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Expressive performance is an indispensable part of music making. When playing a

piece, expert performers shape various parameters (tempo, timing, dynamics, intonation,

articulation, etc.) in ways that are not prescribed by the notated score, in this way

producing an expressive rendition that brings out dramatic, affective, and emotional

qualities that may engage and affect the listeners. Given the central importance of

this skill for many kinds of music, expressive performance has become an important

research topic for disciplines like musicology, music psychology, etc. This paper

focuses on a specific thread of research: work on computational music performance

models. Computational models are attempts at codifying hypotheses about expressive

performance in terms of mathematical formulas or computer programs, so that they

can be evaluated in systematic and quantitative ways. Such models can serve at least

two purposes: they permit us to systematically study certain hypotheses regarding

performance; and they can be used as tools to generate automated or semi-automated

performances, in artistic or educational contexts. The present article presents an

up-to-date overview of the state of the art in this domain. We explore recent trends

in the field, such as a strong focus on data-driven (machine learning) approaches; a

growing interest in interactive expressive systems, such as conductor simulators and

automatic accompaniment systems; and an increased interest in exploring cognitively

plausible features and models. We provide an in-depth discussion of several important

design choices in such computer models, and discuss a crucial (and still largely unsolved)

problem that is hindering systematic progress: the question of how to evaluate such

models in scientifically and musically meaningful ways. From all this, we finally derive

some research directions that should be pursued with priority, in order to advance the

field and our understanding of expressive music performance.
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1. INTRODUCTION

The way a piece of music is performed is a very important
factor influencing our enjoyment of music. In many kinds of
music, particularly Western art music, a good performance
is expected to be more than an exact acoustic rendering of
the notes in the score. Performers have certain liberties in
shaping various parameters (e.g., tempo, timing, dynamics,
intonation, articulation, etc.) in ways that are not prescribed by
the notated score, and are expected to use these to produce an
expressive rendition of the piece in question. This applies not
only to classical music, where interpretation and performance
are perpetual topics of artistic and aesthetic discussion, but to
virtually all kinds of music. Expressive performance, as we will call
it in the following, is known to serve several purposes: foremost,
to express and communicate the performer’s understanding
of structure and affective content (“meaning”) inherent in a
composition, and in this way to bring out dramatic, affective,
and emotional qualities that, in the best case, may engage and
affect the listeners emotionally. Expert musicians learn (mostly
implicit) performance rules through many years of focused and
intensive practice and intellectual engagement with music. Given
the central importance of this subtle art, the principles behind,
and processes involved in, expressive performance should be a
central topic of research in music and music psychology.

The systematic study of expressive music performance is a
relatively young field, starting in the first half of the twentieth
Century with first quantitative investigations (Binet and Courtier,
1896; Seashore, 1938). The second half of the twentieth Century
saw an increased interest in looking at performance from
the perspective of music psychology and cognition (Clynes,
1969, 1986, 1987; Gabrielsson, 1974; Longuet-Higgins and Lee,
1982, 1984; Palmer, 1996). The field gained more attraction
in the late 1980’s, with advances in computers and electronic
instruments, which facilitatedmore precise data capturing (Kirke
andMiranda, 2013). Music performance science is a highly inter-
disciplinary field, and a thorough review of the state of the art
of the full field is outside the scope of this paper. We refer
the interested reader to the very comprehensive review articles
by Palmer (1997) and Gabrielsson (1999, 2003). For a review
of performance research from a musicological point of view
see Rink (1995, 2002, 2003). For philosophical perspectives on
expressiveness in music, we refer the reader to Davies (1994,
2001).

The present article focuses on a narrower and more
specific topic: computational models of expressive performance,
that is, attempts at codifying hypotheses about expressive
performance—as mappings from score to actual performance—
in such a precise way that they can be implemented as computer
programs and evaluated in systematic and quantitative ways.
This has developed into a veritable research field of its own
over the past two decades, and indeed the present work is not
the first survey of its kind; previous reviews of computational
performance modeling have been presented by De Poli (2004),
Widmer and Goebl (2004), and Kirke and Miranda (2013).

The new review we offer here goes beyond these earlier
works in several ways. In addition to providing a comprehensive

update on newer developments, it is somewhat broader, covering
also semi-automatic and accompaniment systems, and discusses
the components of the models in more detail than previous
reviews. In particular, it provides an extended critical discussion
of issues involved in model choices—particularly the selection
and encoding of input features (score representations) and
output parameters (expressive performance dimensions)—and
the evaluation of such models, and from this derives some
research directions that should be pursued with priority, in
order to advance the field and our understanding of expressive
music performance. As in earlier papers, we focus on models for
notated music, i.e., music for which a musical score (a symbolic
description of the music) exists. This includes most Western art
music. A review of models of expressive performance for non-
western or improvised music traditions is outside the scope of
this work.

The rest of this text is organized as follows: Section 2
introduces the concept of computational music performance
models, including possible motivations, goals, and general model
structure. Section 3 attempts to give a comprehensive overview
of the current state of the art, focusing on several current trends
in the field. Section 4 offers a critical discussion of crucial
modeling aspects, and offers a critical view on the ways in
which performance models are currently evaluated. Section 5
concludes the paper with a list of recommendations for future
research.

2. COMPUTATIONAL MODELING OF
EXPRESSIVE PERFORMANCE

2.1. Motivations for Computational
Modeling
Formal and computational models of expressive performance
are a topic of interest and research for a variety of scientific
and artistic disciplines, including computer science, music
psychology, and musicology, among others. Accordingly, there
is an wide variety of motivations for this kind of modeling.
Broadly speaking, we can categorize these motivations into two
groups: on the one hand, computational models can be used as
an analytical tool for understanding the way humans perform
music; on the other hand, we can use these models to generate
(synthesize) new performances of musical pieces in a wide variety
of contexts.

As analysis tools, computational models permit us to study
the way humans perform music by investigating the relationship
between certain aspects of the music, like the phrase structure,
and aspects of expressive performance, such as expressive timing
and dynamics. Furthermore, they allow us to investigate the close
relationship between the roles of the composer, the performer,
and the listener (Kendall and Carterette, 1990; Gingras et al.,
2016). Expressive performance and music perception form a
feedback loop in which expressive performance actions (like a
slowing down at the end of a phrase) are informed by perceptual
constraints or expectations, and the perception of certain musical
constructs (like grouping structure) is informed by the way the
music is performed (Chew, 2016). In this way, computational
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models could also be used to enhance our understanding of the
way humans listen to music.

On the other hand, computational performancemodels can be
interesting in their own right, as tools for generating automatic
or semi-automatic performances. In this case, a generative
system might attempt to produce a convincing or human-
like performance of a piece of music given its score (Friberg
et al., 2006; Grachten and Widmer, 2012; Okumura et al.,
2014) or try to play alongside human musicians, not only
tracking their expressive performance but also introducing its
own expressive nuances (Xia et al., 2015; Cancino-Chacón et al.,
2017a). Such systems might have many applications, including
realistic playback in music typesetting tools (such as Finale
or MuseScore) and automatic expressive accompaniment for
rehearsing. Also, there is now a renewed interest in systems
that automatically generate (i.e., compose) music. As pointed
out by Herremans et al. (2017), automatic performance systems
might be an important component in making automatic music
generation usable by the general public.

From a philosophical perspective, the idea of musical
expressiveness presents a number of issues (Davies, 2001).
Among these is the fundamental question of whether an
expressive performance can be fully captured using numerical
descriptors. For example, Bergeron and Lopes (2009) discuss
whether a complete sonic description of the music without any
visual component can fully convey the expressivity of music.
That hearing and seeing a musical performance provides for
a richer experience1 is an interesting and plausible hypothesis,
but this question goes beyond the scope of the present article.
In any case, it should be undisputed that there is more than
enough expressivity to be perceived—and thus also modeled—
from just a sonic representation; after all, listening to a recorded
performance is still the predominant way of enjoying music, and
it can be a rewarding experience.

2.2. Components of the Performance
Process
In her seminal review, Palmer (1997) groups the reported work
in three sections that can be taken to reflect the human cognitive
processes involved in performing a piece of notated music:

1. Interpretation. According to Kendall and Carterette (1990),
music performance is a communication process in which
information (emotional and semantic content of the piece)
flows from the composer to the performer to the listener. We
note here that these should be regarded as roles rather than
agents, since, for example, the composer and performer may
be embodied by the same person. An important task for the
performer is to determine how to convey the message from
the composer to the listener. Palmer refers to interpretation as
the act of arriving at a conceptual understanding of structure
and emotional content or character of a given piece, in view
of a planned performance. Examples of relevant structural
aspects are the grouping and segmentation of sequences into

1Or, as Bergeron and Lopes (2009) (quoting Robert Schumann) put it: “if Liszt
played behind a screen, a great deal of poetry would be lost.”

smaller subsequences to form hierarchical levels—such as
those proposed by Lerdahl and Jackendoff (1983) in their
Generative Theory of Tonal Music (GTTM).

2. Planning. Through planning the performer decides how to
relate the syntax of musical structure to expression through
style-specific actions and constraints. Such actions include,
e.g., the use of arch-like patterns in dynamics and tempo
to elucidate the phrasing structure (Todd, 1992; Friberg and
Sundberg, 1999).

3. Movement. Finally, a performer needs to transform a
performance plan into a concrete execution of the piece by
means of physical movement. These movements can be seen
as embodied human–music interactions which have an impact
on the way humans perform and perceive music (Leman et al.,
2017a).

In section 4.2, we will present a discussion on how different
aspects and methods of computational modeling of performance
fit into these categories, as well as the implications of the choice
for the modeling.

2.3. Components of Computational Models
Ideally, a full computational model of expressive performance
should cover all three of the above aspects. However, the models
described in the literature so far focus almost exclusively on the
planning process, conceptualizing it as a mapping from a given
score to specific patterns in various performance parameters (e.g.,
timing or dynamics) and, eventually, to an acoustic realization of
the piece (De Poli, 2004). Thus, in the remainder of this reviewwe
will adopt this (admittedly too) limited view and discuss existing
performance models in this context.

