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Nowadays, it is a common knowledge that scholars from different disciplines, regardless 
of the specificities of their research domains, can find in network science a valuable ally 
when tackling complexity. However, there are many difficulties that may arise, starting 
from the process of mapping a system onto a network which is not by any means a trivial 
step. This article deals with those issues inherent to the specific challenge of building 
a network from archeological data, focusing in particular on networks of archeological 
contexts. More specifically, we address technical difficulties faced when constructing 
networks of contexts or sites where past interactions are inferred based on some kind 
of similarity between the corresponding assemblages (Archeological Similarity Networks 
or ASN). We propose a basic characterization in formal terms of ASN as a well-defined 
class of networks with its own specific features. Throughout the article, we devote special 
attention to the problem of quantifying the similarity between sites, especially in relation 
with the ubiquitous issues of data incompleteness and the reliability of the inferred ties. 
We argue that, generally speaking, human past studies are quite disconnected from the 
rest of interdisciplinary applications of network science and that this prevent this field 
from fully exploiting the potential of such methods. Our goal is to give hints about which 
are the interesting questions that archeological applications put on the table of network 
scientists. We suggest that such questions need to be translated into formal terms in 
order to be properly addressed within the framework of interdisciplinary collaborations. 
At this aim, a computational experiment is devised as an illustrative example of how 
simple models can help the cause.

Keywords: network science, archeological record, interdisciplinary research, network construction,  
similarity networks, data incompleteness

1. iNTRODUCTiON

Starting from the 1960s, among the majority of active scientists it was becoming clear that “the ability 
to reduce everything to simple fundamental laws does not imply the ability to start from those laws 
and reconstruct the universe. [… Such a] hypothesis, breaks down when confronted with the twin 
difficulties of scale and complexity” (Anderson, 1972). The behavior of systems made up by many 
interacting elements—i.e., complex systems—is not to be understood in terms of a simple extrapola
tion of the properties of a few components. It is not possible to explain an organizational level only in 
terms of the lower ones. At each scale, entirely new properties appear, and the understanding of the 
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FigURe 1 | Network science. Ideally, network theorists devise analytical tools 
that network practitioners apply to their data, while network practitioners 
generate new data that theorists use for testing and inspiring new 
techniques. However, in the real world, things are more complicated. Not all 
the data enter in this cycle, data and tools undergo ad hoc filtering and 
adaptations, and theorists and practitioners are not always perfectly 
distinguishable roles.
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emerging phenomena requires research which is as fundamental 
in its nature as any other. Therefore, it seems clear that, more than 
details about the nature of the components, what we need is a 
map of the interactions. Complex systems are in general suitably 
described through their networks of contacts, that is, in terms of 
nodes (representing the system’s components) and links (stand
ing for their interactions), which allows to catch their essential 
features in a simple and general representation.

Coral reefs, brains, the airports, the World Wide Web, actors, 
and actresses that have been in a movie together have very little 
in common except for the fact that they all can be regarded as 
systems composed by a large number of interconnected elements. 
Nonetheless, there is a lot we can learn about each one of these 
things by mapping them onto a network and neglecting about 
the individual properties of their parts (Buchanan, 2003; Watts, 
2004). Nowadays, it is indeed a common knowledge that scholars 
from different disciplines, regardless of the specificities of their 
research domains, can find in this approach a valuable ally when 
tackling complexity.

However, there are many difficulties that may arise. The map
ping process itself is not a trivial step. Data do not come in network 
form by themselves. In principle, depending on what the question 
is, researchers would choose the most appropriate network rep
resentation. Anyhow, if those carrying out the study are network 
scientists (experts in the technique), they may not know enough 
about the details of the information embedded (or discarded) in 
the data. On the other hand, if they are the experts who collected 
the data, but do not know much about the technicalities of network 
science, their choice may be influenced by the need to “keep it 
simple.”

In this article, we deal with those issues inherent to the 
particular challenge that is building a network from archeologi
cal data, notoriously incomplete and fragmentary. In the first 
section, we expose a brief discussion on the peculiar situation 
of history and archeology among the fields to which network 
science has been applied. We argue that, generally speaking, 
human past studies are quite disconnected from the rest of 
interdisciplinary applications and that this prevents them from 
fully exploiting the potential of network science methods. Then, 
after an overall description of the issues at hand (Section 3),  
we review the literature about the most common type of 
archeological networks, i.e., networks of archeological contexts 
where the corresponding assemblages are used to infer past 
interactions (Section 4). More specifically, we address technical 
difficulties faced when constructing networks of archeological 
sites where links are established based on some kind of simi
larity that takes into account the material evidences found in 
those sites, hereafter Archeological Similarity Networks or 
ASN. We propose a basic characterization in formal terms of 
ASN as a welldefined class of networks with its own specific 
features. Our goal is to give some hints about how the interest
ing questions that archeological applications put on the table of 
networks scientists could be formalized in order to be properly 
addressed within the framework of interdisciplinary collabora
tions. At this aim, a computational experiment is devised as an 
illustrative example of how simple models can help the cause 
(Section 5).

Throughout the article, we devote special attention to the 
problem of quantifying the similarity between sites, especially in 
relation with the ubiquitous issues of data incompleteness and the 
reliability of the inferred interactions.

