in Figure 1. Individuals
were excluded for inpatient status, lack of ALS diagnosis, and

TABLE 1 Participant enrollment and dataset characteristics.

Characterisic _______p1__p2__P5

ALS profile

Age at enrollment (years) 62 55 45
Onset site Lateral Bulbar Bulbar
Initial study ALSFRS-R composite score 35 33 30
Clinical timeline (days from Dx)

Enrollment 623 24 56
Initial study ALSFRS-R 623 22 50
Assistive device

AFO 504 — —
Walker or wheelchair 714 — 76
Powered wheelchair 763 247 —
NIV 1127 234 14
Death 1222 260 275
Dataset length

ALSFRS-R assessments (1) 15 8 8
Enrollment length (days) 599 236 219
Training dataset (days) 389 128 156
Test dataset (days) 98 33 40
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residing further than 100 miles from the MU ALS Clinic.
Additional
recruitment or by declining consent. The inclusion criterion

exclusions occurred due to non-response to
requiring residence within 100 miles of the clinic was selected
due to logistical considerations for sensor installation and
maintenance rather than intent to restrict sampling. Only those
having at least 6 months of monitoring data were included in
the analytic sample. Of the 16 individuals who passed eligibility
criteria, 10 declined participation due to privacy or structural
concerns about sensor installation, 2 did not respond to
recruiting materials, and only 3 of the 4 enrolled completed at
least 6 months of data collection sufficient for analysis. Despite
the small cohort size, participants contributed extensive clinical
and sensor-based data, offering within-individual longitudinal
detail that

A larger, multi-site trial is being planned to address scalability

is characteristic of ALS observational studies.

and generalizability in future research.

2.2 Estimating between-visit change in
ALSFRS-R scales

ALSFRS-R scales were aligned at matching frequency to daily
aggregated sensor measurements using pseudo-labels for semi-
supervised regression, extending prior work evaluating between-
visit interpolation (20). We incorporated a transformer encoder
architecture for self-attention interpolation, which we compared
to polynomial functions, as illustrated in Figure 2a. Linear 1D

Assesssed for eligibility
n=46

Excluded (n=30)

— Inpatient, 1

— No ALS Dx, 19

— Reside > 100 miles from clinic, 11

Eligible for inclusion
n=16

Excluded (n=12)
— Declined consent, 10
— No response, 2

Eligible for analysis
n=4

Excluded
— Fewer than 180 days data, 1

Included in analysis
n=3

FIGURE 1
Flowchart depicting the participant inclusion and exclusion process
for the study.
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piecewise interpolation served as a baseline method, consistent
with the clinical methodology for tracking ALS progression.
Non-linear cubic spline interpolations were applied to evaluate
more gradual rates of decline. The transformer encoder mapped
date-indexed sensor vectors with known ALSFRS-R scores to
estimate the amount of change occurring between collection
points, with the architecture intentionally kept shallow to
provide continuous values rather than predicting crisp labels
with a deeper network (21). To further smooth the estimations,
self-attention interpolation was applied to each sensor feature
algorithm table and then ensembled by averaging, as shown by
the dashed plots in Figure 2b. The resulting interpolated slopes
over time for each pseudo-labeling technique, which are
summated by functional area in Figure 3, demonstrate varying
rates of decline unique to each participant.

2.3 Semi-supervised learning of ALSFRS-R
scales

Three learning approaches for training semi-supervised

regression models were compared: batch models fit on
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sequential participant-level data (individual) and cohort-level
(transfer) models initialized on randomized observations and
fine-tuned on individual-level data using batch or incremental
learning (22). Participant-subscales exhibiting zero or near-zero
variance in training samples were not modeled with individual
batch learning.

2.3.1 Data preprocessing and feature engineering

High-frequency sensor data were preprocessed using the
pipeline described in Figure 4a, beginning with segmentation of
the time-indexed features into day and night periods. Summary
statistics were calculated over each feature channel and period
for count, minimum, maximum, mean, median, mode, variance,
range, skew, kurtosis, quantiles, interquartile range (IQR),
coefficient of variation (CV), and entropy to better capture
temporal patterns by time-of-day. The selected features were
chosen based on established use of time-series features in
clinical prediction and prior wearable sensor research, where
summary statistics have been shown to effectively capture both
overall trends and subtle changes in physiological and behavioral
signals relevant to disease progression (23, 24). As a case series
pilot for continuous in-home sensor monitoring in ALS, we first
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prioritized conventional summary statistics for baseline modeling
and then relied on native feature selection to identify relevant
ALSFRS-R predictors. Highly collinear features were then
removed, and the resulting set was normalized feature-wise
using a minimum-maximum scaling. ALSFRS-R scores were
interpolated with each pseudo-labeling technique, resulting in
three continuous target trajectories per participant per scale.
Finally, the normalized features and interpolated labels were
joined by date to produce the pseudo-labeled datasets.

2.3.2 Individual batch and cohort transfer learning

Individual- and cohort-level models were trained using a
leave-one-participant-out strategy, as shown in Figure 4b. For
each experiment fold, a single participant (P1, P2, or P3) was
withheld as the target subject, while data from the remaining
participants formed the source cohort for transfer model
training. Each holdout participant’s dataset was split sequentially
by 80%/20%. The earliest 80% of observations were used for
both training the individual batch model and fine-tuning the
cohort transfer model, while the later 20% were set aside as an
unseen test set for model evaluation. This temporal partitioning
was chosen to reflect the use case of predicting future ALSFRS-
R scores based on prior sensor data and prevent data leakage.
To ensure fair comparison between models, training and test
splits were defined proportionally to each individual’s data, not
by group. Individual models were trained using batch learning
on the holdout participant’s sequential training data. Transfer
learning was conducted by first training a cohort model on the
leave-in participants’ data using batch learning with shuffled
samples to capture generalizable patterns across individuals.
This cross-individual split simulated the scenario of applying
knowledge learned from a group to a new, unseen individual.
The resulting model parameters (including learned weights and
optimizer state) were serialized by pickling and storing the
model object. For each participant fold, the initialized transfer
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model was then reloaded and further adapted using the
sequential training data from the holdout participant. This
adaptation was done using batch and incremental learning
routines, comparatively. Transfer batch fine-tuned models were
updated with a single pass through the entire training set of the
holdout participant. Conversely, transfer incremental models
were trained iteratively by predicting the current outcome label
and then fitting the new observation to simulate between-visit
model adaptation as additional data become available. All
transferred model components were included in the fine-tuning
step. Hyperparameters for these fine-tuned models (e.g., learning
rate, batch size, optimizer type) were held constant from the
initialized model during subsequent fine-tuning and were
in Table 1,
participants differed in their dataset length and number of

selected using cross-validation. As shown
ALSFRS-R assessments collected. To prevent bias, all model
evaluations were performed within-participant, and prediction
errors and outcome correlations were computed only on the
holdout subject’s test data for each fold. We did not aggregate
or compare metrics across participants. This approach was
chosen to focus on the model’s ability to estimate patient-
specific ALS disease progression and to infer homogeneous—
heterogeneous profiles across ALSFRS-R scales.

2.3.3 Iterative hyperparameter tuning and feature
selection

To evaluate the effects of label interpolation and transfer
learning strategies within a consistent modeling framework,
rather than to benchmark across diverse machine learning
algorithms, a single learner experiment design was chosen to
evaluate pseudo-labeling interpolations and transfer model
adaptations. We employed an iterative screener-learner approach
combining hyperparameter optimization with feature selection,
illustrated in Figure 4c, using the XGBoost algorithm (25).
Models were initialized on the full set of summary features and
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transfer learning models. (c) Iterative model tuning and evaluation stages.
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hyperparameter tuned using RandomizedSearchCV in the Scikit-
Python
importance scores were extracted using feature weight frequency

Learn package. Following initialization, feature
internal to XGBoost. Importance scores were then binned
through iterative precision-rounding, beginning at six decimal
places and consecutively increasing precision levels to a
maximum of 200 features to avoid overfitting. For each feature
subset identified, a new model was fit using the selected features
and tuned hyperparameters, as specified in Table 2. The root
mean square error (RMSE) was calculated and compared across
all iterations, with the model configuration yielding the lowest
test RMSE selected as the optimized model. The best-
performing transfer model was then fine-tuned on the holdout
participant’s training set using the trained booster as a

checkpoint to resume learning.

