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Artificial Intelligence (AI) is increasingly being adopted across many industries 

including healthcare. This has brought forth the development of many new 

independent ethical frameworks for responsible use of AI within institutions 

and companies. Risks associated with the application of AI in healthcare have 

high stakes for patients. Further, the existence of multiple frameworks may 

exacerbate these risks due to potential differences in interpretation and 

prioritization in said frameworks. Resolving these risks requires an ethical 

framework that is both broadly adopted in healthcare settings and applicable 

to AI. Here, we examined whether a framework consisting of the 4 well- 

established principles of biomedical ethics (i.e., Beneficence, Non- 

Maleficence, Respect for Autonomy, and Justice) can serve as a foundation 

for an ethical framework for AI in healthcare. To this end, we conducted a 

scoping review of 227 peer-reviewed papers using semi-inductive thematic 

analyses to categorize patient-related ethical issues in healthcare AI under 

these 4 principles of biomedical ethics. We found that these principles, which 

are already widely adopted in healthcare settings, were comprehensively and 

internationally applicable to ethical considerations concerning use of AI in 

healthcare. The existing four principles of biomedical ethics can provide a 

foundational ethical framework for applying AI in healthcare, grounding other 

Responsible AI frameworks, and can act as a basis for AI governance and 

policy in healthcare.

KEYWORDS

ethics, Artificial Intelligence, Responsible AI, healthcare, Beneficence, Non- 
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1 Introduction

The potential of Artificial Intelligence (AI) to improve healthcare (e.g., automate 

tasks, improve diagnoses and treatment) has led to its widespread adoption. In a 2022 

international systematic review, AI usage by medical students and physicians was 

reported to be between 10% and 30% (1). By 2023, a separate survey found that nearly 

38% of physicians in America were already using AI in practice, with nearly two-thirds 

stating they recognized its potential advantages (2). However, this rapid integration of 
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AI also introduces novel ethical risks (e.g., explainability) across 

healthcare research and clinical settings (3–5).

In 2022, 75% of Americans believed healthcare providers 

would adopt AI too quickly before fully understanding risks for 

patients (6). Concerns among the public are founded on more 

than simple technological aversion. Indeed, ethical issues and 

unknowns raised by involvement of AI in healthcare are 

evolving as quickly as the technology itself, while regulatory 

governance currently lags behind (e.g., explicit permission to use 

patient data for training AI models) (7–9). To address these 

challenges, a new area of study referred to as “Responsible AI” 

(RAI) has emerged, defined as “the practice of developing, 

using, and deploying [AI] systems in a way that is ethical, 

transparent, and accountable” (10–13).

To date, numerous frameworks for RAI have been suggested 

by both governmental (14–20) and non-governmental 

organizations (e.g., technology companies) (21–26) (see 

Tables 1, 2 for common areas of concern in RAI and how they 

correspond to healthcare issues). However, these frameworks 

feature noticeable limitations which are especially relevant in 

healthcare, where use of AI has significant implications for 

patients (27). Such limitations include but are not limited to the 

abstract nature of these frameworks (28). For example, several 

frameworks include the concept of “fairness”. However, fairness 

in AI and fairness in healthcare do not always align. Fairness 

may variously describe: the impact of class imbalances in AI 

model training data (29), poor generalizability of AI models 

(30), expected patient outcomes from AI-produced 

recommendations (31), and/or focus on inappropriate metrics 

(e.g., focusing on accuracy over clinical utility) (32). Further, 

emerging RAI frameworks vary widely in content, such that no 

one framework could necessarily claim to be comprehensive. 

Indeed, the very nature of having a variety of frameworks to 

choose from may lead to a focus on compliance for the sake of 

compliance (33). Finally, beyond general RAI principles, specific 

ethical considerations for healthcare need to be considered (34, 

35). As adoption of healthcare AI continues to accelerate, there 

is a need for RAI frameworks for healthcare to be grounded in 

foundational principles that are already widely accepted and 

applied in healthcare around the world.

A recent literature review by Ong and colleagues (36) proposed 

the four principles of biomedical ethics by Beauchamp and Childress 

TABLE 1 Definitions of areas of concern in Responsible AI (10–13, 106).

Areas of concern Definitions

Privacy Ensuring that individuals’ personal data are collected, 

processed, and stored in ways that respect their 

rights, protect their identity, and maintain 

confidentiality.

Security The practice of safeguarding AI systems and the data 

they use from unauthorized access, breaches, and 

malicious attacks to ensure system integrity and 

reliability.

