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Ontologies as the semantic
bridge between artificial
intelligence and healthcare

Radha Ambalavanan*, R Sterling Snead, Julia Marczika,

Gideon Towett, Alex Malioukis and Mercy Mbogori-Kairichi

Research Department, The Self Research Institute, Broken Arrow, OK, United States

Background: Ontologies serve as a foundational bridge between artificial

intelligence (AI) and healthcare, enabling structured knowledge frameworks

that enhance data interoperability, clinical decision support, and

precision medicine.

Objective: This perspective aims to highlight the essential role of ontologies in

enabling adaptive, interoperable frameworks that evolve with technological

and medical advances to support personalized, accurate, and globally

connected healthcare solutions.

Methods: This perspective is based on a targeted literature exploration

conducted across PubMed, Scopus, and Google Scholar, prioritizing studies

published between 2010 and 2025 and including earlier seminal works where

necessary to provide historical context, focusing on ontology-driven AI

applications in healthcare. Sources were selected for their relevance to

semantic integration, interoperability, and interdisciplinary applicability.

Results: Through the standardization of medical concepts, relationships, and

terminologies, ontologies enable semantic integration across diverse

healthcare datasets, including clinical, genomic, and phenotypic data. They

also address challenges such as fragmented data and inconsistent

terminologies. This semantic clarity supports AI applications in clinical decision

support, predictive analytics, natural language processing (NLP), and patient-

specific disease modeling.

Conclusions: Despite their transformative potential, ontology integration faces

significant challenges, including computational complexity, scalability, and

semantic mismatches across evolving international standards, such as

SNOMED CT and HL7 FHIR. Ethical concerns, particularly around data privacy,

informed consent, and algorithmic bias, also require careful consideration. To

address these challenges, this perspective outlines strategies including

adaptive ontology models, robust governance frameworks, and AI-assisted

ontology management techniques. Together, these approaches aim to

support personalized, accurate, and globally interoperable healthcare systems.
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1 Introduction

Modern healthcare systems continue to face challenges related

to fragmented data, lack of standardized vocabularies, and poor

semantic alignment. Ontologies, structured frameworks that

define standardized concepts and relationships within a domain

(1). They enable consistent data interpretation, support

automated reasoning, and enhance clinical decision-making. By

facilitating semantic interoperability across systems, ontologies

allow AI models and healthcare applications to integrate and act

upon complex clinical, genomic, and phenotypic data (2–4).

Ontologies, such as SNOMED CT (Systematized Nomenclature

of Medicine – Clinical Terms) and HL7 FHIR (Fast Healthcare

Interoperability Resources), developed by Health Level Seven

International (HL7), serve as foundational tools by standardizing

medical concepts, terminologies, and data structures (5). These

unified frameworks support tailored patient-specific healthcare

solutions, improving clinical outcomes and patient experience.

They can enhance the efficacy of Clinical Decision Support

Systems (CDSS) by providing structured knowledge

representation and facilitating rule-based reasoning (6).

Ontologies also support personalization of healthcare by adapting

intervention plans to individual needs and uncovering hidden

comorbidities (7).

By enabling interoperability across Electronic Health Records

(EHRs), ontologies facilitate seamless collaboration between

healthcare providers and AI systems. They drive advancements in

precision medicine and patient-centered care by standardizing

medical terminologies and ensuring consistent data exchange.

Furthermore, ontologies integrate diverse data sources by aligning

terminologies like SNOMED CT, LOINC (Logical Observation

Identifiers Names and Codes), and ICD-11 (International

Classification of Diseases, 11th Revision) with real-world

applications, demonstrating their potential to enhance data-

driven decision-making and AI-driven analytics. These attributes

make transformative innovations in both AI and healthcare

systems (5, 8, 9).

Ontologies offer a solution by bridging artificial intelligence

(AI) and healthcare (1). Despite their value, significant challenges

remain, particularly in addressing fragmented datasets, lack of

standardization, and ethical concerns like data privacy, and

adaptive ontology models offer promising solutions by

supporting real-time updates, promoting ethical governance, and

allowing culturally sensitive customization (10). Through

semantic integration and fostering patient-centered design,

ontologies are poised to bridge gaps in healthcare systems and

advance AI-driven solutions.

The evolution of ontologies, initially rooted in statistical

classifications and formal logic, has progressively transformed to

address the multifaceted demands of modern healthcare. From

supporting clinical operations and reimbursement processes to

enabling translational research and reducing errors, improving

efficiency, and driving biomedical discovery, ontologies have

demonstrated their adaptability and growing importance. Their

structural evolution is guided by diverse application areas,

allowing them to meet the complex requirements of

contemporary healthcare. These applications are particularly

significant in supporting international data harmonization and

ensuring consistent interpretation across healthcare systems.

Currently, ontologies form the foundation for integrating vast

biomedical datasets, supporting sophisticated data science

inferencing, and enabling advanced analytics and decision-

making tools that drive innovation in healthcare systems (5).

By providing a systematic approach to knowledge

representation, ontologies enable AI systems to process

biomedical data with greater precision and reliability. Their

flexibility to adapt to new data and evolving standards reinforces

their role in advancing healthcare and AI systems (11, 12).