2.4 Model evaluation metrics and Taylor
diagrams

Prediction performance metrics for the RMSE (prediction
error), Pearson’s r (outcome correlation), and their confidence
intervals (CIs) were calculated from modeled outcomes (¥)
against the test values (y) that were held out from the model
training data. Confidence intervals for the Pearson correlation
were obtained by first applying Fisher’s z-transformation to
stabilize the sampling distribution and computing the standard
error, before constructing the 95% limits in z-space, and then
converting these limits back to the correlation scale. If fewer
than four points were available, the correlation interval was
marked as missing. For RMSE confidence intervals, we used the
non-parametric bootstrap method with 1,000 resamples of the
paired true and predicted values, recalculated the RMSE for
each resample using the standard deviation of true and
predicted values along with their absolute correlation, and then

TABLE 2 Hyperparameter search spaces for tuning the XGBoost
classifier algorithm.

 Hyperparameter

eta (learning rate) Learning rate to scale the [0.001, 0.01, 0.1,
contribution of each tree 0.3, 0.5]
n_estimators Number of boosting rounds [32, 64, 128, 192,
(trees) to build 256, 384, 512]
gamma Minimum loss reduction required | [0, 0.25, 0.5, 1]
to perform a split
max_depth Maximum depth of trees to [2,3,4,6, 8,10, 12,

prevent overfitting 16, 24]

min_child_weight Minimum sum of instance [0.5, 1, 3, 5, 7, 10]

weights needed in a child node

subsample Fraction of training data used for | [0.8, 0.9, 1.0]
building each tree
colsample_bytree Fraction of features randomly [0.6, 0.7, 0.8, 0.9]

sampled for each tree

lambda (reg_lambda) L2 regularization to penalize large | [0.01, 0.1, 1, 5, 10,
50, 100]

[0, 0.001, 0.01, 0.1]

weights
alpha (reg_alpha) L1 regularization to encourage

sparsity in feature weight
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took the 2.5% and 97.5% percentiles of the resulting RMSE
distribution as the confidence bounds. Average summary metrics
for ALSFRS-R subscales and the composite score were calculated
by taking the mean value across participants, with the 95%
confidence interval estimated using the standard error of the
mean and the #-distribution. This provides an interval estimate
that reflects the expected variability in case series cohort model
performance. Comparisons between pseudo-labeling techniques
and learning methods were made using Taylor diagrams to
assess prediction accuracy, correlation, and variability at the
cohort level by averaging outcomes across participants for each
subscale. In these Taylor diagrams, the reference point on the
X-axis represents the actual values (the estimated ALSFRS-R
scale) plotted at coordinates (o, 0), where o is the
standard deviation of the actual values, while the origin (0, 0)
represents a modeled prediction with SD = 0 and r =0 to the
reference vector (26).

3 Results

Models were evaluated across pseudo-labeling techniques
(linear, cubic, self-attention interpolation) and learning methods
(individual batch, transfer batch fine-tuned, transfer incremental
fine-tuned) for predicting ALSFRS-R component and composite
scales using in-home health sensor features; an asterisk (*) was
used to mark significant improvements in these comparisons.
Prediction errors and outcome correlations for ALSFRS-R
subscales are illustrated by participant as Taylor diagrams in
Figure 5 and cohort average in Figure 6. Low variances in
collected scores, provided in Table 3, prevented the fitting of
participant-subscale models for salivation in P1, speech in P2,
dyspnea and respiratory for P1 and P2 for all interpolations,
dyspnea and respiratory in P3 with
interpolation, and cutting with self-attention interpolation. As

linear and cubic
PI’s salivation and respiratory scales had zero variance with
static scores of 4, transfer models were not fit for these subscales.

3.1 Performance contrast between learning
methods

Individual batch and cohort-level transfer learning methods
were compared to determine their effectiveness in improving
prediction error (RMSE) and outcome correlation (r) within
participants, as detailed in Tables 4 and 5 and as averaged
across participants in Table 6. Results from individual batch and
transfer  incremental models revealed participant-specific
heterogeneity in certain subscales. Comparing the lowest and
next lowest model errors, transfer learning generally
outperformed individual batch learning across most participant-
scale combinations; however, there were exceptions where
individual batch models provided lower prediction error (P1:
walking,

turning, orthopnea).

stairs, composite; P2: composite; P3: cutting,
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FIGURE 5
Participant-level Taylor diagrams depicting the mean RMSE, absolute correlation (|r|), and standard deviation of the predicted outcomes for each
ALSFRS-R scale, annotated by negative (—) correlation.

3.1.1 Mean performance across interpolations
The bulbar ALSFRS-R scales (speech, salivation, swallowing)
demonstrated cohort-level trends, with both transfer learning
models outperforming individual batch models. For speech,
transfer incremental learning led to improved mean prediction
error and correlation compared to transfer batch learning in
Pl (RMSE =0.08— 0.04x, r= —0.02—0.22) and P2
(RMSE = 0.27 — 0.26, r = 0.56 — 0.75%), while P3 showed an
increase in mean prediction error and a slight change in
correlation (RMSE =0.15—0.19, r =0 — 0.04), indicating
that speech function has shared cohort-level substrates, with
better
incremental fine-tuning than by individual or transfer batch

participant-specific ~changes captured by transfer

models. For salivation, transfer incremental learning resulted
in a negligible change in mean prediction error in P2
(RMSE = 0.21 — 0.20), in P3

while the error increased
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(RMSE = 0.15% — 0.34) compared to transfer batch learning.
P2 showed a minor decrease in prediction correlation
(r=—0.28 — —0.20) with slight P3
(r =0 — 0.03), suggesting slight participant heterogeneity in

a change in
salivation decline. For swallowing, transfer incremental fine-
tuning increased the prediction error with decreased
correlation for P1 (RMSE = 0.21 — 0.23, r = 0.80 — 0.62) and
with no change in correlation for P3 [RMSE = 0.10%x — 0.16,
r=0 (0-0)]. P2 showed no change in error or correlation
[RMSE = 0.04 (0.04-0.05), r =0 (0-0)].

Fine-motor subscales (handwriting, cutting, and dressing)
showed variable responses to individual batch and transfer
incremental fine-tuning across participants, indicating an overall
weak participant-level heterogeneity. The fact that transfer
learning models outperformed individual batch models implies
that fine-motor decline progression patterns are relatively
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FIGURE 6
Cohort-averaged Taylor diagrams depicting the mean RMSE, absolute correlation (|r|), and standard deviation of the predicted outcomes for each
ALSFRS-R scale, annotated by negative (—) correlation.

homogeneous across the cohort. For handwriting, transfer
incremental fine-tuning improved mean prediction error and
correlation for P1 (RMSE = 0.35 — 0.15, r = —0.02 — 0.08)
and P2 (RMSE =0.12 — 0.10, r = 0.32 — 0.46), whereas P3
exhibited a slight (RMSE
= 0.06% — 0.10) with no change in correlation [r = 0(0-0)]. In
the exhibited more
homogeneity, as only P2 showed improvement with transfer
incremental learning (RMSE = 0.08 — 0.05, r = —0.22 — 0.28),
while P1 (RMSE = 0.09 — 0.12) and P3 (RMSE = 0.02 — 0.03)
demonstrated increased prediction error without correlation

increase in prediction error

contrast, cutting  subscale cohort

improvement [r = 0(0-0)] compared to the transfer batch
model. The dressing subscale showed a moderate level of
heterogeneity between participants and the cohort, with slight
improvements from transfer incremental learning in mean
RMSE and r for P2 (RMSE = 0.11 — 0.06%, r = 0.94 — 0.99%)
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and P3 (RMSE =0.16 — 0.15, r =0.31 — 0.37). Conversely,
both error and correlation worsened for P1 (RMSE
=0.27 — 0.35, r = 0.40 — —0.20).

For the gross motor ALSFRS-R scales (turning, walking,
stairs), individual batch models outperformed transfer batch
models in a few instances, indicating heterogeneity in these
cases. Individual batch learning demonstrated lower error but
with a minor correlation decrease in the turning subscale for P3
(RMSE = 0.15 — 0.16, r = —0.08 — 0.08) compared to transfer
batch. Similarly, individual batch models had better error with
lower correlation than transfer batch learning in the walking
subscale for P1 (RMSE = 0.05% — 0.25, r = 0.10 — 0.24) and a
marginal improvement in stairs for P1 [RMSE = 0% — 0.04,
r =0(0-0)]. For turning, transfer incremental improved both
P1 (RMSE =0.32 — 0.26%,
r = —0.03 — 0.09) and increased both error and correlation in

error and correlation in
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TABLE 3 Observed variance in ALSFRS-R scales by participant.
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Respiratory

Gross motor

Fine motor

Walking NEIE Dyspnea Orthopnea Resp.