Transparency The presence of clear, accessible, and understandable 

explanations of how AI systems operate, make 

decisions, and process data.

Inclusivity/Fairness Ensures that AI systems are designed and deployed in 

a manner that avoids bias, promotes equitable 

outcomes, and considers the needs and perspectives of 

diverse populations.

Governance Involves the establishment of policies, frameworks, 

and processes to guide the responsible development, 

deployment, and use of AI technologies.

Accountability Requires that individuals involved in creating and 

deploying AI systems take responsibility for their 

outcomes and ensure mechanisms are in place to 

address errors, misuse, or harm.

Reliability Focuses on the consistent and dependable 

performance of AI systems, ensuring they function as 

intended across diverse scenarios and over time.

Social/Environmental 

Well-being

Emphasizes the development and operation of AI 

technologies that does not harm society and minimize 

environmental impact and support long-term 

ecological balance.

TABLE 2 Examples of ethical concerns about AI in healthcare and their 
corresponding Responsible AI principles.

Examples of ethical  
concerns about AI in  
healthcare

Corresponding principles 
of Responsible AI

More extensive informed consent is 

needed from patients concerning third- 

party access to their information due to 

concerns about how their data will be 

used (8).

Governance and Privacy

Integration of AI into electronic health 

records or use of AI for health-related 

communication elevate the risk of data 

breaches (8).

Security and Privacy

Training and fine-tuning of AI models on 

patient data may pose risks for 

inadvertent replication and dissemination 

of sensitive information (36, 107, 108).

Privacy

There has been a growing precedent of 

companies using and selling individual 

user data to other companies to train 

models, often without regulatory 

oversight and accountability (109).

Privacy and Governance

Training and fine-tuning of AI models on 

patient data may pose risks for the 

exacerbation of existing demographic 

biases and inequities in healthcare (36, 

107).

Inclusivity/fairness and Lack of 

Transparency

Questions remain as to how much human 

actors should be held accountable for 

harm done to patients when clinical 

decisions are inEuenced by AI-generated 

errors. Who are responsible: individuals 

who curate the training data, individuals 

training the model, or individuals 

applying the model? (84, 110)

Accountability, Governance, and Lack 

of Transparency

Large language models are complex 

systems which are made up of many 

components (including both software and 

hardware) which may fail. Medical/ 

lifesaving equipment typically has much 

higher failure tolerances given the severe 

consequences, however, there is no agreed 

upon standard for the reliability of AI in 

healthcare (111).

Reliability

Training large-scale AI models requires 

significant energy, contributing to 

environmental degradation through 

increased carbon emissions, which, over 

time, can indirectly impact patient health 

because of global warming (112).

Social/Environmental Well-being
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(37, 38) as an ideal standard to guide use of large language models in 

medicine. In doing so, the authors called upon a classical health 

ethics framework with a well-established history across cultures, 

time, and technology as a potential unifying framework for ethical 

evaluation of AI in healthcare. Beauchamp and Childress’s 

framework emerged in 1979 as part of an international wave of 

biomedical ethics reform and is used to this day (37). The 

framework encompasses the following four principles: Beneficence 

(to take positive action to enhance the welfare of patients and to 

minimize potential for harm); Non-Maleficence (not to inEict 

harm on patients); Respect for Autonomy (to respect the 

capacities of patients to hold their own views, make choices, and 

act based on their values and beliefs); and Justice (to distribute 

healthcare benefits appropriately and fairly).

Although some authors have speculated about the utility of these 

principles as a foundational framework for assessing ethical 

implications of AI in healthcare (36, 39), there has been limited 

effort to systematically examine how research and commentary in 

current peer-reviewed literature on AI in healthcare maps onto 

these four well established biomedical principles. In this scoping 

review, we aim to map ethical discussion from current peer- 

reviewed literature about AI in healthcare onto the four principles, 

to demonstrate their utility as a concise, foundation for RAI in 

healthcare that has already been internationally adopted in 

healthcare settings. We demonstrate this by using said principles to 

identify, categorize, and examine emerging patient-related ethical 

implications of AI in healthcare. Finally, we discuss how leveraging 

these well-established principles as a foundational framework can 

help expedite regulatory governance of RAI in healthcare.

2 Materials and methods

Our scoping review was conducted using criteria outlined by Mak 

and Thomas (40) and the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses extension for Scoping Reviews 

(PRISMA-ScR) guidelines (see Supplementary Appendix 1) (41).

2.1 Search strategy

PubMed and EMBASE databases were searched for articles 

on the use of AI in healthcare. The search strategy and 

rationale as well as search terms are provided in Supplementary 

Appendix 2. The final search, which included any articles 

published from database inception to February 17, 2024, 

after removal of duplicates, yielded 10,107 articles for 

abstract screening.

