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The rapid advancement of artificial intelligence (AI) is profoundly transforming 

research paradigms and clinical practices across neuroscience, biology, and 

medicine with unprecedented depth and breadth. Leveraging its robust data- 

processing capabilities, precise pattern recognition techniques, and efficient 

real-time decision support, AI has catalyzed a paradigm shift toward 

intelligent, precision-oriented approaches in scientific research and 

healthcare. This review comprehensively reviews core AI applications within 

these domains. Within neuroscience, AI advances encompass brain-computer 

interface (BCI) development/optimization, intelligent analysis of neuroimaging 

data (e.g., fMRI, EEG), and early prediction/precise diagnosis of neurological 

disorders. In biological research, AI applications include enhanced gene- 

editing efficiency (e.g., CRISPR) with off-target effect prediction, genomic 

big-data interpretation, drug discovery/design (e.g., virtual screening), high- 

accuracy protein structure prediction (exemplified by AlphaFold), biodiversity 

monitoring, and ecological conservation strategy optimization. For medical 

research, AI empowers auxiliary medical image diagnosis (e.g., CT, MRI), 

pathological analysis, personalized treatment planning, health risk prediction 

with lifespan health management, and robot-assisted minimally invasive 

surgery (e.g., da Vinci Surgical System). This review not only synthesizes AI’s 

pivotal role in enhancing research efficiency and overcoming limitations of 

conventional methodologies, but also critically examines persistent 

challenges, including data access barriers, algorithmic non-transparency, 

ethical governance gaps, and talent shortages. Building upon this analysis, we 

propose a tripartite framework (“Technology-Ethics-Talent”) to advance 

intelligent transformation in scientific and medical domains. Through 

coordinated implementation, AI will catalyze a transition toward efficient, 

accessible, and sustainable healthcare, ultimately establishing a life-cycle 

preservation paradigm encompassing curative gene editing, proactive health 

management, and ecologically intelligent governance.
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1 Introduction

Artificial intelligence (AI), among the most revolutionary 
technologies of the 21st century, is fundamentally restructuring 

scientific research paradigms (shifting from experience-driven to 
data-algorithm symbiosis), healthcare delivery architectures 

(rebuilding the prevention-diagnosis-treatment continuum), and 
pedagogical methodologies (enabling transition from 

standardized instruction to personalized cognitive mapping) 
(1, 2). The core drivers of AI’s reconstruction of three 

knowledge-production systems stem from intelligent 
deconstruction of massive heterogeneous data (overcoming 

traditional processing bottlenecks), deep pattern recognition in 
complex biological systems (revealing multidimensional 
correlations), and real-time responsiveness in dynamic 

environments (enabling millisecond-resolution decisions) (3). 
Within the life sciences nexus—spanning neuroscience, biology, 

and medicine—these capabilities generate cascading effects 
that systematically transition disciplinary paradigms toward 

intelligence-augmented frameworks.
Neuroscience grapples with the complexity of dynamic neural 

circuitry analysis and multimodal signal integration; biology 
urgently requires processing exponentially growing genomic-to- 

proteomic data deluges; while clinical medicine demands 
precision decision-making frameworks spanning the disease 

prevention-diagnosis-treatment continuum (4–7). A core 
challenge shared by these three fields lies in extracting actionable 

knowledge from an expanding data universe (8, 9). Whereas 
conventional approaches are constrained by computational 

inefficiency and analytical dimensionality, AI technologies— 
leveraging machine learning, deep learning, and related algorithms 

—overcome these barriers to enable profound mining of complex 
biological principles. This breakthrough provides transformative 

solutions for scientific discovery and clinical interventions.
Notably, AI’s interdisciplinary nature intrinsically catalyzes 

convergent innovation across domains (10, 11). This 
convergence transcends technological integration to drive 

methodological reconceptualization. The personalized learning 
frameworks from intelligent education synergistically converge 

with precision medicine’s individualized intervention logic, 
collectively establishing data-driven service paradigms. 

Simultaneously, real-time feedback mechanisms for learning 
assessment share core decision architectures with dynamic 

monitoring technologies in medical imaging analytics (12, 13). 
The closed-loop “analysis-internalization-remediation” cycle in 

education exhibits methodological resonance with medicine’s 
prevention-diagnosis-treatment continuum (14). These cross- 
domain synergies position AI as a pivotal nexus connecting 

neuroscience, biology, and medicine, fostering an emergent 
integrative research ecosystem.