2. AT THe PeRiPHeRY OF NeTwORK 
SCieNCe

Ideally, network science advances through the combination of  
two complementary research approaches. The first one corres
ponds to when network scientists, looking at networks as abstract 
mathematical objects, identify a general question or problem 
and develop a method for addressing it. The second one is what 
researchers from any other field do when, trying to extract 
information from some data, find that the limitations of other 
existing methodologies prevent them from reaching their goal 
and come to the conclusion that adopting a network science 
approach may be the solution. At the same time, they generate 
new networkdata, that is, refined information encoded in the 
form of nodes and links suitable to inspire the design of a new 
network tool or to be used as benchmark (Figure 1). In the first 
case, a “universal toolbox” (or theory) grows by abstracting from 
individual case studies. In the second one, the understanding of 
a particular case study (application) advances by applying the 
appropriate universal tool, while the theory building process is 
indirectly fed (new data).

Although this perfectly balanced way to progress may look 
meaningful and elegant, it is nothing more than a very rough 
simplification of how things actually work. There exist many 
factors that complicate the real scenario, affecting the different 
application fields in a very uneven way and, we would argue, 
pushing disciplines such as history or archeology to the periphery 
of applied network science.

The first factor is a semantic issue. It is not a trivial task to 
translate into the specific language of each discipline questions 
that are expressed in terms as general and abstract as those 
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normally used in network science. Unfortunately, the complexity 
of the task increases somehow proportionally to the distance 
between the discrete, often binary, quantitative language of 
network science and the language in which raw information 
is expressed. Data from humanities are usually the hardest to 
translate into mathematical terms, and history and archeology 
are no exception.

Additionally, almost all the analytical techniques have been 
developed starting from available network data—that is, publicly 
accessible digital data—whose features have shaped the ques
tions that network scientists considered worthy to be addressed. 
Therefore, if data of a new case study or research field are too 
different in nature from those studied till that moment, the appro
priated technique may not have been invented yet.

Indeed, despite their generality, not all network representa
tions are the same. In some case it is crucial to retain additional 
information beyond the list of existing connections. For instance, 
nodes may be entities located in a geographical space (spatial 
networks (Barthélemy, 2011)) and the relations under study may 
be spatial in nature. Then it is usually of fundamental importance 
to take into account the node coordinates in order to compute 
pair distances to be associated to the connection as costs. In some 
other cases, nodes represent objects that belong to different classes 
(e.g., affiliation networks (Borgatti and Halgin, 2011) of people 
taking part in social events or scholars coauthoring academic 
papers) and can only connect with elements of the other class 
(bipartite networks (Holme et al., 2003)). In these and many other 
analogous situations, data specificities cannot be disregarded and 
the definitions of network metrics need to be properly modified. 
Otherwise, tools developed to deal with data that do not have the 
same properties may lead to erroneous results.

The first time a new class of data is introduced, it is typically 
up to the researchers working on the case study to adapt the 
existing techniques to the novel features of their data. They may 
publish both their dataset and the adapted analytical tools, so that 
people with the same problem are able to apply the new method, 
perhaps improving it, while publishing new data of the same 
class. In this way, techniques evolve. Different scholars contribute  
to perfect them, testing each new version on a growing number 
of benchmark datasets, finally standardizing the variant—or  
variants—that the community recognizes as the most useful.1

However, quite often networks practitioners prefer to design 
a way to preprocess their data in order to make existing analytic 
tools suitable to be applied, occasionally losing part of the relevant 
information. In this case, usually little to no attention is devoted 
to reporting the methodological details and complete raw data 
are rarely published. As a consequence, any new case study with 
similar data issues is like the first one and needs to be treated 
from scratch. Researchers facing similar difficulties benefit from 
the efforts of others only in terms of suggestions and inspirations, 
but no real technical innovation is triggered and most of network 
science potential gets wasted. This happens almost systematically 
in the case of data from archeological excavations. Indeed, among 

1 The case of Local e Global efficiency measures on networks can be taken as a 
paradigmatic example (Latora and Marchiori, 2001; Vragović et al., 2005).

the networks used as benchmarks for testing new techniques, 
there are networks constructed from data as diverse as airports 
and flights, web pages connected by hyperlinks, physical contacts 
between proteins or data about social grooming behavior among 
primates and many more (Lancichinetti et  al., 2008). None of 
them have been published in history or archeology journals, not 
even the one whose nodes are Florentine families of the fifteenth 
century (Padgett and Ansell, 1993) which was built by political 
scientists meddling with history. Although an in depth analysis 
of the reasons behind this tendency is beyond the scope of the 
present work, there are at least four elements that are worth 
mentioning:

•	 It can be partially blamed on the relative novelty of the appli
cation of formal network methods to the field. Even though 
it is beyond argument that the number of articles on network 
applications appeared on archeology journals has been 
increasing continuously during the last decade (Collar et al., 
2015), the fact that a large majority of these were published 
quite recently, when the big hunt for benchmarks was almost 
over, may have had a negative impact on the diffusion of these 
network datasets.

•	 Moreover, it is not a common practice among researchers in 
humanities to publish datasets along with the results, in their 
articles or in repositories, and therefore such networks have 
very few chances to circulate.

•	 On the other hand, recent years have witnessed a substantial 
new movement in network research, with the focus shifting 
away from the analysis of the properties of individual nodes 
or edges within small systems to consideration of the statistical 
and dynamical properties of networks (Strogatz, 2001; Albert 
and Barabasi, 2002; Newman, 2003; Boccaletti et  al., 2006; 
Costa et al., 2007). Such a change of interest pushed away the 
most common archeological research questions from the main 
trends in network science.

