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Within the last 15 years, the field of Music Information Retrieval (MIR) has made

tremendous progress in the development of algorithms for organizing and analyzing

the ever-increasing large and varied amount of music and music-related data available

digitally. However, the development of content-based methods to enable or ameliorate

multimedia retrieval still remains a central challenge. In this perspective paper, we critically

look at the problem of automatic chord estimation from audio recordings as a case study

of content-based algorithms, and point out several bottlenecks in current approaches:

expressiveness and flexibility are obtained to the expense of robustness and vice versa;

available multimodal sources of information are little exploited; modeling multi-faceted

and strongly interrelated musical information is limited with current architectures; models

are typically restricted to short-term analysis that does not account for the hierarchical

temporal structure of musical signals. Dealing with music data requires the ability to tackle

both uncertainty and complex relational structure at multiple levels of representation.

Traditional approaches have generally treated these two aspects separately, probability

and learning being the usual way to represent uncertainty in knowledge, while logical

representation being the usual way to represent knowledge and complex relational

information. We advocate that the identified hurdles of current approaches could

be overcome by recent developments in the area of Statistical Relational Artificial

Intelligence (StarAI) that unifies probability, logic and (deep) learning. We show that

existing approaches used in MIR find powerful extensions and unifications in StarAI,

and we explain why we think it is time to consider the new perspectives offered by this

promising research field.

Keywords: music information retrieval (MIR), content-based, chord recognition, statistical relational artificial

intelligence, audio

1. INTRODUCTION

Understanding music has been a long-standing problem for very diverse communities. Trying to
formalize musical knowledge, and to understand how human beings create and listen to music has
proven to be very challenging given the huge amount of levels involved, ranging from hearing to
perception, from acoustics to music theory. In the past 30 years, an impressive amount of research
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work in different fields related to music has been done in the
aim of clarifying the relations between these levels and in order
to find good representations for musical knowledge in different
forms such as scores, intermediate graphic representations
and so on.

1.1. A Brief History of MIR
The development of computer hardware technology and the
advancements in machine learning techniques have fostered
the development of Artificial Intelligence (AI) techniques for
musical research in a number of directions such as musicology,
digital sound processing, composition, and performance. In
the meantime, considerable advances in compression storage
and dissemination technologies for digital signals have favored
the emergence of huge online music collections, as well as a
growing users request of listening to music in a personalized way,
creating the need to develop advanced techniques to organize
and analyze the ever-increasing large and varied amounts of
music and music-related data available digitally. Different music
research communities have pursued efforts toward the same goal
of modeling human analysis of music and getting insight into
the intellectual process of music under various names such as
Machine Listening (Malkin, 2006), Music Artificial Intelligence
(Dobrian, 1993), Intelligent Audio Analysis (Schuller, 2013), or
Music Informatics (Humphrey et al., 2013).

As such, music research communities have converged to the
creation of the emerging field of Music Information Retrieval
(MIR). In a few years, with the improvement of computers
and the advancements in machine learning techniques, the MIR
field has brought impressive results in many directions and has
been able to address problems that appeared to be unsolvable
only 20 years ago, such as cover song identification (Serrà,
2011), structure analysis (Paulus et al., 2010), or automatic
orchestration (Maresz, 2013; Pachet, 2016). It has been possible
to develop technologies that allow users to understand, access,
and explore music in all its different dimensions, from browsing
personal collections, to managing the rights of music creators
or to answering new musicological questions, at a level of
abstraction and a scale that were previously not possible without
the help of AI. For instance, large-scale exploration of music-
related data using MIR techniques has made possible to bring
new insight to musicological questions that were previously
studied only at small scale, such as exploring and visualizing
the harmonic structure of Richard Wagners Ring des Nibelungen
(Zalkow et al., 2017).

