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The rapid advancement of artificial intelligence (Al) is profoundly transforming
research paradigms and clinical practices across neuroscience, biology, and
medicine with unprecedented depth and breadth. Leveraging its robust data-
processing capabilities, precise pattern recognition techniques, and efficient
real-time decision support, Al has catalyzed a paradigm shift toward
intelligent, precision-oriented approaches in scientific research and
healthcare. This review comprehensively reviews core Al applications within
these domains. Within neuroscience, Al advances encompass brain-computer
interface (BCI) development/optimization, intelligent analysis of neuroimaging
data (e.g., fMRI, EEG), and early prediction/precise diagnosis of neurological
disorders. In biological research, Al applications include enhanced gene-
editing efficiency (e.g., CRISPR) with off-target effect prediction, genomic
big-data interpretation, drug discovery/design (e.g., virtual screening), high-
accuracy protein structure prediction (exemplified by AlphaFold), biodiversity
monitoring, and ecological conservation strategy optimization. For medical
research, Al empowers auxiliary medical image diagnosis (e.g., CT, MRI),
pathological analysis, personalized treatment planning, health risk prediction
with lifespan health management, and robot-assisted minimally invasive
surgery (e.g., da Vinci Surgical System). This review not only synthesizes Al's
pivotal role in enhancing research efficiency and overcoming limitations of
conventional methodologies, but also critically examines persistent
challenges, including data access barriers, algorithmic non-transparency,
ethical governance gaps, and talent shortages. Building upon this analysis, we
propose a tripartite framework (“Technology-Ethics-Talent”) to advance
intelligent transformation in scientific and medical domains. Through
coordinated implementation, Al will catalyze a transition toward efficient,
accessible, and sustainable healthcare, ultimately establishing a life-cycle
preservation paradigm encompassing curative gene editing, proactive health
management, and ecologically intelligent governance.
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1 Introduction

Artificial intelligence (AI), among the most revolutionary
technologies of the 21st century, is fundamentally restructuring
scientific research paradigms (shifting from experience-driven to
data-algorithm symbiosis), healthcare delivery architectures
(rebuilding the prevention-diagnosis-treatment continuum), and
pedagogical  methodologies  (enabling  transition  from
standardized instruction to personalized cognitive mapping)
1, 2).

knowledge-production

The core drivers of AI's reconstruction of three

systems  stem  from  intelligent
deconstruction of massive heterogeneous data (overcoming
traditional processing bottlenecks), deep pattern recognition in
complex  biological multidimensional

systems  (revealing

correlations), and real-time responsiveness in dynamic
environments (enabling millisecond-resolution decisions) (3).
Within the life sciences nexus—spanning neuroscience, biology,
and medicine—these capabilities generate cascading effects
that systematically transition disciplinary paradigms toward
intelligence-augmented frameworks.

Neuroscience grapples with the complexity of dynamic neural
circuitry analysis and multimodal signal integration; biology
urgently requires processing exponentially growing genomic-to-
proteomic data deluges; while clinical medicine demands
precision decision-making frameworks spanning the disease
(4-7). A

challenge shared by these three fields lies in extracting actionable

prevention-diagnosis-treatment  continuum core
knowledge from an expanding data universe (8, 9). Whereas
conventional approaches are constrained by computational
inefficiency and analytical dimensionality, AI technologies—
leveraging machine learning, deep learning, and related algorithms
—overcome these barriers to enable profound mining of complex
biological principles. This breakthrough provides transformative
solutions for scientific discovery and clinical interventions.
Notably, AD’s interdisciplinary nature intrinsically catalyzes
domains (10, 11). This

technological to drive

convergent innovation across

convergence transcends integration
methodological reconceptualization. The personalized learning
frameworks from intelligent education synergistically converge
with precision medicine’s individualized intervention logic,
collectively  establishing  data-driven  service paradigms.
Simultaneously, real-time feedback mechanisms for learning
assessment share core decision architectures with dynamic
monitoring technologies in medical imaging analytics (12, 13).
The closed-loop “analysis-internalization-remediation” cycle in
education exhibits methodological resonance with medicine’s
prevention-diagnosis-treatment continuum (14). These cross-
domain synergies position AI as a pivotal nexus connecting
neuroscience, biology, and medicine, fostering an emergent
integrative research ecosystem.