•	 Finally, the fourth element—probably the most important 
one—is the peculiar nature of archeological networks and their 
construction. As extensively discussed in Lemercier (2010), 
the resistance offered by raw historical or archeological data is 
so difficult to overcome that it is almost impossible for network 
scientists to build networks by their own. To build a network 
from raw archeological record is challenging because, in gen
eral, one has to face all the typical issues of the other classes 
of data at once. At a very general level, we would suggest that 
the origin of the difference lies in the way of collecting data. 
Normally, natural sciences and, to a less extent, social sciences 
do it by carrying out controllable and repeatable experiments, 
while this is not possible for historians and archeologists. 
Therefore, issues that researchers from other fields have to face 
more or less sporadically, archeologists and historians have to 
deal with all the time: heterogeneous sources, incompleteness, 
uncertainty, definition of reliable proxies for interactions that 
are never directly measurable, and so on.

Summarizing, archeologists started applying formal network 
methods quite recently and do not publish their dataset very 
often, hence their network data do not circulate as much as others. 
In any case, their raw data are intrinsically difficult to map onto 
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networks and network scientists would not take the challenge to 
use them by themselves. On the contrary, data already converted 
into simple networks—i.e., containing no other information 
besides a list of links—do not retain any of the peculiarity of the 
original archeological data and have a somehow loose and not 
always transparent relationship with the empirical evidences 
they are derived from. Anyhow, fundamental research on net
work building from new typologies of data and network metrics 
redefinition is nowadays mostly devoted to prevent information 
waste when dealing with huge systems about whom we know 
almost everything.2

All these factors make archeological applications quite a 
separate branch within applied network science, isolated from 
the positive feedback loop described at the beginning of this 
section. No network technique inspired by typical issues faced 
by archeologists has been devised ever and no systematic char
acterization of such networks has been carried out up to now.

3. ASN: NeTwORKS iNFeRReD FROM 
THe ARCHeOLOgiCAL ReCORD

In most archeological networks, nodes are sites3 linked through 
common attributes, that is, any kind of archeological evidence. 
Similarities in specific traits of the material culture are understood 
as proxy of interactions, such as economic exchanges, cultural 
affinity, or social proximity. There exists a shared underlying 
general hypothesis: the more the contexts resemble each other, 
the stronger was their past interaction. Hence, it makes sense 
and it is useful to label such networks as Archeological Similarity 
Networks (ASN).

In order to outline the most common difficulties faced when 
building ASN, let us summarize here the basic ingredients for a 
proper network representation of a system:

 1. A definition of such system that allows to identify its bounda
ries, separating what is within from what is outside.

 2. A definition of the elemental parts that will constitute the 
nodes of the network.

 3. A definition of what the connections are supposed to mean 
and a welldefined way to determine which ones do exist and, 
in some cases, how strong they are.

Depending on the circumstances, each one of these three 
ingredients may present different challenges. We start discussing 
some ambiguities in the concepts and definitions of borders and 

2 A paradigmatic example in this sense is the development of the multilayer 
framework. The basic idea is that there exists a richness in terms of diversity of 
connections that can be exploited by adopting a new, more detailed representation: 
“The way we have been dealing with this diversity of connections implies that all 
the aforementioned relations (personal, social, professional, etc.) are projected into 
a single layer, but indeed, not all processes can be simulated on such a simpli
fied aggregated network of contacts.” Such framework is being developed for 
understanding “modern cyber, social and physical systems such as online social 
networks, transportation systems, metabolic and regulatory networks, etc.,” i.e., 
huge systems about which an almost unlimited amount of information is available 
(http://cosnet.bifi.es/networktheory/multiplexnetworks/).
3 Although they can also be parts of a site (Mol and Mans, 2013) or groups of sites 
(Mizoguchi, 2009, 2013).

nodes that may represent a problem in network construction in 
general, and ASN in particular.

3.1. A Matter of Borders
The first ingredient may seem trivial, but it is not so infrequent 
that the system under consideration is indeed a part of a larger 
one with blurred borders. Such borders can be conceptual, spatial, 
or temporal, being the last two situations especially relevant for 
historical and archeological case studies.

Conceptually blurred borders are an ubiquitous issue: if we are 
interested in the behavior of a specific class of objects, should we 
exclude all the individuals who do not belong to this class? What 
happens with the interactions between the elements in our system 
and those outside of it?4

The typical issue related to spatial borders concerns the inter
actions with what is outside such borders. In a network where 
nodes represent settlements, the decision about where to draw the 
frontiers of the system can be crucial. Even if the system under 
study is a political entity with welldefined geographic limits, it 
can nonetheless be unwise to cut out everything that does not 
belong to that entity. Imagine that one is interested in knowing 
which settlements the most important ones according to some 
network analysis measure. Disregarding everything that is outside 
the borders will make the node representing an important city 
connecting two regions as peripheral as any small village close 
to a deserted area. In a network made up of many nodes, from 
thousands to millions, nodes at the border represent a very small 
fraction and this kind of issues are just unimportant nuisances. 
On the contrary, when dealing with small systems, issues related 
to spatial borders need to be carefully tackled.

Additionally, establishing limits at the temporal dimension 
also give rise to some challenging questions. The conceptualiza
tion of such issues has been addressed from a different perspec
tive in Lemercier (2015). From a network science viewpoint, 
timechanging systems display a rich phenomenology. Nodes 
can be created and destroyed; sometimes one splits into two, 
sometimes two merge into one. Connections appear and disap
pear; links may increase or weaken their strength. It is difficult to 
capture meaningful information in a simplified manner. Imagine 
someone trying to take a picture of something that is moving. 
The photographer surely will choose a fast shutter speed. But 
the temporal resolution of archeological data is limited. It is like 
being in a dark place, unable to see subject clearly. The challenge 
is how to find the best tradeoff between a blurred and a dark 
image, that is, to select the appropriate time window when trying 
to reconstruct an evolving network.5

3.2. The Choice of Building Blocks
The definition of the nodes may represent a real difficulty if there 
are more than two scales (local and global) not clearly separated 
or when the spatial resolution is not homogeneous enough. 
Archeological findings in some cases can be naturally grouped 

4 For a more in depth discussion of this topic within sociology, see Laumann et al. 
(1991).
5 We thank Sergi Lozano for this enlightening metaphor.
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together depending on the context they belong to (buildings, 
military camps, villages, etc.), but they may also be scattered 
over areas where no other remains have been found. Is it better 
to discard such findings or should we aggregate them according 
to some criterion?