One of the most important streams of research in the MIR
field, and of particular interest to this paper, is the development
of content-based methods to enable or improve multimedia
retrieval, in particular from audio signals (see Foote, 1997; Lew,
2006; Casey et al., 2008; Muller et al., 2011; Orio et al., 2011;
Grosche et al., 2012; Schedl et al., 2014 for comprehensive reviews
of this aspect). This subfield of MIR research concerned with the
automatic extraction of relevant content information frommusic
data, especially from audio signals. It involves the development
of algorithms for solving tasks at various levels of abstraction,
ranging from low-level signal processing and signal-centered
feature extraction (such as pitch onset detection Bello et al.,

2005, or chroma extraction Bartsch and Wakefield, 2001), mid-
level information extraction and music content description and
indexing (such as automatic beat tracking Ellis, 2007a, melody
Salamon et al., 2013 or chord progression estimation McVicar
et al., 2014), to high-level user-centered and contextual level of
abstraction (such as music recommendation Schedl et al., 2017
or music visualization Herremans and Chuan, 2017).

1.2. Progress in the MIR Field
After a first decade of constant progress, using techniques
that commonly adopt a two-stage process of feature extraction
followed by semantic interpretation of audio and scores, the MIR
field experienced a first ceiling in most of its research topics
(Aucouturier and Pachet, 2004). The community then turned
massively to deep learning techniques, with the hope to overcome
several obstacles, such as the sub-optimal use of handcrafted
features, the limited power of shallow architectures, and the
limitation to short-time analysis that cannot encode musically
meaningful structure (Humphrey et al., 2013). The introduction
of deep learning in the MIR community, hence, enforced the
switch to large-scale problems and promoted the development
of algorithms that are able to address more general problems for
acoustic signals. State-of-the-art results in most MIR tasks are
obtained with neural networks.

Nonetheless today it feels like the progress in many if not all
research areas have reached a plateau again. Despite the positive
results, these complex programmable machines brought us to a
very difficult and partially unknown mathematical world. Lot of
research, today, is in the difficult position of providing empirical
results without being able to explain the theoretical motivations
behind them. It is not uncommon to see papers about new
classification methods that outperform previous research but
does not explain why a specific architecture has been chosen.
Often, indeed, deep learning architectures are based on previous
architectures and are just augmented with more layers, more
samples or more complex units without a real explanation of the
scientific intuitions that support these changes. It is our belief
that despite the important results obtained, entering a research
pattern that is only motivated by empirical results can be a
problem for understanding music.

Today, many tasks that are relatively easy for humans (such
as following a speakers voice in a crowded and noisy place
or detecting harmonic changes in a cover song) are still hard
to tackle. In this perspective article, we critically look at the
problem of automatic chord estimation from audio recordings
as a case study of content-based algorithms, and point out several
bottlenecks in current approaches: expressiveness and flexibility
are obtained to the expense of robustness and vice versa; available
multimodal sources of information are little exploited; modeling
multi-faceted and strongly interrelated musical information is
limited with current architectures; models are typically restricted
to short-term analysis that does not account for the hierarchical
temporal structure of musical signals; simplified versions of
MIR problems cannot be generalized to real problems. Starting
from these observations, the rest of this paper is an attempt
to propose possible directions for music processing, looking at
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recent advances in other fields that have been confronted to
similar problems.

1.3. The Need to Integrate Diverse
Directions Into a Common Perspective
In its efforts of designing intelligent systems that are able to
answer complex queries, the music community has faced the
need of dealing with uncertain reasoning over complex, multiple,
relational objects. Current approaches are unable to tackle all
aspects together and generally focus on either one of them. We
believe that it is necessary to define a general framework able to
integrate different approaches for the representation of musical
and acoustical signals into a common perspective.

Dealing with real music data requires the ability to handle
both uncertainty and complex relational structure at multiple
levels of representation. Established approaches have generally
treated these two aspects separately, probability and learning
being the usual way to represent uncertainty in knowledge,
while logical representation being the usual way to represent
knowledge and complex relational information. In our opinion,
the multiplicity of levels that musical knowledge exhibits can
only be captured and characterized by a mixture of approaches
that takes into consideration learning, statistical and logical
standpoints of the problem. This view is shared by an emerging
field in artificial intelligence and machine learning called
Statistical Relational Artificial Intelligence (StarAI) (De Raedt
et al., 2016), also referred to as statistical relational learning (SRL)
(see Getoor and Taskar, 2007 for original definition).