This review examines the AI-driven intelligent transformation 
surge across the life sciences. Through systematic analysis of 

signature applications in neuroscience [brain-computer 
interfaces (BCI), neuroimaging analytics], biology (gene-editing 

optimization, protein structure prediction), and medicine 
(intelligent diagnostics, surgical robotics), we elucidate how AI 

technologies reconfigure research trajectories and clinical 
practices. Concurrently, we critically dissect core challenges in 

data governance, algorithmic trustworthiness, and ethical 
regulation, ultimately projecting innovation pathways for cross- 

disciplinary convergence that catalyze paradigm shifts in life 
sciences. This narrative review synthesizes recent advances in AI 

applications across neuroscience, biology, and medicine, drawing 
on seminal and emerging literature to highlight transformative 

trends and challenges.
To systematically navigate these transformative opportunities 

and inherent challenges, this review proposes and adopts a 
tripartite “Technology-Ethics-Talent” framework. This integrative 

lens serves as the foundational structure for our analysis, positing 
that the sustainable and equitable advancement of AI in the life 
sciences necessitates simultaneous progress in three core 

dimensions: technological innovation (e.g., developing robust, 
interpretable algorithms and secure data infrastructures), ethical 

governance (e.g., establishing accountable, transparent, and fair 
regulatory protocols), and talent cultivation (e.g., fostering 

interdisciplinary experts <uent in both computational and 
domain-specific knowledge). This framework not only organizes 

our critical examination of current applications and challenges 
but also underpins our forward-looking recommendations for 

achieving a convergent and responsible intelligent transformation 
across neuroscience, biology, and medicine.

This narrative review was based on a broad literature search in 
PubMed, IEEE Xplore, and arXiv using keywords including “AI in 

neuroscience”, “AI in drug discovery”, “AI in medical imaging”, 
“ethical AI”, etc., focusing on high-impact publications from 

2020 to 2024.

2 AI revolutionizes neuroscience: 
three paradigm-shifting applications

The core challenge in neuroscience lies in deciphering highly 

complex brain functional networks and neurological disease 
mechanisms. AI, leveraging its capacity for processing massive 

heterogeneous data and strengths in nonlinear pattern 
recognition, is emerging as a pivotal driver for pushing the 

knowledge boundaries in this field (15, 16). Current innovative 
applications of AI in neuroscience research primarily focus on 

BCI, neuroimaging analytics, and neurological disease prediction 
and diagnosis.

2.1 BCI: transitioning from movement 
control to human-AI integration

Deep learning-based EEG signal decoding techniques (e.g., 
CNN（Convolutional Neural Network: a deep learning model 

adept at processing grid-like data such as images or signals), 
EEGNet, ShallowNet, DeepCovNet) enable high-accuracy 

recognition of motor intent, accelerating the clinical translation 
of BCIs (17–19). Through implanted BCIs such as Neuralink’s 
<exible electrode arrays, paralyzed patients can directly control 
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robotic exoskeletons or cursor movements via neural activity 
patterns (20). Recent clinical reports demonstrate postoperative 

patients operating smart home systems and professional 
communication platforms within two weeks of implantation (21, 

22). Non-invasive system integrates MEG/EEG with language 
models to achieve neural text decoding, enabling amyotrophic 

lateral sclerosis (ALS) patients to communicate via EEG-driven 
digital avatars (23, 24). Reinforcement learning algorithms (e.g., 

EPFL’s inverse reinforcement learning: a type of machine 
learning where an agent learns to make decisions by receiving 

rewards or penalties) allow robots to dynamically correct 
movement trajectories by decoding error-related potentials 

(ErrPs) within 3–5 trials, realizing subject-specific obstacle 
avoidance and grasp control (25). AI facilitates BCI development 
by analyzing electroencephalographic (EEG) signals, enabling 

paralyzed patients to control external devices via neural 
commands (26, 27). Deep learning algorithms decode neural 

activity to operate robotic prosthetic limbs. Through high- 
throughput signal acquisition (e.g., 256-channel electrodes) (28) 

and adaptive decoding models [e.g., closed-loop decoder 
adaptation (CLDA)] (29), BCIs elucidate dynamic computational 

mechanisms underlying neural-behavioral mapping, establishing 
novel paradigms for neuroplasticity research.