It is worth noting that not only spatial nodes face these dilem
mas. In order to quantify the similarity between assemblages, a 
necessary previous step is the discretization of the archeological 
record into categories. When can we say that two sites share the 
same cultural trait? When are two artifacts similar enough to be 
considered an evidence of the same trait? If we are considering 
amphoric types or ceramic compositional groups, how are we sup
posed to deal with geographic variations or imitations? Basically, 
it is the issue of discretizing a nearly continuous spectrum of 
differences. Cluster analysis algorithms can be helpful to group or 
classify objects based on their individual properties. Alternatively, 
it is also possible to accept different hypotheses, defining for 
each of them a different set of nodes and, consequently, different 
networks. Hopefully, we will find properties that are shared by a 
large majority of such networks, thus providing information that 
can be regarded as reliable.

4. QUANTiFYiNg SiMiLARiTieS TO iNFeR 
CONNeCTiONS

Each one of the issues discussed in the previous section has been 
addressed by a number of authors applying network science tech
niques to archeology but also in many other contexts. Setting the 
limits of systems and their subparts is a necessary step to progress 
in almost any field of knowledge and it is increasingly common 
to perform such tasks by means of quantitative methods in order 
to minimize arbitrariness and subjectivity.

On the contrary, determining which connections do exist 
between the elements of the system under study is the most defin
ing issue of formal network science applications. It is therefore to 
this last aspect that we will devote greater attention.

As already mentioned, in ASN links are established based 
on the presence of common traits in the material culture. The 
archeological record needs to be discretized into categorical 
attributes that can be ceramic compositional groups, architec
tonic elements or techniques, stamps on bricks or amphorae, or 
any other distinctive features. Then each context is characterized 
by the presence/absence of some of such categorical attributes 
and by their abundance. These networks are hence originally 
bipartite: as in affiliations networks, there are two classes of nodes, 
the archeological contexts and the categorical attributes. Contexts 
are connected only with attributes, i.e., attributes that are present 
in the corresponding assemblages, and vice versa, attributes are 
connected to the sites where they have been found. In principle, 
as for scholars collaborating in academic publications (Newman, 
2001) or jazz musicians playing in the same band (Gleiser and 
Danon, 2003), one may put a link between two nodes of the same 
class if they are connected with the same node of the other class.

Nevertheless, ASN have a peculiar feature that makes them 
different from normal affiliation networks. Links in bipartite 
networks are usually binary: They exist or do not exist, an 
author is or is not in a certain article, a person participated or 

did not participated in a given social event. There is no value 
(weight, strength, or cost) associated to such connections.6 
On the contrary, this is not the case for archeological sites. 
Categorical attributes, besides being either present or absent in 
a given assemblage, have frequencies that naturally determine 
the strength of the link. We can thus state that ASN are spatial 
networks derived as the onemode version (projection) of 
weighted bipartite networks. Whether and how to retain infor
mation about the site locations and the relative abundances of 
categorical attributes when building an ASN is, in our opinion, 
the real “network science” issue at the core of applications in 
archeology.

When it comes to materialize resemblances among a set of 
entities into connectivity patterns, it is mainly the question one 
wants to address what determines which aspects and data are 
to be included, as well as their relative importance. Depending 
on the specific conditions of the research, such crucial task can 
be carried out either through qualitative reasoning, combining 
information from heterogeneous sources, or by applying some 
similarity metric. If the system under study is small and include 
only a reduced number of sites, qualitative arguments based on 
a deep knowledge of the domain is often a natural choice. For 
instance, Mizoguchi’s studies (Mizoguchi, 2009, 2013) establish 
links between ten regional entities whenever the author found 
archeologically recognizable similarities in pottery styles and 
mortuary traditions. Nodes are linked if one or more kinds of 
stylistic traits are common to both of them, without need for any 
formal classification of such data into categorical attributes. The 
resulting networks have unweighted links (binary network) and 
can be regarded as an unimodal projections of bipartite networks 
only in a very loose or metaphorical sense.

The work of Emma Blake somewhat resembles Mizoguchi’s. 
Blake also deals with a small system, in this case a set of eighteen 
settlements from preRoman westcentral Italy (Blake, 2013). 
Interactions are inferred by means of the copresence of identi
cal types of rare objects and imports, subject to a condition of 
geographic proximity. The author’s interest lies in direct interac
tions, thus excluding longrange connections that would require 
intermediate stops in a hypothetical travel. Instead of considering 
the connections as weighted with a traveling cost, Blake filters 
data according to a spatial criterion. Additionally, for reasons 
inherent to the case study, she discards common pottery eluding 
the necessity to deal with categories and frequencies of artifacts’ 
typologies. This approach allows to build a simple network to 
which simple analytic tools can be applied. Links are not weighted 
and nodes have no geographical coordinates, but the connectivity 
pattern embeds information about both relative node positions 
and the relevance of copresences thanks to the ad hoc filtering 
process. Filtering is an often necessary step for authors that make 
the choice of building a binary network. However, any criterion 
adopted for discarding some classes of data or longrange con
nections implies a degree of subjectivity and can be considered, 
to a certain extent, necessarily arbitrary.