Turning

(o)}
=
7}
7
(O]
S
o

Salivation Swallowing Handwriting Cutting

Speech

0.00
0.13
0.21

0.95
141
0.29

0.27
0.50
0.21

0.31
0.98
0.21

0.38

1.14
0.79

0.55
1.71
0.98

0.64

1.14
1.07

0.27
1.64
0.13

1.81
1.71
0.57

0.78
0.79
1.07

0.00
1.71
2.41

0.98
0.13
0.57

P1

P2

P3
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P2 (RMSE =0.03%x — 0.12, r =0.24 — 0.67%) compared to
transfer batch. The walking subscale also showed mixed results
between the transfer methods. Transfer incremental learning
improved both mean error and correlation over transfer batch
for P2 (RMSE =0.14 — 0.06%, r=0.93 — 0.98) and only
slightly ~ improved for P3 (RMSE =0.17 — 0.16,
r = —0.38 — —0.37) but with a minor error increase with no
change in correlation for P1 (RMSE = 0.25 — 0.26, r = 0.24).
For stairs, transfer batch and incremental —models
showed a marginal difference in error and increased correlation
for P2 (RMSE =0.24 — 0.23, r=0.88 — 0.92), while the
model error increased with transfer incremental learning for P3
[RMSE = 0.03% — 0.19, r = 0(0-0)].

Within the respiration-related ALSFRS-R scales (dyspnea,
orthopnea, respiratory), the collected orthopnea and respiratory
scores for P1 and P2 exhibited low variance, as presented in
Table 3, which prevented the fitting of individual batch models
for those participants. For dyspnea, transfer incremental
learning significantly improved correlation for all participants
and reduced prediction error for P1 (RMSE = 0.50 — 0.42,
r=0.23 — 0.75); however, it increased the error for P2
(RMSE = 0.46 — 0.54, r=0.88 — 0.94) and P3 (RMSE
=0.14%x — 0.36, r = —0.03 — 0.47). For orthopnea, transfer
incremental models resulted in marginal differences in
prediction error and a slight improvement in correlation for P1
(RMSE =0.12 — 0.11, r=0.98 —0.99) and P2 (RMSE
=0.31 — 0.30, r=0.67 — 0.73). However, individual batch
models had slightly better error but lower correlation than
transfer batch models in P3 (RMSE =0.10— 0.12,
r=0.39 — 0.60), indicating that the P3 orthopnea trajectory
was not fully captured by the shared model, pointing toward
participant heterogeneity, given the small improvements seen in
P1 and P2 and the benefit P3 showed from individual batch
learning. Similar to orthopnea, respiratory function also
displayed participant heterogeneity, with transfer incremental
learning resulting in a slight change in error but an increase in
correlation between transfer batch and incremental learning for
P2 (RMSE =0.30 — 0.31, r=0.28 — 0.48), while P3 had
improved error and a significant increase in correlation (RMSE
=0.16 — 0.12, r = —0.27 — 0.79).

To summarize overall functional status across bulbar, fine
motor, gross motor, and respiratory items, the composite
ALSFRS-R scale captures decline trends as a single index. For
the composite ALSFRS-R scale, individual batch learning models
resulted in a lower mean prediction error compared to transfer
batch learning, with a marginal difference in outcome
correlation for P1 (RMSE = 2.76 — 3.29, r = 0.03 — —0.04)
and with significant improvements in error and correlation for
P2 (RMSE = 3.52% — 6.03, r = 0.48+ — 0.11), demonstrating
that modeled composite scores are mostly participant-specific.
Transfer incremental learning slightly improved prediction error
and decreased correlation for P3 (RMSE = 3.01 — 2.97,
r=—0.54 — —0.41) over transfer batch models. This
performance was also comparable to individual batch learning
[RMSE = 3.17 (2.27-4.62), r = —0.18 (—0.29-—0.04)].
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TABLE 4 Mean model error (RMSE) across pseudo-label interpolations for each learning method.

ALSFRS-R

Individual batch

Transfer batch

10.3389/fdgth.2025.1657749

Transfer incremental

RMSE (95% ClI)

RMSE (95% Cl)

RMSE (95% ClI)

1 Speech 0.20 (0.14-0.28) 0.08 (0.07-0.10)* 0.04 (0.03—0.04)“”’
Bulbar Salivation — — —
Swallowing 0.34 (0.19-0.49) 0.21 (0.11-0.29) 0.23 (0.17-0.28)
Handwriting 0.37 (0.20-0.54) 0.35 (0.12-0.47) 0.15 (0.11-0.17)*
Fine motor Cutting 0.14 (0.10-0.18) 0.09 (0.07-0.12) 0.12 (0.03-0.16)
Dressing 0.29 (0.22-0.33) 0.27 (0.21-0.31) 0.35 (0.28-0.42)
Turning 0.28 (0.23-0.32) 0.32 (0.29-0.35) 0.26 (0.24—().28)17
Gross motor Walking 0.05 (0.02-0.12)% ¢ 0.25 (0.16-0.29) 0.26 (0.15-0.32)
Stairs 0.00 (0.00—0.01)h" 0.04 (0.04-0.04) 0.08 (0.08-0.08)
Dyspnea — 0.50 (0.41-0.55) 0.42 (0.30-0.49)
Respiratory Orthopnea 0.48 (0.45-0.52) 0.12 (0.11-0.14)* 0.11 (0.11-0.13)*
Respiratory — — —
Composite Composite 2.76 (1.69-4.72) 3.29 (2.15-4.21) 3.24 (3.02-3.39)
2 Speech - 0.27 (0.20-0.30) 0.26 (0.20-0.29)
Bulbar Salivation 0.49 (0.45-0.52) 0.21 (0.17-0.27)* 0.20 (0.16-0.28)*
Swallowing 0.17 (0.15-0.18) 0.04 (0.04-0.05)* 0.04 (0.04-0.05)*
Handwriting 0.45 (0.34-0.51) 0.12 (0.08-0.15) 0.10 (0.09-0.12)7
Fine motor Cutting 0.36 (0.30-0.43) 0.08 (0.06-0.11) 0.05 (0.03-0.07)7
Dressing 0.35 (0.31-0.38) 0.11 (0.10-0.12) 0.06 (0.04-0.08)% b
Turning 0.30 (0.30-0.30) 0.03 (0.02-0.05)*¢ 0.12 (0.08-0.14)*
Gross motor Walking 0.30 (0.26-0.33) 0.14 (0.08-0.19)* 0.06 (0.05-0.07)%"
Stairs 0.30 (0.21-0.36) 0.24 (0.24-0.25) 0.23 (0.23-0.24)
Dyspnea — 0.46 (0.38-0.51) 0.54 (0.44-0.63)
Respiratory Orthopnea 0.34 (0.29-0.42) 0.31 (0.30-0.32) 0.30 (0.29-0.33)
Respiratory — 0.30 (0.19-0.40) 0.31 (0.19-0.40)
Composite Composite 3.52 (3.01-4.41)" 6.03 (4.86-8.28) 441 (3.92-4.66)"
3 Speech 0.38 (0.21-0.49) 0.15 (0.13-0.19)* 0.19 (0.17-0.21)*
Bulbar Salivation 0.20 (0.10-0.39) 0.15 (0.11-0.20)° 0.34 (0.30-0.36)
Swallowing 0.12 (0.00-0.24) 0.10 (0.09-0.10)° 0.16 (0.15-0.18)
Handwriting 0.12 (0.00-0.18) 0.06 (0.05-0.06)° 0.10 (0.08-0.10)
Fine motor Cutting 0.02 (0.01-0.02)° 0.02 (0.02-0.02) 0.03 (0.02-0.03)
Dressing 0.35 (0.18-0.46) 0.16 (0.13-0.18) 0.15 (0.12-0.16)*
Turning 0.15 (0.07-0.20) 0.16 (0.15-0.18)¢ 0.22 (0.18-0.29)
Gross motor Walking 0.39 (0.22-0.51) 0.17 (0.15-0.20)* 0.16 (0.14-0.20)*
Stairs 0.09 (0.00-0.16) 0.03 (0.02-0.05)° 0.19 (0.06-0.26)
Dyspnea 0.20 (0.20-0.20)° 0.14 (0.10-0.21)° 0.36 (0.32-0.39)
Respiratory Orthopnea 0.10 (0.00-0.18) 0.12 (0.05-0.16) 0.22 (0.11-0.32)
Respiratory 0.22 (0.22-0.22) 0.16 (0.11-0.22) 0.12 (0.09-0.16)"
Composite Composite 3.17 (2.27-4.62) 3.01 (2.60-3.67) 2.97 (2.21-4.44)

Best model for each column-wise comparison per row is provided in bold.
“Significantly better than Individual Batch (p < 0.05).
YSignificantly better than Transfer Batch (p < 0.05).
“Significantly better than Transfer Incremental (p < 0.05).