1.4. StarAI: Unifying Logic, Learning and
Probabilities
We advocate that the identified hurdles of current approaches
could be overcome by recent developments in the area
of Statistical Relational Artificial Intelligence that unifies
probability, logic and (deep) learning.

Most real world applications of artificial intelligence
algorithms deal with data that have both inherent uncertainty
and are characterized by complex relational structure. The rich
relational structure of the data of interest appears either at the
internal level (e.g., complex relationships of notes composing
a chord in the case of a chord estimation algorithm, or at the
external level (e.g., relationships between chords in a piece of
music). As recalled by Russell in a recent paper (Russell, 2014),
classical AI adopted first-order logic as a formal language to
describe the real world and “things in it,” and to allow reasoning
over explicitly represented knowledge. Modern AI addressed the
problem of inherent uncertainty of real world data. Uncertainty
arises from noise and incomplete information in the data (e.g.,
occlusions and misspellings in text, percussive sounds blurring
the harmonic content of music signals). But also from many
other aspects such as the data type, the uncertainty about the
existence and the number of objects of interest (e.g., how many
instruments are playing together?). The language of probability
theory adopted by modern AI allows dealing with uncertain
reasoning. Recent years have seen a massive regain of attention
for neural networks (Minsky and Papert, 1969), especially a

tremendous interest for deep learning (Bengio, 2016), enabling
learning complex abstract representations from the input data
through the combination of hierarchical simpler parts.

Logic is able to handle the complexity of the real world,
and is capable of reasoning with large numbers of interacting
heterogeneous objects, but it cannot deal with its uncertainty.
Probabilistic graphical models are a powerful framework for
dealing with uncertainty, but they cannot handle real-world
complexity. Deep learning is able to create complex abstract
representations from large-scale raw data but its mechanism for
structure learning remains to be understood.

In recent years, there has been a considerable body of research
in combining between knowledge representation, learning
and reasoning, with new impulse coming from the area of
deep learning, evolving into the new research field Statistical
Relational Artificial Intelligence (StarAI). They combine first
order logic, relational representations, and logical inference, with
concepts of probability theory and machine learning. Ideas from
probability theory and statistics are used to address uncertainty
while tools from logic, databases, and programming languages
are introduced to represent structure. Relational and logical
abstraction allows one to specify and reason about regularities
across different situations using rules and templates rather
than having to specify them for each single entity separately.
It becomes possible to make abstractions that apply to all
individuals that have some common properties. Knowledge can
be incorporated in a declarative, expressive, and compact way.

StarAI has raised promising and exciting new perspectives
in many fields of science, humanities, and technology, and
approaches developed in this field have been successfully
applied in various domains and used for many tasks in
artificial intelligence, such as natural language processing (Riedel
and Meza-Ruiz, 2008), event extraction (Venugopal, 2015),
bioinformatics (Mallory et al., 2016), collective classification
(Crane and McDowell, 2012), activity recognition (Sztyler et al.,
2018), entity resolution (Singla and Domingos, 2006; Pawar
et al., 2017), machine reading (Poon, 2011), semantic image
interpretation (Donadello et al., 2017b) or language modeling
(Jernite et al., 2015) to name a few. In this paper, we explain
that existing approaches used in the MIR field find powerful
extensions and unifications in StarAI, and provide arguments to
support why we think it is time to consider the new perspectives
offered by this area.

1.5. Paper Organization
The rest of the paper is organized as follows: section 2 critically
reviews existing content-based MIR approaches, focusing on
the task of automatic chord estimation as a case study, and
identifies four major deficiencies of computational analysis
models: the inability to handle both uncertainty and rich
relational structure; the incapacity to handle multiple abstraction
levels and the incapability to act on multiple time scales; the
unemployment of available multimodal information, and the
ineptitude to generalize simplified problems to complex tasks.
section 3 discusses the need of an integrated research framework
and presents the perspectives offered by statistical relational
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AI models for music processing. In section 4, our conclusion
encourages an exploration of this promising research field.

This transversal paper covers concepts from many area,
in particular probability theory, logic and deep learning. We
have provided, when it seemed necessary, some background
knowledge and vocabulary in the form of footnotes, in order not
to disturb the reading of the article.