In this perspective, we highlight the need for adaptive ontology

models that evolve with real-time data and emerging standards to

support precision medicine, promote ethical AI integration, and

address key gaps in semantic interoperability. We outline the

historical evolution of ontologies, mechanisms enabling

interoperability, real-world applications, and future directions for

their development in healthcare innovation. This perspective

synthesizes key literature on ontology-driven AI in healthcare,

outlines current challenges in semantic interoperability, and

proposes a roadmap for advancing adaptive, ethically grounded,

and globally interoperable ontology models. It also highlights the

reciprocal relationship between ontologies and AI, showing how

ontologies enhance AI capabilities while AI methods drive

ontology evolution and automation.

2 Methods

We conducted a targeted literature exploration to identify key

advancements, current challenges, and gaps in ontology-driven

applications of artificial intelligence in healthcare. Searches were

performed across PubMed, Scopus, and Google Scholar using

combinations of keywords aligned with the article’s thematic

focus, including “ontology,” “artificial intelligence,”

“interoperability,” “semantic integration,” “clinical decision

support,” “personalized medicine,” “natural language processing,”

and “ethical AI.” These were combined with Boolean operators

such as (ontology OR ontologies) AND (“artificial intelligence”)

AND (“interoperability” OR “semantic integration” OR “clinical

decision support” OR “personalized medicine” OR “natural

language processing” OR “ethical AI”).

We prioritized peer reviewed publications published between

2010 and 2025 that addressed the development or application of

ontologies in artificial intelligence, healthcare interoperability,

and related interdisciplinary domains, while excluding sources

lacking direct relevance to biomedical or clinical applications. We

also included earlier seminal works published before 2010 when

they were considered foundational or essential for understanding

the historical evolution of ontology-driven AI applications.

This manuscript was intentionally developed as a perspective

rather than a scoping or systematic review. Given the

interdisciplinary and conceptual nature of the topic, which spans

technical, biomedical, and policy domains, conducting a

comprehensive systematic review was beyond the intended scope
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of this work. Accordingly, this study applies a conceptual grouping

of recurring themes to synthesize key insights, emerging trends,

and challenges, with the goal of informing future research and

development in ontology-driven, AI enabled healthcare systems.

3 Ontologies

3.1 Historical context

Ontologies originated in philosophy, where early thinkers like

Aristotle developed taxonomies to classify knowledge. As

computer science advanced, ontologies evolved into structured

systems for representing domain knowledge. Gruber (1993)

defined them as “explicit specifications of a conceptualization”

(13), while Guarino (1998) emphasized their value in organizing

domain-specific knowledge (14). The introduction of formal

ontology languages like RDF (Resource Description Framework)

and OWL (Web Ontology Language) (15–17) enabled ontologies

to support semantic integration across fragmented datasets in

dynamic, multi-user environments (18).

A useful distinction exists between formal ontologies, which

provide general upper-level concepts across domains, and

application ontologies, which are specifically designed for

particular domains such as oncology or cardiology. This

distinction is especially relevant in AI and healthcare, where both

abstraction and domain specificity are essential.

To remain relevant in fast-evolving fields like AI and

healthcare, ontologies must continually adapt to new data,

contexts, and standards. During the COVID-19 pandemic,

ontologies rapidly incorporated new clinical terminologies and

concepts such as “COVID-19-associated pneumonia” or “long

COVID” to support data interoperability, surveillance, and

research (19). Evolutionary processes, such as alignment,

versioning, and meaning negotiation, are critical in distributed

healthcare ecosystems where real-time collaboration and

interoperability are required (20, 21). Especially in AI-driven

healthcare, ontology evolution supports adaptive systems that can

integrate diverse knowledge sources, maintain semantic

consistency, and ensure accurate decision-making (22, 23).

3.2 Semantic integration

Ontologies play a pivotal role in enabling semantic integration

by providing a structured and hierarchical approach to organizing

data. They establish a shared vocabulary, enabling diverse systems

to communicate seamlessly and interpret information consistently.

This hierarchical organization supports advanced reasoning and

inference, allowing for the transformation of raw data into

actionable insights. To demonstrate their real-world relevance

and technical sophistication, the following subsections explore

practical applications of semantic integration and the underlying

mechanisms that enable its implementation across AI-driven

healthcare systems.

3.2.1 Permission to reuse and copyright

In modern healthcare, ontologies are instrumental in bridging

diverse datasets such as clinical, genomic, and environmental data

into unified and interpretable frameworks. Their structured

vocabularies enable systems like the Gene Ontology (GO) and

the Foundational Model of Anatomy (FMA) to annotate and

cross-reference biological and anatomical information, facilitating

precision medicine and real-time clinical decision-making (24).

By aligning genomic, phenotypic, and clinical information,

ontologies support diagnostic accuracy, treatment stratification,

and predictive analytics in AI applications (25). These

capabilities are reflected in practical applications such as the use

of geospatial ontologies, which integrate location-based data to

enhance public health planning during disease outbreaks or

environmental exposures (26). These real-world applications

highlight why semantic integration is essential, not only for

linking datasets but also for enabling intelligent, adaptive, and

context-aware healthcare systems.

3.2.2 Underlying technical mechanisms
This semantic depth is powered by technical mechanisms such

as hierarchical taxonomies, logical inference engines, and

standardization frameworks. Taxonomies define relationships

between broad and specific concepts, enabling structured

reasoning and context-aware classification. Ontology-based

engines validate data consistency and deduce new knowledge

from complex, multimodal datasets (24, 27, 28).

