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Background: Large language models (LLMs) offer promise for enhancing 

clinical care by automating documentation, supporting decision-making, and 

improving communication. However, their integration into real-world 

healthcare workflows remains limited and under characterized. This 

systematic review aims to evaluate the literature on real-world 

implementation of LLMs in clinical workflows, including their use cases, 

clinical settings, observed outcomes, and challenges.

Methods: We searched MEDLINE, Scopus, Web of Science, and Google Scholar 

for studies published between January 2015 and April 2025 that assessed LLMs 

in real-world clinical applications. Inclusion criteria were peer-reviewed, full- 

text studies in English reporting empirical implementation of LLMs in clinical 

settings. Study quality and risk of bias were assessed using the PROBAST tool.

Results: Four studies published between 2024 and 2025 met inclusion criteria. 

All used generative pre-trained transformers (GPTs). Reported applications 

included outpatient communication, mental health support, inbox message 

drafting, and clinical data extraction. LLM deployment was associated with 

improvements in operational efficiency, user satisfaction, and reduced 

workload. However, challenges included performance variability across data 

types, limitations in generalizability, regulatory delays, and lack of post- 

deployment monitoring.

Conclusions: Early evidence suggests that LLMs can enhance clinical 

workflows, but real-world adoption remains constrained by systemic, 

technical, and regulatory barriers. To support safe and scalable use, future 

efforts should prioritize standardized evaluation metrics, multi-site validation, 

human oversight, and implementation frameworks tailored to clinical settings.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/ 

recorddashboard, PROSPERO CRD420251030069.
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Introduction

The integration of large language models (LLMs) into clinical 

practice has sparked interest across the healthcare community (1). 

These technologies have the potential to enhance diagnostic 

accuracy, reduce administrative burden, and support clinical 

decision-making (2). However, while LLMs have demonstrated 

impressive performance in controlled retrospective settings (3, 

4), their translation into clinical work%ows remains inconsistent 

and underexplored (5).

Despite exponential growth, there remains a significant gap 

between developed models and real-world translation (6). The 

majority of explored use cases are still at the proof-of-concept 

stage, due to regulatory uncertainties, technical deployment 

barriers, privacy concerns and variable institutional readiness (7, 8).

Moreover, evaluation metrics vary widely across studies, with 

many reporting model performances in silico without assessing 

usability, safety, or effectiveness in real-world clinical work%ow 

(9, 10). There is also a lack of robust post-deployment 

monitoring systems to better understand the impact and shifting 

performance of these models.

This systematic review aims to evaluate the existing literature 

on LLM integration into real-world clinical settings. Specifically, 

we assess the extent of their deployment, the clinical settings in 

which they are applied, the tasks they are used for, and the 

outcomes associated with their use. By doing so, we aim to 

guide future research and adoption strategies.

Methods

Literature search

We systematically searched the literature to identify studies 

describing the application of LLMs in a real-world setting. We 

searched MEDLINE, Google Scholar, Scopus, and the Web of 

Science for papers published from January 2015 to April 2025. 

The full search process, including Boolean operators presented 

here and also detailed in the Supplementary Materials.

(“large language model” OR “large language models” OR 

ChatGPT OR “GPT-4” OR “GPT-3” OR BERT OR 

“transformer model” OR “foundation model”) AND (“real- 

world evidence” OR “real world application” OR “clinical 

implementation” OR “routine practice” OR “clinical use” 

OR deployment OR “work%ow integration”) AND (“clinical 

practice” OR “healthcare setting” OR hospital OR “medical 

setting”) AND (“original research” OR “observational study” 

OR “clinical study” OR “implementation study”)

In addition, we checked the reference lists of selected 

publications and the “Similar Articles” feature in PubMed, to 

identify additional publications. Ethical approval was not required, 

as this is a systematic review of previously published research and 

does not include individual participant information. Our study 

followed the Preferred Reporting Items for Systematic Reviews 

and meta-analyses (PRISMA) guidelines (11). The study is 

registered with PROSPERO (CRD420251030069).

Study selection

We included studies conducted in real-world clinical care 

settings, such as hospitals, clinics, ambulatory, inpatient, 

outpatient, emergency, and primary care involving clinicians 

and/or patients. The intervention was an LLM-enabled tool 

integrated into live work%ows. Eligible comparators included 

usual care pre–post designs. Outcomes encompassed work%ow, 

efficiency, usability, adoption, clinical impact, and safety vs. risk. 