3.1.2 Mean group-level performance across
interpolations

Contrasting the mean model performances across participants
and learning methods provided evidence for whether functional
domains exhibit patient-specific heterogeneity or cohort-level
homogeneity. Bulbar area functions demonstrated mixed patterns,
with speech exhibiting a combination of cohort homogeneity and
participant  heterogeneity. This was evidenced by transfer
incremental learning improving outcome error and correlation over
individual batch models (RMSE ~ 0.29 — 0.16,
r= —0.09 — 0.34x). In contrast, salivation showed near-zero
correlation for the individual model and persistent negative
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correlations for transfer models, suggesting high noise or complex
participant-level ~patterns. Swallowing showed more cohort
homogeneity, with transfer batch models [RMSE ~ 0.12 (0.05-
0.19), r =~ 0.27 (—0.04-0.58)] outperforming both individual batch
and incremental fine-tuned models. Fine motor area functions
similarly demonstrated mixed results, as handwriting exhibited
cohort patterns benefiting from transfer learning and participant
heterogeneity, with incremental fine-tuning improving error and
correlation over individual batch models (RMSE ~ 0.31 — 0.12x,
r~ 0.07 — 0.18). Cutting displayed similar heterogeneity, with
incremental fine-tuning improving correlation performance over
transfer batch models (r ~ —0.07 — 0.09) with nearly equal
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TABLE 5 Mean model outcome correlation (r) across pseudo-label interpolations for each learning method.

ALSFRS-R

Individual batch

Transfer batch

10.3389/fdgth.2025.1657749

Transfer incremental

r (95% Cl)

r (95% ClI)

r (95% Cl)

1 Speech —0.05 (—0.15 to 0.00) —0.02 (—0.04 to 0.00) 0.22 (0.00 to 0.66)
Bulbar Salivation — — —
Swallowing —0.05 (—0.22 to 0.18) 0.80 (0.75 to 0.84)7 0.62 (0.15 to 0.86)
Handwriting —0.07 (—0.20 to 0.00) —0.02 (—0.06 to 0.00) 0.08 (0.00 to 0.25)
Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dressing 0.53 (0.33 to 0.68)° 0.40 (—0.13 to 0.85) —0.20 (—0.29 to —0.06)
Turning —0.07 (—0.41 to 0.28) —0.03 (—0.11 to 0.05) 0.09 (—0.01 to 0.16)
Gross motor Walking 0.10 (0.00 to 0.31) 0.24 (0.00 to 0.73) 0.24 (0.00 to 0.73)
Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dyspnea — 0.23 (—0.20 to 0.51) 0.75 (0.60 to 0.85)"
Respiratory Orthopnea 0.30 (0.20 to 0.38) 0.98 (0.97 to 0.99)* 0.99 (0.99 to 0.99)*
Respiratory — — _
Composite Composite 0.03 (—0.07 to 0.10) —0.04 (—0.49 to 0.74) 0.57 (0.50 to 0.71)*
2 Speech - 0.56 (0.46 to 0.72) 0.75 (0.72 to 0.78)°
Bulbar Salivation 0.09 (—0.13 to 0.36) —0.28 (—0.40 to —0.13) —0.20 (—0.35 to —0.10)
Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Handwriting 0.27 (—0.01 to 0.56) 0.32 (0.00 to 0.62) 0.46 (0.14 to 0.84)
Fine motor Cutting 0.15 (—0.13 to 0.52) —0.22 (—0.48 to 0.01) 0.28 (—0.07 to 0.60)
Dressing 0.21 (0.03 to 0.46) 0.94 (0.92 to 0.96)" 0.99 (0.98 to 0.99)a, b
Turning 0.21 (0.07 to 0.45) 0.24 (—0.14 to 0.45) 0.67 (0.52 to 0.91)a, b
Gross motor Walking 0.20 (0.05 to 0.31) 0.93 (0.87 to 0.96)* 0.98 (0.96 to 0.99)°
Stairs 0.46 (0.32 to 0.65) 0.88 (0.80 to 0.93)* 0.92 (0.89 to 0.94)*
Dyspnea — 0.88 (0.84 to 0.90) 0.94 (0.92 to 0.95)"
Respiratory Orthopnea 0.55 (0.50 to 0.62) 0.67 (0.56 to 0.84) 0.73 (0.66 to 0.87)?
Respiratory — 0.28 (—0.26 to 0.61) 0.48 (0.31 to 0.64)
Composite Composite 0.48 (0.34 to 0.66)" 0.11 (—0.12 to 0.23) 0.63 (0.61 to 0.68)"
3 Speech —0.13 (—0.23 to —0.04) 0.00 (—0.57 to 0.31) 0.04 (—0.41 to 0.26)
Bulbar Salivation —0.06 (—0.22 to 0.22) 0.00 (—0.01 to 0.00) 0.03 (0.00 to 0.08)
Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dressing —0.20 (—0.35 to 0.03) 0.31 (0.02 to 0.75) 0.37 (0.09 to 0.79)*
Turning —0.08 (—0.25 to 0.00) 0.08 (0.00 to 0.24) 0.10 (0.00 to 0.32)
Gross motor Walking —0.18 (—0.25 to —0.08) —0.38 (—0.43 to —0.33)7 —0.37 (—0.43 to —0.32)?
Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dyspnea —0.30 (—0.30 to —0.30)" —0.03 (—0.09 to 0.07) 0.47 (0.18 to 0.63)™°
Respiratory Orthopnea 0.39 (0.00 to 0.59) 0.60 (0.00 to 0.94) 0.64 (0.00 to 0.96)
Respiratory —0.31 (—0.31 to —0.31) —0.27 (—0.32 to —0.20) 0.79 (0.76 to 0.83)%?
Composite Composite —0.18 (—0.29 to —0.04) —0.54 (—0.58 to —0.50)* —0.41 (—0.69 to 0.08)

Best model for each column-wise comparison per row is provided in bold.
“Significantly better than individual batch (p < 0.05).
YSignificantly better than transfer batch (p < 0.05).
“Significantly better than transfer incremental (p < 0.05).

prediction error. Dressing had moderate cohort homogeneity, with
transfer batch showing a stronger correlation than incremental fine-
tuning (r ~ 0.55 — 0.39) with no change in error. The gross motor
area functions were predominantly cohort homogeneous but
showed selective participant heterogeneity, particularly in walking,
where incremental fine-tuning marginally improved error and
fine-tuning (RMSE ~ 0.19 — 0.16,
r~0.26 — 0.28), and in stairs, where incremental fine-tuning

correlation over

improved both error and correlation over individual batch models
(RMSE =~ 0.13 — 0.17, r ~ 0.17 — 0.33). These results indicate
that participant variations exist within the predominant cohort
patterns. Respiratory functions exhibited the strongest evidence of
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patient heterogeneity, with incremental fine-tuning of transfer
models improving negative correlations from individual batch in
dyspnea (r =~ —0.30 — 0.72), orthopnea (r ~ 0.41 — 0.79), and
respiratory (r = —0.31 — 0.64).

3.1.3 Mean group-level performance across
interpolations and ALSFRS-R scales

As shown in the Subscale Mean row of Table 6, transfer batch
models demonstrated the best subscale performance with the
lowest mean prediction error [RMSE = 0.18 (0.14-0.22)],
outperforming transfer incremental [RMSE = 0.20 (0.14-0.25)]
and individual batch learning (RMSE =~ 0.25 (0.22-0.29)].
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TABLE 6 Mean model prediction error (RMSE) and outcome correlation (r) across pseudo-label interpolations and participants for each
learning method.