2.2 Eligibility criteria

Studies included in our review were required to be published 

or in press in a peer-reviewed journal or conference proceeding in 

English or have an accompanying English translation and mention 

AI in healthcare settings in the context of human input or 

oversight. Broadly, we conceptualized AI in healthcare as a 

partner to human activity and oversight rather than a sole agent 

operating independently. In accordance with the qualitative 

nature of our research question, articles were not required to be 

empirical in nature; editorials, reviews, and conference 

proceedings with content more substantial than single-paragraph 

abstracts were included in the review. To focus our findings on 

direct ethical implications for patients, we excluded articles that 

focused only on AI involvement in research paper writing and 

publishing, clinician education and training, or research that did 

not involve human participants.

Finally, articles were only selected if they substantively 

referenced the ethical implications of healthcare AI with respect 

to patients. To be considered “substantive,” ethical content in 

abstracts had to either use a broad, inclusive term such as 

“ethics” or “ethical implications” or at least two phrases 

referencing ethical issues relating to patients such as “improving 

patient care,” “data privacy,” “bias,” “informed consent,” “health 

equity,” “transparency of data use,” or “[sociodemographic] 

representativeness of training data”.

2.3 Screening, data extraction, and 
synthesis

The full text of articles passing title and abstract screening 

[conducted by authors JH and AG using Rayyan (42)] was 

reviewed by a team of 4 coders (authors ML, JW, YR, LY) who 

extracted and synthesized relevant data. A study eligibility guide 

based on the Population/Concept/Context framework (43), was 

developed to train reviewers and referred to in both title/abstract 

screening and full-text review (Supplementary Appendix 3).

2.3.1 Study eligibility: reviewer calibration and 
evaluation of consistency

During an initial training phase, a batch of 900 (roughly 9% of 

total) abstracts were screened by JH and AG independently during 

initial training to resolve differences through consensus and 

iteratively refine study eligibility criteria applied to various types 

of content covered by abstracts. To achieve calibration between 

the two reviewers following training, a second batch of 870 

(roughly 9% of total) abstracts were screened independently by 

both reviewers, and 93% agreement was achieved, exceeding the 

minimum of 90% agreement recommended by Mak and 

Thomas (40). Differences across both batches of 900 and 870 

articles respectively were resolved through consensus, and the 

remainder of abstracts were divided between the two calibrated 

reviewers until completion of title-and-abstract screening.

Following abstract screening, authors ML and JW underwent 

an initial training phase for full-text screening, during which 

both authors independently conducted screening, data 

extraction, and data synthesis for a preliminary batch of 40 

articles (approximately 11% of total articles included after 

abstract screening). Any differences were resolved by consensus. 

Authors YR and LY then completed screening, extraction, and 

synthesis for a second batch of 40 (roughly 11% of total) articles 
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under independent individual supervision by authors ML and JW, 

and any differences were again resolved by consensus. For each 

batch of 40 through the remainder of articles, each of the four 

reviewers completed screening, extraction, and synthesis for 10 

articles. To ensure ongoing calibration, a random number 

generator was used to select one article from each batch of 40 

that was then independently reviewed by all four authors. Any 

differences in the randomly selected calibration articles were 

resolved through ongoing consensus. Finally, all synthesized 

data were reviewed by author ML for consistency. Articles were 

excluded after data extraction and full-text screening if they did 

not meet eligibility criteria.

2.3.2 Data extraction

Data extraction involved reading each article in full and charting 

key summary information, including citation information; country 

of origin; article aims; study population and intervention (if 

applicable); findings; and ethical considerations discussed (see 

Supplementary Appendix 4 for details).

2.3.3 Thematic analysis
Data from all articles included after full-text screening was 

synthesized using semi-inductive thematic analysis in NVivo 12 

for analysis of mixed methods research (44). This approach was 

informed by Fereday and Muir-Cochrane (45), who described 

thematic analysis that uses a hybrid approach between 

deductively applying a predetermined framework to data and 

inductively allowing for additional information to emerge from 

the data in the process of analysis (46). We used this approach 

due to our aim to discover emerging ethical implications of AI 

and examine their relevance to the four principles.