We excluded simulation-only studies (including vignette-based 

evaluations not used to guide real patient care), bench 

evaluations without deployment, and non-LLM NLP. All search 

results were imported into a single CSV table and deduplicated. 

Two authors (YA and VS) independently screened titles and 

abstracts for relevance. Potentially eligible articles were retrieved 

in full text and assessed by YA and VS. Discrepancies were 

resolved by a third author (EK).

Inclusion and exclusion criteria

Full-text peer-reviewed publications in English focusing on 

LLMs integration and deployment in real-world clinical 

work%ow were included. We excluded non-English articles, non- 

original research, non-peer-reviewed publications, studies that 

did not assess LLMs, and studies that did not explicitly assess 

LLMs in real-world settings. Figure 1 presents the %ow diagram 

of the screening and inclusion process.

Quality assessment

The risk of bias and applicability was evaluated using the 

PROBAST tool (Figures 2, 3). A detailed assessment of the studies 

using the PROBAST tool is detailed in the Supplementary Material.

Fundamental concepts

An overview of fundamental concepts in AI is included in the 

Supplementary Material, along with visual hierarchy shown in 

Supplementary Figure S1.

Abbreviations  

AI, artificial intelligence; CBT, cognitive behavioral therapy; EHR, electronic 

health record; GPT, generative pre-trained transformer; LLM, large language 

model; NHS, National Health Service; NLP, natural language processing; 

PHQ-9, patient health questionnaire-9; PROBAST, prediction model risk of 

bias assessment tool; SSPEC, site-specific prompt engineering chatbot; 

AUROC, area under the receiver operating characteristic curve; AUPRC, area 

under the precision–recall curve; ECE, expected calibration error; SUS, 

system usability scale; UMUX-lite, usability metric for user experience, short 

form; TAM, technology acceptance model; NASA-TLX, NASA task load 

index; PRO/PROs, patient-reported outcome/patient-reported outcomes; PHI, 

protected health information; SES, socioeconomic status; NCC-MERP, 

national coordinating council for medication error reporting and prevention.
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Results

Study selection and characteristics

Four studies were included in this review, published 

between March 2024 and March 2025. All studies utilized 

generative pre-trained transformers (GPT) (100%). Two 

studies focused on patient services, including LLM-supported 

communication during outpatient intake and response to 

patient messages (50%). Two studies’ focus areas were on data 

extraction (50%), one applied LLM as a support tool 

(25%) (Table 1).

The results of the studies are summarized in Table 2. Figure 4

provides an overview of the characteristics of the included studies.

Descriptive summary of results

Wang et al. (12) evaluated ChatGLM2-6B for real-world 

data extraction, and did not report a patient count. The model 

FIGURE 1 

Flow diagram of inclusion and exclusion process.
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achieved an 80.7% reduction in transcription time. The accuracy 

varied by data type, 77.13% for free text and 98.72% for 

structured medication data. In comparison, the LLaMA2-7B 

model showed lower accuracy, especially for vital signs and 

family history (Table 2).

Wan et al. (13) randomized 2,164 outpatients across two 

medical centers to nurse-only vs. nurse–SSPEC work%ows. The 

nurse–SSPEC model improved patient satisfaction, reduced 

repeated questions (3.2% vs. 14.4%), and lowered negative 

patient emotions (2.4% vs. 7.8%). It also enhanced response 

quality in integrity, empathy, and readability (Table 2).

Habicht et al. (14) assessed a GPT-4–powered AI tool in 

group-based CBT (n = 244 patients) and found it improved 

clinical outcomes. The AI group had more session attendance, 

fewer missed appointments, and a 23-percentage point lower 

dropout rate than those using standard worksheets—higher 

engagement correlated with better adherence and outcomes. 

Qualitative feedback also noted improved self-awareness, 

mindfulness, and practical use of CBT techniques (Table 2).

Garcia et al. (15) evaluated GPT-3.5 Turbo and GPT-4 for 

generating draft replies to patient messages in gastroenterology, 

hepatology, and primary care. The AI drafts improved efficiency 

and reduced clinician workload without compromising 

communication quality. Enrolled 197 clinicians, of whom 162 

were included in the final analysis; draft utilization averaged 

20%, with 75% of messages receiving AI-generated replies. 

While time spent on inbox tasks did not significantly change, 

clinicians reported reduced task load and work exhaustion. User 

feedback raised concerns about message tone, length, and 

relevance (Table 2).