2. MIR: LIMITATIONS, CHALLENGES, AND
FUTURE DIRECTIONS

In this section, we critically review common approaches to
content-based analysis and we point out four major limitations
of existing methods. To illustrate our exploration on the state-
of-the-art of content-based MIR, we mainly focus on the
emblematic task of automatic chord estimation (ACE), but our
conclusions can generalize to other content-based MIR tasks.
Among the various subtopics in content-based MIR, automatic
chord estimation has received a considerable and sustained
attention since its inception (Fujishima, 1999). Not only it is a
very interesting and challenging problem, but also it has many
applications in high-level tasks such as cover song identification
(Marsík et al., 2017), genre classification (Pereira and Silla,
2017) or automatic accompaniment (Ojima et al., 2017). Also,
there is a high demand on chord-based representations by users
in the music community, as illustrated by the popularity of
websites such as Ultimate Guitar1. This task constitutes a good
example to understand the potential shortcomings of current
MIRmethodologies for content-based retrieval. Moreover, a clear
understanding of the shortcomings of ACE systems prepares the
reader to the proof-of-concept case study on chord recognition
using concepts from StarAI that we will present in section 3.3.

In the literature, different problems are referred to under
the same name of automatic chord estimation (Humphrey and
Bello, 2015). In this article, chord estimation is understood
as chord recognition, where the task is to label each frame
of an audio signal with a chord from a given dictionary.
It is to be distinguished from more abstract tasks, such as
analyzing structural functions in harmony (Schoenberg, 1969),
that integrate high-level musical concepts such as key or
musical structure.

As most music signal processing systems, the majority of
computational models for chord estimation from audio share a
common two-step architecture consisting in a feature extraction
step (traditionally handcrafted low-to-mid level features such as
chroma, now deep-learned features) followed by a classification
step (Cho and Bello, 2014). The features extraction step outputs
a sequence of temporally ordered features that are often related
to the metrical structure, such as beats-synchronous features,
and predicts chord label distributions for each time frame. The
classification step can consist in a simple point-wise prediction
(Papadopoulos and Peeters, 2007; Korzeniowski and Widmer,
2016a), but also in a more a sophisticated dynamics model [either
a probabilistic model such as a hidden Markov model (HMM)

1http://www.ultimate-guitar.com

(Sheh and Ellis, 2003) or a dynamic Bayesian network (DBN)
(Mauch and Dixon, 2010), or a recurrent neural network (RNN)
(Boulanger-Lewandowski et al., 2013; Sigtia et al., 2015)] that
will provide temporal smoothing and the possibility to add some
context. We refer the reader to Cho and Bello (2014), McVicar
et al. (2014) for comprehensive reviews of traditional handcrafted
features and probabilistic graphical models approaches, and to
Deng and Kwok (2016) and McFee and Bello (2017) for reviews
of more recent approaches using deep-learning.

2.1. Designing Robust, Flexible and
Expressive Models Simultaneously
Real data such as music signals exhibit both uncertainty and
rich relational structure at multiple levels of representation. In
general, signal observations are incomplete and noisy due to
the great variability of audio signals, background interferences,
presence of transient sounds, etc. Moreover, musical entities such
as chords, keys, melody, present in general complex relations
among them. Standard approaches to music signal processing are
generally not able to cope at once with both aspects. Approaches
that handle uncertainty generally have insufficient expressive
power to tackle complex domains and vice versa, robustness is
obtained at the expense of flexibility and expressiveness. The
literature offers two main different perspectives. Uncertainty is
well handled by probabilistic graphical models and complexity
is generally tackled by logical approaches, which is the standard
distinction between “modern” and “traditional” AI. Both
perspectives are not in conflict with each other but on the
contrary synergistic.

2.1.1. Probabilistic Graphical Models: Handling

Noise, Uncertainty, and Incomplete Information
Probabilistic models have the general ability to handle noise,
uncertainty, and incomplete information. Graphical models,
in particular Bayesian networks (Pearl, 1988) and Markov
networks (Murphy, 2012) are efficient and elegant frameworks
for representing and reasoning with probabilistic models.