Kirke and Miranda (2013) proposed a generic framework for
describing research in expressive performance. In the present
article, we adopt a simplified version of this framework involving
three main components by which computational performance
models (in the limited sense as explained above) can be
characterized. The resulting simple modeling scenario is shown
in Figure 1, along with a fragment of a musical score.

By score features—which are the inputs to the computational
model—we denote descriptors used to represent a piece of
notated music. Some of these features may be given directly by
the score (such as notated pitches and durations), while others
may be computed from the score in more or less elaborate ways,
by some well-defined procedure (such as the cognitive features
discussed in section 3.3). Features can range from low-level
descriptors such as (MIDI) pitches (Friberg et al., 2006; Grindlay
and Helmbold, 2006; Cancino Chacón and Grachten, 2015)
and hand-crafted features, like encodings of metrical strength
(Grindlay and Helmbold, 2006; Giraldo S. and Ramírez, 2016);
to cognitively inspired features, like Narmour’s Implication-
Realization (IR) descriptors (Flossmann et al., 2013; Giraldo S.I.
and Ramirez, 2016), or even features learned directly from the
score using unsupervisedmachine learning (Grachten and Krebs,
2014; van Herwaarden et al., 2014). The process of extracting
score features corresponds to theMusic/Analysismodule in Kirke
andMiranda (2013)’s framework and can be seen as at least partly
related to Palmer’s Interpretation aspect (see above).
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FIGURE 1 | Computational modeling scenario.

An expressive parameter—the output of a model—is a
numerical encoding of an aspect of expressive performance.
Since most systems deal with piano music, the most common
descriptors relate to loudness, expressive tempo and timing,
and articulation (Widmer and Goebl, 2004; Kirke and Miranda,
2013), but of course they can also include other parameters
like timbral features (Raphael, 2009; Ohishi et al., 2014) and
intonation (Clynes, 2005), or higher-level patterns such as
“pulse microstructure” (Clynes, 1987). The expressive parameters
correspond to the outputs of the Performance Knowledgemodule
in Kirke and Miranda (2013)’s framework. Section 4.1 presents a
critical review of the choices involved in selecting and encoding
these parameters.

A computational model then, in our context, is any computable
function that maps score features to expressive parameters or, to
be more precise, can make a prediction of the values of expressive
parameters, given a score (represented via score features) as
input. In music performance modeling, this is typically done by
means of mathematical functions (probabilistic models, artificial
neural networks, etc.) (Teramura et al., 2008; Kim et al., 2010;
Grachten and Widmer, 2012) or by means of rules (Friberg et al.,
2006; Canazza et al., 2015). Some of these models can be trained
using a dataset of expressive performances. The model/function
corresponds to the Performance Knowledge and the Performance
Context in Kirke andMiranda (2013)’s framework; the training of
themodel corresponds to theAdaptation Process, and the datasets
are the Performance Examples.

3. A SYNOPSIS OF CURRENT STATE AND
RECENT TRENDS

In this section we discuss some of the recent trends in
computational performance modeling. This brief overview is

meant as an update to earlier review papers by De Poli (2004),
Widmer and Goebl (2004), and Kirke and Miranda (2013). In
the following, we will refer to a model as static if its predictions
only depend on a single event in time (e.g., linear regression,
feed forward neural networks), and dynamic if its predictions
can account for time-dependent changes (e.g., hidden Markov
models or recurrent neural networks).

3.1. Data-Driven Methods for Analysis and
Generation of Expressive Performances
A first noteworthy trend in recent research is an increasing focus
on data-driven approaches to performance modeling, relying
on machine learning to infer score-performance mappings (and
even the input score features themselves) from large collections
of real data (scores and performances). This is in contrast to
rule-based approaches where performance rules are manually
designed, based on musical hypotheses.

An important example of the rule-based variety is the KTH
model (Sundberg et al., 1983; Friberg et al., 2006), developed
at the Royal Institute of Technology (KTH) in Stockholm.
These rules were developed and evaluated through an iterative
analysis-by-synthesis approach involving judgments by experts
and listening tests. A performance is shaped by a (linear)
combination of the effects of the rules, which the user can
weigh individually. The KTH model has been implemented as
a software package called Director Musices (DM) (Friberg et al.,
2000; Masko et al., 2014). Recent versions of the KTH model
include cognitively motivated rules regarding musical accents
(Bisesi et al., 2011). Friberg and Bisesi (2014) study the use of the
system for modeling stylistic variations for Baroque, Romantic
and Contemporary art music. The KTH model won the first
prize at the RenCon, a competition for computational models of
performance, in 2004 (see also section 4.3 below).
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While early data-driven approaches (Widmer, 1995, 1996,
2000, 2003; Widmer and Tobudic, 2002) aimed at learning
explicit performance rules at various structural levels (from
individual notes to higher phrasing levels), using methods
like instance-based learning and inductive logic programming,
recent advances in machine learning—in particular relating to
probabilistic graphical models and (deep) neural networks—have
led to a surge of such methods in computational performance
modeling, which will be reviewed in the following.

3.1.1. Data-Driven Methods for Performance Analysis
As tools for analysis, computational methods can be used for
several purposes, including studying the relationship between
structural aspects of the score and specific aspects of a
performance, or for comparing expressive renderings by different
performers.

3.1.1.1. Explaining/modeling aspects of performance
An important question in analyzing expressive performance
is determining the likely “causes” of observed performance
patterns, i.e., structural or other aspects of a piece that would
“explain” why a certain passage was (or needs to be) played
in a certain way. By analyzing large amounts of data, data-
driven methods can find systematic relations between measured
performance aspects (e.g., changes in tempo and dynamics)
and various structural aspects of a musical score (e.g., pitch
content, metrical, and phrasing structure), notated performance
indications (e.g., dynamics markings such as piano and forte

or articulation marks such as legato slurs and staccato), or
even aspects related to our perception of music, like melodic
expectation (as far as we are able to infer or compute these in
a reliable way from a score).

Examples of such approaches include the work by Kosta
et al. (2014, 2015, 2016), who focus on the relationship between
dynamics markings and expressive dynamics, and the Basis
Function Model (Grachten and Widmer, 2012)—a framework
that encodes score properties via so-called basis functions—
which attempts to quantify the contribution of a variety of
score descriptors (such as pitch, metrical position, and dynamics
markings) to expressive dynamics (Cancino-Chacón C.E. et al.,
2017) and timing (Grachten and Cancino-Chacón, 2017). Fu
et al. (2015) study timing deviations in arpeggiated chords
with statistical methods. Gingras et al. (2016) and Cancino-
Chacón et al. (2017b) focus on linking information-theoretic
features quantifying the expectation of musical events in
listeners, to expressive timing. Caramiaux et al. (2017) study
performers’ skill levels through variability in timing and features
describing finger motion. Marchini et al. (2014) study the use of
score features describing horizontal (i.e., melodic) and vertical
(i.e., harmonic) contexts for modeling dynamics, articulation,
and timbral characteristics of expressive ensemble performances,
focusing on string quartets. Using machine learning and feature
selection techniques, Giraldo S.I. and Ramirez (2016) and
Bantula et al. (2016) evaluate a number of score descriptors in
modeling expressive performance actions for jazz guitar and jazz
ensembles, respectively.

A second form of analysis focuses on specific patterns and
characteristics in curves of expressive parameters. This includes
work on methods for visualizing expressive parameters and their
characteristics (Langner and Goebl, 2003; Grachten et al., 2009;
Chew and Callender, 2013), on inferring performance strategies
like phrasing from expressive timing (Chuan and Chew, 2007) or
dynamics (Cheng and Chew, 2008), and clustering of patterns of
(phrase-level) tempo variations (Li et al., 2014, 2015, 2016, 2017).
The results obtained with such methods support the existence
of common performance strategies (Cheng and Chew, 2008;
Li et al., 2014; Kosta et al., 2016). Quantitative studies on the
contribution of various score features to expressive parameters
reveal well-known relationships, like the importance of pitch
(height) for predicting expressive dynamics, and the relationship
between metrical features and timing deviations. At the same
time, some results indicate that aspects of performance (like
expressive tempo and dynamics) might be related in more than
one way to structural aspects of the music, e.g., phrasing has
been shown to be related to dynamics (Cheng and Chew, 2008)
or timing (Chuan and Chew, 2007). An interesting finding is
the importance of features and models that allow for describing
the musical contexts, both horizontal (temporal) (Gingras et al.,
2016; Kosta et al., 2016; Grachten and Cancino-Chacón, 2017)
and vertical (i.e., harmonic) (Marchini et al., 2014).

3.1.1.2. Comparing expressive performances
A different approach to analyzing expressive performances is
to compare different renditions of the same piece by different
performers, which allows for studying of commonalities and
differences in performance strategies. Some of the work in this
direction follows an unsupervised approach, which does without
any score information, instead focusing on comparing aligned
curves of expressive parameters that encode the performances.
Sapp (2007, 2008) presents a graphical approach and explores
different metrics for comparing collections of performances of
the same piece. Liem and Hanjalic (2011) and Liem et al. (2011)
propose a method for comparing expressive timing by studying
alignment patterns between expressive performances of the same
piece using standard deviations and entropy, respectively. Liem
and Hanjalic (2015) use Principal Components Analysis (PCA)
to localize areas of cross-performance variation, and to determine
similarities between performances in orchestral recordings.
Peperkamp et al. (2017) present a formalization of relative
tempo variations that considers performances as compositions
of functions which map performance times to relevant feature
spaces. Rather than focusing on a single aspect like dynamics or
timing, Liebman et al. (2012) present a phylogenetic approach
that compares and relates performances of two solo violin
pieces by different performers, using performance descriptors
like bowing, tempo changes, and phrase duration. Grachten et al.
(2017) use Basis Function models to assess the contribution of
score features pertaining to individual orchestral instruments to
the overall loudness curves, using differential sensitivity analysis,
which allows for graphically comparing pairs of recordings
of the same piece by different conductors and orchestras.
Methods for comparing performances can be used for identifying
musicians by their individual performance styles. This has
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been demonstrated for violinists (Molina-Solana et al., 2008,
2010a), saxophone players (Ramírez et al., 2007), and pianists
(Stamatatos and Widmer, 2005; Saunders et al., 2008; Grachten
and Widmer, 2009; Molina-Solana et al., 2010b).