2.2 Neuroimaging analytics: evolving from 
structural characterization to pathological 
prediction

AI overcomes the qualitative constraints of traditional imaging 

analysis, enabling quantitative integration of multimodal data. 
Nanobiosensors integrating surface-enhanced infrared absorption 

(SEIRA) spectroscopy with neural networks can noninvasively 
detect Parkinson’s disease-associated misfolded protein oligomers in 

cerebrospinal <uid at single-molecule resolution (30). A research 
team at the Chinese Academy of Sciences demonstrated that 

combining OCTA (optical coherence tomography angiography) 
retinal scans with AI models enables Alzheimer’s disease screening, 

which validated significant correlations between retinal 
microvascular density/fractal dimensions and cerebral amyloid-β 
deposition, offering a low-cost solution for primary care screening 
(31, 32). Transformer architectures(a deep learning model 

architecture using self-attention mechanisms, particularly effective 
for sequence data like time-series or text) decode fMRI temporal 

data to construct whole-brain connectome atlases, enabling precise 
localization of epileptogenic zones with submillimeter accuracy 

(<1 mm error) (33). Collectively, AI is fundamentally restructuring 
neuroimaging paradigms—from micropathological identification to 

macroscale functional prediction.

2.3 Neurological disease prediction and 
diagnosis: advancing from single 
biomarkers to multimodal integration

AI is shifting diagnostic windows earlier through dynamic 
bimodal monitoring of behavioral and physiological dimensions. 

Breakthroughs in early disease prediction have been achieved 
using AI—random forest models analyzing acoustic features 

(including Jitter and Shimmer) enable premotor diagnosis of 
Parkinson’s disease before motor symptom onset (34). SMOTE 

(Synthetic Minority Over-sampling Technique: an algorithm that 
generates synthetic samples to address class imbalance in 

datasets) significantly enhances small-sample generalization 
capabilities (35). Domain-adaptive ridge regression models have 

been developed to predict UPDRS (Unified Parkinson’s Disease 
Rating Scale) scores based on acoustic features of vowel/a/, 

achieving statistically significant error reduction through 
longitudinal patient data integration. This enables real-time 

tracking throughout therapeutic interventions (36). AI has 
revolutionized real-time diagnostic systems. Adapting real-time 
feedback mechanisms from educational contexts, BCI systems 

continuously monitor patient electroencephalographic (EEG) 
signals and generate diagnostic recommendations through 

integration with clinical knowledge bases. Combining abnormal 
slow-wave EEG power with APOE-ϵ4 genotypic data enables 

early warning of Alzheimer’s disease risk (37). LSTM (Long 
Short-Term Memory: a type of recurrent neural network capable 

of learning long-term dependencies in sequence data) models 
decode spatiotemporal patterns of EEG spikes to forecast 

epileptic seizures pre-ictally, triggering responsive interventions 
(38). AI is systematically reconfiguring end-to-end clinical 

management of neurological disorders—from early latent-phase 
screening to real-time seizure prediction.

Three cross-cutting breakthroughs characterize AI’s 
applications in neuroscience: algorithm-hardware co-evolution, 

accelerated clinical translation, and evolving ethical frameworks. 
For algorithm-hardware co-evolution, <exible electrodes (silk 

fibroin substrates) integrated with deep learning enable BCI 
miniaturization, reducing implantation trauma compared to 

conventional 256-channel arrays (39). Regarding clinical 
translation acceleration, China’s《Brain-Computer Interface 

Industry Cultivation Plan (2025–2030)》prioritizes medical 
implementation; in August 2024, the NEO system became the 

country’s first BCI product admitted to the Innovative Medical 
Devices Special Review Procedure, facilitating ambulatory 

recovery in spinal cord injury patients within 72 h post- 
implantation. For ethical framework development, Stanford 

scholars propose “Neurotechnology Principles” (reversibility, 
transparency, symbiosis), emphasizing safeguards against neural 

data exploitation and digital divides. Collectively, these advances 
propel neurotechnology toward high-efficiency, deep-integration, 

and strong-governance paradigms.

3 Multiscale integration of AI in 
biological research

AI is fundamentally restructuring life sciences research 
paradigms—enabling cross-scale data integration and 

mechanistic discovery from molecular-level precision 
manipulation to ecosystem-scale dynamic governance. Key 

breakthroughs are exemplified in gene editing and genomics, 
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drug discovery, protein structure prediction, and 
ecological conservation.