Limitations and challenges discussed or inferred in the 

reviewed studies are presented in Table 3.

FIGURE 2 

PROBAST risk of bias assessment.

FIGURE 3 

PROBAST assessment for applicability.
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Discussion

LLMs show promise in real-world clinical work%ows (16), 

with the potential to enhance many fields in clinical care. We 

illustrate this in Figure 5, showcasing various clinical domains 

with key results from the reviewed studies (Figure 5). However, 

their implementation remains early-stage and context- 

dependent. Our synthesis across four deployed implementations 

indicates consistent benefits in task burden and clinician 

experience, alongside improvements in selected patient-facing 

outcomes. At the same time, effects remain context-dependent, 

varying by role, setting, task type, and integration depth. In this 

context, our synthesis indicates that LLMs function less as 

universal accelerators and more as context-sensitive amplifiers of 

specific tasks, with the clearest benefits emerging when models 

are embedded in existing tools and supervised. Several studies 

demonstrated clear empirical benefits. For example, Habicht 

et al. (14) showed that GPT-4 as a therapy support tool reduced 

therapy dropout rates and improved clinical outcomes in group 

interventions. Wan et al. (13) reported that the site-specific LLM 

chatbot (SSPEC) reduced repeated interactions and negative 

patient emotions. Garcia et al. (15) found that GPT-generated 

draft replies decreased clinician task load and work exhaustion 

across several clinical settings. These findings suggest that the 

value of LLMs is realized not simply by model capability but by 

deliberate product-work%ow fit, a bounded task, appropriate 

TABLE 1 General features of reviewed studies.

Study Setting Population Intervention 
(LLM task)

Comparator/ 
design

LLM specifics Sample 
size

Type of 
data

Wang 

et al. (12)

Chinese hospital Not reported Data extraction Not reported ChatGLM2-6B Not reported Quantitative

LLaMA2-7B

Fine-tuning (3 rounds) with 

few-shot + RAG

Wan et al. 

(13)

Outpatient reception 

work%ows (2 medical 

centers)

Not reported Patient intake and 

reception

Not reported GPT-3.5-Turbo 2,164 patients Quantitative

Fine-tuned with site-specific 

knowledge 

(SSPEC) + prompt template

GPT-4 evaluator + RAG

Habicht 

et al. (14)

Group-based cognitive 

behavioral therapy (UK 

talking therapies)

Not reported Therapy support 

system

Not reported GPT-4 244 patients Quantitative

No model fine-tuning 

reported

Garcia 

et al. (15)

Primary care, 

gastroenterology, 

hepatology

Not reported Clinical 

communication 

support

Not reported GPT-3.5 Turbo GPT-4 197 clinicians 

(162 analyzed)

Quantitative

No domain-specific training

TABLE 2 Evaluation metrics and key results of reviewed studies.

Study Evaluators Evaluation 
metrics

Evaluation tools Key results

Wang et al. 

(12)

Human Data transcription time 

reduction

Manual annotation 80.7% reduction

Accuracy of data 

extraction

Time logging 77.13% for free-text

98.72% for structured medication data

For LLaMA2-7B lower accuracy, especially for vital signs 

and family history extraction

Wan et al. 

(13)

Human (patients & 

clinical staff)

Patients’ satisfaction Likert-scale surveys Higher satisfaction (3.91 vs. 3.39, P < 0.001)

Emotional response & 

response quality

Structured questionnaires Reduced repeated questions (3.2% vs. 14.4%)

Lower negative emotions (2.4% vs. 7.8%)

Improved integrity, empathy, and readability of responses

Habicht 

et al. (14)

Human (therapists & 

participants)

Session attendance & 

dropout rate

Clinical records 23 percentage point reduction in dropout

Reliable improvement Qualitative feedback surveys Higher rates of reliable improvement recovery

Recovery rates Standardized depression (PHQ-9) & 

Anxiety (GAD-7) questionnaires

Strong dose-response relationship between app 

engagement and clinical outcomes

Garcia et al. 

(15)

Human (clinicians) Inbox utilization rate System usage logs Mean draft utilization: 20%

75% of messages had AI drafts

Physician task load score Surveys (pre- and post-intervention) Significant reduction in task load (−13.87 points)

Work exhaustion score Significant reduction in work exhaustion (−0.33 points)

User satisfaction Net promoter score (NPS) Favorable: primary care physicians/APPs (13), primary 

care clinical pharmacists (71), GI/hepatology nurses (50)

Unfavorable: primary care nurses (−60), GI/hepatology 

physicians/APPs (−19)
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timing in the clinical journey, and clear human supervision 

and handoff.