This review examines the Al-driven intelligent transformation
surge across the life sciences. Through systematic analysis of
signature  applications in  neuroscience [brain-computer
interfaces (BCI), neuroimaging analytics], biology (gene-editing
optimization, and medicine

protein structure prediction),

(intelligent diagnostics, surgical robotics), we elucidate how Al
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technologies reconfigure research trajectories and clinical

practices. Concurrently, we critically dissect core challenges in
data ethical
regulation, ultimately projecting innovation pathways for cross-

governance, algorithmic trustworthiness, and
disciplinary convergence that catalyze paradigm shifts in life
sciences. This narrative review synthesizes recent advances in Al
applications across neuroscience, biology, and medicine, drawing
on seminal and emerging literature to highlight transformative
trends and challenges.

To systematically navigate these transformative opportunities
and inherent challenges, this review proposes and adopts a
tripartite “Technology-Ethics-Talent” framework. This integrative
lens serves as the foundational structure for our analysis, positing
that the sustainable and equitable advancement of Al in the life
sciences necessitates simultaneous progress in three core
dimensions: technological innovation (e.g., developing robust,
interpretable algorithms and secure data infrastructures), ethical
governance (e.g., establishing accountable, transparent, and fair
regulatory protocols), and talent cultivation (e.g., fostering
interdisciplinary experts fluent in both computational and
domain-specific knowledge). This framework not only organizes
our critical examination of current applications and challenges
but also underpins our forward-looking recommendations for
achieving a convergent and responsible intelligent transformation
across neuroscience, biology, and medicine.

This narrative review was based on a broad literature search in
PubMed, IEEE Xplore, and arXiv using keywords including “Al in
neuroscience”, “Al in drug discovery”, “Al in medical imaging”,
“ethical AI”, etc., focusing on high-impact publications from

2020 to 2024.

2 Al revolutionizes neuroscience:
three paradigm-shifting applications

The core challenge in neuroscience lies in deciphering highly
complex brain functional networks and neurological disease
mechanisms. Al, leveraging its capacity for processing massive
data and
recognition, is emerging as a pivotal driver for pushing the

heterogeneous strengths in nonlinear pattern
knowledge boundaries in this field (15, 16). Current innovative
applications of AI in neuroscience research primarily focus on
BCI, neuroimaging analytics, and neurological disease prediction

and diagnosis.

2.1 BCI: transitioning from movement
control to human-Al integration

Deep learning-based EEG signal decoding techniques (e.g.,
CNN (Convolutional Neural Network: a deep learning model
adept at processing grid-like data such as images or signals),
EEGNet, ShallowNet, DeepCovNet)
recognition of motor intent, accelerating the clinical translation
of BCIs (17-19). Through implanted BCIs such as Neuralink’s
flexible electrode arrays, paralyzed patients can directly control

enable high-accuracy
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robotic exoskeletons or cursor movements via neural activity
patterns (20). Recent clinical reports demonstrate postoperative
patients operating smart home systems and professional
communication platforms within two weeks of implantation (21,
22). Non-invasive system integrates MEG/EEG with language
models to achieve neural text decoding, enabling amyotrophic
lateral sclerosis (ALS) patients to communicate via EEG-driven
digital avatars (23, 24). Reinforcement learning algorithms (e.g.,
EPFL’s inverse reinforcement learning: a type of machine
learning where an agent learns to make decisions by receiving
rewards or penalties) allow robots to dynamically correct
movement trajectories by decoding error-related potentials
(ErrPs) within 3-5 trials, realizing subject-specific obstacle
avoidance and grasp control (25). Al facilitates BCI development
by analyzing electroencephalographic (EEG) signals, enabling
paralyzed patients to control external devices via neural
commands (26, 27). Deep learning algorithms decode neural
activity to operate robotic prosthetic limbs. Through high-
throughput signal acquisition (e.g., 256-channel electrodes) (28)
[e.g.,
adaptation (CLDA)] (29), BClIs elucidate dynamic computational

and adaptive decoding models closed-loop decoder
mechanisms underlying neural-behavioral mapping, establishing
novel paradigms for neuroplasticity research.