6 There are a few exceptions, such as recommendation networks (Zhou et al., 2007) 
and ecological (e.g., mutualistic) networks (Rezende et al., 2007).
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An example of the opposite choice can be found in the 
articles by Shawn Graham (2006). Even though his network is 
not constructed using material culture to infer relations among 
sites, difficulties are analogous to those faced by other authors. 
Graham connects single pieces of evidence (bricks) as a function 
of shared attributes, namely, find spots, stamps and fabrics. The 
starting point is technically a twomode network for each attrib
ute, composed by a set of individual bricks on one hand, and the 
nominal values of the attributes on the other. It is explicitly argued 
that, unless the metrics are specifically designed for bipartite data, 
it is preferable to use a projection instead. Therefore, a projected 
network onto the set of bricks is made for each attribute and then 
the totality of connections is considered. No filter is applied and 
bricks sharing either finding place, stamp or fabric are connected. 
The resulting network is again a binary network suitable to be 
analyzed by means of simple metrics. However, unless the diver
sity of the nominal values of these attribute is comparable with the 
number of bricks, such a union of projections is necessarily, by 
construction, an extremely highly connected network. Network 
analytic tools, especially rankings, may become less reliable when 
the number of links of each node is close to the total number of 
nodes in the system. Basically, when the density of connection is 
very high, differences between nodes decrease to the point that 
any conclusion about which nodes are more “central” than oth
ers does not make sense anymore. In such situations, retaining 
information about link weights—e.g., counting whether a pair of 
nodes shares one, two, or three attributes—could help highlight
ing interactions of interest otherwise hidden behind too many of 
indistinguishable ties.

One of the first works in this direction is probably the article 
by Søren Sindbaek (2007). With the aim of shedding light to the 
communication and exchange networks in the Early Medieval 
periods, Sindbaek uses archeological sources to connect a quite 
large set of geographic locations (Sindbaek, 2007, 2013). In these 
affiliation networks based on material remains, edge weights are 
the number of shared artifact types. In addition, a threshold is 
applied, discarding those below three common attributes. Link 
weights play an important role in determining relative positions 
of the nodes when using visualization algorithms. Therefore the 
results deduced from visual inspections are more accurate than it 
would be in the unweighted case.7

Ties also carry a value equal to the number of distinct copre
sent forms of material culture in Fiona Coward’s articles (Coward, 
2010, 2013). Coward states that an unweighted onemode repre
sentation of the data would have lead to a fully connected network 
due to “the sheer quantity of different forms of material culture 
that formed part of this study” (Coward, 2010). Thus the author 
chooses “the use of valued relations” despite it being “potentially 
somewhat problematic in that many formal methods of social 
network analysis are defined primarily for binary or dichotomous 
relations.” She also discusses the possibility—embraced in by sev
eral scholars in less recent works—that connections are restricted 
to a limited number of their closest neighbors. Such an option is 

7 Centrality measures are calculated but it remains unclear if weights are taken into 
account.

discarded because for the purposes of the article it was deemed 
important to maximize the data.

Similarly, Tom Brughmans’ work on Roman tablewares in east
ern Mediterranean (Brughmans, 2010), followed by Brughmans 
and Poblome (2015), starts from a weighted bipartite network of 
sites and pottery forms, from which projections are made. In the 
same way as the two aforementioned authors, projected edges 
are also weighted by the number of cooccurrences. All these 
authors choose to build their ASN as weighted projections of 
twomode networks whose weights are not included. In other 
words, they consider the number of different categorical attrib
utes common to the two sites, but do not take into account the 
amount of samples, or the other attributes that are not present 
in both. With this approach, provided that the number of shared 
categories is the same, whether the archeological evidence they 
have in common represents a big or a small proportion of the 
totality of the corresponding assemblages does not make any 
difference.

Among similarity measures that tackle this issue, the Brainerd
Robinson similarity coefficient (Brainerd, 1951; Robinson, 
1951) is surely the most frequently used. The application of this 
coefficient (hereafter referred to as BR) goes far beyond network 
building, being the measure adopted for comparing collections in 
a broad number of archeological studies. Unlike the wellknown 
Pearson Correlation Coefficient, BR is specifically designed for 
compositional data (Cowgill, 1990), that is, data that can be 
expressed in terms of percentages, and only takes positive values. 
It is equal to 200 for identical collections and equal to 0 in the case 
of collections that have nothing in common.

Mark Golitko and colleagues (Golitko et  al., 2012; Golitko 
and Feinman, 2015) employ BR coefficients to build a weighted 
ASN of assemblages according to the frequencies of different 
Mayan obsidian sources. Further, they reduce network density 
by applying a link weight cutoff, up to the critical value above 
which the network would become disconnected (more than just 
one connected component).

In the same manner, John Hart and William Engelbrecht in 
their study of the evolution of the northern Iroquoian ethnic 
landscape (Hart and Engelbrecht, 2012) calculate BR similarity 
coefficients over a hundred sites, by looking at decoration motifs 
on collars and wedges. The same approach is adopted in numer
ous works on the relations between US Southwest sites in late 
preHispanic period. Topics as diverse as network evolution at 
different spatial scales (Mills et al., 2013), the brokerage role of 
sites and its impact on social capital (Peeples and Haas, 2013) or 
migrations and depopulation phenomena (Borck et al., 2015) are 
explored looking at the similarities among ceramic assemblages. 
Mills and colleagues (Mills et al., 2013) also evaluate the potential 
impact of ceramic sample size with bootstrapping techniques. That 
is, BR coefficients from the complete dataset are compared to the 
ones obtained in artificial scenarios with smaller samples, where 
data for each site is drawn (with replacement) from its original 
attribute assemblage. Despite the weight threshold applied for 
visualization purposes, the analytical process preserves weights 
and the calculation of centrality measures take raw similarity 
scores into account (Everett and Borgatti, 2005). After this step, 
the analysis is carried out both in weighted projections (raw BR 
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coefficients) and binarized versions of it, applying a threshold and 
thus emphasizing strong ties over weak ones.