Probabilistic graphical models (PGM) allow compactly
representing the manner in which the variables depend on
each other. In a graphical model, each node represents a
random variable, and edges represent probabilistic influence
between nodes. A graphical model is a family of probability
distributions over the variables that factorize according to
an underlying graph. Probabilistic graphical models exploit
probabilistic independencies in the data. The absence of an
edge between two variables means that they are conditionally
independent given all other random variables in the mode. This
allows decomposing complex probability distributions into a
product of independent factors, and to represent a distribution
over a large number of random variables by a product of
potential functions that each depend on only a smaller subset of
variables (see the example of Figure 2, right). Graphical models
include many model families. The way the original probability
distribution is factorized allows distinguishing between directed
and undirected graphical models. Since many concepts of the
theory of graphical models have been developed independently
in different areas, they may thus have different names. Directed
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FIGURE 1 | Extract of Schubert’s lied “Der Doppelgänger” (Henrich Heine). Chords in a chord progression are not independent from each other but are linked

according to musical rules or musical ideas. An example of such musical idea is shown in the work of Mishkin (1978), who analyzes that Schubert employs in some

lieder of his last year harmonic parallelism between triads a half step apart when the poetic images evoke the supernatural. Mishkin provides an example with “Der

Doppelgänger” where “the vocal line is supported by hollow sonorities in the piano accompaniment to suggest the dreamlike horror of beholding one’s own double

weeping before the house of the departed beloved. The hallucinatory impression is intensified, in the concluding passage for piano alone (Indicated by the blue line in

this figure), through an organum-like progression that moves in parallel motion through a triad on the lowered supertonic degree”.

graphical models are also commonly known a Bayesian networks
and undirected models are also referred to as Markov random
fields orMarkov networks (Kindermann and Snell, 1980).

In music processing, probabilistic graphical models (PGM)
(Pearl, 1988;Murphy, 2012) have been widely used tomodel tasks
where objects can be represented as sequential phenomena, such
as in the case of chord estimation (Papadopoulos and Peeters,
2011). The extraction of music content information can be often
seen as a classification problem. For instance the ACE problem
can be seen as predicting a succession of chord labels y ∈ Y
given some observations over time x ∈ X (e.g., chroma vectors).
In general, the set of variables X ∪ Y has a complex structure.
For example, chords in a chord progression are not independent
from each other: they are linked according to complex musical
rules ormusical ideas (see the example in Figure 1). Observations
are also linked according to the underlying states they represent
(see Figure 2, left).

One important aspect in music is time: events appear
at particular times and those times (that can be points or
intervals) are ordered. The MIR community has thus looked
into probabilistic techniques that take into account the temporal
nature of music. Hidden Markov models (HMM) have been
particularly popular for the task of ACE and proved to be
an elegant way to address this difficult problem (Sheh and
Ellis, 2003). However in most cases, these temporal models are
used in a way that make them unable to cope with the rich
relational structure of real chord progressions. For instance,
a common choice is to use first-order HMMs in a frame-
by-frame model, where each state corresponds to a chord,
and successive observations are conditionally independent from
previous observations given the current state. Such model are
not adapted to the actual complexity of music and cannot learn
higher-level knowledge about chord progressions. For instance
they cannot adequately model the prominent 12-bar blues jazz
chord sequence (Kernfeld, 2007). As noted in Cho and Bello
(2014), in the away they are designed, such temporal models
generally enforce temporal continuity of individual chords rather
than providing information about chord transitions. Other

formalisms that allow considering more complex dependencies
between data in the model have scarcely been explored such
as tree structures (Paiement et al., 2005) or dynamic Bayesian
network (Mauch and Dixon, 2010). Conditional random fields
(CRF) (Burgoyne et al., 2007; Korzeniowski and Widmer, 2016b;
Wu and Li, 2018) have started receiving attention of the MIR
community the last few years. Even when using deep learned
features that are expected to perform better than handcrafted
features, probabilistic graphical models remain an important
post processing step to be applied on top of high-level learned
features (Zhou and Lerch, 2015; Korzeniowski and Widmer,
2017; Wu and Li, 2018).