In the process of thematic analysis, we followed the six stages 

outlined by Fereday and Muir-Cochrane (45). In Stage 1, we 

developed an initial codebook of four codes, using the principles 

of biomedical ethics as a deductive theoretical framework to 

guide our analysis. We established definitions for each of these 

four main codes based on their definitions from Beauchamp 

and Childress (37). In Stage 2, we tested the applicability of 

codes to the data by comparing the application of these four 

main codes during the aforementioned training phase in which 

authors ML and JW both coded data from the same batch of 40 

articles. In Stage 3, we used the process of data extraction to 

summarize the data and identify sub-codes that represented 

emerging ethical implications for patients related to healthcare 

AI. Sub-codes were defined, discussed, and revised through 

iterative discussion with the whole research team. In Stage 4, 

once a final codebook was established, the codes were applied to 

all articles in the review with the intention of identifying 

meaningful units of text for the synthesis of themes (see Table 3

for a comprehensive list of all codes included in the final 

codebook, grouped by theme, with representative coded 

excerpts). In Stage 5, once all articles were coded, excerpts 

representing each code were compared and connected to 

synthesize themes. In Stage 6, themes were scrutinized to ensure 

that they were accurate summaries of the coded ethical 

implications that emerged from the data, resulting in our final 

narrative summary of the results. Finally, as a post-hoc analysis, 

once all themes were generated, they were then mapped to the 

RAI principles identified in Table 1.

3 Results

After abstract and full-text screening of all 10,107 unique 

articles, 227 articles (2.25%) met criteria for inclusion (Figure 1; 

Supplementary Appendix 4). The majority of included articles 

were editorials (n = 96; 42%), review articles (n = 73; 32%), or 

empirical articles (n = 46; 20%) with the remaining (n = 12, 5%) 

being composed of other article types (e.g., workshop reports, 

case studies, etc.) (see Supplementary Appendix 5 for details). 

Publication dates of articles were concentrated between 2020 and 

2024 (n = 203/227; full date range: 2007–2024). Articles originated 

across 33 countries (first author’s country of affiliation), with the 

vast majority (n = 91; 40%) coming from the US (Figure 2).

In Supplementary Appendix 6, we present a non-exhaustive 

list of example phrases that were considered representative of 

each principle during abstract screening, highlighting the 

relevance of each principle to ethical issues in healthcare AI. 

Semi-inductive thematic analysis revealed that researchers’ 

discussion of ethical considerations of AI use in healthcare 

spanned across the four principles. Numbers of articles 

discussing topics related to each of the four principles were 

quite comparable, including: Beneficence (n = 136), Non- 

maleficence (n = 148), Respect for Autonomy (n = 130), and 

Justice (n = 136). Word clouds showing further findings on 

words mentioned at the highest frequency within coded text for 

each principle are presented in Supplementary Appendix 7.

A total of 29 more specific ethical issues were identified and 

treated as sub-codes to the four principles in our analysis. Issues 

discussed by the highest number of articles included “privacy and 

data protection” (sub-code to Non-Maleficence; n = 107), 

“transparency and understandability” (sub-code to Respect for 

Autonomy; n = 93), “bias and discrimination” (sub-code to Justice; 

n = 80), “accuracy and efficiency” (sub-code to Beneficence; n = 75), 

and “equity and fairness” (sub-code to Justice; n = 54). Findings on 

the four principles and 29 sub-codes were consolidated into 

themes, summarized below. A list of all themes and sub-codes 

pertaining to each principle are included in Table 3.

3.1 Narrative summary: relevance of the 
principle of beneficence

3.1.1 Theme 1: health service quality: accuracy, 

efficiency, and safety
Articles in our review stated that AI holds promise for 

addressing human errors and managing escalating healthcare 

workloads (47–49). It can also be utilized to promote more 

personalized treatment (50) by tailoring treatment methods 

based on the specific characteristics and risk status of each 

patient (51, 52). However, some articles in our review 
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TABLE 3 Main findings organized by ethical principles, Responsible AI principles, themes, and sub-codes with representative excerpts.

Ethical Principle

Theme

Representative Responsible AI (RAI) Principles

Representative Excerpt

Specific Ethical Issue (Sub-Code) Articles in Review with Sub-Code Applied n (n/227)

Beneficence

Theme 1: Health service quality: accuracy, efficiency, and safety

RAI Principles: Reliability, Social/Environmental Well-being

“AI algorithms can also add value by acting as a ’second reader’ [of radiologic images], more broadly […] enhancing the quality of care and safety” (113).

Accuracy and efficiency of care 75 (33·0%)

Promotion of well-being 52 (22·9%)

Personalized medicine 40 (17·6%)

Clinical validity of algorithms 32 (14·1%)

Quality and safety of care 26 (11·5%)

Theme 2: Patient experience and clinician-patient relationship

RAI Principles: NA

“Traditionally, medicine is based on a relationship between a patient and their healthcare providers. AI will add a third component […] which may support or complicate the 

relationship” (54).