Across included studies, three implementation patterns 

consistently enabled success. Retrieval-augmented generation 

(RAG) with prompt templates to ground outputs in local 

knowledge, guardrails, and escalation tiers (including evaluator 

models and human handoffs) to manage safety and 

appropriateness, and EHR integration to address privacy and 

reduce work%ow friction. Conversely, role-specific 

dissatisfaction, and retention decay in patient-facing %ows 

emerged as failure modes when these patterns were absent or 

inconsistently applied.

Despite encouraging signals, translation and scale remain 

constrained. In Wang et al. (12), while ChatGLM2-6B achieved 

a reduction in transcription time, accuracy varied significantly 

across data types. LLaMA2-7B performed notably worse in 

comparison. These discrepancies accentuate the importance of 

task specificity and local calibration in AI deployment.

While LLMs can improve operational efficiency and clinical 

outcomes, widespread adoption is limited by systemic barriers 

and arbitrary evaluation metrics (17). These include 

heterogeneous EHR systems and unclear standards for 

performance evaluation. Future research should focus on 

efficient prospective validation and developing clear 

standardized evaluation metrics. We propose a list of possible 

standardized evaluation domains and metrics detailed in Table 4.

Translating LLMs from experimental settings into clinical 

practice remains a challenge. Clinical implementation is frequently 

delayed by regulatory barriers, including classification as software- 

as-a-medical-device (SaMD), which necessitates lengthy regulatory 

approval processes and extensive local validation (18). These 

processes contribute to version lag, whereby newer models 

become available before prior versions are deployed or evaluated. 

Furthermore, performance may degrade over time due to evolving 

clinical documentation, user behavior, or patient populations (8). 

These challenges underscore the need for post-deployment 

FIGURE 4 

Differences and similarities in various parameters presented in the reviewed studies. (*) Each row has its distinctive color, where color tone change 

emphasizes a difference.

TABLE 3 Limitations and challenges in reviewed studies.

Study Challenges Domain 
impact

Observed or 
inferred

Wang 

et al. (12)

Moderate accuracy 

variability (77.13% for 

free-text extraction) 

Lower performance 

compared to LLaMA2-7B 

in some fields

Data extraction 

accuracy

Observed

Wan et al. 

(13)

Need for careful prompt 

design 

Reliance on nurse 

oversight

Patient 

communication 

Work%ow 

efficiency 

Scalability and 

generalizability

Inferred

Habicht 

et al. (14)

App retention decline 

(only 19.3% engaged by 

week 6)

Mental health 

outcomes 

Patient 

engagement 

Tool sustainability

Observed

Garcia 

et al. (15)

Variability in tone, 

message relevance, and 

adoption 

Modest impact on inbox 

time 

Concerns about over- 

reliance on AI

Administrative 

burden 

Clinician well- 

being

Observed
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monitoring frameworks and standardized scientific reporting to 

ensure model safety, performance, and generalizability in clinical 

environments (17, 19).

Strategies for the future

Several strategic approaches should be considered to facilitate 

the broader adoption of LLM technologies in clinical work%ows. 

Local adaptation of models is essential, as performance can vary 

significantly depending on institutional characteristics such as 

data quality, documentation styles, and patient demographics. 

Ensuring that models are trained and validated on local data can 

improve generalizability and clinical relevance. Also, 

incorporating a human expert oversight framework can improve 

safety, accountability, and user trust.

This review highlights the need for comparable outcome 

definitions. Studies frequently mix denominators, time windows, 

and units, hindering synthesis. Outcomes are also unevenly 

distributed. Work%ow or experience measures are common, 

while downstream clinical outcomes and severity-weighted safety 

indicators are rare. To improve comparability, a standardized 

evaluation set with consistent units, denominators, and time 

windows are required, with selective deferral and severity-aware 

incident metrics. Adopting shared reporting conventions would 

make future evidence more cumulative, enable meta-analytic 

techniques where appropriate, and clarify trade-offs between 

efficiency, quality, and risk across sites.

AI tools should be designed with task specificity; models 

tailored to distinct clinical functions, such as triage, 

documentation, or medication extraction, are more likely to 

achieve meaningful utility. This can be achieved using fine- 

tuning (20) or Retriever-Augmented Generation (RAG) (21).