Computational methods for performance comparison have
produced some interesting results. They support the idea
of common performance strategies across performers, as
well as consistent individual differences between performers.
Furthermore, they seem to support musicologically plausible
hypotheses such as the change in playing style over the years
and differences between mainstream and historically informed
performance styles, while only providing weak evidence for the
existence of “performance schools” (Liebman et al., 2012). The
formalization of tempo proposed by Peperkamp et al. (2017)
provides an interesting mathematical constraint on tempo curves
as convex linear combinations of tempo variation functions.

In spite of all this, there has been only little progress in really
understanding the way humans perform music expressively. An
important issue is that effectively all studies are limited to small
datasets (at least compared to other machine learning domains)
that only contain a small selection of pieces and/or performers.
This raises the question how well (or if) the insights gained
from these studies generalize to other performers or kinds of
music. Also, most models rely on features that capture only
small local contexts, so that the resulting models cannot properly
account for long temporal dependencies that might be important
for understanding global aspects of performance expression. We
still largely fail to understand how to model long-term, non-
contiguous relationships in complex music. The hope is that
recent advances in (deep) machine learning may open new
possibilities here (Widmer, 2017).

3.1.2. Data-Driven Methods for Performance

Generation
In this section we examine recent work on autonomous
generative systems. While computational methods for analysis
tend to focus on explaining a single aspect of expression,
generative models most commonly have to consider more
expressive parameters, with expressive tempo/timing and
dynamics being the most popular. As previously discussed, a
major trend in this area is the use of complex probabilistic
approaches and the use of neural-network-based methods.

3.1.2.1. Probabilistic Approaches
In a nutshell, probabilistic approaches describe expressive
performances by modeling the probability distribution of the
expressive parameters given the input score features. Table 1
presents some of the recent probabilistic performance systems
in terms of their computational models, expressive parameters,
and score features. Please note that the column relating to score
features in Table 1 is not exhaustive, given the potentially large
number of features used in each model.

While each model conceptualizes a music score and
its corresponding expressive performance differently, there
are some interesting commonalities. Several researchers use
variants of Hidden Markov Models (HMMs) to describe the
temporal evolution of a performance, such as Hierarchical

HMMs (Grindlay and Helmbold, 2006), Dynamic Bayesian
Networks (DBNs) (Widmer et al., 2009; Flossmann et al., 2011,
2013), Conditional Random Fields (CRFs) (Kim et al., 2010,
2011, 2013), or Switching Kalman Filters (Gu and Raphael,
2012). Furthermore, most models assume that the underlying
probability distribution of the expressive parameters is Gaussian
(Grindlay and Helmbold, 2006; Teramura et al., 2008; Gu
and Raphael, 2012; Flossmann et al., 2013; Okumura et al.,
2014). A different approach is taken by Kim et al. (2013)
and Moulieras and Pachet (2016), who use maximum entropy
models to approximate the underlying probability distributions.
While most models focus on Western classical music, Moulieras
and Pachet (2016) focus on expressive performance of jazz
piano.

In terms of expressive parameters, most models describe
expressive dynamics using the note-wise MIDI velocity. This
is mostly done by either making predictions from a static
model (Teramura et al., 2008), focusing only on monophonic
melodies (Grindlay and Helmbold, 2006; Gu and Raphael, 2012;
Moulieras and Pachet, 2016), or assuming a decomposition
of the piece into monophonic streams (Kim et al., 2013;
Okumura et al., 2014). On the other hand, there seems
to be a variety of descriptors for expressive tempo and
timing, with some models focusing on the inter-beat interval
(IBI; a local estimation of the time between consecutive
beats) or inter-onset interval (IOI; the time interval between
consecutive onsets), some on the local beats per minute (bpm;
the inverse of the IBI). Other models target local changes
in their expressive parameters, by means of modeling their
first differences2. Most models use a combination of low-
level features—pitch, onset, and duration of notes, as well as
encodings of dynamics and articulation markings—and high-
level features describing musically meaningful structures, such
as metrical strength. Most systems only model expressive
parameters independently, and the few exceptions focus on
specific combinations of parameters, such as the ESP system
(Grindlay and Helmbold, 2006) that jointly models tempo and
tempo changes, but describes dynamics independently, and the
model by Moulieras and Pachet (2016), which jointly models
timing and dynamics.

3.1.2.2. Artificial neural network-based approaches
Broadly speaking, artificial neural networks (ANNs) can be
understood as a family of mathematical functions describing
hierarchical non-linear transformations of their inputs. The
success of ANNs and deep learning in other areas, including
computer vision and natural language processing (Goodfellow
et al., 2016) and music information retrieval (Humphrey et al.,
2012; Schlüter, 2017), has motivated their use for modeling
expressive performance in recent years. A description of systems
using ANNs for performance generation is given inTable 2. As in
the case of probabilistic models, the list of score features for each
model is not exhaustive.

Some ANN-based approaches use feed forward neural
networks (FFNNs) to predict expressive parameters as a function

2For a parameter pi, the first (finite) difference refers to 1pi = pi − pi−1.
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TABLE 1 | Probabilistic models for performance generation.

System Computational model Expressive parameters Score features

ESP

Grindlay and Helmbold,

2006

Hierarchical HMMs • Tempo: log IBI ratio and its first difference.

• Dynamics: MIDI velocity

• Low-level: melodic interval.

• High-level: metrical hierarchies and

phrase structure (annotated)

NAIST

Teramura et al., 2008

Gaussian Processes • Dynamics: MIDI velocity,

• Timing: onset deviations (bpm)

• Articulation: offset deviations (bpm)

• Low-level: pitch, duration, dynamics

markings.

• High-level: time signature, melody,

relative pitch.

YQX

Flossmann et al., 2011

DBNs (+ learned articulation rules from

Widmer, 2003)

• Tempo: low frequency components of the

log-IOI.

• Timing: high-frequency components of

log-IOI.

• Articulation: duration ratio

• Dynamics: log-MIDI velocity.

• Low-level: Pitch, contour.

• High-level: Narmour’s IR features,

harmonic consonance

Gu & Raphael

Gu and Raphael, 2012

Switching Kalman Filter • Tempo: IOI

• Dynamics: MIDI velocity

• Low-level: position in the score

Polyhymnia

Kim et al., 2013

3 CRFs modeling the highest and lowest

voices (m) and a harmony model (h) for the

inner voices (+ rules for dynamics

markings and ornaments from statistical

analysis)

• Tempo: log IBI ratio (m)

• Timing: onset deviations

• Articulation: note-wise duration ratio (m, h).

• Dynamics: log MIDI velocity ratio (m, h).

• Low-level: pitch (m), duration (m,h),

interval to outer voices (h)

• High-level: metrical strength (m)

Laminae

Okumura et al., 2014

Performance cases modeled by Gaussian

distributions and Tree-based clustering +

first order Markov model.

Voice-wise first differences of

• Tempo: ave. bpm per beat

• Timing: onset deviations (bpm)

• Articulation: duration ratio

• Dynamics: MIDI velocity

• Low-level: pitch class, octave, dynamics

markings

• High-level: phrasing, voice (human

annotated)

SONY

Moulieras and Pachet,

2016

Maximum Entropy model • Timing: onset deviation.

• Dynamics: MIDI velocity

• Low-level: onset position in the bar

of the score features (Bresin, 1998; Cancino Chacón and
Grachten, 2015; Giraldo S. and Ramírez, 2016). These systems
tend to compensate for the static nature of FFNNs by including
score features that describe some of the musical context
of a performed note (e.g., features describing the adjacent
rhythmic/melodic context). Other approaches use recurrent
neural networks (RNNs), a class of dynamic ANNs, to model
temporal dependencies between score features and expressive
parameters (Cancino Chacón and Grachten, 2016; Cancino-
Chacón C.E. et al., 2017). While early versions of the Basis Mixer,
an implementation of the Basis Function model, used a simple
linear model (Grachten and Widmer, 2012; Krebs and Grachten,
2012), current incarnations (Cancino Chacón and Grachten,
2016) use both FFNNs and RNNs as non-linear function classes,
either in the form of deterministic ANNs, or as Gaussian mixture
density networks—probabilistic ANNs in which the outputs of
the network parameterize the joint probability distribution of a
Gaussian Mixture Model.

Neural network models closely follow probabilistic
approaches in terms of their expressive parameters. Instead
of expecting a human-annotated or heuristically computed
decomposition of a polyphonic score into monophonic
streams, Cancino Chacón and Grachten (2016) decompose
a performance into a series of sequential and non-sequential
expressive parameters, which permits to model both temporal
trends in dynamics and tempo, and local effects (note-level) in
timing, articulation, and dynamics deviations. Giraldo S. and

Ramírez (2016) present an approach for modeling jazz guitar
performances which allows for describing not only dynamics
and timing, but also ornamentation.

In terms of input features, most ANN models again tend
to rely on a combination of low-level hand-crafted features
describing local aspects describing individual notes, and some
higher-level features relating to structural properties of themusic.
On the other hand, some researchers have tried to use ANNs
to automatically learn features from low-level representations
of the score. Grachten and Krebs (2014) and van Herwaarden
et al. (2014) use Restricted Boltzmann Machines (RBMs), a
probabilistic class of neural networks, to learn features from
note-centered piano rolls in an unsupervised fashion.

3.2. Expressive Interactive Systems:
Models for Technology-Mediated
Performance
A second major trend that can be observed in recent years is
a growing interest in developing human–computer interaction
systems that generate expressive music performances. Rowe
(1992) proposed a terminology for categorizing interactive
music systems in three dimensions: score-driven vs. performance-
driven, referring to whether the system follows a musical
score or responds to a human performance; instrument
paradigm vs. player paradigm, if the system is meant for solo
or ensemble performances; and transformative vs. generative
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TABLE 2 | Neural network based models.