Clinician-patient relationship/communication 41 (18·1%)

Patient-centered care 17 (7·5%)

Theme 3: Social and humanistic dimensions of health services

RAI Principles: NA

“First, AI is a technology based on algorithms and data, unable to experience emotions or demonstrate empathy” (56).

Dignity, empathy, and humanism in healthcare 16 (7·0%)

Emotional support 10 (4·4%)

Non-Maleficence

Theme 1: Data quality: accuracy, reliability and generalizability

RAI Principles: Inclusivity/Fairness, Governance

“Where medical data are unstructured, lack uniformity and standardization annotation there is potential for such data to directly affect the quality of medical AI algorithm 

models” (114).

Low data quality, accuracy/reliability concerns 33 (14·5%)

Insufficient data volume, generalizability concerns 15 (6·6%)

Theme 2: Patient privacy and data protection

RAI Principles: Privacy, Security, Governance

“Privacy and security are also significant issues, as ChatGPT collects data during training, including potentially sensitive personal information, and user interactions with the 

system may inadvertently disclose personal details, posing risks if obtained by malicious entities” (61).

Privacy and data protection 107 (47·1%)

Theme 3: Other technology risks and regulatory issues

RAI Principles: Governance, Inclusivity/Fairness

“From these examples, it is worrisome to learn that chatbots can generate fabricated and incorrect information, or what is known as ‘artificial hallucination’” (115).

Risk/error management 30 (13·2%)

Need for human regulation/oversight 25 (11·0%)

Trust in implementing AI for healthcare 19 (8·4%)

Misinformation 17 (7·5%)

Misuse 10 (4·4%)

Technology addiction; algorithmic overreliance 5 (2·2%)

Respect for Autonomy

Theme 1: Patients’ right to informed consent

RAI Principles: Transparency, Governance

“Individuals interacting with ChatGPT may not always be aware of the fact that they are communicating with an AI system, particularly when incorporated into chat 

interfaces or client assistance platforms” (47).

Informed consent 37 (16·3%)

Patients’ health-related knowledge 6 (2·6%)

Theme 2: Transparency or understandability

RAI Principles: Transparency

“The ‘black-box’ nature of NLP (natural language processing)/ML (machine learning) systems poses challenges to human agency, from the perspective of researchers, 

clinicians, and patients alike” (62).

Transparency or understandability 93 (41·0%)

Theme 3: Shared decision-making in healthcare

RAI Principles: Social/Environmental Well-being

(Continued) 
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questioned the accuracy and efficiency of AI chatbots, with 

potentially harmful consequences for patients (53).

3.1.2 Theme 2: patient experience and doctor- 

patient relationship
The presence of AI will introduce a third party with a shared 

role in diagnosis, management, and prediction of disease. Some 

articles suggested that this third party may complicate the 

traditional healthcare relationship (54) or reduce face-to-face 

communication, while other articles highlighted how AI can 

generate comprehensive summaries of patients’ medical 

information and handle other documentation, thus allowing 

clinicians to spend more time with their patients (52).

3.1.3 Theme 3: social and humanistic dimensions 
of health services

Several articles in our review emphasized the possibility of 

incorporating empathy, patient values, and patient preferences 

into AI-assisted care delivery and decision-making (55). Others 

suggested that because AI functions based on algorithms, it 

cannot truly show empathy of the same nature as human 

providers (56). Particularly in mental healthcare, some articles 

argued that AI may exacerbate social isolation by inadequately 

substituting human connection (57, 58).

3.2 Relevance of the principle of non- 
maleficence

3.2.1 Theme 1: data quality: accuracy, reliability 

and generalizability
The hazards and risks of AI can be inEuenced by a variety of 

factors, including data quality. For example, one article noted that 

during COVID-19, unreliable data and algorithms led to 

inaccurate outbreak tracking and predictions (59). Other 

examples in radiology demonstrated that AI accuracy is 

inEuenced by the quality of the data (60).

3.2.2 Theme 2: patient privacy and data 

protection
Healthcare AI, especially chatbots, collect and use sensitive 

patient data, posing risks for data leaks and in turn 

compromising patient security (61, 62). Additionally, the 

healthcare sector faces higher AI related cyber-attack rates than 

other industries, with AI systems being exploited to expose 

vulnerabilities (63). While privacy is a fundamental right, it 

must often be balanced with public health benefits, such as 

improved care and research. Notably, large datasets and AI 

make re-identifying de-identified individuals easier, intensifying 

ethical concerns (64). Experts call for stricter data regulations, 

stakeholder education on secure practices, and tighter oversight 

of AI developers and data users (65–67).