3.1 Genome editing and genomics: 
advancing from precision enhancement to 
clinical translation

AI accelerates the design and optimization of genome-editing 
tools such as CRISPR (40). Deep learning models predict editing 

outcomes, enhancing efficiency in functional genomics and 
therapeutic development. Graph neural network (GNN)-based 

frameworks(a class of deep learning models designed to perform 
inference on data described by graphs)—including the CRISPR- 

ANT system developed by Feng Zhang’s team—precisely 
forecast off-target effects while substantially improving editing 

efficiency (41–44). This technology achieved significantly higher 
hematopoietic stem cell correction rates than conventional 
methods in sickle cell disease gene therapy (45, 46). The 

DeepSEA framework precisely annotates the pathogenicity of 
non-coding mutations by analyzing millions of ENCODE 

epigenomic profiles, enhancing rare disease diagnostics (47). AI 
now serves as a pivotal translational accelerator, advancing 

genome editing from laboratory tool design toward precision 
clinical therapeutics.

3.2 Drug discovery: revolutionizing from 
virtual screening to end-to-end 
acceleration

AI significantly enhances efficiency in drug discovery by 
analyzing vast chemical and biological datasets to predict 

pharmacological properties—including activity, toxicity, and 
adverse effects—thereby accelerating compound screening and 

optimization (48–50). For instance, AI-driven drug discovery 
platforms identify potential anticancer agents within 

significantly reduced timeframes. Mirroring artificial neural 
network (ANN) architectures (computing systems inspired by 

biological neural networks) used for learning assessment in AI- 
enhanced educational settings, multilayer neural networks 

similarly optimize candidate molecule selection in 
pharmaceutical screening (13, 51). Generative AI models—such 

as Insilico Medicine’s Chemistry42 platform integrated with 
reinforcement learning—designed the novel idiopathic 

pulmonary fibrosis inhibitor INS018_055 within seven days. 
INS018_055 represents a paradigm-shifting advance in AI- 

driven drug discovery, exemplified by its efficient identification 
of the TNIK kinase target, accelerated four-year trajectory from 

discovery to phase II trials, and rigorous multi-model 
therapeutic validation. This breakthrough underscores 

generative AI’s transformative potential in addressing critical 
unmet medical needs (52). MetaTox multitask model, which 

integrates compound structure-metabolic pathway data, predicts 
hepatotoxicity with accuracy surpassing conventional animal 

testing, facilitating the replacement of toxicity assessments with 

“AI-organoid” systems (53–55). Leveraging multilayer 
perceptron architectures inspired by neural networks, Pfizer has 

developed a drug potency evaluation system that simulates 
molecule-target interactions through dynamic weight 

adaptation, reducing lead compound screening costs. The 
oncology candidate PF-07220060 (CDK4 inhibitor) was 

identified through virtual screening of 150,000 compounds, 
yielding 182 high-scoring molecules with a 38% experimental 

validation rate—surpassing the 8% industry average— 
accelerating its advancement to phase I clinical trials by 11 

months (56). AI is fundamentally reconfiguring drug discovery 
paradigms from the molecular level, propelling end-to-end 

work<ows toward intelligence-driven, highly efficient, and cost- 
effective transformation.

3.3 Protein structure prediction: advancing 
from single-chain folding to complex 
design

AI technologies, particularly deep learning models, have 
driven transformative advances in protein structure prediction 

(57, 58). While AlphaFold and RoseTTAFold represent 
breakthroughs, both face limitations in predicting disordered 

regions and dynamic complexes, highlighting the need for 
integrative experimental validation. For example, AlphaFold 

leverages deep learning algorithms to accurately determine 
three-dimensional protein structures, providing a pivotal tool 

for biological research and drug design (59, 60). AlphaFold 3 
(2024) achieves groundbreaking accuracy in predicting protein- 

nucleic acid complexes, with a mere 1.2 Å prediction error for 
HIV capsid protein-viral RNA binding sites; its open-source 

model accelerates antivenom design, significantly improving 
toxin neutralization efficacy (61). AlphaFold 3 heralds the 

dawn of the “digital biology” era. Its significance extends 
beyond technical innovation to the democratization of science 

—empowering global research through freely accessible 
platforms and providing foundational tools for disease 

therapeutics, synthetic biology, and sustainable development. 
RoseTTAFold All-Atom (RFAA), developed by David Baker’s 

team at the University of Washington, is a universal 
biomolecular modeling and design platform that transcends 

traditional protein structure prediction. It enables full-atom 
precision in modeling and designing complexes encompassing 

proteins, nucleic acids, small molecules, metal ions, and 
covalent modifications, establishing a new paradigm of 