2.2 Neuroimaging analytics: evolving from
structural characterization to pathological
prediction

Al overcomes the qualitative constraints of traditional imaging
analysis, enabling quantitative integration of multimodal data.
Nanobiosensors integrating surface-enhanced infrared absorption
(SEIRA) spectroscopy with neural networks can noninvasively
detect Parkinson’s disease-associated misfolded protein oligomers in
cerebrospinal fluid at single-molecule resolution (30). A research
team at the Chinese Academy of Sciences demonstrated that
combining OCTA (optical coherence tomography angiography)
retinal scans with AI models enables Alzheimer’s disease screening,
which  validated between
microvascular density/fractal dimensions and cerebral amyloid-B

significant  correlations retinal
deposition, offering a low-cost solution for primary care screening
(31, 32).

architecture using self-attention mechanisms, particularly effective

Transformer architectures(a deep learning model

for sequence data like time-series or text) decode fMRI temporal
data to construct whole-brain connectome atlases, enabling precise
localization of epileptogenic zones with submillimeter accuracy
(<1 mm error) (33). Collectively, Al is fundamentally restructuring
neuroimaging paradigms—from micropathological identification to
macroscale functional prediction.

2.3 Neurological disease prediction and
diagnosis: advancing from single
biomarkers to multimodal integration

Al is shifting diagnostic windows earlier through dynamic
bimodal monitoring of behavioral and physiological dimensions.
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Breakthroughs in early disease prediction have been achieved
using Al—random forest models analyzing acoustic features
(including Jitter and Shimmer) enable premotor diagnosis of
Parkinson’s disease before motor symptom onset (34). SMOTE
(Synthetic Minority Over-sampling Technique: an algorithm that
generates synthetic samples to address class imbalance in
datasets)
capabilities (35). Domain-adaptive ridge regression models have
been developed to predict UPDRS (Unified Parkinson’s Disease
Rating Scale) scores based on acoustic features of vowel/a/,

significantly enhances small-sample generalization

achieving statistically significant error reduction through
longitudinal patient data integration. This enables real-time
tracking throughout therapeutic interventions (36). AI has
revolutionized real-time diagnostic systems. Adapting real-time
feedback mechanisms from educational contexts, BCI systems
continuously monitor patient electroencephalographic (EEG)
signals and generate diagnostic recommendations through
integration with clinical knowledge bases. Combining abnormal
slow-wave EEG power with APOE-e4 genotypic data enables
early warning of Alzheimer’s disease risk (37). LSTM (Long
Short-Term Memory: a type of recurrent neural network capable
of learning long-term dependencies in sequence data) models
decode spatiotemporal patterns of EEG spikes to forecast
epileptic seizures pre-ictally, triggering responsive interventions
(38). AI is systematically reconfiguring end-to-end clinical
management of neurological disorders—from early latent-phase
screening to real-time seizure prediction.

Three AT’s

applications in neuroscience: algorithm-hardware co-evolution,

cross-cutting  breakthroughs  characterize
accelerated clinical translation, and evolving ethical frameworks.
For algorithm-hardware co-evolution, flexible electrodes (silk
fibroin substrates) integrated with deep learning enable BCI
miniaturization, reducing implantation trauma compared to

256-channel (39).
acceleration, China’s <<Brain—C0mputer Interface
Industry Cultivation Plan (2025-2030)) prioritizes medical
implementation; in August 2024, the NEO system became the

conventional arrays Regarding clinical

translation

country’s first BCI product admitted to the Innovative Medical

Devices Special Review Procedure, facilitating ambulatory
recovery in spinal cord injury patients within 72h post-
implantation. For ethical framework development, Stanford
scholars propose “Neurotechnology Principles” (reversibility,
transparency, symbiosis), emphasizing safeguards against neural
data exploitation and digital divides. Collectively, these advances
propel neurotechnology toward high-efficiency, deep-integration,

and strong-governance paradigms.

3 Multiscale integration of Al in
biological research

Al is fundamentally restructuring life sciences research
data
molecular-level

paradigms—enabling  cross-scale integration  and

mechanistic ~ discovery  from

manipulation to ecosystem-scale dynamic governance. Key

precision

breakthroughs are exemplified in gene editing and genomics,
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drug  discovery, protein  structure  prediction, and

ecological conservation.