However, the use of probabilistic graphical models that allow
taking into account complex dependencies between data remains
limited in the MIR field. For instance, most work considering
CRFs for music processing focus on linear-chain CRFs, modeling
only dependency between consecutive chord labels. If more
flexible CRFs language models have already been explored in
other fields, such as the skip-chain CRFs (Sutton and McCallum,
2007) that allow Sutton and McCallum to model complex distant
structure between words in a Natural Language Processing
application, they remain scarcely studied in the MIR area.

Probabilistic models can handle the inherent uncertainty of
audio. However, they fail to capture important aspects of higher-
level musical relational structure and context. This aspect has
been more specifically explored within the framework of logic.

2.1.2. Logic: Dealing With Complex Relational

Objects
The logic framework offers a major advantage because its
expressiveness allows modeling music rules in a compact and
human-readable way. This allows an intuitive description of
music. Knowledge, such as music theory, can be introduced
to construct rules that reflect the human understanding of
music (Ramirez et al., 2007). For a particular content-based
MIR task such as labeling each frame of an audio signal with
a chord, a typical approach is to construct low-level features
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(such as a chromagram) and solve the problem using a first-
order hidden Markov model. Although providing interesting
results, this approach hides the rich logical structure of the
underlying data that is essential for modeling more complex
problems. The question that we ask is whether a given chroma
observation is connected to a given chord. In a probabilistic
graphical model, the importance of the connection is measured
as the probability that a link exists between the two given nodes,
under the assumption that edges are mutually independent and
that each edge is true with the specified probability (De Raedt
et al., 2007). Such queries can be easily expressed in logic by
defining a predicate2 of the type link(chroma,chord). A more
complex question is for instance not just labeling frames as
isolated chords but also considering consistency of harmony
with the global structure of a piece. We may like to label a
frame not only with a chord, but also perform functional analysis
(Schoenberg, 1969) by considering for instance the function of
the chord inside the global structure of the piece (“Gmajor chord
on the fifth degree in the key of C major,” etc.). Such relationships
would be difficult to express using a graphical model, but, as we
shall see, predicate logic3 can easily be used to express such more
complex possible relations.

The expressive power of logic-based approaches is usually
higher than those of probabilistic models. Graphical models such
as Bayesian (directed) and Markov (undirected) networks can
represent many probability distributions compactly, but their
expressiveness is only at the level of propositional logic: they
assume a fixed set of variables, each of which can take on a value
from a fixed range. For instance in the hidden Markov model
proposed in Bello and Pickens (2005) (see also the illustration
in Figure 2), the authors estimate the chord progression from
the observation of a succession of chroma vectors (Chroma0, . . .,
ChromaN). They consider a chord lexicon of 24 possible output
labels, the 24 major and minor triads (CM, C#M, . . ., BM, Cm,
. . ., Bm). The model represents a probability distribution over
variables of the domain it considers only: ChordType (Chroma0,
CM), ChordType (Chroma0, C#M), . . ., ChordType (ChromaN ,
Bm), . . ., ChordType (Chroma0, Bm), and encodes dependencies
between pairs of chords of the dictionary: ChordTransition (CM,
CM), . . ., ChordTransition (CM, C#M), . . ., ChordTransition
(Bm, BM). However, it is not possible to formulate general
probabilistic regularities among the probabilities of chord types
and the rules of transitions that could be applied to arbitrary

2In logic, predicates represent properties of objects [e.g., lsMajor(chord)]
and relations between them [e.g., AreHarmonicallyRelated(chord1,
chord2)]. Grounding is the process of replacing variables with constants
in logical formulas [e.g., lsMajor(CMinorChord)]. A predicate takes as
outputs either True (synonymous with 1) or False (synonymous with 0). Aworld is
an assignment of a truth value (0 or 1) to each possible ground predicate. A ground

predicate is called an atomic formula or an atom. A positive literal is an atomic
formula and a negative literal is the negation of an atomic formula.
3First-order logic is also known as predicate logic because it uses predicates and
quantifiers, as opposed to propositional logic that deals with simple declarative
propositions and is less expressive. The adjective “first-order” distinguishes first-
order logic, in which quantification is applied only to variables, from higher-order
logic in which quantification can be applied to predicate symbols and function
symbols. For more details, see e.g., Haack (1978) and Leivant (1994).

chords. Moreover, such approach is not scalable since it has a
complexity in O(n2).