“all-atom computational biology” (62). RoseTTAFold All- 
Atom enables precise calculation of antibody-antigen 

binding free energy (63). Moderna leveraged this capability to 
optimize mRNA vaccine carrier proteins, achieving 

significantly enhanced in vivo expression levels (64). 
Collectively, these advances signify AI’s pivotal role in 

transitioning protein research from static structural resolution 
toward dynamic molecular interaction prediction and 

functional engineering.
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3.4 Ecological conservation: transitioning 
from monitoring to intervention decision- 
making

AI analyzes ecological data to monitor species populations, 
predict environmental changes, and formulate conservation 

strategies (65). Acoustic recognition networks—such as the 
BirdNET system—process 100,000 h of field recordings to track 

population dynamics of critically endangered crested ibises 
(Nipponia nippon), substantially improving the efficiency of 

breeding habitat protection planning (66–68). Google Earth 
Engine (GEE) is an incredible coding interface for cloud 
processing of satellite imagery and data. GEE integrates 

spatiotemporal Transformer models to predict illegal logging 
hotspots in the Amazon rainforest using satellite imagery, 

enabling coordinated drone surveillance in real-time (69). 
Collectively, these applications empower ecological conservation 

to shift from passive monitoring toward intelligent decision- 
making, driving systemic enhancement of quantifiable 

ecological benefits.
AI is fundamentally reconfiguring the foundational logic of 

life sciences. At the microscopic mechanistic level, AlphaFold’s 
revelation of the “sequence-structure-function” paradigm 

accelerates the transition from empirical observation to 
computational prediction. In research methodology innovation, 

generative AI transforms drug discovery from serendipity-driven 
screening to target-oriented design, achieving quantifiable cost 

reduction. For macro-ecological governance, spatiotemporal AI 
models enable vulnerability quantification across ecological 

networks, advancing biodiversity conservation within carbon 
neutrality framework. Collectively, AI drives a holistic paradigm 

shift—spanning microscopic deconstruction, meso-scale 
development, and macro-system governance—across the life 

sciences spectrum.

4 AI-driven transformation in 
healthcare: evolving from diagnostic 
assistance to precision intervention

Medicine represents one of the most extensively adopted 

domains for AI applications, with particularly prominent 
implementations in disease diagnosis, treatment, and health 
management (70). Medical AI is transcending traditional 

healthcare boundaries, reconfiguring end-to-end work<ows 
spanning screening, diagnosis, treatment, and management.

4.1 Disease diagnostics: advancing from 
imaging analysis to multimodal integration

AI has achieved significant progress in medical imaging 

analysis (71, 72). For instance, FDA-approved AI-based SaMD 
tools such as IDx-DR for diabetic retinopathy demonstrate the 
clinical viability of AI in diagnostic imaging. Intelligent 

diagnostic imaging systems are undergoing substantial upgrades 
—the 3D-Transformer-based multimodal system for gastric 

cancer early screening. By integrating contrast-enhanced 
computed tomography (CE-CT) imaging with serum pepsinogen 

data, it significantly improves the detection rate of early gastric 
cancer (EGC) (73, 74). The Dr. WiseTM system (Deepwise) 

identifies microcalcification clusters in mammograms and 
integrates this imaging data with BRCA gene mutation data to 

construct individualized risk profiles. This approach significantly 
enhances the accuracy of early warnings for high-risk 

populations (75). Real-time intraoperative evaluation paradigm 
transformation. By adapting instant feedback mechanisms, 

originally conceptualized in educational settings, AI-powered 
intraoperative decision-support systems can complete frozen 
section analysis of tumor margins within 20 s. This advance 

significantly enhances the sensitivity for detecting positive 
margins and substantially reduces surgical duration. AI is 

propelling a fundamental evolution in disease diagnosis, shifting 
the paradigm from static image interpretation toward 

multimodal, real-time integrated decision-making. This 
transformation enables the establishment of a seamless clinical 

pathway encompassing pre-diagnostic risk stratification, 
intraoperative intervention, and post-treatment efficacy 

assessment—forming a comprehensive diagnostic-therapeutic 
loop. Despite high accuracy, AI diagnostic systems may exhibit 

bias in underrepresented populations, necessitating robust 
fairness audits.