3.1 Genome editing and genomics:
advancing from precision enhancement to
clinical translation

AT accelerates the design and optimization of genome-editing
tools such as CRISPR (40). Deep learning models predict editing
outcomes, enhancing efficiency in functional genomics and
therapeutic development. Graph neural network (GNN)-based
frameworks(a class of deep learning models designed to perform
inference on data described by graphs)—including the CRISPR-
ANT system developed by Feng Zhang’s team—precisely
forecast off-target effects while substantially improving editing
efficiency (41-44). This technology achieved significantly higher
hematopoietic stem cell correction rates than conventional
methods in sickle cell disease gene therapy (45, 46). The
DeepSEA framework precisely annotates the pathogenicity of
non-coding mutations by analyzing millions of ENCODE
epigenomic profiles, enhancing rare disease diagnostics (47). Al
now serves as a pivotal translational accelerator, advancing
genome editing from laboratory tool design toward precision
clinical therapeutics.

3.2 Drug discovery: revolutionizing from
virtual screening to end-to-end
acceleration

Al significantly enhances efficiency in drug discovery by
analyzing vast chemical and biological datasets to predict
pharmacological properties—including activity, toxicity, and
adverse effects—thereby accelerating compound screening and
optimization (48-50). For instance, Al-driven drug discovery
platforms identify potential anticancer agents within
significantly reduced timeframes. Mirroring artificial neural
network (ANN) architectures (computing systems inspired by
biological neural networks) used for learning assessment in Al-
enhanced educational settings, multilayer neural networks
similarly ~ optimize  candidate = molecule selection in
pharmaceutical screening (13, 51). Generative AI models—such
as Insilico Medicine’s Chemistry42 platform integrated with
reinforcement  learning—designed the novel idiopathic
pulmonary fibrosis inhibitor INS018_055 within seven days.
INS018_055 represents a paradigm-shifting advance in Al-
driven drug discovery, exemplified by its efficient identification
of the TNIK kinase target, accelerated four-year trajectory from
discovery to phase II trials, and rigorous multi-model
This  breakthrough

generative AI’s transformative potential in addressing critical

therapeutic  validation. underscores
unmet medical needs (52). MetaTox multitask model, which
integrates compound structure-metabolic pathway data, predicts
hepatotoxicity with accuracy surpassing conventional animal

testing, facilitating the replacement of toxicity assessments with
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(53-55).
perceptron architectures inspired by neural networks, Pfizer has

“Al-organoid”  systems Leveraging  multilayer

developed a drug potency evaluation system that simulates

molecule-target  interactions  through  dynamic  weight

adaptation, reducing lead compound screening costs. The
PF-07220060 (CDK4
identified through virtual screening of 150,000 compounds,

oncology candidate inhibitor) was
yielding 182 high-scoring molecules with a 38% experimental

validation rate—surpassing the 8% industry average—
accelerating its advancement to phase I clinical trials by 11
months (56). Al is fundamentally reconfiguring drug discovery
paradigms from the molecular level, propelling end-to-end
workflows toward intelligence-driven, highly efficient, and cost-

effective transformation.

3.3 Protein structure prediction: advancing
from single-chain folding to complex
design

AT technologies, particularly deep learning models, have
driven transformative advances in protein structure prediction
(57, 58). While AlphaFold and RoseTTAFold
breakthroughs, both face limitations in predicting disordered

represent

regions and dynamic complexes, highlighting the need for
integrative experimental validation. For example, AlphaFold
leverages deep learning algorithms to accurately determine
three-dimensional protein structures, providing a pivotal tool
for biological research and drug design (59, 60). AlphaFold 3
(2024) achieves groundbreaking accuracy in predicting protein-
nucleic acid complexes, with a mere 1.2 A prediction error for
HIV capsid protein-viral RNA binding sites; its open-source
model accelerates antivenom design, significantly improving
toxin neutralization efficacy (61). AlphaFold 3 heralds the
dawn of the “digital biology” era. Its significance extends
beyond technical innovation to the democratization of science
research accessible