System Computational model Expressive parameters Score features

Bresin

Bresin, 1998

FFNNs • Tempo: IOI

• Articulation: performed duration

• Dynamics: change in loudness

• Low-level: pitch, duration, melodic

interval

• High-level: encodings of conditions for

KTH rules, like leap articulation, melodic

charge, articulation repetition

Unsupervised RBM

Grachten and Krebs,

2014; van Herwaarden

et al., 2014

RBM (features) + Linear Models • Dynamics: MIDI velocity • Low-level: note-centered piano-roll,

MIDI-velocity history

Giraldo & Ramírez

Giraldo S. and Ramírez,

2016

• Ornamentation (classification): FFNNs,

decision trees, SVMs, k-NN

• Timing, Articulation and Dynamics

(regression): FFNNs, regression trees,

SVMs, k-NN

• Timing: onset deviation

• Articulation: duration ratio

• Dynamics: energy ratio

• Ornamentation

• Low-level: pitch, duration, position in bar

• High-level: Narmour’s IR features, key,

metrical position, phrase position

Basis Mixer

Grachten and Widmer,

2012; Cancino Chacón

and Grachten, 2016

• Onset-wise model: RNNs

• Note-wise: models FFNNs Models can

be either deterministic NNs or

probabilistic GMDNs

• Tempo: log-IBI (onsetwise)

• Timing: Onset deviations (notewise)

• Articulation log-duration (notewise)

• Dynamics: MIDI velocity trend (onsetwise)

and deviations (onsetwise)

Encoding of score aspects through basis

functions.

• Low-level: pitch, duration, dynamics and

articulation markings, position in bar

• High-level: tonal tension, harmonic

analysis

vs. sequenced, describing how the system renders the music.
The focus of the present survey is on expressive score-driven
systems; performance-driven approaches such as interactive
improvisation systems are beyond the scope of this paper. Amore
thorough review of interactive systems is provided by Chew and
McPherson (2017).

3.2.1. Conductor Systems
Conductor systems allow the user to shape a solo performance in
real-time, and in Rowe’s taxonomywould classify as score-driven,
instrument paradigm, transformative systems. Such models
divide the rendering of an expressive performance into three
parallel subtasks: capturing the input from the user, mapping
such input to expressive parameters, and providing feedback
to the user in real time. Table 3 shows several feedback and
conductor models. For a more thorough review of feedback
models we refer the reader to Fabiani et al. (2013).

Common ways for a user to control certain aspects of a
performance are either via high-level semantic descriptors that
describe the intended expressive character—often selected from
some 2D space related to Russell (1980)’s valence—arousal plane
(Friberg, 2006; Canazza et al., 2015); or via physical gestures,
measured either through motion capture (Fabiani, 2011) or by
using physical interfaces (Chew et al., 2005; Dixon et al., 2005;
Baba et al., 2010). Some systems even attempt to provide a
realistic simulation of conducting an orchestra (Baba et al., 2010;
Fabiani, 2011).

Regarding the mapping of expressive intentions to
performance parameters, some systems give the performer
direct control of expressive parameters (e.g., tempo and MIDI
velocity) via their input (Chew et al., 2005; Dixon et al., 2005).
This allows for analyzing the way humans perform music (Chew
et al., 2005, 2006). On the other hand, most systems use rule-
based models, like the KTH model, to map the user input to

expressive parameters (Friberg, 2006; Baba et al., 2010; Fabiani,
2011; Canazza et al., 2015).

3.2.2. Accompaniment Systems
Accompaniment systems are score-driven, player paradigm
systems, according to Rowe’s taxonomy. In order to successfully
perform together with a human, accompaniment systems must
solve three tasks: detecting the solo part, matching the detected
input to the score, and generating an expressive accompaniment
part (Dannenberg, 1984). The first tasks refers to the ability of the
system to capture a human performance in real time (either from
a microphone or a MIDI instrument) and identify the performed
notes, while the second refers to matching these performed notes
to notes in the score (also in the presence of errors). The third task
involves generating an expressive accompaniment that adapts to
the performance of the soloist. The first two tasks are commonly
referred to as real-time score following. In this review we focus
mostly on accompaniment systems for notated Western classical
music. For perspectives on accompaniment systems for popular
music, we refer the reader to Dannenberg et al. (2014).

Perhaps the most well-developed accompaniment systems are
Antescofo (Cont, 2008; Cont et al., 2012) and Music Plus One
(Raphael, 2001a,b, 2010). Antescofo is not only a polyphonic
accompaniment system, but a synchronous programming
language (i.e., a computer language optimized for real-time
reactive systems) for electro-acoustical musical composition.
Both systems solve the score following problem using dynamic
probabilistic graphical models such as variants of HMMs and
DBNs. Eurydice (Nakamura et al., 2013, 2014a, 2015a,b) is a
robust accompaniment system for polyphonic music that allows
for skips, repetitions and ornaments using hidden semi-Markov
models.

In spite of the great progress in automatic accompaniment
systems, Xia (2016) points out that most of the work
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TABLE 3 | Feedback and conductor systems.

System Computational model User input Feedback Expressiveness controlled by

the user

pDM

Friberg, 2006

Rule based:

• KTH model: user controlled

weighting of the rules

Semantic descriptors (Russell’s

space)

Audio (MIDI) • Tempo

• Dynamics

• Timing

• Articulation

Home Conducting

Friberg, 2005

Gestures Audio (MIDI) and Visual (emotion)

PerMORfer

Fabiani, 2011

Gestures/ semantic descriptors

(Russell’s space)

Audio (modified recordings)

Air worm

Dixon et al., 2005

Direct control MIDI theremin Audio (MIDI) / Visual

(performance worm)

• Tempo

• Dynamics

ESP-Chew

Chew et al., 2005, 2006

Direct control Car controller interface (steering

wheel, gas and brake pedals)

Audio / Visual (road simulation) • Tempo (car control)

• Dynamics (car acceleration)

Virtual Philharmony

Baba et al., 2010

Rule based:

• Linear models defining tempo

adjusting heuristics

Physical Interface Audio • Tempo

Caro 2.0

Canazza et al., 2015

Rule based:

• Naturalizer: rules controlling

base performance

• Expressivizer: user controlled

expressive deviations using

linear models

Semantic Descriptors (Russell’s

space)

Audio • Tempo

• Dynamics

• Articulation

on accompaniment systems has focused on solving the
score following problem, while overlooking the generation of
expressivity in the accompaniment part, or mostly focusing
on expressive timing. However, in recent years there has
been a growing interest in expressive accompaniment systems.
Specifically, Xia and Dannenberg (2015) and Xia et al. (2015)
show how to use linear dynamical systems trained via spectral
learning, to predict expressive dynamics and timing of the next
score events. The ACCompanion (Cancino-Chacón et al., 2017a)
is a system that combines an HMM-based monophonic score
follower with a variant of the Basis Mixer to predict expressive
timing, dynamics, and articulation for the accompaniment.

Another interesting recent development in accompaniment
systems is embodied human–computer interactions through
humanoid robots (Hoffman andWeinberg, 2011; Lim et al., 2012;
Solis and Takanishi, 2013; Xia, 2016). These robots could be used
for studying the way humans interact with each other.

3.3. Use of Cognitively Plausible Features
and Models
A third clearly recognizable trend in performance modeling
has to do with using features and models inspired by music
psychology and cognition. While in early work (e.g., Widmer,
2003) the focus was on features rooted in music theory, such as
scale degrees, melodic intervals, and metrical positions, recent
years have seen an increased interest in developing descriptors
that capture some aspects of the way humans—both listeners and
performers—hear music. Wiggins et al. (2010) suggest that music
theory is a kind of folk psychology, and thus, might benefit from
being more explicitly informed by music cognition. The music
cognition literature supports the hypothesis that much of the way

we perform music is informed by the way we perceive music
(Farbood, 2012; Goodchild et al., 2016).

3.3.1. Cognitively Inspired Features
From a computational modeling perspective, perhaps the most
straightforward approach toward cognitively plausible models
is to use features related to aspects of cognition. An important
aspect of music cognition is the expectation of musical events.
One of the most commonly used frameworks of music
expectation in computational models of expression is Narmour’s
Implication–Realization (IR) model (Narmour, 1990). The IR
model is a music-centered cognitive framework based on Gestalt
theory that has emerged from Schenkerian analysis. It defines a
number of patterns of listeners’ ongoing expectations regarding
the continuation of a melody, and how these expectations can be
realized to different degrees by the actual continuation. Methods
that include features based on IR include YQX (Flossmann
et al., 2013), Giraldo S.I. and Ramirez (2016)’s approach to
studying expression in Jazz guitar, and Marchini et al. (2014)’s
approach for string quartets. More recently, there has been an
interest to use information theoretic features computed using the
IDyOM model (Pearce, 2005), a probabilistic model of statistical
learning whose expectations have been shown to match human
listeners’. Gingras et al. (2016) use entropy and information
content as features to study expressive timing and perceived
tension. This work supports Kendall and Carterette (1990)’s
hypothesis regarding the communication between the composer,
the performer, and the listener by linking expectation features,
defined by the composer, to expressive timing, controlled by
the performer, which is linked to perceived tension by the
listener. Cancino-Chacón et al. (2017b) explore the use of these
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information-theoretic features for actually predicting expressive
tempo and dynamics of polyphonic piano music.

Other related cognitive aspects that influence the way
humans perform music are the perception of tonality and
tonal tension (Farbood, 2012; Chew, 2016). Several systems
incorporate features relating to the tonal hierarchies defined by
Krumhansl and Kessler’s profiles (Krumhansl, 1990), including
YQX (Flossmann et al., 2013; Giraldo S.I. and Ramirez, 2016)
and the Basis Function models (Cancino Chacón and Grachten,
2016; Cancino-Chacón and Grachten, 2018; Cancino-Chacón
C.E. et al., 2017), which also include tonal tension features by
Herremans and Chew (2016) to predict expressive tempo, timing,
dynamics, and articulation.

3.3.2. Cognitively Inspired Models
On the other hand, some researchers incorporate aspects of
cognition as part of the design of the computational model
itself. Recent versions of the KTH model includes some rules
that refer to musical accents (Bisesi et al., 2011), local events
that attract a listener’s attention through changes in timing,
dynamics, articulation, or pedaling; and musical tension rules
(Friberg et al., 2006). The approach presented by Gu and Raphael
(2012) decomposes expressive timing into discrete “behaviors”:
constant time, slowing down, speeding up and accent, which, as
the authors argue, are more similar to the way human performers
conceptualize expressive performance actions. Polyhymnia (Kim
et al., 2013) uses 3 Conditional Random Fields (CRFs) to
independently model the highest, lowest and internal voices.
This decomposition allows the model to define the expressive
parameters for the internal voices in terms of the outermost
voices, following the hypothesis that listeners perceive the
expressivity of the uppermost and lowermost voices more clearly
than that of the inner voices (Huron and Fantini, 1989).