10.3389/fdgth.2025.1657749

Domain ALSFRS-R Individual batch Transfer batch Transfer incremental
RMSE (95% CI) RMSE (95% ClI) RMSE (95% ClI)
Speech 0.29 (0.14 to 0.44) 0.16 (0.10 to 0.24) 0.16 (0.08 to 0.24)
Bulbar Salivation 0.35 (0.14 to 0.55) 0.18 (0.12 to 0.24) 0.27 (0.18 to 0.36)
Swallowing 0.21 (0.10 to 0.31) 0.12 (0.05 to 0.19) 0.14 (0.08 to 0.21)
Handwriting 0.31 (0.17 to 0.46) 0.17 (0.04 to 0.30) 0.12 (0.09 to 0.14)°
Fine motor Cutting 0.19 (0.06 to 0.32) 0.07 (0.04 to 0.10) 0.07 (0.02 to 0.12)
Dressing 0.33 (0.26 to 0.40) 0.18 (0.12 to 0.24)" 0.18 (0.08 to 0.29)
Turning 0.24 (0.18 to 0.30) 0.17 (0.07 to 0.27) 0.20 (0.14 to 0.26)
Gross motor Walking 0.25 (0.12 to 0.38) 0.19 (0.14 to 0.24) 0.16 (0.08 to 0.24)
Stairs 0.13 (0.03 to 0.27) 0.11 (0.02 to 0.20) 0.17 (0.11 to 0.26)
Dyspnea 0.20 — 0.36 (0.22-0.50) 0.44 (0.36-0.52)
Respiratory Orthopnea 0.31 (0.17-0.45) 0.18 (0.11-0.26) 0.22 (0.14-0.29)
Respiratory 0.22 - 0.23 (0.11-0.35) 0.22 (0.08-0.35)
Subscale Mean 0.25 (0.22-0.29) 0.18 (0.14-0.22) 0.20 (0.14-0.25)
Composite 3.15 (2.24-4.05) 4.11 (2.69-5.53) 3.54 (2.81-4.27)
r (95% Cl) r (95% ClI) r (95% ClI)
Speech —0.09 (—0.19 to 0.01) 0.18 (—0.11 to 0.48) 0.34 (0.01-0.66)"
Bulbar Salivation 0.02 (—0.22 to 0.26) —0.14 (—0.32 to 0.04) —0.08 (—0.24 to 0.08)
Swallowing —0.02 (—0.10 to 0.07) 0.27 (—0.04 to 0.58) 0.21 (—0.08 to 0.50)
Handwriting 0.07 (—0.10 to 0.23) 0.10 (—0.07 to 0.28) 0.18 (—0.04 to 0.40)
Fine motor Cutting 0.06 (—0.11 to 0.22) —0.07 (—0.23 to 0.06) 0.09 (—0.09 to 0.29)
Dressing 0.18 (—0.10 to 0.46) 0.55 (0.22-0.88) 0.39 (—0.04 to 0.81)
Turning 0.02 (—0.18 to 0.22) 0.10 (—0.07 to 0.26) 0.29 (0.04-0.53)
Gross motor Walking 0.04 (—0.12 to 0.20) 0.26 (—0.20 to 0.73) 0.28 (—0.20 to 0.76)
Stairs 0.17 (—0.04 to 0.39) 0.33 (—0.05 to 0.71) 0.35 (—0.05 to 0.74)
Dyspnea —0.30 (—) 0.36 (0.01 to 0.70) 0.72 (0.52 to 0.91)
Respiratory Orthopnea 0.41 (0.25 to 0.57) 0.75 (0.50 to 1.00) 0.79 (0.54 to 1.03)
Respiratory —0.31 (—) 0.01 (—0.44 to 0.45) 0.64 (0.42 to 0.84)
Subscale Mean 0.02 (—0.09 to 0.13) 0.22 (0.08 to 0.37) 0.35 (0.20 to 0.49)
Composite 0.11 (—0.13 to 0.35) —0.16 (—0.51 to 0.20) 0.27 (—0.16 to 0.69)

Best model for each column-wise comparison per row is provided in bold.
“Significantly better than individual batch (p < 0.05).

Overall, across all participants and interpolation techniques,
transfer incremental learning showed the highest mean
correlation [r = 0.35 (0.20-0.49)] compared to transfer batch
[r~0.22 (0.08-0.37)] and individual batch learning (r = 0.02
(—0.09-0.13)] for subscale prediction. On composite scales,
individual batch models showed the lowest error [RMSE = 3.15
(2.24-4.05)] but only weak correlation [r~ 0.11 (—0.13-0.35)],
while transfer batch resulted in the highest error [RMSE ~ 4.11
(2.69-5.53)] and a negative correlation [r~ —0.16 (—0.51-
0.20)]. Transfer incremental models had the best balance
between error and correlation for the composite scale, with a
moderate error (RMSE = 3.54 (2.81-4.27)], slightly higher than
the error from individual batch models but lower than transfer
batch models, and improved correlation [r ~ 0.27 (—0.16-0.69)].

3.2 Performance contrast between
pseudo-label interpolations

To evaluate how the pseudo-labeling interpolation approach
affects model performance, prediction error and outcome
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correlation were averaged across learning methods, as detailed in
Tables 7 and 8 and across participants in Table 9. Results
demonstrate that the non-linear cubic polynomial and self-
attention interpolation of ALSFRS-R scales follow more closely
with daily changes in in-home sensor health measurements,
with a few exceptions where linear interpolation resulted in
lower errors (P1: composite; P2: dressing, orthopnea, composite;
P3: turning, respiratory, composite), as illustrated by the Taylor
diagrams in Figure 5.

3.2.1 Mean performance across learning methods

The bulbar ALSFRS-R scales (speech, salivation, swallowing)
resulted in mean improvements to model error from non-linear
cubic and self-attention interpolation compared to linear
interpolation. For speech, cubic reduced model error for Pl
[RMSE =0.14 —0.09, r=0 (0-0)], while self-attention
provided improved error and correlation for P2 (RMSE
=0.30 — 0.20%, r=0.59 — 0.75%) and improved error and
correlation for P3 (RMSE = 0.25 — 0.20, r = 0.13 — —0.34).
Salivation performed only marginally better with cubic
interpolation over linear interpolation, with an increase in
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TABLE 7 Mean model prediction error (RMSE) across learning methods for each pseudo-labeling interpolation.

10.3389/fdgth.2025.1657749

ALSFRS-R Linear slope Cubic polynomial Self-attention
RMSE (95% ClI) RMSE (95% ClI) RMSE (95% ClI)
Speech 0.14 (0.04-0.28) 0.09 (0.04-0.14) 0.10 (0.03-0.18)
Bulbar Salivation — — —
Swallowing 0.27 (0.24-0.33) 0.36 (0.28-0.49) 0.16 (0.11-0.19)»
Handwriting 0.39 (0.17-0.54) 0.33 (0.17-0.47) 0.14 (0.11-0.20)
Fine motor Cutting 0.15 (0.12-0.18) 0.12 (0.07-0.16) 0.07 (0.03-0.10)*
Dressing 0.32 (0.29-0.34) 0.32 (0.21-0.42) 0.27 (0.22-0.31)
Turning 0.31 (0.27-0.35) 0.26 (0.23-0.32) 0.28 (0.27-0.29)
Gross motor Walking 0.21 (0.02-0.32) 0.21 (0.02-0.32) 0.14 (0.12-0.16)
Stairs 0.04 (0.01-0.08) 0.04 (0.00-0.08) -
Dyspnea 0.51 (0.49-0.54) 0.51 (0.47-0.55) 0.36 (0.30-0.41)%"
Respiratory Orthopnea 0.26 (0.11-0.52) 0.22 (0.11-0.47) 0.23 (0.12-0.45)
Respiratory — — —
Composite Composite 2.79 (1.86-3.50) 2.38 (1.69-3.31)° 4.11 (3.39-4.72)
Speech 0.30 (0.29-0.30) 0.30 (0.29-0.30) 0.20 (0.20-0.20)% b
Bulbar Salivation 0.29 (0.16-0.52) 0.28 (0.16-0.51) 0.33 (0.27-0.45)
Swallowing 0.08 (0.04-0.17) 0.09 (0.04-0.18) 0.09 (0.04-0.15)
Handwriting 0.23 (0.08-0.51) 0.25 (0.12-0.50) 0.20 (0.10-0.34)
Fine Motor Cutting 0.15 (0.03-0.37) 0.20 (0.07-0.43) 0.14 (0.05-0.30)
Dressing 0.16 (0.05-0.31) 0.17 (0.04-0.38) 0.18 (0.08-0.36)
Turning 0.15 (0.03-0.30) 0.16 (0.05-0.30) 0.13 (0.02-0.30)
Gross motor Walking 0.17 (0.05-0.31) 0.19 (0.07-0.33) 0.14 (0.07-0.26)
Stairs 0.28 (0.24-0.36) 0.27 (0.24-0.33) 0.22 (0.21-0.24)%
Dyspnea 0.55 (0.48-0.63) 0.52 (0.51-0.54) 0.41 (()3:8—0.44)“"7
Respiratory Orthopnea 0.29 (0.29-0.30)>¢ 0.31 (0.31-0.31)¢ 0.36 (0.32-0.42)
Respiratory 0.34 (0.34—0.34)b 0.40 (0.40-0.40) 0.19 (0.19-0.19)* b
Composite Composite 4.21 (3.01-4.97) 4.22 (3.14-4.86) 5.54 (3.92-8.28)
Speech 0.25 (0.14-0.44) 0.26 (0.13-0.49) 0.20 (0.19-0.21)
Bulbar Salivation 0.20 (0.10-0.36) 0.19 (0.10-0.36) 0.30 (0.20-0.39)
Swallowing 0.12 (0.09-0.15) 0.16 (0.10-0.24) 0.09 (0.00-0.18)
Handwriting 0.11 (0.05-0.16) 0.12 (0.06-0.18) 0.05 (0.00-0.08)
Fine motor Cutting 0.02 (0.02-0.02) 0.02 (0.01-0.02) —
Dressing 0.25 (0.16-0.41) 0.27 (0.16-0.46) 0.14 (0.12-0.18)
Turning 0.17 (0.15-0.19) 0.18 (0.15-0.20) 0.18 (0.07-0.29)
Gross motor Walking 0.24 (0.14-0.43) 0.27 (0.14-0.51) 0.21 (0.20-0.22)
Stairs 0.13 (0.02-0.26) 0.15 (0.03-0.26) 0.04 (0.00-0.06)
Dyspnea 0.24 (0.10-0.38) 0.25 (0.11-0.39) 0.24 (0.20-0.32)
Respiratory Orthopnea 0.20 (0.13-0.32) 0.19 (0.16-0.24) 0.05 (0.00-0.11)%*
Respiratory 0.10 (0.09-0.11)° 0.12 (0.10-0.14)° 0.20 (0.16-0.22)
Composite Composite 2.38 (2.27-2.60)° 2.53 (2.21-2.76)° 4.24 (3.67-4.62)