—empowering  global through freely

platforms and providing foundational tools for disease
therapeutics, synthetic biology, and sustainable development.
RoseTTAFold All-Atom (RFAA), developed by David Baker’s
team at the University of Washington, is a universal
biomolecular modeling and design platform that transcends
traditional protein structure prediction. It enables full-atom
precision in modeling and designing complexes encompassing
proteins, nucleic acids, small molecules, metal ions, and
covalent modifications, establishing a new paradigm of
“all-atom computational biology” (62). RoseTTAFold All-
Atom
binding free energy (63). Moderna leveraged this capability to
mRNA

significantly

enables precise calculation of antibody-antigen

optimize vaccine  carrier proteins, achieving

(64).
Collectively, these advances signify AD's pivotal role in

enhanced in vivo expression levels

transitioning protein research from static structural resolution

toward dynamic molecular interaction prediction and

functional engineering.
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3.4 Ecological conservation: transitioning
from monitoring to intervention decision-
making

Al analyzes ecological data to monitor species populations,
predict environmental changes, and formulate conservation
strategies (65). Acoustic recognition networks—such as the
BirdNET system—process 100,000 h of field recordings to track
population dynamics of critically endangered crested ibises
(Nipponia nippon), substantially improving the efficiency of
breeding habitat protection planning (66-68). Google Earth
Engine (GEE) is an incredible coding interface for cloud
processing of satellite imagery and data. GEE integrates
spatiotemporal Transformer models to predict illegal logging
hotspots in the Amazon rainforest using satellite imagery,
enabling coordinated drone surveillance in real-time (69).
Collectively, these applications empower ecological conservation
to shift from passive monitoring toward intelligent decision-
making, driving systemic enhancement of quantifiable
ecological benefits.

Al is fundamentally reconfiguring the foundational logic of
life sciences. At the microscopic mechanistic level, AlphaFold’s
revelation of the

“sequence-structure-function”  paradigm

accelerates the transition from empirical observation to
computational prediction. In research methodology innovation,
generative Al transforms drug discovery from serendipity-driven
screening to target-oriented design, achieving quantifiable cost
reduction. For macro-ecological governance, spatiotemporal Al
models enable vulnerability quantification across ecological
networks, advancing biodiversity conservation within carbon
neutrality framework. Collectively, AI drives a holistic paradigm
shift—spanning  microscopic  deconstruction,  meso-scale
development, and macro-system governance—across the life

sciences spectrum.

4 Al-driven transformation in
healthcare: evolving from diagnostic
assistance to precision intervention

Medicine represents one of the most extensively adopted
domains for AI applications, with particularly prominent
implementations in disease diagnosis, treatment, and health
management (70). Medical AI is transcending traditional
healthcare boundaries, reconfiguring end-to-end workflows

spanning screening, diagnosis, treatment, and management.

4.1 Disease diagnostics: advancing from
imaging analysis to multimodal integration

Al has achieved significant progress in medical imaging
analysis (71, 72). For instance, FDA-approved Al-based SaMD
tools such as IDx-DR for diabetic retinopathy demonstrate the
clinical viability of AI in diagnostic imaging. Intelligent
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diagnostic imaging systems are undergoing substantial upgrades
—the 3D-Transformer-based multimodal system for gastric
cancer early screening. By integrating contrast-enhanced
computed tomography (CE-CT) imaging with serum pepsinogen
data, it significantly improves the detection rate of early gastric
cancer (EGC) (73, 74). The Dr. Wise™ system (Deepwise)
identifies microcalcification clusters in mammograms and
integrates this imaging data with BRCA gene mutation data to
construct individualized risk profiles. This approach significantly
high-risk

populations (75). Real-time intraoperative evaluation paradigm

enhances the accuracy of early warnings for
transformation. By adapting instant feedback mechanisms,
originally conceptualized in educational settings, AI-powered
intraoperative decision-support systems can complete frozen
section analysis of tumor margins within 20s. This advance
significantly enhances the sensitivity for detecting positive
margins and substantially reduces surgical duration. AI is
propelling a fundamental evolution in disease diagnosis, shifting
toward

This
transformation enables the establishment of a seamless clinical

the paradigm from static image interpretation

multimodal, real-time integrated decision-making.

pathway encompassing pre-diagnostic risk  stratification,

intraoperative  intervention, and  post-treatment efficacy
assessment—forming a comprehensive diagnostic-therapeutic
loop. Despite high accuracy, Al diagnostic systems may exhibit
robust

bias in underrepresented populations, necessitating

fairness audits.