3.4. New Datasets
Data-drivenmodeling requires data—in the present case, corpora
of music performances from which aspects of expressive
performance can be readily extracted. This is a non-trivial
problem, particularly for notated music, since performances not
only have to be recorded (as audio or MIDI files), but they also
have to be aligned to the corresponding score, so that we obtain
a mapping between elements in the performance (temporal
position in the case of audio recordings, or MIDI pitch, onset,
and offset times) and elements in the score (score position, or an
explicit mapping between a performed MIDI note and a note in
the score). This is required in order to be able to calculate, e.g.,
expressive timing as the deviation of played on- and offsets from
the corresponding time points implied by the score.

Table 4 presents some of the datasets used for modeling
expressive performances in current research. Note that this list
is not exhaustive; it is intended to give representative examples
of the kinds of existing datasets. Performance datasets can be
characterized along various dimensions, which are also shown in
Table 4:

1. Instrumentation and Solo/Ensemble Setting. Performance
datasets can include a variety of instruments, ranging from

solo to ensemble performances. By far the most studied
instrument in computational modeling is the piano, partially
due to the existence of computer-controlled instruments
such as the Bösendorfer SE/CEUS or the Yamaha Disklavier.
However, recently there is also an increased interest in
modeling ensembles (Marchini et al., 2014; Liem andHanjalic,
2015; Grachten et al., 2017). For datasets relating to ensemble
performances, an important distinction is between those
which only reflect collective characteristics of the performance
(as might be the case with datasets containing audio
recordings where, e.g., timing and loudness of individual
instruments are hard or even impossible to disentangle),
and datasets where note-precise data is captured for each
performer in the ensemble (as is the case with the Xia dataset
described in Xia and Dannenberg, 2015).

2. Performer(s). Research on music performance has studied
a wide range of musical skill levels, from novices and
amateurs to advanced music students (i.e., enrolled in
advanced undergraduate and post-graduate music programs),
professionals and world-renowned performers. (Whether the
performances by “world-renowned” performers are in any
way better than those of “professional” performers, or who
qualifies as a famous artist, are, of course, subjective matters.).
Again, “performer” might not be singular, as some datasets
relate to ensemble performances (cf. the Xia, Marchini, and
RCO/Symphonic datasets in Table 4).

3. Genre and Epoch refer to the kind of music contained in the
database and the period in which the music was composed.
Most of the work on expressive performance modeling has
focused on 19th century Western classical music. In Table 4,
“Classical” denotes Western classical music and “Popular”
denotes music genres such as jazz, folk, rock, and pop.

4. Multiple Performances. Different musicians perform the
same pieces in different ways, and it is highly unlikely that the
same performer would generate exactly the same performance
more than once. Datasets that include multiple performances
of the same piece by different performers allow modeling
commonalities and systematic differences among performers,
while multiple performances of a piece by the same performer
could bring insights into the different aspects that contribute
to specific realizations of expressive performance actions.

5. Source refers to whether the performances are taken
from audio recordings or played on a computer-controlled
instrument. Another related issue is whether the performances
are recorded in front of a live audience, in a recording studio,
or in a research lab. Such differences may have an influence on
expressive parameters (Moelants et al., 2012).

6. Alignment refers to whether there is a mapping between
elements in the performance and the score. (Producing such
mappings is generally a very tedious task.) Alignments can be
note-wise, i.e., individual performed notes arematched to their
corresponding symbolic representations in the score; or onset-
wise, where there is just a mapping between temporal position
in the performance and score position.

In spite of the apparent richness and variety of data, it is
important to raise awareness to some issues, like the fact that
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TABLE 4 | Datasets of expressive performances.

Dataset Performer Pieces Genre & epoch Multiple performances Source Score alignment

Different

performer

Same

performer

PIANO

Repp

Repp, 1996

Advanced students 4 Classical: 1830–1920 Yes Yes Computer-controlled

piano

Note-wise

Vienna 4x22

Goebl, 1999

Advanced students &

professionals

4 Classical: 1780–1840 Yes No Computer-controlled

piano

Note-wise

Batik/Mozart

Widmer and Tobudic,

2002

Professional 30+ Classical: 1750–1800 No No Computer-controlled

piano

Note-wise

Magaloff/Chopin

Flossmann et al., 2010

World-renowned 150+ Classical: 1800–1850 No No Computer-controlled

piano

Note-wise

Zeilinger/Beethoven

Cancino-Chacón C.E.

et al., 2017

Professional 15+ Classical: 1790–1830 No No Computer-controlled

piano

Note-wise

Mazurka

Sapp, 2007

World-renowned 45+ Classical: 1800–1850 Yes Some Audio recordings Onset-wise

CrestMuse PEDB

Hashida et al., 2008,

2017

World-renowned &

professionals

40+ Classical: 1700–1900 No Yes Audio recordings and

computer-controlled

piano

Note-wise

LeadSheet

Moulieras and Pachet,

2016

Professional 170+ Popular: 1950–2000 No Yes Computer-controlled

piano

Note-wise

e-Piano Competition

Simon et al., 2017

Professional 900+ Classical: 1700–2000 Yes No Computer-controlled

piano

None

Xia

Xia and Dannenberg,

2015

Advanced Students

(duets)

3 Popular: 1800–1990 Yes Yes Computer-controlled

piano

Note-wise

OTHER

RCO/Symphonic

Grachten et al., 2017

World-renowned

(orchestra)

20+ Classical: 1800–1900 Yes No Audio recordings Onset-wise

Marchini

Marchini et al., 2014

Professional (string

quartet)

1 Classical: 1790–1800 No Yes Audio recordings Onset-wise

it is unlikely that the same performance would happen in two
different kinds of rooms with different audiences (Di Carlo and
Rodà, 2014). Furthermore, in the case of computer-controlled
instruments, the mapping from MIDI velocities to loudness and
timbre is dependent on the instrument.

But perhaps one of the most pressing issues is the availability
of the datasets. Part of the impressive progress in other Artificial
Intelligence domains is due to the availability of large standard
datasets, which allow for comparing different approaches. In
our case, however, only a few of the performance datasets are
publicly available, often due to rights issues. (Of the datasets
reported in Table 4, only CrestMuse PEDB, Xia, Vienna 4 x
22, Mazurka and the e-Piano competition datasets are publicly
available). A noteworthy effort toward the compilation of large
and varied performance datasets is being made by the CrestMuse
group in Japan (Hashida et al., 2017), who not only provide a
second edition of the PEDB database, but also have provided
some tools for aligning MIDI performances to scores (Nakamura
et al., 2017). A more in-depth review of methods for extracting
information from performances can be found in Goebl et al.
(2008) and Goebl and Widmer (2009).

In particular for score-based music it is of capital importance
to have central datasets that combine score information,
structural annotation, performance data and performance
annotation. Crowd-sourcing platforms for creating and
maintaining such databases are an avenue that should definitely
be pursued.

3.5. Computational Models as Tools for
Music Education
A final recent trend we would like to mention here is
the increased interest in exploring computational models of
expressive performance for educational purposes. Juslin (2003)
already pointed out that insights learned by developing such
models can help understand and appreciate the way musicians
perform music expressively. Furthermore, initiatives like the
RenCon competition have stressed from the beginning the
importance of using computational models for educational
purposes, stating in a tongue-in-cheek manner that RenCon’s
long-term goal is to have a human performer educated using
a computational system win the first prize at the International
Chopin Piano Competition by 2100 (Hiraga et al., 2002).
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A possible use of computational models as tools for education
is to analyze performance strategies from visualizations of
expressive parameters (Langner and Goebl, 2003; Grachten
et al., 2009; Chew, 2012, 2016) or comparing characteristics
of a performance (Sapp, 2007, 2008; Liem and Hanjalic, 2015;
Grachten et al., 2017). By highlighting similarities and variations
in expressive patterns and qualities in performances and relating
these to aspects of the written score, this kind of analyses
might be interesting not only to music students, buy also to
general audiences, stimulating listeners’ engagement with, and
understanding of, music. All of this could be built into active
music listening interfaces (Goto, 2007), such as the integrated
prototype of the PHENICX project3 (Liem et al., 2015).

Computer accompaniment systems can help musicians to
practice. First concrete examples are commercial applications
such as Smartmusic4, which commercializes Roger Dannenberg’s
research, Cadenza5, based on work by Chris Raphael and
Antescofo (Cont, 2008), which has been developed into
commercial applications for providing adaptable backing tracks
for musicians and music students6. Conductor and feedback
systems can be also be used for educational purposes, either
as a simulation of orchestra conducting for conducting
students (Peng and Gerhard, 2009; Baba et al., 2010), or as
interactive experiences for helping to introduce general audiences
to classical music (Sarasúa et al., 2016).

Another dimension is the technical and mechanical aspects of
instrument playing and practicing. Here, for example, algorithms
that can determine the difficulty of a piece (Sébastien et al.,
2012; Nakamura et al., 2014b) or propose appropriate fingering
strategies (Al Kasimi et al., 2007; Nakamura et al., 2014b; Balliauw
et al., 2015) would be useful. Furthermore, computational models
might help determine a performer’s skill level (Grindlay and
Helmbold, 2006; Caramiaux et al., 2017). Musical e-learning
platforms such as Yousician7 and Music Prodigy8 (and many
more, as this is a rapidly growing business segment for start-ups)
might benefit from models of performance to provide a more
engaging experience, as well as to develop better musicianship.

4. A CRITICAL DISCUSSION OF
PARAMETER SELECTION AND MODEL
EVALUATION

The following section presents a discussion of how certain
choices in the score features, expressive parameters and models
affect what a computational performancemodel can describe.We
focus on three main aspects, namely, the effects of the choice of
expressive targets (section 4.1), the level at which a systemmodels
expressive performance, based on Palmer’s categories described
in section 2.2 above (section 4.2), and on the way models are
evaluated (section 4.3).