Foundational ontologies such as DOLCE (Descriptive

Ontology for Linguistic and Cognitive Engineering) and BFO

(Basic Formal Ontology) facilitate alignment across domain-

specific ontologies, resolving semantic discrepancies and

supporting cross-domain compatibility. BFO, for instance,

provides a unifying framework that enables consistent mapping

of clinical concepts like “disease onset” in SNOMED CT with

biological processes in the Gene Ontology (GO) (25).

Standards such as RDF and OWL support interoperability by

enabling shared concept mapping, while SPARQL (SPARQL

Protocol and RDF Query Language) improves query performance

across large biomedical datasets (29). These technical tools enable

inter-ontology reasoning, allowing AI systems to synthesize

knowledge across clinical, genomic, and environmental domains,

thereby advancing translational research and supporting tailored

care strategies (30).

3.3 Ontology development and
maintenance

Ontology development is a systematic and iterative process

essential for building robust frameworks in complex domains,

including healthcare and AI. Effective ontology development

includes clearly defined stages: design, validation, alignment,

versioning and updates, enrichment, and ontology evolution.

These stages collectively address challenges like fragmented

datasets, inconsistent terminologies, and evolving domain-specific
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requirements, ensuring that ontologies remain adaptable and

relevant. Such modularity is essential in healthcare AI, where

domain knowledge and terminologies rapidly evolve, making this

design process vital for AI–healthcare convergence.

3.3.1 Design phase

The design phase begins by identifying domain-specific

requirements through consultation with domain experts, existing

documentation, and user needs analysis. This phase is crucial to

ensure that the ontology accurately represents real-world contexts

and aligns with domain-specific standards (31). Techniques like

Ontology-Driven Conceptual Modeling (ODCM) provide

theoretical guidance, enabling structured representations and

conceptual clarity through languages like OntoUML (32).

3.3.2 Validation methodologies

Robust validation ensures that ontologies reliably support AI

accuracy in healthcare applications. Competency Questions

(CQs) test whether an ontology can answer clinically relevant

queries, such as linking symptoms to diagnoses or treatments,

which is essential for decision support tools. Metrics like

consistency and cohesion assess structural quality, while tools

like Protégé automate reasoning and error detection (33). These

methods help AI systems make accurate predictions, especially in

domains like oncology and cardiology where precise semantic

alignment is critical (34).

3.3.3 Alignment

Ontology alignment harmonizes various domain-specific

ontologies to facilitate seamless interoperability and consistent

data exchange. Semantic mapping techniques link different

ontologies, establishing compatibility and coherent data

interpretation across healthcare and AI systems. Foundational

ontologies including DOLCE and BFO assist this alignment by

providing universal frameworks for categorization and ensuring

data consistency (35).

3.3.4 Versioning and updates

Ontologies must continually evolve to reflect new data, updated

standards, and emerging knowledge. Robust versioning systems are

essential for managing changes, maintaining backward

compatibility, and ensuring long-term usability. One such

method, the Ontology Metadata Vocabulary for Ontology Data

Management (ON-ODM), helps track changes across versions by

documenting metadata such as authorship, updates, and

dependencies. This allows ontology frameworks to adapt to

evolving domain needs while preserving accuracy and relevance

over time (36).

3.3.5 Enrichment techniques

Enrichment involves refining ontologies by adding new

concepts, relationships, and data properties, which enhances their

completeness and contextual relevance. Artificial intelligence,

particularly NLP and text-mining techniques, accelerates this

process by scanning large volumes of biomedical literature,

clinical notes, or research databases to identify emerging terms or

relationships that may be missing from existing ontologies.

The BioPortal Annotator uses NLP to map free-text inputs to

existing biomedical ontologies, enabling automatic detection of

relevant concepts and suggesting updates based on current

literature. This dramatically improves the speed and accuracy of

ontology maintenance by reducing manual curation efforts and

ensuring timely integration of new knowledge (37).

Such AI-driven enrichment ensures that ontologies stay current

and aligned with evolving healthcare needs, supporting high-

quality AI applications and clinical decision support systems

(CDSS).

3.3.6 Ontology evolution in collaborative
environments

Ontology evolution is essential in collaborative and distributed

environments like the Semantic Web, where ontologies

dynamically co-evolve alongside user communities. The key

processes include meaning negotiation, alignment of multiple

organizational ontologies, and management of contextual

dependencies. These iterative evolution processes maintain

ontology robustness, facilitating real-time knowledge integration

essential for modern AI-driven healthcare solutions (18).

3.4 Broader applications of ontologies

Ontologies are increasingly applied across diverse fields such as

bioinformatics, environmental science, robotics, education, and

interdisciplinary research. By providing structured vocabularies

and semantic frameworks, they enable data integration,

automation, and personalized decision-making. This versatility

makes ontologies powerful tools for advancing innovation,

interoperability, and knowledge-sharing across domains. This

cross-domain adaptability underscores the foundational role of

ontologies in fostering innovation in complex, data-driven

environments like healthcare AI. Table 1 summarizes ontology

applications across domains, highlighting their purposes and

implementation scenarios.