4.2 Personalized therapeutics: from
genetically informed stratification to
adaptive optimization

Al technologies enable personalized therapeutic strategies by
integrating patient genomic data, clinical records, and lifestyle
This
minimizing adverse effects. For instance, AI systems can

factors. approach enhances treatment efficacy while
recommend the most effective anticancer drugs based on an
individual’s specific genetic mutations. Analogous to the
weighting methodology employed in learning quality assessment
systems (e.g., the Analytic Hierarchy Process, AHP: a structured
technique for organizing and analyzing complex decisions), Al
assigns clinical significance weights to distinct genetic variants.
This optimizes disease risk prediction models through data-
driven prioritization (76, 77). Al system employs the AHP to
assign clinical weights to driver mutations (e.g., EGFR, ALK),
generating drug priority scores. This approach has significantly
extended median overall survival in lung cancer patients (78,
79). DeepDR model integrates single-cell sequencing data with
drug response profiles, anticipating osimertinib resistance four
months prior to clinical manifestation. This enables timely
therapeutic switching to brigatinib regimens (80, 81). The

reinforcement learning simulates treatment-related toxicities,

dynamically adjusting radiation doses for nasopharyngeal
carcinoma patients. This strategy has significantly reduced
parotid gland complication rates (82). AI is advancing
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personalized therapeutics beyond static genomic analysis toward
This
establishes an end-to-end precision care loop encompassing risk

dynamic optimization of living systems. evolution

prognostication,  therapeutic  decision-making, and real-

time intervention.

4.3 Health management: from early risk
alerting to proactive intervention

Al technology is finding increasingly extensive application in
health management. By analyzing health data collected from
wearable devices, Al can predict patients’ health risks and
deliver personalized health recommendations. For instance, Al
algorithms can analyze data such as heart rate and blood
pressure to predict an individual’s risk of heart attack (83).
Photoplethysmography- electrocardiography (PPG-ECG) fusion
algorithm continuously monitors ST-segment deviations. It
automatically triggers alerts to emergency response centres,
significantly reducing myocardial infarction rescue response
times (84). The leveraging federated learning analyzes dynamic
glucose profiles alongside dietary records to generate
personalized carbohydrate quantification advice. This approach
has led to significant reductions in glycated hemoglobin levels
among type II diabetes patients (85, 86). Al system utilizes
voiceprint emotion recognition (analyzing Jitter/Shimmer
features) to recommend cognitive behavioral therapy modules
for individuals with depression, resulting in significantly
improved (87). Collectively, Al is propelling health management
beyond discrete risk warnings towards closed-loop proactive
intervention systems, enabling continuous vital sign monitoring

and personalized health optimization.

4.4 Robotic surgery: from precise
manipulation to autonomous decision-
making

Al-driven robotic surgical systems enable enhanced precision
and minimally invasive procedures, reducing complications and
accelerating patient recovery. For example, the flexible robotic
arm with intraoperative Al vision module dynamically identifies
vascular anomalies, significantly reducing blood loss during
cholecystectomies (88). The AI system integrates DSA and MRI
data for stereotactic procedures, achieving targeting errors of
<0.3mm and substantially improving hematoma evacuation
efficiency in intracerebral hemorrhage cases (89). The Al system
incorporates a reinforcement learning-based collision-avoidance
module, which could autonomously navigate around critical
neural bundles (e.g., preserving cavernous nerves during
prostatectomy) (90). Collectively, AI is propelling surgical
robotics beyond enhanced instrumentation towards quasi-
with  multimodal

autonomous agents

execution closed loops, thereby systematically redefining surgical

perception-decision-

safety margins and delivering quantifiable clinical benefits.
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5 Cross-domain integration: the leap
of the intelligent paradigm from
education to healthcare

The core logic of AI—data-driven processing, personalization,
and real-time feedback—reveals its universal applicability across
domains, driving transformation from intelligent classrooms in
education to AI-empowered medical research.