3.2.3 Theme 3: other technology risks and 
regulatory issues

There is a risk of human overreliance on AI in medicine, with 

clinicians experiencing “alert fatigue” from excessive information 

input, such as automated notifications (63). Overuse can harm 

users’ mental health, foster technology addiction, and reduce 

trust in healthcare (68–70). It was also noted that currently, 

there is a dearth of regulation concerning many AI models, 

such as Multimodal Large Language Models, raising safety and 

ethical concerns (71). There was a consistent message across 

articles that stronger regulatory frameworks are needed, but 

developing them requires navigating technical, legal, and ethical 

challenges (72–74).

TABLE 3 Continued   

“These illustrate the full range of areas where AI can have an impact: from apps that help patients manage their care themselves, to online symptom checkers and e-triage AI 

tools, to virtual agents that can carry out tasks in hospitals, to a bionic pancreas to help patients with diabetes” (116).

Autonomy (without direct mention of the ethical principle of “Respect for Autonomy”) 18 (7·9%)

Shared decision-making 17 (7·5%)

Justice

Theme 1: Responsibility and accountability for health service quality

RAI Principles: Accountability, Social/Environmental Well-being

“Similarly, if an AI algorithm makes a mistake, who is liable, the anesthesiologist or the device maker? These questions will need to be addressed to allow for change to occur” 

(117).

Clear assumption of responsibility; accountability 45 (19·8%)

Theme 2: Affordability and accessibility of health services

RAI Principles: Inclusivity/Fairness, Social/Environmental Well-being

“Through this synergy, patients could access healthcare services from the comfort of their homes […]. This could significantly improve healthcare accessibility and 

convenience, particularly for patients in rural or underserved areas” (88).

Accessibility of services 13 (5·7%)

Affordability/availability of services 10 (4·4%)

Theme 3: Diversity, equity, and inclusion in the context of health

“This will mitigate a known limitation of AI models, which are often biased due to the underrepresentation of populations such as those individuals with intellectual 

disabilities” (81).

RAI Principles: Inclusivity/Fairness

Bias, discrimination 80 (35·2%)

Equity, fairness 54 (23·8%)

Cultural diversity, sensitivity, and inclusivity 13 (5·7%)
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3.3 Relevance of the principle of respect for 
autonomy

3.3.1 Theme 1: patients’ right to informed consent
Informed consent in AI-assisted healthcare ensures patients 

know how their data is used (75). For true informed consent, 

clinicians, developers, and researchers must explain AI’s roles, 

limitations, and data use implications (62, 76). Current consent 

procedures are often either overly simple or overly complex, 

with lengthy terms of service (57). Given the ubiquity of AI 

integration, patients may unknowingly interact with AI without 

clarity on data storage and usage (47). Dynamic consent 

processes are needed, allowing patients to manage and withdraw 

data sharing at any time (75, 77, 78).

3.3.2 Theme 2: transparency or understandability
The “black-box” nature of algorithms can erode trust 

when decisions cannot be validated or security risks arise 

(79). Many articles argued that improving algorithm 

traceability, reducing bias, and making AI decisions 

understandable are essential to fostering trust among 

clinicians and patients (61, 80, 81).

3.3.3 Theme 3: shared decision-making in 
healthcare

Shared decision-making involves collaboration between 

clinicians and patients, balancing information, risks, and 

preferences. AI facilitates this process by analyzing data to 

identify risks and assist decisions (82). AI-assisted algorithms 

can aid medical decisions, using large amounts of health data 

(83). But while AI can leverage big data to guide decisions, it is 

currently unclear how AI-derived suggestions can be applied 

more Eexibly to account for the dynamic nature of human 

autonomy and decision-making.

FIGURE 1 

PRISMA flow diagram.
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3.4 Relevance of the principle of justice

3.4.1 Theme 1: responsibility and accountability 
for health service quality

Articles highlighted how AI in healthcare complicates 

accountability for service quality. Responsibility lies with 

developers, clinicians, and agencies, requiring clear governance 

frameworks. Some articles posited that clinicians must always 

make final decisions, as they are directly accountable, but noted 

that shared human-AI actions create an “accountability gap,” 

especially with “black-box” systems (84). Current ethical and 

legal norms inadequately address responsibility for failures (85). 

Proposed strategies include clearer guidelines, defining AI’s role, 

and ensuring clinicians retain ultimate responsibility (86). 