Best model for each column-wise comparison per row is provided in bold.
“Significantly better than the linear slope (p < 0.05).

bSignificantly better than the cubic polynomial (p < 0.05).

“Significantly better than self-attention (p < 0.05).

correlation for P2 (RMSE = 0.29 — 0.28,r = —0.13 — —0.30) and
a minor correlation change for P3 (RMSE =0.20 — 0.19,
r = —0.07 — —0.05). For the swallowing subscale, self-attention
interpolation provided lower error across all participants, with
a decreased correlation for P1 (RMSE = 0.27 — 0.16%,
r=0.49 — 0.36) and no change in correlation for P3
[RMSE = 0.12 — 0.09, r = 0(0-0)], while cubic and self-attention
performed the same, with a very minor difference in error for P2
[RMSE = 0.09 — 0.08, r = 0(0-0)] compared to linear interpolation.

For fine-motor subscales (handwriting, cutting, and dressing),
self-attention interpolation provided the lowest model error, with
the exception of cutting for P3 and dressing for P2. For the
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handwriting scale, self-attention reduced error and either
increased or maintained correlation for P1 [RMSE
=039—0.14, r=0 (0-0)], P2 (RMSE =0.23 — 0.20,
r=0.24 — 0.67%), and P3 [RMSE = 0.11 — 0.05, r = 0 (0-0)].
Cutting also performed better on self-attention pseudo-labels,
reducing error for P1 [RMSE = 0.15 — 0.07%, r = 0 (0-0)] and
for P2 (RMSE =0.15—0.14, r=—0.01 — 0.21) with
improved correlation, while cubic and linear models performed
equally for P3 [RMSE = 0.02(0.01-0.02), r = 0 (0-0)]. Dressing
models fit on self-attention interpolated labels had decreased
model error but with lower correlation for P1 (RMSE
=0.32—0.27, r=0.19—0.09) and significantly better
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TABLE 8 Mean model outcome correlation (r) across learning methods for each pseudo-labeling interpolation.

ALSFRS-R

Linear slope

Cubic polynomial

10.3389/fdgth.2025.1657749

Self-attention

r (95% Cl)

r (95% Cl)

r (95% Cl)

1 Speech 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.16 (—0.15 to 0.66)
Bulbar Salivation — — —
Swallowing 0.49 (—0.22 to 0.86) 0.53 (—0.11 to 0.86) 0.36 (0.15 to 0.75)
Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (—0.20 to 0.25)
Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dressing 0.19 (—0.26 to 0.49) 0.46 (—0.06 to 0.85) 0.09 (—0.29 to 0.68)
Turning —0.01 (—0.11 to 0.16) —0.10 (—0.41 to 0.12) 0.11 (—0.01 to 0.28)
Gross motor Walking 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.59 (0.31 to 0.73)a, b
Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) —
Dyspnea 0.68 (0.51 to 0.85) 0.59 (0.39 to 0.79) 0.20 (—0.20 to 0.60)
Respiratory Orthopnea 0.79 (0.38 to 0.99) 0.76 (0.31 to 0.99) 0.73 (0.20 to 0.99)
Respiratory — — —
Composite Composite 0.08 (—0.36 to 0.51) —0.02 (—0.49 to 0.50) 0.50 (0.06 to 0.74)
2 Speech 0.59 (0.46 to 0.72) 0.63 (0.50 to 0.75) 0.75 (0.72 to 0.78)°
Bulbar Salivation —0.13 (—0.31 to 0.05) —0.30 (—0.40 to —0.13)¢ 0.04 (—0.13 to 0.36)
Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Handwriting 0.24 (—0.01 to 0.38) 0.13 (0.00 to 0.25) 0.67 (0.56 to 0.84)a, b
Fine motor Cutting —0.01 (—0.20 to 0.30) 0.00 (—0.07 to 0.05) 0.21 (—0.48 to 0.60)
Dressing 0.80 (0.46 to 0.99) 0.69 (0.13 to 0.99) 0.64 (0.03 to 0.98)
Turning 0.36 (0.11 to 0.57) 0.35 (0.07 to 0.52) 0.41 (—0.14 to 0.91)
Gross Motor Walking 0.75 (0.31 to 0.99) 0.70 (0.23 to 0.99) 0.66 (0.05 to 0.96)
Stairs 0.73 (0.32 to 0.94) 0.76 (0.40 to 0.94) 0.78 (0.65 to 0.89)
Dyspnea 0.91 (0.88 to 0.95) 0.89 (0.84 to 0.95) 0.92 (0.90 to 0.92)
Respiratory Orthopnea 0.62 (0.56 to 0.67) 0.59 (0.50 to 0.66) 0.75 (0.53 to 0.87)
Respiratory 0.63 (0.61 to 0.64)b, ¢ 0.48 (0.48 to 0.48)° 0.03 (—0.26 to 0.31)
Composite Composite 0.39 (0.21 to 0.61) 0.43 (0.23 to 0.61) 0.41 (—0.12 to 0.68)
3 Speech 0.13 (—0.13 to 0.26) 0.11 (—0.23 to 0.31) —0.34 (—0.57 to —0.04)
Bulbar Salivation —0.07 (—0.22 to 0.00) —0.05 (—0.16 to 0.00) 0.10 (—0.01 to 0.22)
Swallowing 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Handwriting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Fine motor Cutting 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) —
Dressing —0.06 (—0.29 to 0.09) 0.01 (—0.35 to 0.23) 0.52 (0.03 to 0.79)
Turning 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.10 (—0.25 to 0.32)
Gross motor Walking —0.29 (—0.33 to —0.22) —0.27 (—0.37 to —0.08) —0.37 (—0.43 to —0.25)
Stairs 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)
Dyspnea 0.35 (0.07 to 0.63) 0.25 (—0.08 to 0.59) —0.07 (—0.30 to 0.18)
Respiratory Orthopnea 0.81 (0.58 to 0.95)° 0.82 (0.59 to 0.96)° 0.00 (0.00 to 0.00)
Respiratory 0.24 (—0.28 to 0.76) 0.29 (—0.20 to 0.77) 0.07 (—0.32 to 0.83)
Composite Composite —0.52 (—0.69 to —0.29) —0.46 (—0.63 to —0.20) —0.15 (—0.50 to 0.08)

Best model for each column-wise comparison per row is provided in bold.
“Significantly better than the linear slope (p < 0.05).
bSignificantly better than the cubic polynomial (p < 0.05).
“Significantly better than self-attention (p < 0.05).

correlation for P3 (RMSE = 0.25 — 0.14, r = —0.06 — 0.52),
while the linear slope provided the best error and correlation
compared to non-linear interpolations for P2 [RMSE = 0.16
(0.05-0.31), r = 0.80 (0.46-0.99)].