5.1 Al in medical education: from virtual
simulation to clinical competency

Virtual laboratory platforms in biological education (e.g.,
Labster) enable students to simulate gene editing or drug
synthesis processes through AI, reducing experimental costs
while enhancing safety (91). Labster’s virtual labs employ
gamified interfaces that allow molecular-level manipulation of
gene editing (e.g., simulating CRISPR off-target effects) and
(e.g., SARS-CoV-2
inhibitors), achieving significant cost reductions and near-

drug synthesis virtual screening for
elimination of safety risks (92-94). Al system integrates force-
feedback robotic arms to enable hands-on training assessments
for endodontic procedures. The system provides real-time
correction of student operational errors with short response
latency, skill
assessment pass rates (95). The Virtual-Reality/Real-Printing
with
pathological organ 3D printing. Within task-based modules,

resulting in a significant improvement in

platform integrates laparoscopic virtual simulation

students complete comprehensive training spanning from

imaging diagnosis to surgical planning, resulting in a
significantly higher clinical thinking competency rate (96, 97).
These systems share a “learner-centered” design core with smart
classrooms. For instance, virtual simulation platform enables
unlimited student repetition of high-risk procedures (e.g.,
cardiac catheterization) (98). This philosophy aligns with the
“student-centered” instructional design of smart classrooms,
emphasizing autonomous inquiry and real-time feedback (99,
100). Virtual laboratories are evolving from cost-saving tools
into engines for clinical competency transformation. Propelled
by immersive end-to-end training and intelligent closed-loop
feedback systems, they are driving a paradigm shift in medical
education towards autonomous exploration and precision
assessment. These medical training applications illustrate how
Al-driven simulation enhances clinical readiness, mirroring the

personalized and feedback-driven logic of Al in healthcare.

5.2 Intelligent early-warning system: the
dimensional upgrade of response from
learning intervention to life rescue

Similar to early-warning mechanisms in learning quality

assessment (e.g., threshold-triggered interventions) (101), Al
systems in ICUs continuously monitor patient vital signs,
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generating real-time alerts for risks such as sepsis or cardiac arrest
to secure critical intervention windows (102, 103). For instance,
the multimodal model integrating dynamic indicators—
including core temperature fluctuation trends and procalcitonin
slope rates—significantly enhancing early-warning sensitivity
and yielding alerts several hours earlier than conventional
protocols (104). Similarly, the system identifies micro-variations
in T-wave alternans (TWA) through ECG morphology analysis,
defibrillator

substantially accelerating resuscitation response (105, 106). Al is

initiating ~ autonomous pre-charging  and
thus transforming early-warning systems from learning aids into

closed-loop command centers for life preservation. By
compressing risk identification and response to millisecond
timescales, it systematically redraws critical windows and

survival probability curves in emergency medicine.

6 Challenges and future directions:
building a trinity mechanism for
tackling tough challenges of
“technological breakthrough - ethical
governance - talent recreation”

Emerging challenges include the use of synthetic data to
mitigate data scarcity, model drift in longitudinal deployments,
and the need for alignment with regulatory frameworks such as
the FDA SaMD guidelines, EU AI Act, and China’s Generative
Al Measures. Al demonstrates substantial potential across
neuroscience, biology, and medicine. However, its deep
integration faces multifaceted challenges demanding systematic
solutions. Regarding data barriers and privacy-security concerns,
AT’s heavy reliance on massive datasets makes patient privacy
protection and data security paramount challenges. While open
(e.g, the US National Health

Examination Survey, NHANES) offer accessibility, they carry

datasets and Nutrition
inherent risks of misuse and can propagate misleading research
(107). A critical challenge lies in the “black-box” nature and
trust crisis of AI models. Particularly for deep learning models,
their opaque decision-making processes hinder physician trust
and undermine clinical adoption. The key imperative is
enhancing model interpretability and ensuring robust
generalization across diverse populations (e.g., patients in high-
altitude regions) to mitigate misdiagnosis risks stemming from
overfitting (108). A globally unified ethical framework for AI
remains absent. In high-risk applications—such as surgical
robotics—efficiency gains demand rigorous balancing against
critical patient safety safeguards. Current regulatory systems
struggle to keep pace with the accelerated evolution of these
technologies (109, 110). Effective implementation of Al in
biomedicine critically hinges on deep synergy among computer
science, biology, and clinical medicine. However, cross-
disciplinary collaboration mechanisms remain persistently
underdeveloped (111). Unlocking the full potential of Al in life
sciences and healthcare—and establishing a trustworthy new
paradigm for intelligent medicine—requires addressing four

critical imperatives: dismantling data silos, demystifying black-
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box models, forging ethical consensus, and bridging cross-
disciplinary divides.