4 AI and ontology applications in
healthcare

By addressing challenges linked to fragmented datasets,

disconnected systems, and inconsistent medical data

representation, ontologies provide a structured framework that

enables improved data integration, semantic clarity, and scalable

AI-driven solutions in healthcare. They provide a structured

framework for organizing diverse healthcare information,

ensuring semantic interoperability across clinical applications. By

standardizing how data is defined and interpreted, ontologies

improve clinical decision-making and support AI models that

rely on consistent, high-quality input. Ontologies bridge

technology and human-centered care, becoming foundational

tools in advancing precision medicine, healthcare automation,
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and intelligent diagnostics. Their ability to standardize medical

data into machine-readable formats empowers healthcare

providers and AI-driven systems to derive actionable insights,

enhancing patient outcomes and fostering healthcare innovation.

Across domains such as EHRs, genomics, pharmacology, and

geospatial analytics, ontologies ensure semantic consistency and

enable scalable, intelligent applications in real-world care. The

following subsections highlight key ontology applications in

healthcare AI, from EHR interoperability to population-level

predictions. Thus, ontologies are crucial in healthcare and AI.

4.1 Enhancing EHR functionality through
ontologies

Ontologies integrated into EHR systems improve data clarity,

reduce fragmentation, and enhance care coordination. They go

beyond standard interoperability by embedding meaning and

relationships directly into data, enabling smarter clinical

workflows. Ontology-driven systems and EHR-integrated

analytics have demonstrated tangible impacts on clinical

efficiency. For instance, Rizzoli Orthopaedic Institute reported a

30% reduction in hospitalizations and over 60% fewer imaging

tests by using advanced analytics to manage hereditary bone

disorders. Similarly, Kaiser Permanente used EHR-linked

analytics to minimize unnecessary antibiotic use in newborns,

significantly lowering both side effects and resource utilization.

These examples reflect how integrated data systems can optimize

patient care and reduce redundant interventions without

compromising quality (49). They also enable context-aware

decision support by aligning terminologies like SNOMED CT

and LOINC with patient records, flagging interactions or missing

clinical documentation (50).

Frameworks like openEHR and ISO 13606 use a dual model

approach that includes reference models for structure and

archetype models for clinical semantics. These models, supported

by HL7 FHIR, form the foundation of ontology-aligned systems

that can interpret and exchange structured clinical data

consistently (51). The canonical ontology model adds a shared

conceptual layer that enables different EHR architectures to

speak a common language, allowing automated reasoning and

intelligent data exchange (52). NHS Digital in the UK utilizes

such models to ensure that care records follow patients across

systems, reducing duplication and improving continuity (53).

4.2 Clinical decision support and AI-driven
diagnostics

Ontologies enhance CDSS by structuring medical knowledge

into logically connected frameworks that AI systems can reason

over. They enable context-aware AI to connect symptoms,

diagnoses, and treatments through explicit semantic links,

thereby improving diagnostic accuracy and personalized care.

Ontology-driven systems support intelligent automation and

reasoning by aligning terminologies across diverse data sources,

such as SNOMED CT, LOINC, and HL7 FHIR. These

integrations reduce errors, identify care gaps, and guide clinicians

in selecting optimal interventions. By improving semantic clarity

and ensuring real-time data alignment, ontologies foster clinical

workflows that are both evidence-based and adaptive to patient-

specific contexts (54).

TABLE 1 Cross-domain applications of ontologies.

Domain Ontology Purpose Application scenarios

Bioinformatics and

genomics

Gene Ontology (GO) (38) Standardize biological terms for functional

genomics and gene annotation.

Cross-species gene function comparison,

annotation of omics data.

Sequence Ontology (SO) (39) Support genomic annotation and integration

of omics datasets.

Protein function curation in GOA, alignment of

clinical and genomic data.

Environmental

sciences

Environment Ontology (ENVO) (40) Standardize environmental data for

geospatial and ecological analysis.

Climate change studies, natural resource

monitoring, pollution tracking.

ENVO in Spatial Data Infrastructures (SDIs) (41) Enable semantic interoperability in spatial

data infrastructures.

Disaster management, environmental

policymaking through unified data integration.

Robotics and

automation

Ontology for Collaborative Robotics and

Adaptation (OCRA) (42)

Support adaptive robotics and real-time

human-robot collaboration.

Industrial robotics, dynamic plan adaptation,

safety reasoning.

A Semantic Technology Approach for Knowledge

Management in E-Government (ASTRO Project

Ontology) (43)

Enhance interoperability and task planning

in robotic systems.

Smart environments, service orchestration,

autonomous decision support.

Education and e-

Learning

Learning Object Metadata Ontology (LOM) (44) Personalize digital learning, structure

tutoring systems, and enable interoperability

across LMS.

Adaptive assessments, personalized feedback, real-

time learning analytics.

Neuroscience Cognitive Atlas (45) Maps mental functions to tasks for use in

cognitive neuroscience research.

Task annotation in fMRI studies, construction of

cognitive concept models, linking behavior with

brain function.

Neuroscience Information Framework

Standardized Ontologies

(NIFSTD) (46)

Provides structured vocabularies for brain

anatomy, functions, disorders, and

experimental methods.

Integration of neuroimaging datasets across

platforms, neuroscience data standardization, and

brain atlas mappings.

Cross-disciplinary

collaboration

European Health Data Space (EHDS) and

European Open Science Cloud - Life Sciences

(EOSC-Life) Frameworks (47, 48)

Facilitate interdisciplinary collaboration and

governance in health and life sciences data.