For gross motor ALSFRS-R scales (turning, walking, stairs),
self-attention interpolation again resulted in improved model
error in most cases. The turning subscale had mixed outcomes:
cubic interpolation improved error over linear but with
decreased  correlation for P1 (RMSE = 0.31 — 0.26,
r=—0.01 — —0.10) and self-attention improved error and
correlation for P2 (RMSE = 0.15 — 0.13, r = 0.36 — 0.41) and
showed a minor change in error with improved correlation for
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P3 (RMSE =0.17 — 0.18, r =0 — 0.10). For walking, self-
attention interpolation resulted in the lowest error for all
participants, with significantly improved correlation for Pl
(RMSE =0.21 — 0.14, r = 0 — 0.59%), a moderate decrease in
correlation for P2 (RMSE = 0.17 — 0.14, r = 0.75 — 0.66), and
an increase for P3 (RMSE = 0.24 — 0.21, r = —0.29 — —0.37).
The stairs models had the lowest prediction error with self-
attention interpolation, with a slight improvement in correlation
for P2 (RMSE = 0.28 — 0.22%, r = 0.73 — 0.78) and no change
for P3 [RMSE =0.13 — 0.04, r =0 (0-0)]. However, linear
slope and cubic interpolation performed equally for P1 [RMSE
= 0.04 (0.01-0.08), r = 0(0-0)].
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TABLE 9 Mean model prediction error (RMSE) and outcome correlation (r) across learning methods and participants for each pseudo-
labeling interpolation.

Domain ALSFRS-R Linear slope Cubic polynomial Self-attention
RMSE (95% CI) RMSE (95% ClI) RMSE (95% ClI)
Speech 0.22 (0.11 to 0.33) 0.21 (0.08 to 0.33) 0.16 (0.11 to 0.22)
Bulbar Salivation 0.24 (0.08 to 0.41) 0.24 (0.06 to 0.41) 0.32 (0.22 to 0.41)
Swallowing 0.16 (0.08 to 0.23) 0.20 (0.09 to 0.31) 0.11 (0.06 to 0.16)
Handwriting 0.24 (0.09 to 0.40) 0.23 (0.10 to 0.36) 0.13 (0.06 to 0.20)
Fine motor Cutting 0.11 (0.02 to 0.20) 0.11 (0.01 to 0.21) 0.10 (0.00 to 0.21)
Dressing 0.24 (0.15 to 0.34) 0.25 (0.14 to 0.37) 0.20 (0.12 to 0.28)
Turning 0.21 (0.13 to 0.29) 0.20 (0.14 to 0.26) 0.20 (0.11 to 0.28)
Gross motor Walking 0.20 (0.10 to 0.31) 0.22 (0.11 to 0.34) 0.16 (0.11 to 0.21)
Stairs 0.15 (0.06 to 0.25) 0.15 (0.06 to 0.25) 0.13 (0.02 to 0.24)
Dyspnea 0.43 (0.24 to 0.63) 0.43 (0.25 to 0.60) 0.32 (0.23 to 0.41)
Respiratory Orthopnea 0.25 (0.14 to 0.35) 0.24 (0.15 to 0.34) 0.22 (0.09 to 0.34)
Respiratory 0.22 (0.00 to 0.44) 0.26 (0.00 to 0.52) 0.20 (0.17 to 0.22)
Subscale Mean 0.22 (0.18 to 0.27) 0.23 (0.18 to 0.27) 0.19 (0.15 to 0.23)
Composite 3.13 (2.30 to 3.95) 3.04 (2.20 to 3.88) 4.63 (3.52 to 5.74)
r (95% Cl) r (95% Cl) r (95% Cl)
Speech 0.20 (—0.04 to 0.43) 0.21 (—0.07 to 0.47) 0.12 (—0.33 to 0.56)
Bulbar Salivation —0.10 (—0.25 to 0.05) —0.17 (—0.35 to 0.01) 0.07 (—0.13 to 0.27)
Swallowing 0.16 (—0.14 to 0.47) 0.18 (—0.12 to 0.47) 0.12 (—0.07 to 0.31)
Handwriting 0.08 (—0.04 to 0.20) 0.04 (—0.03 to 0.12) 0.22 (—0.06 to 0.50)
Fine motor Cutting 0.00 (—0.11 to 0.10) 0.00 (—0.02 to 0.02) 0.11 (—0.31 to 0.52)
Dressing 0.31 (—0.05 to 0.67) 0.39 (0.02 to 0.75) 0.42 (0.04 to 0.80)
Turning 0.12 (—0.06 to 0.29) 0.08 (—0.13 to 0.29) 0.21 (—0.06 to 0.47)
Gross motor Walking 0.15 (—0.23 to 0.54) 0.14 (—0.23 to 0.51) 0.29 (—0.15 to 0.74)
Stairs 0.24 (—0.07 to 0.55) 0.25 (—0.06 to 0.57) 0.39 (—0.06 to 0.84)
Dyspnea 0.65 (0.30 to 1.00) 0.58 (0.18 to 0.98) 0.29 (—0.19 to 0.77)
Respiratory Orthopnea 0.74 (0.57 to 0.91) 0.72 (0.53 to 0.90) 0.49 (0.15 to 0.83)
Respiratory 0.43 (—0.34 to 1.20) 0.38 (—0.27 to 1.03) 0.05 (—0.58 to 0.68)
Subscale Mean 0.25 (0.11 to 0.39) 0.23 (0.09 to 0.37) 0.24 (0.15 to 0.31)
Composite —0.02 (—0.38 to 0.35) —0.02 (—0.38 to 0.35) 0.25 (—0.10 to 0.60)

Best model for each column-wise comparison per row is provided in bold.

Within the respiration-related ALSFRS-R scales (dyspnea,
orthopnea, respiratory), models fit on linear slope demonstrated
better error than non-linear interpolations among all functional
domains. For the dyspnea scale, self-attention interpolation
improved error but with a decreased correlation for P1 (RMSE
=0.52 — 0.36%, r=0.68 — 0.20) and a marginal correlation
change for P2 (RMSE = 0.55 — 0.41%, r =0.92 — 0.91). Self-
attention interpolation had equal prediction error to the baseline
linear slope but at a decreased correlation for P3 [RMSE = 0.24
(0.20-0.32), r = 0.35 — —0.07]. For orthopnea models, transfer
batch interpolation improved error but with a slight reduction in
correlation for P1 (RMSE = 0.26 — 0.22, r=0.79 — 0.76)
compared to the linear slope. Self-attention interpolation increased
model error over linear interpolation but with improved correlation
for P2 (RMSE = 0.29% — 0.36, r=0.62 — 0.75), while the
opposite occurred for P3 (RMSE = 0.20 — 0.05%, r = 0.82% — 0),
reducing model error and significantly decreasing correlation in P3.
Respiratory had the lowest error from self-attention but with a
significant reduction in correlation for P2 (RMSE = 0.34 — 0.19,
r = 0.63% — 0.03), while the linear slope provided a slight decrease
in both error and correlation compared to cubic interpolation for P3
(RMSE = 0.10 — 0.12, r = 0.24 — 0.29).
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For the composite ALSFRS-R scale, linear slope models
provided the best prediction error but had a decreased
outcome correlation compared to self-attention interpolation for
P1 (RMSE =279 — 4.11, r=0.08 — 0.50), P2 (RMSE=
4.21 — 5.54, r =0.39 — 0.41), and P3 (RMSE = 2.38 — 4.24,
r=—0.52 — —0.15). The results suggest that while self-
attention was best at capturing the overall changes within
individual ALSFRS-R subscales, the summation of the ALSFRS-
R composite score compensates these changes, resulting in a
linear trajectory, confirming to clinical practice of using a linear
slope to estimate the rate of functional change.