3http://phenicx.com
4https://www.smartmusic.com
5http://www.sonacadenza.com
6https://www.antescofo.com
7https://yousician.com
8https://www.musicprodigy.com

4.1. Encoding Expressive Dimensions and
Parameters
As explained in section 2.3 above, expressive parameters
are numerical descriptors that capture certain aspects of a
performance. As already discussed by De Poli (2004) (and this
remains true today), there seems to be no consensus on the
best way of describing a music performance. Instead, each
formulation uses variants of these parameters, which has some
consequences on the kinds of performances or performance
aspects that can be modeled.

The most commonly modeled performance aspects (for the
piano) are expressive tempo/timing, dynamics and articulation.
To keep the discussion manageable, we will also restrict ourselves
to these parameters here, leaving out other dimensions such as
timbral parameters, vibrato, or intonation. A piano performance
can be represented in the most simplistic way by the three
MIDI parameters note onset, offset, and key velocity. Other
instruments might involve other parameters such as bow velocity
for string instruments (Marchini et al., 2014). Furthermore, in
some instruments, like winds and strings, there might be a
discussion whether to model perceptual or physical onsets (Vos
and Rasch, 1981), or indeed whether the notion of a well-defined,
exact onset time is meaningful.

4.1.1. Tempo and Timing
Expressive tempo and timing ultimately relate to the “temporal
position” of musical events. Broadly speaking, tempo refers to
the approximate rate at which musical events happen. This may
refer to the global tempo of a performance (which is often roughly
prescribed in the score by the metronome number), or to local
tempo, which is the rate of events within a smaller time window
and can be regarded as local deviations from the global tempo.
Expressive timing, finally, refers to deviations of the individual
events from the local tempo. Setting these three notions apart is
of crucial importance in quantitative modeling of performance,
computational, or otherwise.

There is support from the music psychology literature that
timing patterns are tempo-dependent (Desain and Honing, 1994;
Repp et al., 2002; Honing, 2005; Coorevits et al., 2015). Although
there is no clear-cut definition of where local tempo variations
end and expressive timing starts, the distinction between local
tempo and timing was shown to be perceptually relevant in a
study by Dixon et al. (2006) where listeners rated beat trains
played along with expressive performances, and were shown to
prefer slightly smoothed beat trains over beat trains that were
exactly aligned to the note onsets. This reinforces the idea that
note level irregularities should be not be regarded as as micro-
fluctuations of local tempo, but rather as deviations from local
tempo. A similar result was presented by Gu and Raphael (2012).
Honing (2005, 2006) provides valuable insight into the limits of
expressive timing by observing that very strong deviations from
a steady beat may interfere with the rhythm that is perceived by
the listener. Assuming that a goal of the performer is to make the
listener accurately recognize the rhythmic categories of the score
being played, this constrains the freedom of expressive timing.
Honing (2006) then uses a model of human rhythm perception
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to infer limits on expressive timing for phrase endings based on
their rhythmic patterns.

Several computational models explicitly separate tempo and
timing. Recent versions of the KTH model (Friberg et al., 2006
see Table 1) have rules dealing with tempo (e.g., phrasing rules)
and timing (e.g., melodic sync, micro-level timing). In Laminae
(Okumura et al., 2014), tempo is represented by the average
BPM per beat, while timing is defined as the onset deviations
relative to the beat. Polyhymnia (Kim et al., 2011) decomposes
tempo into two expressive parameters, calculating tempo curves
for the highest and lowest melodic lines. YQX (Flossmann et al.,
2013) represents tempo as the lower frequency components of
the log-IOI ratio series, and timing as the residual high frequency
components. In a similar fashion, the most recent version of the
Basis Mixer (Cancino Chacón and Grachten, 2016) computes
expressive tempo from the smoothed log-IOI series, where the
estimated IOIs come from a smoothed (spline) interpolation of
the performed onsets, and timing as the deviations from these
estimated IOIs. There are some practical issues with the use of
smooth tempo targets, such as the problem of phrase boundaries,
where tempo changes are not necessarily smooth. A solution
involving adaptive smoothing (Dixon et al., 2006)—splines with
manual knot placement at phrase boundaries—would require
human annotation of the phrase structure. Dannenberg and
Mohan (2011) describe an interesting dynamic programming
optimization algorithm to find the best spline fit allowing a finite
number of knots without manual annotations. Other approaches
involve local linear approximations of the tempo (Xia, 2016)
or multiple hierarchical decompositions (Widmer and Tobudic,
2002).

Another issue related to the modeling of tempo and timing is
scaling of the expressive parameters, which determines whether
we model relative tempo changes, or the actual tempo itself.
Chew and Callender (2013) argue in favor of using log-tempo
for analysis of performance strategies. Flossmann et al. (2013),
Kim et al. (2013), and Grachten and Cancino-Chacón (2017) use
logarithmic tempo parameters, while most works focus on linear
parameters (Grindlay andHelmbold, 2006; Teramura et al., 2008;
Gu and Raphael, 2012; Okumura et al., 2014; Gingras et al., 2016;
Cancino-Chacón et al., 2017b; Peperkamp et al., 2017).

Some choose to focus on modeling the dynamic change in the
parameters instead of the parameters themselves, by calculating
differences. Gingras et al. (2016) model both IOIs and their first
differences— also for a technical reason, since the IOI series is not
stationary, and thus not suitable for linear time-series analysis.
Okumura et al. (2014) focuson the changes in expressive tempo,
by explicitly modeling the conditional probability distribution of
the current expressive tempo given its previous difference, using
Gaussian distributions. Grindlay and Helmbold (2006) jointly
model expressive tempo and its first differences, which leads to
more coherent predictions.

4.1.2. Articulation
Articulation, in the case of the piano, refers to the ratio
between the performed duration of a note and its notated
value and therefore also describes the amount of overlap
between consecutive notes. Common articulation strategies

include staccato (shortening compared to notated duration)
and legato (smooth connection to following note). While most
generative models deal with expressive tempo/timing, not all
of them model articulation. As with tempo, there are several
variants of quantitatively describing articulation, including the
use of linear (Flossmann et al., 2013) or logarithmic scaling of
the parameters (Kim et al., 2011; Cancino Chacón and Grachten,
2016).

To the best of our knowledge, no data-driven generative
system has attempted to model pedaling, a subtle art that has
complex consequences for note durations, but also for the overall
sound of a passage. The effect of pedaling on articulation may
still be modeled implicitly, by distinguishing between the events
of a piano key release and the actual ending of the associated
sound (when the sustain pedal is released), as is done in the Basis
Function models, for example.

4.1.3. Expressive Dynamics
To simply relate performed dynamics to loudness would miss
a number of important aspects of expressive performance. As
discussed by Elowsson and Friberg (2017), there is a difference
between mere loudness and perceived dynamics. For example,
it has been noted that the timbral characteristics of instruments
(and therefore, their spectra) change with the performed
intensity. Liebman et al. (2012) choose not to focus on loudness
since analysis of loudness might not be entirely reliable.

Most approaches for the piano use MIDI velocity as a proxy
for loudness. However, it must be noted that the mapping
of MIDI velocities to performed dynamics and perceived or
measured loudness in piano is not standardized in any way—it
may be non-linear, and change from instrument to instrument.
Some systems simply use MIDI velocity as an expressive target
for each note, while others—particularly those for polyphonic
music—decompose the MIDI velocity into several parameters.
Early versions of the Basis Function model (Grachten and
Widmer, 2012; Cancino Chacón and Grachten, 2015), as well
as the unsupervised approach by van Herwaarden et al. (2014)
and the NAISTmodel (Teramura et al., 2008), are non-sequential
models and thus predict MIDI velocity for each score note.
Sequential models such as ESP (Grindlay and Helmbold, 2006),
Laminae (Okumura et al., 2011), and Polyhymnia (Kim et al.,
2011) decompose a piece of music into several melodic lines,
either automatically (Polyhymnia) or manually (ESP, Laminae),
and predict the MIDI velocity for each voice independently.
The latest version of the Basis Function models decomposes a
performance into a dynamic trend, either the average or the
maximal MIDI velocity at each score position (Cancino Chacón
and Grachten, 2016; Cancino-Chacón et al., 2017b), and a local
parameter describing the deviations from the trend for each
score note. The rationale for this decomposition is that it allows
for modeling the temporal evolution of expressive dynamics,
something that cannot easily be done in polyphonic music when
dynamics is represented as an attribute of individual notes.

In the case of audio, the problem of choosing a metric for
expressive dynamics ismore complicated due to the large number
of measures of loudness. A common trend is to use loudness
measures that take into account human perception, such as the
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EBU-R-128 measure defined for regulation of loudness in the
broadcasting industry (Grachten et al., 2017), and smoothed
loudness curves in sones (Kosta et al., 2016).

4.1.4. Joint Modeling of Parameters
Musicians’ expressive manipulations of tempo, timing, dynamics,
and articulation have been studied from a cognitive perspective,
both individually and in combination, to determine how they
shape listeners’ perceptions of performed music. A number
of studies have sought to identify interactions between pairs
of expressive parameters like timing and dynamics (Tekman,
2002; Boltz, 2011), and timing and tempo (Desain and Honing,
1994; Repp et al., 2002; Coorevits et al., 2015, 2017). While
the music psychology literature provides some indication of
how listeners expect pairs of expressive parameters to relate in
certain (simplistic) contexts, it remains unclear whether these
relationships are upheld during normal music performance,
when the underlying piece is complex and many expressive
parameters must be manipulated in parallel.

The influential model of expressive tempo and dynamics
by Todd (1992) states that both aspects are linearly coupled
by default (unless the musical context demands a decoupling),
and suggests that this coupling may be especially tight for
romantic piano music. The model predicts arc-like dynamics
and tempo shapes to express phrase structure. Grindlay and
Helmbold (2006)’s HHMM-based ESP system allows for the joint
modeling of expressive parameters, however the focus in their
work is strongly on local tempo. No quantitative results are given
for the modeling of tempo in combination with dynamics and
articulation. The KTH model (Friberg et al., 2006) includes rules
that prescribe the joint variation of multiple parameters, such as
a phrasing rule that accounts for arc-like shapes in dynamics and
tempo, similar to those in Todd (1992). Several other authors
combine separate models for each expressive parameter, and do
not consider interactions (Teramura et al., 2008; Widmer et al.,
2009), or consider only a single expressive parameter (Kosta
et al., 2016; Peperkamp et al., 2017). Recent versions of the
Basis Function models (Cancino Chacón and Grachten, 2016)
allow for joint estimation of parameters using Gaussian mixture
density networks (GMNs); parameters defined for individual
notes and parameters defined only per score time point are
modeled in separate sets. Xia and Dannenberg (2015) and Xia
et al. (2015) jointly model expressive dynamics and tempo using
linear dynamical systems, with the underlying assumption that
the joint distribution of the parameters is Gaussian. The approach
presented by Moulieras and Pachet (2016) models dynamics and
timing jointly with a joint probability distribution approximated
using a maximum entropy approach. Since this approach is not
Gaussian, the form of the distribution depends on the training
data.