Continental-scale health data governance, FAIR

data reuse in life sciences.
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Explainable AI (XAI) further builds trust in these systems by

showing how decisions are made. This transparency is crucial in

clinical settings, where trust and accountability are essential.

Addressing data quality and model bias through semantic

structuring also increases clinician confidence in AI-driven

diagnostics (55).

4.3 Genomic and phenotypic data
integration

The Human Phenotype Ontology (HPO) enables AI to connect

clinical traits to genetic causes, supporting early diagnosis and

precision treatment. A widely adopted example is its use in rare

disease diagnostics, where HPO annotations help clinicians

prioritize likely genetic causes based on patient-reported

symptoms (56).

Whole-genome sequencing (WGS) platforms combined with

ontology-based annotation frameworks improve variant

interpretation and treatment decisions (57). By standardizing

phenotypic descriptors, HPO supports data harmonization across

studies, reducing annotation variability and enabling AI systems

to draw consistent insights from clinical-genomic data (34).

4.4 Pharmacogenomics and AI-driven
treatment recommendations

Ontology frameworks such as PharmGKB (Pharmacogenomics

Knowledgebase) and Drug Ontology (DrON) encode drug-gene

relationships in structured vocabularies, enabling AI systems to

process pharmacogenomic knowledge. These ontologies help AI

systems predict optimal drug dosing and identify potential

adverse reactions (58).

A real-world application is CPIC (Clinical Pharmacogenetics

Implementation Consortium), which uses ontology-based rules to

generate treatment recommendations based on genetic test

results. By integrating ontologies with EHR and genomic data,

CPIC delivers precise, evidence-based recommendations tailored

to a patient’s genetic profile (34, 59).

4.5 Patient-specific disease modeling

Ontologies support personalized disease modeling by capturing

complex relationships among clinical symptoms, genetic variants,

and disease progression patterns. Specialized disease-specific

ontologies such as the Disease Ontology (DO) and Orphanet

Rare Disease Ontology (ORDO) offer structured vocabularies

that allow AI systems to assess patient risk profiles more

precisely. These ontologies define standardized terms for disease

subtypes, stages, and comorbidities, which enhances

individualized prognosis modeling.

In clinical practice, ontology-enriched platforms for

neurodegenerative diseases integrate imaging, genomic, and

behavioral data to detect early signs of disease progression. For

example, Parkinson’s disease modeling systems use ontology-

guided inputs to identify subtle symptom changes over

time, improving staging accuracy and treatment response

predictions (34, 58).

4.6 Predictive analytics and population
health management

Ontology-based predictive analytics enable healthcare systems

to anticipate risk and guide preventive interventions. By aligning

structured genomic, lifestyle, and environmental data, these

models support early detection of chronic diseases such as

diabetes or heart failure. For instance, Mount Sinai Health

System in New York implemented an ontology-driven predictive

model to identify patients at high risk of 30-day readmission,

enabling early follow-up and significantly reducing avoidable

hospitalizations (55).

In public health, ontologies drive disease surveillance by

standardizing how conditions, locations, and risk factors are

coded. This allows for faster outbreak detection and supports

targeted health campaigns. Clinicians benefit from real-time

alerts and visual summaries that support early interventions and

risk mitigation strategies (58).

4.7 Geospatial databases in healthcare

Geospatial ontologies bring structure to location-linked health

data, allowing integration of patient demographics, environmental

exposures, and disease patterns. These models support GeoAI,

which applies AI to spatial health analytics for decision-making

in resource planning, disaster response, and disease tracking.

A notable example is the use of Virtual Knowledge Graphs

(VKGs) in regional COVID-19 tracking platforms, which

integrated mobility data, infection rates, and healthcare capacity

to guide containment strategies (26). Ontology-driven GIS

platforms enhance map-based decision tools, offering public

health teams spatial insights that are both contextualized and

updated in real time (60).

5 Ontology-enabled applications in
healthcare AI

Ontologies empower healthcare AI by offering explicit, logic-

based knowledge structures that improve data interoperability,

model accuracy, and informed decision-making. They standardize

medical concepts, align terminologies, and create meaningful

relationships among data points, enabling AI systems to integrate

and reason over diverse datasets such as EHRs, genomic profiles,

and public health records. Beyond clinical information,

ontologies enhance geospatial reasoning and population-level

health analysis through spatial semantics. Additionally, ontologies

are pivotal in enabling secure data governance, supporting

privacy preservation, secure data sharing and patient privacy,
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thus substantially advancing precision medicine and

healthcare innovation.

5.1 Knowledge representation and AI
reasoning

In oncology, AI systems supported by ontologies can analyze

pathology reports, match patient profiles to treatment guidelines,

and flag inconsistencies for clinician review. These real-world

applications rely on structured frameworks for representing

medical knowledge. Ontologies allow AI to interpret clinical data

accurately by embedding formal logic into how conditions,

symptoms, and procedures are related.

According to Hoehndorf et al. (2017), knowledge graphs and

semantic models built on ontologies significantly improve

consistency checks, classification, and deductive inference,

allowing AI systems to uncover hidden patterns within medical

datasets (61). RDF-based semantic knowledge graphs coupled

with inference engines can help AI enforce data consistency and

support reasoning across clinical records.