Moreover, during learning of probabilistic models, the
examples are generally assumed to be independent of each other.
This approximation does not reflect real-world data, in which
instances are not truly independent. For instance, in a classical
chord HMM (see Figure 2), atomic chroma observations are
treated as independent random variables given the current state.
However, neighboring chroma observation are not independent,
since in general chords do not change on a frame-by-frame basis.
As a result, it is likely that several consecutive chroma features
will be similar and correspond to the same underlying state (see
Figure 2). This property is not taken into account in the HMM:
the model computes observation probabilities independently for
each frame, and thus makes a useless effort, since we know
that consecutive frames are likely to correspond to the same
underlying harmony4.

Another advantage is that logical inference of rules allows
taking into account all events including those which are rare
(Anglade and Dixon, 2008b). This property is particularly
important when analyzing music, where a high probability of
an event does not necessarily reflect his musical importance
(see Figure 3). On the other side, a drawback of logic-based
representations is that they are rigid in the sense that a single
counter example is enough to make a formula false. It is thus
difficult to use logic only to model empirical data, which is often
noisy or uncertain, and that is difficult to describe with facts
that hold universally. A paradigmatic example is given by the
rules of harmony. The rules given by Rameau in his Treatise
on Harmony (Rameau and Gossett, 1971) codify the principles
of tonality that had governed Western music for almost two
centuries and using these rules during MIR tasks have been
proven very important. However, these rules are not always true
in a logical sense and models that imply only logical truth can be
mistaken by this ambiguity.

Among logic-based approaches, Inductive Logic
Programming (ILP) (Muggleton, 1991) refers to logical inference
techniques that are subset of First-Order Logic (FOL). These
approaches combine logic programming with machine learning.
They have been used to model and learn music rules, especially
in the context of harmony characterization (Morales and
Morales, 1995; Morales, 1997; Ramirez and Palamidessi, 2003;
Anglade and Dixon, 2008a), and in the context of expressive
music performance (Dovey et al., 1995; Van Baelen et al., 1997;
Widmer, 2003; Ramirez et al., 2007). They have a high expressive
power. For example, the authors in Anglade et al. (2009) use
ILP to learn logical descriptions of harmonic sequences which
characterize particular styles or genres. They are able to express
complex musical rules such as genre(genre1,A,B,Key)

:- gap(A,C),degreeAndCategory(5 ,7,C,D,Key),

degreeAndCategory(1 ,maj,D,E,Key),gap(E,B) which

4The common choice of using beat-synchronous features instead of frame-based
features allows reducing the complexity of the model. It has been lately advocated
to use models at higher temporal levels than frame-wise models (Korzeniowski
and Widmer, 2017; Korzeniowski et al., 2018), similarly to language models in
speech recognition.
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FIGURE 2 | (Left) Example of half-beat-synchronous chromagram computed in the beginning of Mozart piano sonata KV.283 and corresponding ground truth chord

transcription. Chords changes on half measures, and chroma features belonging to the same half measures contain similar content. (Middle) In general, each chroma

feature is used independently to train a HMM. (Right) Graphical model of a HMM describing the joint probability distribution p(y, x) for a sequence of three input

variables x1, x2, x3 (the observations, e.g., chroma) and three output variables y1, y2, y3 (the chords that are hidden states). Because of the conditional independence

between variables, the models simplifies in: p(x1, x2, x3, y1, y2, y3) = p(y3|y2) · p(y3|x3) · p(y2|y1) · p(y2|x2) · p(y1) · p(y1|x1).