4.2 Personalized therapeutics: from 
genetically informed stratification to 
adaptive optimization

AI technologies enable personalized therapeutic strategies by 
integrating patient genomic data, clinical records, and lifestyle 

factors. This approach enhances treatment efficacy while 
minimizing adverse effects. For instance, AI systems can 

recommend the most effective anticancer drugs based on an 
individual’s specific genetic mutations. Analogous to the 

weighting methodology employed in learning quality assessment 
systems (e.g., the Analytic Hierarchy Process, AHP: a structured 

technique for organizing and analyzing complex decisions), AI 
assigns clinical significance weights to distinct genetic variants. 

This optimizes disease risk prediction models through data- 
driven prioritization (76, 77). AI system employs the AHP to 

assign clinical weights to driver mutations (e.g., EGFR, ALK), 
generating drug priority scores. This approach has significantly 

extended median overall survival in lung cancer patients (78, 
79). DeepDR model integrates single-cell sequencing data with 

drug response profiles, anticipating osimertinib resistance four 
months prior to clinical manifestation. This enables timely 

therapeutic switching to brigatinib regimens (80, 81). The 
reinforcement learning simulates treatment-related toxicities, 

dynamically adjusting radiation doses for nasopharyngeal 
carcinoma patients. This strategy has significantly reduced 

parotid gland complication rates (82). AI is advancing 
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personalized therapeutics beyond static genomic analysis toward 
dynamic optimization of living systems. This evolution 

establishes an end-to-end precision care loop encompassing risk 
prognostication, therapeutic decision-making, and real- 

time intervention.

4.3 Health management: from early risk 
alerting to proactive intervention

AI technology is finding increasingly extensive application in 
health management. By analyzing health data collected from 

wearable devices, AI can predict patients’ health risks and 
deliver personalized health recommendations. For instance, AI 

algorithms can analyze data such as heart rate and blood 
pressure to predict an individual’s risk of heart attack (83). 

Photoplethysmography- electrocardiography (PPG-ECG) fusion 
algorithm continuously monitors ST-segment deviations. It 

automatically triggers alerts to emergency response centres, 
significantly reducing myocardial infarction rescue response 

times (84). The leveraging federated learning analyzes dynamic 
glucose profiles alongside dietary records to generate 

personalized carbohydrate quantification advice. This approach 
has led to significant reductions in glycated hemoglobin levels 

among type II diabetes patients (85, 86). AI system utilizes 
voiceprint emotion recognition (analyzing Jitter/Shimmer 

features) to recommend cognitive behavioral therapy modules 
for individuals with depression, resulting in significantly 

improved (87). Collectively, AI is propelling health management 
beyond discrete risk warnings towards closed-loop proactive 

intervention systems, enabling continuous vital sign monitoring 
and personalized health optimization.

4.4 Robotic surgery: from precise 
manipulation to autonomous decision- 
making

AI-driven robotic surgical systems enable enhanced precision 
and minimally invasive procedures, reducing complications and 

accelerating patient recovery. For example, the <exible robotic 
arm with intraoperative AI vision module dynamically identifies 

vascular anomalies, significantly reducing blood loss during 
cholecystectomies (88). The AI system integrates DSA and MRI 

data for stereotactic procedures, achieving targeting errors of 
<0.3 mm and substantially improving hematoma evacuation 

efficiency in intracerebral hemorrhage cases (89). The AI system 
incorporates a reinforcement learning-based collision-avoidance 

module, which could autonomously navigate around critical 
neural bundles (e.g., preserving cavernous nerves during 

prostatectomy) (90). Collectively, AI is propelling surgical 
robotics beyond enhanced instrumentation towards quasi- 

autonomous agents with multimodal perception-decision- 
execution closed loops, thereby systematically redefining surgical 
safety margins and delivering quantifiable clinical benefits.

5 Cross-domain integration: the leap 
of the intelligent paradigm from 
education to healthcare

The core logic of AI—data-driven processing, personalization, 

and real-time feedback—reveals its universal applicability across 
domains, driving transformation from intelligent classrooms in 

education to AI-empowered medical research.