Finally, there is one example that considers similarity in a 
broader though detailed sense. In their study of the diffusion of 
fired bricks around Europe in the Hellenistic Period (Östborn 
and Gerding, 2015), Per Östborn and Henrik Gerding follow 
the approach presented in Östborn and Gerding (2014) for the 
configuration of the similarity network. Roughly, the strategy 
consists in allowing attributes of different nature to contribute to 
the comparison of sites, provided that each nature (e.g., numerical, 
categorical) goes with an adequate meaning of similarity. Under 
just one necessary condition (contemporaneity) they perform an 
extensive analysis of network properties as a function of a lower 
threshold on the number of common attributes.

The literature shows the wide spectrum of choices made by 
scholars given the specificities of each case study. All the reviewed 
works start—sometimes not explicitly—from twomode networks 
that can be either unweighted or weighted. As pointed out in 
Brughmans (2013), there are not published archeological studies 
that deal with bipartite systems directly, and so far, the ubiquitous 
decision is still to project according to similarity criteria. Scholars 
have chosen between the use of simple projections (binary ties 
established with at least one shared attribute) and a handful of 
different ways of including weights.

Generally, not much attention is devoted to the precise impli
cations of choosing one similarity measure over another. Articles 
focusing on the case study, sometimes lack of methodological 
details, while not many methodological articles are available so 
far. Exceptions are found in Östborn and Gerding (2014), where 
the authors propose a systematic method to derive similarities 
from a combination of different types of attributes; and in Peeples 
and Roberts (2013), where the crucial aspect of binarizing or not 
a weighted network is accurately addressed. In few cases, some 
general considerations of the kind do appear along the literature. 
For instance, in their work Matt Peeples and collaborators 
(Peeples et al., 2016) stress that different similarity measures can 
amplify certain effects derived from data aspects (e.g., chisquare 
distance emphasizes rare categories, while BR emphasize the 
common ones).

Evidently, there is not a universal answer, no measure is better 
than any other in absolute terms. Nevertheless, this decision is 
of great repercussion since it strongly conditions the subsequent 
network analysis and would be both useful and interesting 
to address it not only based on considerations inherent to the 
meaning embedded in each metric. In the next section, we try to 
outline how to take a step in this direction by means of a simple 
computational experiment.

5. SKeTCHiNg A ReLiABiLiTY TeST FOR 
SiMiLARiTY MeASUReS

The problem of how to choose the best way to quantify similari
ties is an extremely complex issue. We have seen how it has been 
addressed by authors in the framework of their individual case 
studies, taking into account the specific features of their data 
or the meaning of the connections. Here, we want to outline a 
complementary approach, that is, a quantitative methodology to 

compare the performance of similarity measures in the context 
of data scarcity.

Imagine that there are some evidences, some artifact assem
blages that have been found in some archeological sites. We 
know that the samples are incomplete. Hence, when trying to 
reconstruct the interaction patterns between sites, it is crucial to 
choose a similarity measure that does not critically depend on the 
fluctuations in the relative proportions of categorical attributes 
due to the incompleteness of the archeological record. In other 
words, given the same historical facts, if we rewind history back 
to the moment when such events occurred and let everything 
afterward happen all over again many times, we obtain different 
outputs as the result of contingency in the excavation and conser
vation processes. Historical facts are the same, but evidences are 
not. A good similarity measure is a measure that is robust against 
the effects of chance, a measure that allows us to build a network 
that gives always the same result, regardless how many times we 
rewind history.

In the real world, we have only one set of evidences and there 
is no way to create other sets of data that are the result of the same 
events but a different conservation process. We can resample 
data, but we cannot separate between necessity and contingency. 
Random permutations consist in reassigning attributes to the 
sites at random, thus destroying any sort of correlation, while 
often conserving the size of the corresponding assemblages and 
the number of artifacts belonging to each category. Typically, 
permuted datasets are compared with the original empirical 
evidence in order to separate the unique features of latter from 
traits that it shares with the former (Hart and Engelbrecht, 2012; 
Coward, 2013; Peeples et al., 2016). The general idea is that such 
unique features can be regarded as the only true result of facts 
(necessity), unlike the spurious (contingent) characteristics also 
observed in the randomized data. However, there can be traits 
that are not present in the permuted datasets, but which are still 
the consequence of contingency (e.g., the location of samples 
from a very small category), or quantities that are kept fixed while 
randomizing that are just the product of accidents (e.g., the sizes 
of sites and assemblages).

In order to clarify this point, let us make a very simple example. 
Suppose we throw a coin many times but keep note of just three 
draws in the following sequence: head, head, and tail. Resampling 
means changing the order and getting all the possible sequences 
composed by two heads and one tail. Rewinding history means 
throwing the coin many times obtaining all the possible sequences 
of length three and the same number of heads and tails on aver
age. In this case, the disparity in the proportion is the product of 
contingency while the underlying rule gives the same probability 
to get head or tail. The first case is a random permutation of data, 
while the second one is a proper Monte Carlo Simulation (MCS) 
where draws are generated from a probability distribution (in this 
case, just the same probability p = 0.5 for both outputs). In the 
case of MCS, features to be regarded as necessary are those shared 
by most of the simulated dataset (e.g., the presence of at least one 
head and one tail). A good similarity measure should be based 
on such features.