However, health-related AI regulations are still evolving, leaving 

gaps in accountability for errors (87).

3.4.2 Theme 2: affordability and accessibility of 
health services

Healthcare AI could significantly improve the accessibility and 

convenience of medical services by providing remote diagnosis, 

intelligent assisted diagnosis and treatment, and other new 

means of healthcare that could enable more patients to receive 

timely and effective assistance; particularly patients in rural or 

underserved areas (53, 88). During the COVID-19 outbreak, AI- 

based services offered patients alternatives to face-to-face visits, 

saving time, transportation costs, and infection risks (89).

3.4.3 Theme 3: diversity, equity, and inclusion in 

the context of health
AI bias and discrimination were noted as major concerns, with 

LLM responses reEecting societal biases in training data, 

amplifying disparities in healthcare (61, 90). Bias often affects 

minoritized groups due to underrepresentation in training 

datasets (81). Addressing this requires more diverse, 

representative data. Some articles also explored AI’s emerging 

role in equitably allocating scarce public health resources (91, 92).

4 Discussion

The rapid expansion of AI in healthcare has led to the 

development of numerous, sometimes overlapping or 

contradictory frameworks (14–26). In this scoping review of 227 

articles, we found that the four well-established principles of 

biomedical ethics (Beneficence, Non-Maleficence, Respect for 

Autonomy, and Justice) can provide a useful foundational 

framework for ethical application of AI in healthcare. Our 

analysis demonstrated that all ethical considerations of the 227 

articles mapped onto one or more of the four ethical principles, 

and consequently their derived themes (see Table 3). 

Additionally, many of the identified themes corresponded to 

one or more concerns highlighted by the general principles 

from Responsible AI (RAI) (Table 1), such as security, 

inclusivity/fairness, governance, accountability, social/ 

environmental well-being, and transparency (see Table 3 and 

Narrative Summary in Supplementary Appendix 8 for details). 

However, in the thematic analysis, two of the themes identified 

for the principle of Beneficence did not map onto these general 

RAI principles but are common to healthcare (i.e., 1) patient 

experience and clinician-patient relationship and 2) social and 

humanistic dimensions of health services). Collectively, our 

findings suggest that the four widely accepted principles of 

biomedical ethics provide a relevant foundation to build upon 

FIGURE 2 

Articles included in review and discussion of issues related to the four principles, by country. Map data from Mapbox and OpenStreetMap.

Gorelik et al.                                                                                                                                                           10.3389/fdgth.2025.1662642 

Frontiers in Digital Health 08 frontiersin.org

https://docs.mapbox.com/help/dive-deeper/attribution/
https://osmfoundation.org/wiki/Licence/Attribution_Guidelines#Books,_magazines,_and_printed_maps


for ethical evaluation of AI in healthcare and could be used to 

ground interpretation and prioritization of other RAI 

frameworks for specific uses in healthcare. While various newer 

RAI frameworks may offer more specific ethics-related language 

relevant to applying AI to modern healthcare (93), our findings 

suggest that the four bio-medical ethical principles can ground 

existing RAI frameworks by helping to bridge, clarify, and 

prioritize existing RAI principles while also offering a “safety 

net” to ensure that foundational healthcare-specific ethical 

concerns are addressed (94).

Using a classical, widely accepted ethical framework like the 

four principles presents an opportunity for government bodies 

and regulatory agencies to establish more straightforward, 

consistent, and streamlined guidelines for the governance of AI 

in healthcare. As can be observed by the international spread of 

articles (33 countries) that met inclusion criteria for our review 

(see Figure 2), the ethical issues surrounding application of AI 

in healthcare are a subject of global discourse. This approach 

allows for evolution of existing policies based on these principles 

which have both withstood the test of time and have already 

shaped existing policies in biomedicine. Thus, rather than the 

creation of completely new guidelines for regulation of AI in 

healthcare, government and regulatory agencies can instead 

focus on building upon these foundational biomedical ethical 

principles and applying them to the current technological 

moment. In addition to simplifying development of regulations, 

this would promote universally recognized ethical standards for 

integration of AI technologies in the healthcare sector. Enabling 

broad coverage, in turn, will allow for current and future RAI 

frameworks in healthcare to be as prescriptive as needed and to 

evolve with technology while maintaining the same foundational 

four bio-medical ethical principles.