5.1 AI in medical education: from virtual 
simulation to clinical competency

Virtual laboratory platforms in biological education (e.g., 

Labster) enable students to simulate gene editing or drug 
synthesis processes through AI, reducing experimental costs 

while enhancing safety (91). Labster’s virtual labs employ 
gamified interfaces that allow molecular-level manipulation of 
gene editing (e.g., simulating CRISPR off-target effects) and 

drug synthesis (e.g., virtual screening for SARS-CoV-2 
inhibitors), achieving significant cost reductions and near- 

elimination of safety risks (92–94). AI system integrates force- 
feedback robotic arms to enable hands-on training assessments 

for endodontic procedures. The system provides real-time 
correction of student operational errors with short response 

latency, resulting in a significant improvement in skill 
assessment pass rates (95). The Virtual-Reality/Real-Printing 

platform integrates laparoscopic virtual simulation with 
pathological organ 3D printing. Within task-based modules, 

students complete comprehensive training spanning from 
imaging diagnosis to surgical planning, resulting in a 

significantly higher clinical thinking competency rate (96, 97). 
These systems share a “learner-centered” design core with smart 

classrooms. For instance, virtual simulation platform enables 
unlimited student repetition of high-risk procedures (e.g., 

cardiac catheterization) (98). This philosophy aligns with the 
“student-centered” instructional design of smart classrooms, 

emphasizing autonomous inquiry and real-time feedback (99, 
100). Virtual laboratories are evolving from cost-saving tools 

into engines for clinical competency transformation. Propelled 
by immersive end-to-end training and intelligent closed-loop 

feedback systems, they are driving a paradigm shift in medical 
education towards autonomous exploration and precision 

assessment. These medical training applications illustrate how 
AI-driven simulation enhances clinical readiness, mirroring the 

personalized and feedback-driven logic of AI in healthcare.

5.2 Intelligent early-warning system: the 
dimensional upgrade of response from 
learning intervention to life rescue

Similar to early-warning mechanisms in learning quality 
assessment (e.g., threshold-triggered interventions) (101), AI 
systems in ICUs continuously monitor patient vital signs, 
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generating real-time alerts for risks such as sepsis or cardiac arrest 
to secure critical intervention windows (102, 103). For instance, 

the multimodal model integrating dynamic indicators— 
including core temperature <uctuation trends and procalcitonin 

slope rates—significantly enhancing early-warning sensitivity 
and yielding alerts several hours earlier than conventional 

protocols (104). Similarly, the system identifies micro-variations 
in T-wave alternans (TWA) through ECG morphology analysis, 

initiating autonomous defibrillator pre-charging and 
substantially accelerating resuscitation response (105, 106). AI is 

thus transforming early-warning systems from learning aids into 
closed-loop command centers for life preservation. By 

compressing risk identification and response to millisecond 
timescales, it systematically redraws critical windows and 
survival probability curves in emergency medicine.

6 Challenges and future directions: 
building a trinity mechanism for 
tackling tough challenges of 
“technological breakthrough - ethical 
governance - talent recreation”

Emerging challenges include the use of synthetic data to 
mitigate data scarcity, model drift in longitudinal deployments, 

and the need for alignment with regulatory frameworks such as 
the FDA SaMD guidelines, EU AI Act, and China’s Generative 

AI Measures. AI demonstrates substantial potential across 
neuroscience, biology, and medicine. However, its deep 

integration faces multifaceted challenges demanding systematic 
solutions. Regarding data barriers and privacy-security concerns, 

AI’s heavy reliance on massive datasets makes patient privacy 
protection and data security paramount challenges. While open 

datasets (e.g., the US National Health and Nutrition 
Examination Survey, NHANES) offer accessibility, they carry 

inherent risks of misuse and can propagate misleading research 
(107). A critical challenge lies in the “black-box” nature and 

trust crisis of AI models. Particularly for deep learning models, 
their opaque decision-making processes hinder physician trust 

and undermine clinical adoption. The key imperative is 
enhancing model interpretability and ensuring robust 

generalization across diverse populations (e.g., patients in high- 
altitude regions) to mitigate misdiagnosis risks stemming from 

overfitting (108). A globally unified ethical framework for AI 
remains absent. In high-risk applications—such as surgical 

robotics—efficiency gains demand rigorous balancing against 
critical patient safety safeguards. Current regulatory systems 

struggle to keep pace with the accelerated evolution of these 
technologies (109, 110). Effective implementation of AI in 

biomedicine critically hinges on deep synergy among computer 
science, biology, and clinical medicine. However, cross- 

disciplinary collaboration mechanisms remain persistently 
underdeveloped (111). Unlocking the full potential of AI in life 

sciences and healthcare—and establishing a trustworthy new 
paradigm for intelligent medicine—requires addressing four 

critical imperatives: dismantling data silos, demystifying black- 

box models, forging ethical consensus, and bridging cross- 
disciplinary divides.