Obviously enough, in real situations, the probability distribu
tions from which empirical data were drawn are unknown and 
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we cannot perform MCS. But we can model them and use MCS 
to test the reliability of similarity measures. We can create very 
simple models and analyze the behavior of different metrics. 
In the next paragraphs, we present an example of how to do so. 
Without attempting to carry out an exhaustive study, we briefly 
introduce the toy model that we devised and provide some hints 
about how it could be used, focusing more on the concepts than 
the technical details. The basic hypothesis behind ASN can be 
restated as “differences in the similarities between assemblages 
matters.” The most important additional element is that space 
and geography do play a role. We do not need anything more to 
design an ideal scenario that can be used as a controlled setting 
for testing similarity measures.

The ancient—and neverexistent—people of ARSITESTS 
lived in an extremely rough landscape characterized by high 
mountains, deep valleys and few passes. A huge canyon divided 
the region into two. Because of the very high costs of opening 
routes in their land, the ARSITESTS had only one road connect
ing all their villages and cities and crossing the canyon only once. 
Goods were exchanged along this road only and therefore most of 
the interactions between settlements took place with the closest 
neighbors according to the path of the route. They were produced 
and traded in quite localized areas of the region (let say, valleys) 
and just in rare occasions traveled a bit longer distances. Such 
ideal scenario can be easily translated into a formal model by 
representing the road stretched to a linear path as a segment on 
which goods (categorical attributes) are distributed according to 
a Gaussian distribution centered in the center of their production 
area. In this way, there will be great abundance of each attribute in 
the places where they were produced, something less in the sur
roundings, and just few samples in places separated by a greater 
distance (Figure 2).

For the sake of mathematical simplicity, and keeping in mind 
that this experiment is for testing purpose only, the discretization 
of this linear unidimensional space is performed by dividing it 
into bins of the same width. Each bin corresponds to an archeo
logical site in the region and hence a node in our ASN.

In the present example, we consider Nb = 40 bins and Na = 40 
categorical attributes. The centers of the Gaussian distribution are 
distributed along the segment except for a gap around the mid
dle point corresponding to the canyon. The number of samples 
Q and any other parameter in the model are the same for each 
categorical attribute.

We expect the network built from such synthetic evidences to 
have a number of easily recognizable features: nodes should have 
few strong ties (adjacent bins) and a larger number of weak ones; 
sites located close to the two ends of the roads should appear as 
much more peripheral nodes than the others; two main clusters are 
expected to be clearly present grouping together nodes from each of 
the two sides of the canyon and sites located close to where the road 
crossed the river should be the bridge between such two groups.

As a first qualitative check, we consider that a good similarity 
measure is a measure that allows to construct a network that 
renders all these features with high accuracy. However, in order 
to compare different measures quantitatively, we need to devise 
some kind of test. Here, we introduce some general ideas through 
a simple application. It has to be understood as an illustrative 
example of how similar problems could be addressed and the 
results presented have no generality.

Network features as those described above are supposed to be 
reflected in network metrics measuring the importance (centrality)  
of the nodes. In particular, nodes located at the center of the two 
subregions are expected to be more central in terms of amount of 
strong links (Weighted Degree Centrality), while nodes close to 
the canyon are expected to have great importance because of their 
intermediation role (Betweenness Centrality). In this synthetic 
case study, the probability distribution for each attribute is known 
by construction. Hence, we can perform MCS generating as many 
datasets as we need by extracting exactly Q locations for each cat
egory of attributes from the corresponding Gaussian probability 
functions. Whenever the position of a sample falls into a bin, it is 
assigned to the assemblage of that site. All the synthetically gener
ated datasets have the same number Q of attributes for each type 
but are not identical. Differences between them can be regarded 
as the results of contingency in the excavation and conservation 
processes, here simulated through random draws from Gaussian 
probability distributions. On the contrary, their similarities are 
due to the underlying dynamics of the actual historical process, 
that is, to the probability distribution themselves that make that 
bins that are close to each other have similar assemblages. The 
balance between differences and similarities, i.e., between noise 
and signal, depends on the number of samples Q: If we extract just 
few samples for each categorical attribute (small Q), each draw 
will be very different from the other (Figure 3); On the contrary, 
if we extract a very large number of samples (large Q), they will 
be almost identical (Figure 4).

The goal of the present test is to find out which similarity 
measure gives the most reliable result (network) in a certain range 
of value of the parameter Q.
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For this example, let us consider two broadly used similarity  
measures: the BrainerdRobinson Index (BR), very popular 
among archeologists, and the Jaccard Index (J) (Jaccard, 1901), 
broadly used in a variety of different contexts. For a fixed value of 
the number of samples Q, we generated n = 100 draws and built 
two networks for each one of them, one using J (Jnetwork) and 
the other applying BR (BRnetwork). We are interested in know
ing which set of networks displays less diversity. Therefore we 
computed the Weighted Degree Centrality and the Betweenness 
Centrality indexes for all the networks and measure the average 
correlation (Spearman Correlation Coefficient) between the 

sequences of values for each pair of networks of the same group, 
BRnetworks with BRnetworks and Jnetworks with Jnetworks. 
The higher is the average correlation, the more robust is the result, 
because a high correlation means that central nodes stay central 
and peripheral ones are always peripheral. Hence we can trust the 
results as independent on the accidents of the extraction process. 
In other words, if the average correlation is close to one, we can 
pick a single network, calculate the centrality of the nodes and 
rely on the obtained results considering that any other networks 
would have given the same output. On the contrary, if the average 
correlation is low, we have to assume that if a node is very central 

http://www.frontiersin.org/Digital_Humanities/
http://www.frontiersin.org
http://www.frontiersin.org/Digital_Humanities/archive


FigURe 5 | Average Spearman’s rank correlation coefficient of centrality 
measures as a function of Q. Colors represent the two similarity measures 
(red: BR; blue: J). Squares and circles represent Betweenness Centrality and 
Weighted Degree Centrality, respectively.