When mapping the literature on AI in healthcare onto the 

four principles, we found that, similarly to how various areas of 

RAI overlap (see Table 2), multiple ethical principles are often 

simultaneously implicated in addressing AI-related issues in 

healthcare. We believe in some cases this highlights the 

complementary nature of the four principles in examining 

different sides of an issue, while in others, it may highlight 

ethical dilemmas involving tensions between two or more 

principles. Still other cases may call for prioritizing application 

of one or more principles over the others.

For example, ethical issues related to use of patient data in AI 

can be understood to involve all four principles in a manner that 

encourages examination of various sides of data-related issues (52, 

95). When AI models are handling vast amounts of sensitive 

patient information, ensuring data security becomes paramount 

(96), and the principle of Non-Maleficence is implicated in the 

potential for data breaches, as sensitive health information leaks 

may lead to personal privacy damage, information abuse, 

identity theft, and other harms (97, 98). In terms of the 

principle of Respect for Autonomy, data sharing in AI training 

and analysis raises need for new forms of informed consent (75, 

99). Third, the principle of Beneficence underscores the positive 

potential to use data to improve healthcare and patient 

outcomes, as well as the need for benefits to individuals and 

society to outweigh the risks. Lastly, the principle of Justice is 

invoked when ensuring that data collection and use do not 

disproportionately burden or benefit particular groups (56, 100).

In other cases, different principles may conEict, raising ethical 

dilemmas. Rather than nullifying the applicability of the four 

principles, such cases highlight that the original intention of the 

four principles was not to stand alone as a comprehensive moral 

theory but rather to provide a normative framework as a 

starting point for ethical practice. In addition, the long history 

of the four principles offers established methods for resolving 

ethical conEicts and dilemmas, such as the rule of double effect 

(RDE). The RDE is invoked to justify claims that a single act, 

which has one or more good effects and one or more harmful 

effects (such as death), is not always morally prohibited (101). 

Classical formulations of the RDE identify four conditions or 

elements (the nature of the act, the agent’s intention, the 

distinction between means and effects, and proportionality 

between the good effect and the bad effect) that must be 

satisfied for an act with a double effect to be justified (102). The 

RDE may serve as a helpful framework when the need arises to 

judge single instances of apparent contradictions between the 

potential benefits of applying AI to healthcare (such as 

improved efficiency and quality of medical services) and its 

potential negative effects (such as risks of harmful errors and 

data breaches).

Finally, in some healthcare applications of AI, one or more 

principles may be especially salient. For example, when 

considering effects of AI on the patient experience, the principle 

of Beneficence becomes prominent. Humanistic care emphasizes 

the need to develop treatment plans that are tailored to the 

individual needs of patients (56, 103). Future advancements in 

AI models are needed to enable deeper understanding of 

contextual nuances of specific patients’ situations and to address 

subtle differences in individual and societal contexts, fostering a 

more holistic and patient-centered approach to healthcare (55).

This review has several limitations. Firstly, our use of two 

databases (PubMed and EMBASE) and constrained search terms 

may have missed relevant papers. Secondly, due to our focus on 

mapping our results onto an ethical framework and our 

inclusion of non-empirical studies and the limited empirical 

literature in this area, it was beyond the scope of this study to 

evaluate the quality of existing empirical literature on healthcare 

AI. Finally, AI research is evolving at a rapid pace, necessitating 

a dynamic dialogue around its advancements and implications. 

Our review, which by nature is a static summary based on past 

literature, represents only a snapshot of existing knowledge up 

to this point, potentially lagging behind the most recent 

developments in the field, which future studies should continue 

to address.

In conclusion, risks associated with the application of AI in 

healthcare may be high stakes (104, 105). Medical decisions 

directly impact the quality of life, health, and safety of patients, 

meaning that any technical errors or ethical misconduct can 

have serious consequences. Given the already extensive adoption 

and evolving use cases of AI in healthcare—from using AI to 

generate research questions, to diagnostic assistance and 
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personalized treatment planning, to patient monitoring—ensuring 

technological reliability and ethical protections has become 

particularly critical. Our research suggests that the four widely 

accepted principles of biomedical ethics (Beneficence, Non- 

Maleficence, Respect for Autonomy, and Justice) provide a 

relevant foundation for ethical evaluation of AI engagement in 

healthcare to build upon and can be used to ground 

interpretation and prioritization in other Responsible AI 

Frameworks. These four principles can be an organizing 

framework to address gaps that may exist in current policies and 

regulations, in addition to bridging, clarifying, prioritizing, while 

also offering a “safety net” for handling healthcare specific 

ethical concerns. By grounding emerging regulatory mechanisms 

in these established ethical guidelines, we can better construct a 

comprehensive governance system that promotes the responsible 

application of AI in the healthcare sector.
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