3.2.2 Mean group-level performance across
learning methods and ALSFRS-R scales
Self-attention interpolation had the best subscale-specific
performance with the lowest mean prediction error [RMSE ~ 0.19
(0.15-0.23), r =~ 0.24 (0.15-0.31)] across participants and ALSFRS-
R subscales, as shown in the Subscale Mean row of Table 9,
outperforming linear and cubic interpolation in 21 of 34 subscale
comparisons excluding ties, reported in bold in Table 7. Linear
[RMSE = 0.22 (0.18-0.27), r~0.25 (0.11-0.39)] and cubic
[RMSE ~ 0.23 (0.18-0.27), r ~ 0.23 (0.09-0.37)] interpolations
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showed nearly identical mean performance and were optimal in only
six and five subscale models, respectively. For composite scales, the
pattern reversed, with linear interpolation having lower error in two
of three comparisons [RMSE = 3.13 (2.30-3.95)] and cubic in one
of three [RMSE = 3.04 (2.20-3.88)], while self-attention raised error
[RMSE ~ 4.63 (3.52-5.74)], implying that composite trajectories are
more accurately captured by a stable linear slope than by self-
attention interpolation, which may potentially have been over-
responsive. However, choice of evaluation metric also factors into
pseudo-labeling selection, with self-attention providing the best
correlation for composite models when prioritizing the prediction-
outcome trend agreement [r ~ 0.25 (—0.10 to 0.60)] compared to
linear and cubic interpolation [r ~ —0.02 (—0.38 to 0.35)].

4 Discussion

Semi-supervised learning approaches were evaluated for
predicting ALSFRS-R scale trajectories using in-home sensor
health features. We compared participant-level batch learning
and cohort-initialized transfer learning, which used batch and
incremental fine-tuning strategies. The results demonstrate that
adapting cohort transfer learning models with additional
individual-level data through incremental fine-tuning improves
prediction error (RMSE) and outcome correlation (Pearson’s r).

4.1 ALSFRS-R scales exhibit mixed
participant-cohort homogeneity

ALS decline progression varies across different ALSFRS-R
functional areas, creating multi-dimensional trajectories, where some
subscales decline predictably across the cohort, while others follow
patient-specific trends. As illustrated in Figure 3, rates of decline in
bulbar, gross, and respiratory area measures for P1 were marked by
periods of stability followed by sudden decreases compared to the
regular decline observed for P2 and P3. Similarly, fine motor
measures for P1 increased around November 2023 followed by a
regular rate of decline, mirroring the decreases observed for P2 and
P3. Cohort-level model performances, when averaged across pseudo-
label interpolations, confirmed that bulbar and gross motor scales
largely follow cohort-level patterns. Transfer batch learning provided
the lowest error for swallowing and gross motor measures, while
subscales such as speech and handwriting benefited more from
transfer incremental tuning. Conversely, respiratory functions
demonstrated more participant-level heterogeneity, with transfer
incremental fine-tuning inverting outcome correlations from
negative in individual batch models to strongly positive. These
findings suggest that tailoring learning methods to the underlying
homogeneity-heterogeneity profile of each functional domain will
improve model optimization, with cohort-homogeneous scales
making better use of transfer learning, participant-heterogeneous
scales requiring incremental fine-tuning to better capture patient-
Additionally,
potentially benefit from adaptive learning approaches when

specific  patterns. mixed-profile subscales could

participant-level patterns deviate from the cohort-baseline variability.
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4.2 Transfer learning improves
performance in subscale models

Incremental fine-tuning of transfer learning models provided
the best balance between predictive accuracy and correlation
when contrasting the results from the learning technique. The
Taylor diagram analysis in Figure 6 of model predictions
aggregated across participants illustrated how transfer learning
models outperformed participant-level batch learning across most
subscales, aligning predictions closer to reference vectors with
improved accuracy and correlation. Performance differences
between individual batch and transfer learning models were
particularly pronounced across subscales, as presented in Table 4,
where transfer batch models reduced the mean prediction error
in 12 of 34 comparisons and transfer incremental learning did so
in 16 of 34, excluding ties. Individual batch models exhibited
increased error and weaker correlations, achieving best
performance in only four ALSFRS-R scale models (P1: walking,
stairs; P3: turning, orthopnea). Evaluating outcome correlation,
transfer incremental learning increased correlation in 20 of 34
comparisons, as presented in Table 5. As such, although transfer
incremental learning had a slightly higher mean prediction error,
it was more effective at capturing individual trajectory patterns
than transfer batch learning, suggesting that it is better at
detecting temporal changes in ALS decline. Additionally, the
improved performance of transfer learning approaches across
subscales suggests that ALS progression follows cohort-level
patterns predictive of individual trajectories despite disease
heterogeneity, supporting the presence of underlying shared
physiological or functional characteristics that are captured by
sensor data as detected by cohort-level models. The effectiveness
of incremental fine-tuning indicates that personalized ALS
progression tracking should incorporate both group parameters

and adaptive learning for predicting decline in individual patients.

4.3 Integrating passive sensor analytics into
personalized ALS clinical care

Although preliminary and limited in generalizability, the
findings from this case series suggest that integrating passive in-
home sensor monitoring into routine ALS care may help
clinicians better detect and anticipate functional changes
between quarterly assessments, differentiating stable periods
from more rapid decline. More specifically, this study shows that
combining semi-supervised transfer learning with continual fine-
tuning on patient-level sensor data improves the estimation of
ALSFRS-R subscale trajectories compared to batch learning,
supporting the use of personalized, adaptive algorithms for
tracking the course of disease unique to the individual patient
from models pretrained on group-level data. The improved
performance of group-initialized transfer models indicates that,
even with a minimal cohort of three patients, combining data
across patients as a baseline model of disease progression that
can be further adapted to new patients over time can leverage
patterns homogeneous to the case series cohort. The findings
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also underscore the need for tailoring learning strategies to specific
clinical problems, whether they are subscales or composite
measures, to provide more reliable indicators of disease
progression. In practice, clinicians could receive near real-time
notifications about deviations in a patient’s functional
trajectories, as this is being evaluated in the parent study. Such
notifications may enable proactive adjustments to respiratory
support, assistive ambulatory devices, nutritional interventions,
or rehabilitation schedules, which would allow for timely
interventions, rather than waiting weeks for the next in-person
assessment. Sensor-based analytics may also reduce the recall
bias and subjective self-assessment errors common in clinic-
based evaluations while providing actionable insights into
those with
ALSFRS-R

functional areas. The combination of transfer and incremental

patients’ day-to-day variability, especially for

unpredictable subscale trajectories or across
learning has the potential to optimize clinical workflows and
attention by identifying the specific patients, and at the proper
time, who need closer monitoring and therapies. Additionally,
examining modeled outcomes by the pseudo-labeling technique
showed that the choice of optimal interpolation is largely
outcome- and metric-specific, with performance varying across
subscale and composite measures. In the context of clinical ALS
trial studies, the continuous outcome estimates derived from

self-supervised models could serve as prognostic endpoints.

5 Conclusion

This study demonstrates that semi-supervised machine learning
using in-home sensor data can effectively predict ALSFRS-R scale
with
performing well across all functional domains. Given the case series

trajectories, incremental fine-tuned transfer learning
cohort (n = 3), the results demonstrate feasibility and within-
participant accuracy rather than generalizable effectiveness, with
further confirmation requiring a larger, multi-site cohort. The
findings indicate that the choice of interpolation techniques for
estimating between-visit decline should be tailored to specific
clinical objectives, with self-attention interpolation performing best
for subscale-level monitoring and polynomial function interpolation
performing better for the summated composite ALSFRS-R score.
However, the generalizability of reported modeled outcomes is
limited by the small participant cohort and reliance on bed sensor
and motion detection data, which lack comprehensive gait
measurements that may be particularly important for assessing
motor function. The low prediction error-low outcome correlation
(P1:
swallowing; P3: swallowing,

models for bulbar and motor-related subscale models
handwriting, cutting, stairs; P2:
handwriting, cutting, stairs) exemplify the need for motor-related
measurements. Future research may be conducted to validate the
learning methods applied in this analysis with a larger, multi-center
study to establish broader applicability, explore complementary
clinical measures such as forced volume capacity (FVC), and
investigate enhanced feature engineering approaches that could
ALSFRS-R
component scales. Additionally, developing adaptive incremental

improve performance for patient-heterogeneous
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feedback
mechanisms for ground truth scoring and extending this framework

learning  algorithms with  patient-specific ~ clinical
through multi-model ensemble approaches are promising directions
for advancing personalized disease progression monitoring that
could transform clinical decision-making in neurodegenerative care.
As part of the parent study, we will expand the participant sample
and train larger cohort-level transfer models with additional training
data to improve their sensitivity and specificity to between-visit
changes. Overall, this work aims to enable earlier detection of
clinically meaningful changes in ALS progression as support for
timely interventions that address functional decline.
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