10

Prignano et al. Wiring the Past

Frontiers in Digital Humanities | www.frontiersin.org June 2017 | Volume 4 | Article 13

in a certain network, it is an accident, not a necessity and it could 
be peripheral in another one.

We repeated the procedure for several values of Q, ranging 
from Q  =  15 to Q  =  10,000. Results are shown in Figure  5: 
Although discussing them goes beyond of the scope of this work, 
we would like to stress that they are not trivial. Depending on the 
value of Q and on the considered centrality measure, the most 
reliable way to build a network varies significantly. In particular, 
it turns out that the BR index is not the most suitable measure if 
one is interested in studying which are the nodes that gather the 
most of the strongest connections (Weighted Degree Centrality), 
especially when data are scarce.

These conclusions are not general. Nevertheless, the potential 
of this kind of experiments deserve to be explored. Our model 
is simple and not realistic, still there are several parameters 
associated to real features of archeological case studies which we 
kept fixed and whose influence could be easily studied. Without 
introducing any further complication, we could explore the effect 
of varying the width of the Gaussian distributions that represent 
how localized artifact typologies are, or the number of sites and 
the number of different categorical attributes, or the number 
of samples for each category (data heterogeneity) that in our 
example is the same for all of them. Simple abstract models are a 
powerful way to test the available analytical tools before making 
a choice, not only about which similarity measure is the most 
suitable for building an ASN from a certain dataset, but also about 
which network metrics are the most reliable for describing the 
system under study.

6. CONCLUSiON

There exists a production cycle through which network science 
advances that nourishes and is nourished by an increasingly 
broader variety of application fields.

New universal mechanisms and features common to systems 
that are very different in nature but formally similar are discovered. 

At the same time, new and old powerful analytic tools are adapted 
to every and each research question, while remaining suitable to 
be applied to broad classes of systems.

The key is not what data mean, but how data can be repre
sented; not what a certain question states when expressed in 
natural language, but how it is mapped into formal, mathematical 
terms. The different may happen to be the same, and the alike may 
happen to have nothing to do.

In order for archeological applications to enter the produc
tive cycle of network science, thus benefiting from the growth of 
the discipline, the difficulties faced by archeologists need to be 
translated into formal terms.

Computer generated data can help untangling different ele
ments that usually coexist in real case studies, e.g., incompleteness 
and heterogeneity. Decomposing a problem into its fundamental 
parts tackling them one by one, is a strategy that has been proven 
fruitful throughout the history of science. At the same time, ideal 
scenarios allow us to explore the theoretic limits of techniques and 
tools. For instance, in our example in Section 5 (see Figure 5), we 
have seen how some network centrality measures (Betweenness 
Centrality) suffer not negligible fluctuations even when we 
simulate datasets that are so large that can be regarded as ideally 
complete. Is it a number of different categorical attributes equal 
to the number of sites not enough? Which is the perfect ratio? 
Are there metrics that are intrinsically unstable whose use should 
be avoided? These are just a few questions that can be posed and 
addressed through computer simulations in general and Monte 
Carlo methods in particular.

The range of problems susceptible to be addressed by means of 
a combination of mathematical and computational approaches as 
those used in network science is not limited to the topic touched 
in the present work. There are still general issues that do not 
have an answer. For instance, the amount of different categorical 
attributes—i.e., the number of nodes in one of the two classes in 
the bipartite network—strongly constraints the topology of the 
projection onto the other class of nodes. How many categories do 
we need in order to reproduce an arbitrary connectivity pattern?

Besides such abstract, theoretical discussions, inverse engi
neering can be a powerful ally for assessing the limits of what 
we can ask to real datasets: starting from a hypothetical set of 
network features, one may wonder which properties have to be 
possessed by the empirical evidences in order for that results to be 
obtained. It is in principle always possible to generate computer 
simulated assemblages that would give back a pattern of connec
tions with the desired characteristics. This sort of experiments 
enable for compatibility tests on hypotheses expressed in terms 
of network measures that can be proven more or less statistically 
compatible with data.

There are also questions that have been answered in other 
scientific fields that—as far as we know—have not been addressed 
for ASN yet: Is it thresholding the best way to filter the noise 
or could we develop more tailored filtering methods? It can be 
argued that the real challenge is to remove redundancy and noise, 
not to get rid potentially informative weak ties.

The only possible framework for such kind of research to be 
developed in a healthy way is within interdisciplinary collabora
tions. Selecting the most relevant questions, translating them into 
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formal terms, sorting the issues suitable to be addressed in the 
first place, are all tasks that require the simultaneous knowledge 
of the domain and the techniques. Awareness of the limits and 
potentialities of archeological data, mathematical language, and 
computational methods can be sometimes found in an individual 
research team. Nevertheless, if we want archeology to leave the 
periphery and enter the core of applied network science, its neces
sities have to be shared within the community of network science.
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