To the best of our knowledge, there has not been an extensive
computational study analyzing whether the joint estimation of
parameters improves the generative quality of predictive models.
Furthermore, in some cases performers will manipulate two
parameters in different ways during the course of a single
piece to achieve different expressive goals (e.g., slowing down
while simultaneously getting softer, then elsewhere slowing

down while getting louder). Whether the consistent use of
particular parameter relationships relates to the aesthetic quality
of a performance, increases its predictability, or makes the
communication of expression more successful likewise requires
further study.

4.2. Relation to Palmer’s Categories
4.2.1. Interpretation
As stated in section 2.2, expressive performance of notated
music can be seen as a communication process in which
information flows from the composer to the listener through the
performer (Kendall and Carterette, 1990). In this case, the role of
the performer involves semantically and affectively interpreting
the score. Gingras et al. (2016) provide evidence supporting this
relationship by linking information-theoretic features (related to
the role the composer) to expressive timing (performer), which is
a good predictor of perceived tension (listener).

An important aspect of the interpretation of a score is to
highlight structural content. A common approach taken by many
systems is to rely on input features describing group boundaries
and phrase structure. Friberg et al. (2006) and Grindlay and
Helmbold (2006) use features related to phrase structure, which
is assumed to be manually annotated in the score. Giraldo S. and
Ramírez (2016) and Giraldo S.I. and Ramirez (2016) use LBDM,
an automatic segmentation algorithm based on Gestalt theory
(Cambouropoulos, 1997).

Another important aspect in polyphonic Western music is
the hierarchical relations and interactions between different
voices, which in most cases involves distinguishing the main (or
most salient) melody. Several models require the melody to be
annotated (Grindlay and Helmbold, 2006; Okumura et al., 2014;
Cancino-Chacón et al., 2017b). Other models simply assume that
the main melody is composed of the highest notes (Teramura
et al., 2008; Flossmann et al., 2013).

Another marker of music structure are the patterns of
tension and relaxation in music, linked to several aspects of
expectedness. Farbood (2012) showed a relationship between
expressive timing and perceived tension. Grachten and Widmer
(2012) use Narmour (1990) Implication–Realization model to
link expressive dynamics to melodic expectation, but observe no
substantial improvement over simpler models that use only pitch
and dynamics annotations as predictors. Chew (2016) introduces
the idea of tipping points, i.e., extreme cases of pulse elasticity,
and their relation to tonality, in particular harmonic tension.
The KTH model includes features describing harmonic tension
(Friberg et al., 2006). Gingras et al. (2016) show relationship of
expressive timing and perceived tension. Recent versions of the
Basis Function models (Cancino Chacón and Grachten, 2016)
include harmonic tension features computed using the methods
proposed by Herremans and Chew (2016).

Beyond the identification of structural aspects, another
important aspect of interpretation is to highlight particular
emotional content of the music. Juslin (2003) points out that
“[a] function of performance expression might be to render the
performance with a particular emotional expression.” Research
in music and emotion is a very active field (see Juslin and
Sloboda, 2011 for an overview), which includes studying
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the relationship between intended emotion and performance
gestures and strategies (Juslin, 2001; Gabrielsson and Lindström,
2010; Bresin and Friberg, 2011). Eerola et al. (2013) study the
contribution of expressive dimensions such as tempo, dynamics,
articulation, register, and timbre to determining emotional
expression. Their results suggest that expressive dimensions
interact linearly, and their contributions seem to be additive.
While some generative models allow the user to control the
intended emotion or expressive character (Bresin and Friberg,
2000; Friberg, 2006; Canazza et al., 2015), to the best of
our knowledge no autonomous generative model attempts to
recognize emotive content of a piece directly from analysis of the
score, and render it appropriately.

4.2.2. Planning
While interpretation of a musical score aims at uncovering
its semantic and affective content, performance planning refers
to how this content, along with more or less specific artistic
or expressive intentions of the performer, is turned into
specific expressive performance decisions. In this view, most
computational models of expressive performance act at this
level, since they focus on explicitly (i.e., quantitatively) relating
structural aspects of the score to parameters encoding an
expressive performance.

An important characteristic of Western classical music is
the hierarchical nature of its structure. Repp (1998) points out
that “[t]he performer’s (often subconscious) intention seems to
‘act out’ the music’s hierarchical grouping structure and thereby
communicate to the listeners.” It is therefore, important to
determine how the different hierarchical levels interact with each
other and contribute to the overall expression. The relation
between the hierarchical structure and expression has been
explored in the cognitive literature (Clarke, 1993; Repp, 1998;
Toiviainen et al., 2010). Widmer and Tobudic (2002) explore the
relationship between hierarchical levels of the phrase structure
and expressive tempo, using a multilevel decomposition of the
tempo curves corresponding to each level of the phrase structure,
and an inductive rule learning method to model the note-wise
performance residuals. Tobudic and Widmer (2006) expand on
this work using an instance-based learning method in which
the hierarchical phrase structure is represented using first-order
logic.

An important design issue relating to the structure–expression
relationships is how the choice of score (feature) representation
affects the possible performance gestures that can be modeled
(i.e., planned). An example of this would be whether the
possible patterns of dynamics and timing deviations that a
system can describe are “implicitly” assumed from the encoding
of features—as might be the case with systems using features
describing metrical strength and metrical hierarchy (Grindlay
and Helmbold, 2006; Teramura et al., 2008; Kim et al., 2011;
Marchini et al., 2014; Giraldo S. and Ramírez, 2016)—or can be
inferred directly from human performances using more agnostic
features denoting metrical position (Xia et al., 2015; Cancino-
Chacón C.E. et al., 2017).

4.2.3. Movement
Humans need to transform the result of the interpretation
and planning stages into an actual acoustic rendering of a
piece by means of movements of their bodies (i.e., actually
playing the instrument). In this regard, we can consider
movement and embodiment as necessary conditions for (human)
expressive performance. Similar to the concept of embodied
cognition (Leman et al., 2017a), neuroscientific accounts refer to
the “action–perception loop,” a well-trained neural connection
between the aim of an action, here the musical sound,
and its execution, the necessary body movements at the
musical instrument (Novembre and Keller, 2014). Musicians,
having practiced over decades, will “hear” or imagine a
certain sound and execute the appropriate body movements
automatically. Likewise, co-musicians or the audience will
perceive a performance through hearing and seeing the
performer (Platz and Kopiez, 2012); and even from only hearing
the sound, experienced listeners will be able to deduce bodily
states and movement characteristics of the performer. Leman
et al. (2017b) discuss the role of the hand as a co-articulated
organ of the brain’s action–perception machinery in expressive
performance, music listening and learning.

Body motion is an essential means of non-verbal
communication not only to the audience, but also among
musicians. Goebl and Palmer (2009) showed in ensemble
performances of simple melodies that visual information became
more important to stay in synchrony (i.e., musicians’ head
movements were more synchronized) as auditory cues were
reduced. Body movements serve specific roles at certain places
in a piece (e.g., at the beginning, after fermatas). Bishop and
Goebl (2017, 2018) study specific head motion kinematics in
ensemble performance used to cue-in a piece without upbeat.
They found characteristic patters including acceleration peaks to
carry relevant cueing information.

In spite of the progress in music psychology and embodied
cognition, few computational approaches take into account
aspects of motion while modeling expressive performance.
However, the availability of motion capture technology as well
as new trends in psychological research might open the field
of modeling expressive movement. The KTH model includes
performance noise as a white noise component relating to motor
delay and uses 1/f noise to simulate noise coming from an
internal time-keeper clock (Friberg et al., 2006). Dalla Bella and
Palmer (2011) show that finger velocity and acceleration can be
used as features to identify individual pianists. Marchini et al.
(2013, 2014) study expressive performance in string quartets
using a combination of music-only related expressive parameters,
as well as bow velocity, a dimension of movement directly related
to performed dynamics. Caramiaux et al. (2017) assess whether
individuality can be trained, that is whether the differences in
performance style are related to development in skill and can thus
be learned. Their results suggest that motion features are better
than musical timing features for discriminating performance
styles. Furthermore, the results suggest that motion features are
better for classification.
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4.3. Evaluating Computational
Performance Models
How the quality or adequacy of computational performance
models can be evaluated in a systematic and reliable fashion is
a difficult question. First of all, the evaluation will depend on the
purpose of the model. A model designed to serve an explanatory
purpose should be evaluated according to different criteria than
a model for performance generation. In the former case, the
simplicity of the model structure may be of prime importance,
as well as how easily the model output can be linked to aspects
of the input. In the latter, we may be more interested in how
convincing the generated performance sounds than how easy it
is to understand the decisions of the model.

Furthermore, when we evaluate a model by the quality of its
output, an important issue is the ultimately subjective nature of
judging the musical quality of an expressive performance. And
while we might even be able to formulate principles to which a
good performance should adhere, it is entirely conceivable that
a performance conforming to all these principles fails to please
us, or conversely, that a performance defying these principles is
nevertheless captivating.

Bresin and Friberg (2013) formulate several more formal
aspects of computational performance models that can be
evaluated, including their ability to reproduce/reconstruct
(specific) human performances and their capacity to adapt to
different expressive intentions/contexts.