As emphasized by Chudasama et al. (2023), these knowledge

structures improve AI interpretability, enabling context-aware

recommendations and bridging gaps between clinician knowledge

and AI-generated insights (62). By grounding AI decisions in

formal ontologies, models become more transparent, traceable,

and aligned with medical logic. This structure facilitates rule-

based diagnostics and generates clinically relevant explanations,

ensuring trust in AI-driven decision-making. Ontologies enhance

AI reasoning by structuring clinical knowledge into consistent,

computable logic.

5.2 Natural language processing (NLP) in
healthcare

Ontology-driven NLP transforms unstructured clinical text

into standardized, machine-readable formats that enhance AI

performance and consistency. Unlike traditional AI systems that

typically work with structured datasets, natural language

processing (NLP) tools, particularly large language models

(LLMs), are uniquely capable of extracting meaning from

unstructured clinical text, such as discharge summaries, referral

letters, and observational notes, and converting it into

computable, interoperable formats.

Ontology-based NLP enhances semantic interoperability and

reduces ambiguity in medical terminology by aligning extracted

concepts with structured vocabularies like SNOMED CT and

UMLS. A typical case is the term “cold,” which may refer to

either a viral illness or a sensation of low temperature. Ontology-

driven systems resolve this by evaluating the clinical context and

linking the term to the appropriate concept in SNOMED CT

(63–65). This is essential for processing physician notes,

discharge documents, and patient communications (65, 66). Real-

world implementations include AI-powered chatbots and voice-

enabled assistants that use ontology-driven NLP to interpret

symptoms, retrieve relevant medical facts, and document clinical

encounters in real time, which reduces the manual entry burden

for providers (62, 67). Fareedi et al. (2025) emphasized the role

of ontologies in managing dialogue context and intent

recognition in medical chatbot systems. By focusing on language-

specific ambiguities and terminology alignment, ontology-driven

NLP allows downstream AI tools to function more effectively,

supporting real-time documentation, entity recognition, and

decision-making across varied clinical environments (67).

Ontology-driven NLP transforms clinical text into structured

data, enabling real-time AI support.

5.3 Predictive analytics and machine
learning

Ontologies improve predictive analytics and machine learning

by structuring biomedical data, enhancing diagnostic precision,

optimizing early detection, and personalizing treatments. By

standardizing inputs across clinical, demographic, and behavioral

datasets, ontologies reduce data noise and improve the reliability

of predictive models (68, 69). Structured ontology-driven

analytics identify high-risk patients, enable early interventions,

and optimize population health management (70). Their role

extends to model explainability and bias reduction by embedding

clinically validated relationships into machine learning pipelines

(71). Standardized ontologies improve predictive accuracy and

support early, personalized interventions.

5.4 Explainable AI and trustworthy systems

Explainability is crucial for fostering trust, transparency, and

regulatory compliance in AI-driven healthcare. Ontologies

enhance explainability by structuring knowledge representations

that increase model interpretability, aligning AI decisions closely

with human reasoning. Neuro-symbolic AI approaches integrate

ontologies with deep learning, enhancing both accuracy and

interpretability by embedding formal domain knowledge (72).

Semantic reasoning, supported by OWL2 description logics and

SWRL (Semantic Web Rule Language), allows AI systems to

perform automated inference consistent with domain expertise,

further improving explainability (73, 74). Additionally, structured

ontology-driven methodologies reduce biases and enhance

fairness across diverse patient populations. Provenance tracking

and semantic knowledge graphs support auditability and

accountability, thus reinforcing trust in AI-generated clinical

recommendations and regulatory compliance (75, 76).

Ethical and regulatory standards, such as the EU Artificial

Intelligence Act, highlight the necessity for interpretable,

accountable AI models in healthcare. Ontologies support this

need by encoding explicit rules and traceable data relationships,

which facilitate transparency in automated predictions. This

capability aligns with legal frameworks such as the General Data

Protection Regulation (GDPR) and the Health Insurance

Portability and Accountability Act (HIPAA) (77, 78). Ontologies
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strengthen explainability, fairness, and accountability in AI-driven

healthcare decisions by providing traceable, interpretable logic that

supports compliance with evolving regulatory standards.

5.5 Multi-modal data integration

Ontology-driven AI significantly enhances multi-modal data

integration by systematically organizing heterogeneous healthcare

datasets, including clinical notes, genomic sequences, imaging

scans, and phenotypic observations, into unified, interoperable

formats. Ontologies act as the semantic glue that aligns these

data types by mapping them to shared vocabularies and

hierarchical relationships. For example, ontological standards

such as SNOMED CT and HPO enable consistent tagging of

diagnoses and phenotypes, while structured imaging metadata is

integrated using standard terminologies. This allows AI models

to analyze these modalities together for richer clinical insights.

A real-world application can be seen in oncology platforms,

where SNOMED CT-coded diagnoses, radiology findings, and

HPO-based phenotype annotations are combined to build

comprehensive patient profiles that support AI-driven treatment

recommendations (73, 79). FAIR principles further improve the

accessibility and reusability of multi-modal datasets, supporting

robust decision-making that aligns with data governance

standards (77). Semantic knowledge graphs derived from these

ontologies strengthen integration by bridging clinical, imaging,

and molecular data. This approach drives innovation in precision

medicine and personalized healthcare. As multi-modal AI

continues to evolve, ontology-driven frameworks are likely to

remain essential for enabling real-time, adaptive, and precision-

guided healthcare interventions. Semantic ontologies unify

diverse datasets, powering adaptive, precision-guided

clinical insights.