To systematically address these challenges, future initiatives
must prioritize a tripartite synergistic framework integrating
technological innovation, ethical governance, and workforce
transformation. Develop interpretable Al (XAI) tools (methods
that aim to make AI decision-making processes understandable
to humans) to enhance model transparency and decision
traceability, thereby strengthening clinical trust and adoption
(112). Establish
privacy-preserving

secure data-sharing ecosystems leveraging
federated

(a machine learning approach where the algorithm is trained

techniques—such as learning
across multiple decentralized devices holding local data samples)
and blockchain (a decentralized, distributed ledger technology)
—to enable cross-institutional collaboration and data value
extraction while rigorously safeguarding data privacy and
security (113). Establish algorithmic accountability mechanisms
incorporating human expert oversight (e.g., physician validation
of Al recommendations) to ensure reliable, equitable, and
auditable
integrate

decision-making. Regulatory frameworks must
sustainability ~perspectives, proactively addressing
societal impacts of deployment to mitigate risks of exacerbating
healthcare disparities. Advance interdisciplinary education and
practice through designing and implementing frontier curricula
and research programs integrating AI, neuroscience, biology,
and clinical medicine. This will systematically cultivate hybrid
professionals with both technical mastery and domain expertise
(114). As AI technologies undergo ongoing breakthroughs
alongside advancements in this synergistic framework, their
applications across neuroscience, biology, and medicine will
expand in scope and depth. Through the convergent action of
technological innovation, ethical governance, and workforce
transformation, AI will overcome implementation bottlenecks
for deep deployment in life and health sciences—restructuring
medical paradigms towards an efficient, equitable, and
sustainable revolutionary future. Global regulatory efforts such
as the EU AI Act (2024) and WHO guidelines on Al in health
provide foundational principles for accountability, transparency,

and human oversight, yet harmonization remains a challenge.

7 Conclusions and perspectives

Al profoundly reshapes the fundamental principles of
neuroscience, biology, and medicine, driving life sciences from
experience-driven to “Data-Algorithm Dual Helix” paradigms.
This study systematically demonstrates how AI overcomes
bottlenecks in scale and efficiency inherent to traditional
methods by: efficiently parsing massive heterogeneous data (e.g.,
enabling molecular-level detection of misfolded proteins in
Parkinson’s disease through multimodal fusion of neuroimaging
data); deeply recognizing complex biological patterns (e.g.,
protein structure prediction); and responding to real-time
dynamic systems (e.g., surgical robotics control). Concurrently,
the personalized assessment logic prevalent in education (e.g.,
learning analytics systems) forms technical analogies with
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precision medical diagnostics and biological virtual experiment
platforms (e.g., Labster), collectively validating the universal
applicability of the “Data-Driven/Real-Time Feedback/Closed-
Loop Optimization” paradigm. However, data-privacy barriers,
algorithmic black-box effects, and collaborative fragmentation
across  disciplines remain obstacles to

core intelligent

implementation. Urgent needs include: building explainable AI

tools to enhance clinical decision-making transparency,
establishing secure data-sharing ecosystems via federated
learning  coupled with blockchain, and implementing

interdisciplinary curricula to cultivate dual-qualified talent
proficient in both technology and domain expertise. Looking
forward, AI will drive deep convergence among neuroscience,
biology, and medicine. Foundational models will evolve into
“super brains”, optimizing brain injury repair strategies by
integrating neuroplasticity mechanisms and predicting chronic
disease risks using real-time metabolic data. Cross-disciplinary
integration will catalyze innovations such as protein structure
prediction-guided drug design for neurological disorders and
BCI applications for personalized rehabilitation therapy. This
convergence will redraw the cognitive boundaries of life
sciences, ultimately enabling a paradigm shift from disease
treatment to comprehensive intelligent life guardianship—
encompassing gene-editing cures, active health management,
and intelligent ecological governance. This transition aims to
universalize medical resource access and ensure sustainable

development. This  Al-driven paradigm revolution is
transforming life sciences from fragmented knowledge
production to holistic intelligent guardianship, ushering
humanity into a new era of equitable health and

ecological sustainability.
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