To systematically address these challenges, future initiatives 
must prioritize a tripartite synergistic framework integrating 

technological innovation, ethical governance, and workforce 
transformation. Develop interpretable AI (XAI) tools (methods 

that aim to make AI decision-making processes understandable 
to humans) to enhance model transparency and decision 

traceability, thereby strengthening clinical trust and adoption 
(112). Establish secure data-sharing ecosystems leveraging 

privacy-preserving techniques—such as federated learning 
(a machine learning approach where the algorithm is trained 

across multiple decentralized devices holding local data samples) 
and blockchain (a decentralized, distributed ledger technology) 
—to enable cross-institutional collaboration and data value 

extraction while rigorously safeguarding data privacy and 
security (113). Establish algorithmic accountability mechanisms 

incorporating human expert oversight (e.g., physician validation 
of AI recommendations) to ensure reliable, equitable, and 

auditable decision-making. Regulatory frameworks must 
integrate sustainability perspectives, proactively addressing 

societal impacts of deployment to mitigate risks of exacerbating 
healthcare disparities. Advance interdisciplinary education and 

practice through designing and implementing frontier curricula 
and research programs integrating AI, neuroscience, biology, 

and clinical medicine. This will systematically cultivate hybrid 
professionals with both technical mastery and domain expertise 

(114). As AI technologies undergo ongoing breakthroughs 
alongside advancements in this synergistic framework, their 

applications across neuroscience, biology, and medicine will 
expand in scope and depth. Through the convergent action of 

technological innovation, ethical governance, and workforce 
transformation, AI will overcome implementation bottlenecks 

for deep deployment in life and health sciences—restructuring 
medical paradigms towards an efficient, equitable, and 

sustainable revolutionary future. Global regulatory efforts such 
as the EU AI Act (2024) and WHO guidelines on AI in health 

provide foundational principles for accountability, transparency, 
and human oversight, yet harmonization remains a challenge.

7 Conclusions and perspectives

AI profoundly reshapes the fundamental principles of 
neuroscience, biology, and medicine, driving life sciences from 

experience-driven to “Data-Algorithm Dual Helix” paradigms. 
This study systematically demonstrates how AI overcomes 

bottlenecks in scale and efficiency inherent to traditional 
methods by: efficiently parsing massive heterogeneous data (e.g., 

enabling molecular-level detection of misfolded proteins in 
Parkinson’s disease through multimodal fusion of neuroimaging 

data); deeply recognizing complex biological patterns (e.g., 
protein structure prediction); and responding to real-time 

dynamic systems (e.g., surgical robotics control). Concurrently, 
the personalized assessment logic prevalent in education (e.g., 

learning analytics systems) forms technical analogies with 
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precision medical diagnostics and biological virtual experiment 
platforms (e.g., Labster), collectively validating the universal 

applicability of the “Data-Driven/Real-Time Feedback/Closed- 
Loop Optimization” paradigm. However, data-privacy barriers, 

algorithmic black-box effects, and collaborative fragmentation 
across disciplines remain core obstacles to intelligent 

implementation. Urgent needs include: building explainable AI 
tools to enhance clinical decision-making transparency, 

establishing secure data-sharing ecosystems via federated 
learning coupled with blockchain, and implementing 

interdisciplinary curricula to cultivate dual-qualified talent 
proficient in both technology and domain expertise. Looking 

forward, AI will drive deep convergence among neuroscience, 
biology, and medicine. Foundational models will evolve into 
“super brains”, optimizing brain injury repair strategies by 

integrating neuroplasticity mechanisms and predicting chronic 
disease risks using real-time metabolic data. Cross-disciplinary 

integration will catalyze innovations such as protein structure 
prediction-guided drug design for neurological disorders and 

BCI applications for personalized rehabilitation therapy. This 
convergence will redraw the cognitive boundaries of life 

sciences, ultimately enabling a paradigm shift from disease 
treatment to comprehensive intelligent life guardianship— 

encompassing gene-editing cures, active health management, 
and intelligent ecological governance. This transition aims to 

universalize medical resource access and ensure sustainable 
development. This AI-driven paradigm revolution is 

transforming life sciences from fragmented knowledge 
production to holistic intelligent guardianship, ushering 

humanity into a new era of equitable health and 
ecological sustainability.
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