6 Challenges and limitations

The development and implementation of ontologies in

healthcare face a range of practical and conceptual challenges.

These include issues related to scalability, interoperability,

domain knowledge representation, ethics, and version control.

Table 2 summarizes these key challenges, illustrating real-world

examples and outlining evidence-based strategies to address them.

7 Enhancing healthcare ontologies for
global integration

The integration of healthcare ontologies is essential for

achieving semantic interoperability, data standardization, and

cross-border collaboration. Leveraging AI-driven automation,

modular architectures, and governance frameworks supports

scalable, adaptive, and internationally aligned healthcare systems.

TABLE 2 Key ontology challenges and strategies in healthcare.

Domain Limitation description Real-world case Suggested tools and strategies

Complexity and

scalability

Large-scale healthcare ontologies require

significant computational resources and can

impact system responsiveness when scaling.

Scaling without disrupting existing logic or

introducing inconsistencies is challenging (80).

Integrating disease symptoms and treatment

pathways across multiple hospital systems

requires scalable ontology design (81).

Use frameworks like DOGMA to separate core

ontology elements from domain-specific

customizations for better scalability (82).

Interoperability and

standardization issues

Incompatibilities in structured data formats,

rapidly evolving terminologies, and fragmented

domain standards disrupt seamless data

exchange across healthcare systems. Integrating

well-defined patient-generated data with

established clinical standards such as HL7 FHIR

and SNOMED CT remains a complex and

ongoing challenge (83, 84).

Integrating wearable device data with EHRs

poses a major challenge in harmonizing patient-

generated and clinical records (85).

Employ shared canonical models, apply

Apache Spark for real-time ontology

harmonization, and promote unified

terminologies through global collaboration.

A component-based framework and self-

sovereign identity (SSI) enhance alignment,

semantic interoperability, and secure data

exchange (86, 87).

Fuzzy ontology in

semantic

interoperability

Uncertain or probabilistic clinical inputs, such

as vague symptoms, incomplete diagnoses, or

imprecise terminology, are poorly handled by

deterministic ontologies. This limitation affects

semantic interoperability across distributed

systems (88).

A fuzzy ontological model was developed to

align heterogeneous healthcare terminologies

and enable better data integration across

SNOMED CT, HL7 FHIR, and LOINC (89).

Apply fuzzy logic to enhance semantic

matching, resolve ambiguity in terminology,

and support flexible interoperability across

evolving healthcare standards (89).

Domain expertise and

knowledge

representation

Difficulty in capturing tacit medical knowledge

and achieving expert consensus leads to

ambiguity and inconsistency in ontology design.

Variability arises from differing clinical

interpretations (90, 91).

The Cancer Care Ontario project combined

physician input with structured clinical

knowledge to enhance pathways in oncology,

including breast cancer treatment planning and

follow-up care coordination (92).

Implement AI-supported frameworks to

distinguish between objective data and expert

judgments, ensuring flexibility and consistency

(93).

Ethical and privacy

concerns in healthcare

ontologies

Data privacy risks, algorithmic bias, and

consent management issues pose challenges in

ethically deploying ontologies in healthcare

(94).

Unfair treatment recommendations due to

biased data highlight the need for fairness-aware

machine learning (95).

Adopt SSI frameworks, strong encryption, bias

detection tools, and XAI methods for

transparent and fair systems (87).

Maintenance and

versioning challenges

Frequent updates risk redundancy and semantic

conflicts without structured governance and

version control mechanisms (96).

SNOMED CT’s biannual update process ensures

backward compatibility through community

review and validation pipelines (97).

Use structured governance, validation tools,

and stakeholder collaboration to manage

updates while maintaining compatibility (98).
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Ensuring multi-domain compatibility and collaborative knowledge

representation will drive innovation in precision medicine, clinical

decision support, and biomedical research.

7.1 Collaborative ontology development

Developing robust healthcare ontologies requires collaboration

among clinicians, researchers, informaticians, and policymakers,

ensuring accurate and globally meaningful knowledge

representation. International initiatives, including SNOMED CT

adoption, HL7 FHIR integration, and multinational ontology

projects, play a crucial role in harmonizing healthcare data

globally (99). Open-source platforms like BioPortal, OpenEHR,

and Linked Open Data (LOD) further facilitate data accessibility,

transparency, and innovation, fostering collaborative knowledge

sharing (100).

Cross-institutional alignment, enabled by advanced methods

like Multiview Incomplete Knowledge Graph Integration

(MIKGI), significantly enhances interoperability across diverse

healthcare environments (101). However, persistent barriers such

as regional healthcare policies, inconsistent terminology

mappings, and large-scale accuracy management continue to

pose significant challenges. Overcoming these requires

internationally coordinated governance frameworks, automated

ontology translation tools, and continuous policy alignment.