A standardized set of metrics should be developed to support 

consistency and facilitate future evaluations. We propose our set of 

metrics in Table 4. Also, involving clinicians and end users in the 

development and implementation process ensures that tools are 

aligned with real-world work%ow needs, increasing user 

acceptance. Collecting user feedback during deployment can 

guide iterative model refinement and usability improvements.

Safety mechanisms and override options are crucial to prevent 

unintended consequences such as clinical errors, automation over- 

reliance, data bias, and alert fatigue (22). These risks can disrupt 

work%ows and raise ethical concerns about accountability. 

Human oversight and ongoing monitoring are essential to 

ensure AI supports, rather than compromises, clinical care (19).

Ensuring that AI tools are clinically effective requires more 

than technical performance. This includes interoperability with 

EHRs, standardized evaluation metrics, and human-centered 

design features like transparency and clinician oversight. By 

applying these strategies, AI can move beyond experimental use 

to become a trusted part of routine clinical care.

This review has several limitations. First, the number of 

eligible studies evaluating LLMs in real-world clinical work%ows 

remains limited, re%ecting the early stage of implementation 

research in this domain. Our search emphasized real-world 

FIGURE 5 

LLM application in various fields in real-world setting, integrated with summarized results from reviewed studies. Created using Biorender, licensed 

under Academic License.
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clinical settings, which may have excluded studies that did not 

explicitly use setting descriptors. Nonetheless, multi-database 

coverage and related-article screening reduce the likelihood of 

missing eligible deployments. Second, the heterogeneity in study 

design, evaluation methods, clinical settings, and outcome 

reporting precluded formal meta-analysis. Third, most included 

studies were conducted in high-resource settings, potentially 

limiting the generalizability of findings to low- and middle- 

income countries. Additionally, some of the studies relied on 

self-reported outcomes or lacked long-term follow-up, which 

may introduce reporting bias or fail to capture sustained clinical 

impact. Finally, despite efforts to capture a comprehensive set of 

studies, some relevant work may have been missed due to 

language restrictions, database coverage, or publication lag.

Conclusion

LLMs demonstrate early but uneven success in real-world 

integration, with empirical improvements in efficiency and user 

satisfaction. They demonstrate encouraging but context-dependent 

benefits in real-world clinical work%ows, and their effects varied by 

role, task, and site, underscoring that outcomes depend as much 

on implementation choices as on the underlying model family. 

However, challenges related to generalizability, interoperability, and 

evaluation must be addressed to ensure scalable and safe adoption. 

LLMs’ outcomes are situation-specific and site-specific, 

underscoring the need for multi-site validation, transparent version 

reporting, and post-deployment monitoring for safety and equity. 

For health systems, the immediate implication is to prioritize 

implementation architecture, such as RAG pipelines, EHR- 

proximal integration, and measure outcomes with standardized 

units and denominators. Future research should prioritize 

prospective multi-center validation, using standardized metrics, and 

end-user collaboration with evaluation of role-specific impacts and 

comparative studies of design patterns to support the responsible 

and effective use of AI in clinical care.
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TABLE 4 Proposed standardized evaluation domains and metrics for real- 
world LLM implementations.

Domain Recommended metric

Model performance & 

calibration

AUROC/AUPRC

Accuracy

Precision

Recall

F1-score

Calibration (Brier score, ECE)

Coverage/abstention rate for selective deferral

Clinical impact Patient outcomes

Condition-specific outcomes or PROs

Diagnostic/triage concordance

Time to treatment or appropriate referral

Guideline-adherence delta

Tests/visits avoided

Work%ow efficiency Task time per case

Response/turnaround time

Time-to-decision.

Usability & adoption SUS or UMUX-Lite

Perceived usefulness & ease-of-use (TAM)

NASA-TLX (task load)

% AI-assisted tasks

Clinician reported task load

Reliability & monitoring Rate of false negatives/positives

Override rates

Failure rate

Latency

Performance drift over time

Post-deployment incident reports

Rollback frequency

Deployment fidelity User adherence to intended use rates

Percentage of AI-assisted tasks

Prompt/template adherence

Version tracking

Generalizability Cross-site performance variance

Calibration curves

Safety & risk Hallucination rate (overall and clinically 

significant)

Harmful/unsafe recommendation rate

Override rate (and appropriateness)

Near-miss and adverse event counts

Severity-weighted error index

PHI leakage or privacy breach rate

Alert-fatigue index
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