4.3.1. Attempts at Quantitative, “Objective”

Evaluation
Most of the work described above relies on quantitative
evaluation in terms of predictive capabilities and/or goodness
of fit, relative to a given set of human performances. These
measures tend to focus on the prediction or reconstruction
error—e.g., in the form of the correlation or the mean squared
error (MSE) between the performance patterns predicted by
a model, and a real human performance—, or on a so-called
likelihood function (which gives the probability of observing a
given (human) performance, given a particular model). What
all these approaches have in common is that they base their
evaluation on a comparison between a model’s output, and a —
usually one specific—performance by a human musician (most
often additional performances by the same musician(s) from
whom the model was learned). This is problematic for several
reasons:

• Comparison to a single “target” performance is highly
arbitrary, given that there are many valid ways to perform a
piece. A good fit may at least indicate that a model has the
capacity of encoding and describing the specific performances
by a specific performer (with, presumably, a specific style). A
poor fit does not necessarily mean that the model’s predictions
are musically bad.

• What is more, there is no guarantee that higher correlation,
or lower MSE implies a musically better performance, nor
indeed that a performance that sounds more similar to the
target. Especially outliers (single errors of greatmagnitude) can
influence these measures. Errors may not be equally salient for

all data points. Accounting for this would require a model of
perceived saliency of musical positions and errors, which is
currently out of reach (or has not been tackled yet).

• A more technical point is that we cannot compare
performance models that encode an expressive dimension
using different parameters (such asmodeling expressive tempo
using IBI vs. BPM, or using linear vs. logarithmic parameters),
because quantitative correlation or error measures must
assume a particular encoding. There are currently no
canonical definitions of the expressive dimensions.

These kinds of problems have also been faced in other domains,
and have been addressed in the computer vision literature
with the introduction of the Structural Similarity Index (Wang
et al., 2004), a perception-based metric that considers perceptual
phenomena like luminance masking, as well as perceived change
in structural information. However, to the best of our knowledge,
there has not been any attempt to define similar measures
for music, or to propose a custom measure for expressive
performance.

Bresin and Friberg (2013) suggest to relate these error metrics
to more general perceptual models. An example of this would be
reporting the error in terms of just noticeable differences (JNDs)
in the expressive parameters. Nevertheless, it is worth noticing
that JNDs are highly dependent on the musical context.

4.3.2. Qualitative Evaluation via Listening Tests
The obvious alternative to quantitative, correlation-based
evaluation is evaluation by listening: playing human and
computer-generated performances to human listeners and asking
them to rate various qualities, or to simply rank them according
to some musical criteria.

An early initiative that attempted to provide a systematic
basis for this was RenCon (Performance Rendering Contest)9, a
Japanese initiative that has been organizing a series of contests
for computer systems that generate expressive performances
(Hiraga et al., 2002, 2003, 2004, 2006; Katayose et al., 2012).
At these RenCon Workshops, (piano) performances of different
computational models were played to an audience, which then
voted for a “winner” (the most “musical” performance). It is
currently not clear if this initiative is being continued. (Actually,
the last RenCon workshop we are aware of dates back to 2013.)

Also, there are a number of issues with audience-based
evaluation, which clearly surfaced also in the RenCon
Workshops: the appropriate choice of music; the listeners’
limited attention span; the difficulties inherent in comparing
different kinds of systems (e.g., fully autonomous vs. interactive),
or systems that model different performance parameters
(e.g., not all models address the articulation dimension, or
autonomously decide on the overall tempo to be chosen).
Finally, reproducibility of results is an issue in audience-based
evaluation. There is no guarantee that repeating a listening test
(even with the same audience) will yield the same results, and it
is impossible to compare later models to models that have been
evaluated earlier.

9www.renconmusic.org
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A particular and very subtle problem is the choice, and
communication to the human subjects, of the rating criteria
that should be applied. This can also be exemplified with a
recent “Turing Test” described in Schubert et al. (2017), where
piano performances produced by several systems that had won
recent RenCon competitions, along with one performance by
a real human pianist, were rated by a human listening panel.
The subjects were asked to rate the performances (all rendered
on the same piano) according to different dimensions. The
question that the analysis in Schubert et al. (2017) then mainly
focuses was to what degree the listeners believed that “[t]he
performance was played by a human”. Without going into the
details of the results10, it is clear that such a question may be
interpreted differently by different listeners, or indeed depending
on what apparent weaknesses are heard in a performance:
a performance with extreme timing irregularities might be
(erroneously) classified as “human” because the listener might
believe that it was produced by a poor piano student or a child, or
that it could not be the output of a computer, because computers
would be able to play with perfect regularity. Generally, an
inherent problem with qualitative listening evaluations is that
one single cue (e.g., “strange,” unusual mistake) can give away a
given trial as probably computer-generated, independent of how
convincing the rest was.

There is plenty of evidence in the music psychology
literature showing that the assessment of the quality of a
performance depends not only on the quality of its acoustic
rendering, but on a number of other factors. Platz and Kopiez
(2012) present a meta-analysis of 15 studies from 1985 to
2011 supporting the hypothesis that audio-visual presentation
enhances appreciation of music performance. Their results
show that the visual component is an important factor in the
communication of meaning. Tsay (2013) present controversial
results suggesting that visual information alone might be
sufficient when determining the winner of a music competition.
Wapnick et al. (2009) suggest that certain non-musical attributes
like the perceived attractiveness of a performer or the way they
behave on stage affects ratings of high-level piano performances,
particularly on short performances. Thompson et al. (2007)
study the evolution of listeners’ assessments of the quality of a
performance over the course of the piece. Their results suggest
that even while listeners only need a short time to reach a decision
on their judgment, there is a significant difference between the
initial and final judgments. Wesolowski et al. (2016) present
a more critical view of listeners’ judgments by examining the
precision.

De Poli et al. (2014) and Schubert et al. (2014a) specifically
study how the audience judges entire performances of
computational models, by analyzing listeners’ scores of several
aspects including technical accuracy, emotional content and
coherence of the performed style. The listeners were categorized

10Briefly: it turned out that on this “perceived humanness” rating scale, several
computational models scored at a level that was statistically indistinguishable from
the human pianist, with the linear Basis Function model (Grachten and Widmer,
2012) achieving the highest “humanness” ratings (higher than even the human
performance).

into two different cognitive styles: music systemizers (those who
judge a performance in technical and formal terms) and music
empathizers (describe a performance in terms of its emotive
content). Their results suggest that preference for different
performances cannot be attributed to these cognitive styles, but
the cognitive style does influence the justification for a rating.
Schubert et al. (2014b) suggest that the conceptual difference
between music empathizers and music systemizers might not be
sufficient to capture significant differences in evaluating music
performances.

Despite all these problematic aspects, some way of
qualitative, expert- or listener-based evaluation of computational
performance models seems indispensable, as the quantitative
measures described in the previous section definitely fall short
of capturing the musical (not to mention the emotional) quality
of the results. This is a highly challenging open problem for the
performance research community—and an essential one.

5. CONCLUSIONS

This work has reviewed some recent developments on the study
and generation of expressive musical performances through
computational models. Perhaps the most notable trends are a
strong focus on data-driven methods for analysis and generation,
which mirrors the trend in other areas such as natural language
processing and computer vision; and increased interest in
interactive systems, which allow us to explore musical human–
computer interactions.

In their current state, computational models of performance
provide support for a number of musically and cognitively
plausible hypotheses, such as the existence of certain patterns
in performance, the importance of attending to the local
context in the score (Marchini et al., 2014; Kosta et al.,
2016; Grachten and Cancino-Chacón, 2017), and Kendall
and Carterette (1990)’s communication model for the role
of composer, performer and listener (Gingras et al., 2016).
Nevertheless, most approaches focus on mapping local syntactic
structures to performance gestures, but are not able to model
the longer hierarchical relationships that might be relevant
for a full understanding of the music, and its dramatic
structure.

There remains much to be done in order to advance the state
of the art, and to improve the utility of such computational
models—both as vehicles for exploring this complex art, and
as practical tools. We would like to end this article by briefly
highlighting four aspects (out of many) to consider for further
research in the immediate future:

1. Dataset creation. The power of data-driven methods comes
at the cost of requiring large amounts of data, in this case
specifically, performances aligned to their scores. As pointed
out by Juslin (2003), this might be an issue preventing the
advance in computational models of music expression. As
discussed in section 3.4, currently available datasets do not
yet reach the size (in terms of amount of data and variety)
that has been able to boost other domains such as computer
vision. Still, progress is being made, with initiatives like those
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by the CrestMuse group in Japan (Hashida et al., 2017). We
would like to encourage the community at large to focus on
developing more datasets, in a joint effort.

2. Expressive parameters.As discussed in section 4.1, there is no
consensus regarding the encoding of expressive dimensions.
Efforts should be made to investigate the effects of the
choice of performance parameters encoding, as well as joint
estimation of parameters. An interesting direction would be
to search for representations that are cognitively plausible (in
terms of human real-time perception and memory).

3. Models of music understanding and embodiment. As
pointed out by Widmer (2017), it is necessary to develop
models and features that better capture the long term semantic
and emotive relationships that appear in music. This might
require to develop better features, including learned features,
as well as reframing the computational tasks in terms of
approaches like reinforcement learning. Furthermore, more
research efforts into developing computational models that
include aspects of embodied music interaction might be
required.

4. Evaluation Having well-established and valid criteria for
evaluating differentmodels, and comparing their performance
to that of humans, is essential to making progress. In terms
of quantitative measures, more work will be required to
conduct research that studies the effects and biases involved
in the choice of evaluation metrics. Furthermore, it would be
interesting to evaluate computational models of expression
as models of cognition, not only focusing on how well they
reproduce the observed data, but also if the predictions of
the model are cognitively plausible (Honing, 2006). Ideally,
quantitative measures should relate to perceptually relevant
aspects of performances, as perceived by musical listeners.
In terms of qualitative, truly musical evaluation, which

we consider indispensable, we need more efforts toward
establishing venues for systematic evaluation and comparison,
like the RenCon workshop and similar initiatives. And again,
studies that give us a better understanding of how humans
evaluate performances, would be extremely useful.

While at this stage (and perhaps forever) it is more than
uncertain whether computational models of performance will
ever successfully beat humans in high-profile competitions, as
stated as a goal by the RenCon initiative (Hiraga et al., 2002),
there is no doubt that understanding the way humans create and
enjoy expressive performances is of great value. It is our hope
that the field of research we have attempted to portray here can
contribute to such an understanding, and develop useful musical
tools along the way.
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