7.2 AI-driven ontology automation

Advancements in AI and NLP enhance ontology development

by significantly reducing manual efforts in ontology curation,

enabling automated updates, error detection, and efficient

semantic alignment. Traditional manual ontology curation is

resource-intensive and prone to errors. NLP-driven approaches,

including ontology learning from clinical texts and named entity

recognition (NER), automate concept extraction, synonym

identification, and hierarchical classification (102). AI-assisted

tools employing deep learning, neural embeddings, and ontology

alignment frameworks efficiently detect inconsistencies and

improve semantic alignment (103). However, despite their

promise, these AI-driven methods come with limitations. Models

may generate hallucinated concepts, introduce misclassifications,

or perpetuate bias from training datasets, especially in sensitive

clinical contexts. Balancing automation with expert validation is

therefore critical. AI-driven semantic mapping capabilities, when

combined with human oversight, can enhance data

harmonization while preserving accuracy and improving ontology

adaptability to evolving medical knowledge (10). Future research

should focus on developing adaptive ontology frameworks

capable of autonomous evolution in response to emerging

healthcare data demands. AI-assisted ontology learning

approaches and automated semantic alignment frameworks are

crucial for maintaining domain-specific adaptability and real-

time update management.

7.3 Standardization for global
interoperability

Standardized ontologies establish a structured foundation for

data exchange, ensuring AI-driven healthcare solutions remain

interoperable and efficient. Aligning healthcare ontologies with

international standards such as HL7 FHIR, SNOMED CT,

LOINC, and ICD supports consistent medical data representation

and enables seamless data exchange across providers and

research networks (104). However, key interoperability challenges

persist, including semantic mismatches, hierarchical

misalignments, and terminology inconsistencies between

standards such as ICD-10, ICD-11, and SNOMED CT. These

discrepancies complicate integration across domains and increase

the risk of misinterpretation.

Efforts from global governance bodies such as HL7

International, ISO TC 215 Committee, WHO Digital Health

Technical Advisory Group, and the Joint Initiative Council for

Global Health Informatics Standardization are working to align

ontologies through harmonized terminologies, formal data

models, and coordinated updates. Advances in multi-view

alignment, such as BERT-based models and graph neural

networks, also improve semantic reconciliation and terminology

mapping (105). Ontology standardization is of utmost

importance as it ensures consistent data interpretation and

exchange across various healthcare systems, regardless of the

source or format. This harmonization promotes interoperability

and facilitates compliance with dynamic regulatory frameworks,

such as GDPR and HIPAA (106). AI-driven compliance

monitoring and semantic reconciliation frameworks are essential

to manage these complexities effectively. AI-enabled compliance

tools and ontology-based reconciliation systems are expected to

play an increasingly vital role in managing these complexities

and maintaining global interoperability.

7.4 Scalability and adaptability of ontologies

As healthcare data grows in volume and complexity, ontology

frameworks must scale efficiently and adapt to evolving medical

knowledge. Static ontologies often fall short when faced with

rapid developments in fields like genomics, pharmacology, and

wearable health data. Modular ontology architectures, which use

core structures extended through independent but compatible

modules, support flexibility, reuse, and more efficient updates.

For instance, Interface-Based Modular Ontology Formalism (IBF)

helps tailor ontologies to specific clinical domains while

maintaining overall coherence (107). In real-world settings,

multi-domain integration that combines clinical records with

omics and sensor data is essential for precision medicine.

Projects that use FHIR-based ontologies and AI-driven

reconciliation frameworks demonstrate how adaptable ontologies

improve semantic interoperability and facilitate consistent data

exchange across systems (108). However, maintaining continuous

updates while ensuring backward compatibility remains a key
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challenge, especially when integrating legacy systems. Structured

versioning protocols, AI-assisted change management, and

automated ontology migration tools help address these issues

(109). As a result, scalable and adaptable ontologies are critical

not just for technical integration but also for enabling responsive,

data-driven care models that improve outcomes across

healthcare settings.

7.5 Limitations

This perspective reflects a targeted exploration of the literature

rather than a comprehensive systematic review. The selection of

sources was based on relevance to ontology-driven applications

in AI-enabled healthcare, which may not fully represent all

relevant literature, as studies outside the chosen databases

(PubMed, Scopus, and Google Scholar) were not included.

Although the primary focus was on studies published between

2010 and 2025, some earlier seminal works were included to

provide historical context, which may slightly broaden the

timeframe beyond the initial prioritization. Additionally, this

work uses a conceptual grouping of recurring themes to

synthesize insights, rather than applying quantitative synthesis or

formal quality assessment, which may limit the reproducibility

and generalizability of findings. These limitations are inherent to

the perspective format, which aims to present key insights and

guide future research directions rather than provide an

exhaustive or statistically validated review.

8 Conclusion

Ontologies provide the structural backbone for integrating AI

into healthcare by supporting semantic interoperability,

enhancing decision-making, and enabling scalable, data-driven

systems. As healthcare data grows in complexity, the importance

of standardized, adaptable frameworks becomes increasingly

clear. This perspective underscores the significance of ontologies

in enabling AI-driven analytics, personalized care, and seamless

data exchange while addressing key challenges such as

standardization, governance, and scalability.

Looking ahead, research should prioritize the development of

adaptive ontologies capable of evolving with changing healthcare

demands and minimizing the burden of manual updates. Future

research should also explore approaches that enhance privacy

and prioritize patient-centered care in AI-driven systems. The

synergy between ontologies and AI is vital for building

transparent, explainable, and trustworthy healthcare systems. By

fostering interdisciplinary collaboration and applying intelligent

automation, ontologies can enable ethically grounded, scalable,

and personalized healthcare innovations. Importantly, this

perspective underscores the reciprocal relationship between

ontologies and AI, highlighting how ontologies empower AI-

driven applications while AI advances ontology evolution

and maintenance.
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