FIGURE 3 | The figure shows the beginning part of Salvatore Sciarrino’s Lo spazio inverso. For the majority of the piece, the dynamics is very soft (from ppp to p) and

the instrumentation does not include keyboards. All of a sudden, the keyboard is used in the piece with a dynamic of fff thus creating an immediate fracture in musical

discourse. While these events are very scarse and sparse in time, they nonetheless represent the most important musical elements of the piece. In this context, a

statistical approach aimed at finding most probable event, would classify the scarce phrases played by the keyboards as outliers while in reality they are actually the

center of the musical logic.
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can be translated as “Some music pieces of genre1 contain a
dominant 7th chord on the dominant followed by a major chord
on the tonic (i.e., a perfect cadence),” and these rules are used
for automatic genre classification. The authors in Arabi and
Lu (2009) also use chord information for genre identification,
by looking at the most frequent patterns of 3 or 4 triads that
appear in a given genre. The approach proposed in Anglade et al.
(2009) is more expressive, and captures some human-readable
meaningful musicological concepts.

However, approaches based on logic have not been directly
applied to audio, but they have been used on symbolic
representations such as MIDI files. Some ILP-based approaches
for the automatic characterization of harmony have been
extended to audio (Anglade et al., 2009, 2010), but they require
an off-the-shelf transcription step: harmony characterization is
induced from the output of a chord transcription algorithm and
not directly from the audio signal.

2.1.3. Logic and Probability Theory: Synergistic Views
As reflected by previous work, both aspects of uncertainty and
rich relational structure are important in music and should be
fully considered. Traditional probabilistic approaches are not
able to cope with rich relational structure, while logic-based
approaches are not able to cope with the uncertainty of audio
and need a transcription step to apply logical inference on
a symbolic representation. Logic and probability theory offer
complementary benefits to these two aspects:

• Probabilistic graphical models are elegant approaches to
represent the manner in which variables statistically depend
on each other and to deal with uncertainty. But they are
propositional and thus insufficiently expressive to handle the
relational complexity of the domain of interest.

• On the other hand logic has sufficient expressive power
to model rich relational knowledge, but it cannot handle
uncertainty of real data.

Music retrieval tasks would benefit from a unification of these
two perspectives.

2.2. Complex Relational Structure at
Multiple Abstraction Levels and Time
Scales
2.2.1. Multiple Abstraction Levels
Music audio signals are complex from a semantic point of view
and convey multi-faceted and strongly interrelated information
(e.g., harmony, rhythm, structure, etc.). For instance, some
chords are heard as more stable within an established tonal
context (Krumhansl, 1990) and the chord progression cannot be
analyzed without considering the tonal context (see Figure 4).
They are also related to the metrical and semantic structures
[e.g., in popular music chord changes are often related to
downbeats (Papadopoulos and Peeters, 2011), semantically same
segments (verse, chorus) often have similar chord progression
(Papadopoulos and Tzanetakis, 2013)].

A number of work have shown that content-based MIR
benefits from a unified musical analysis that estimates jointly

FIGURE 4 | Depending on the context, identical sets of notes can assume

different functions and, as consequence, different names. In the figure we see

the chord made of the notes [C, D, Eb, G]: this chord can be called C minor

9th in the context of the key of C minor and G minor sus4 6th in the context of

the key of G minor. Note that this is not a simple change of function: in this

case not only the function is different but also the very name of the chord. This

ambiguity can be a problem in the context of data labeling, where different

experts could assume different hypothesis on the context thus leading to

different naming.

interrelated musical information (Burgoyne and Saul, 2005;
Paiement et al., 2005; Lee and Slaney, 2008; Mauch and
Dixon, 2010; Papadopoulos, 2010; Böck et al., 2016). However,
many of the existing computational models extracting content
information tend to focus on a single music attribute, without
exploiting prior context, which is contrary to the human
understanding and perception of music that is known to process
holistically the global musical context (Prince et al., 2009).

We believe that one of the reasons for this is that it
is difficult to model these complex relationships at multiple
levels of representations (multi-time scale, multi-features) using
probabilistic graphical models, since they quickly become
intractable. Current PGM approaches in MIR dealing with
multiple interrelated features generally resort to some manual
“tricks” to make inference tractable. For instance, the model
presented in Pauwels and Peeters (2013) jointly estimates chords
with keys and structural boundaries using a HMM in which
each state represents a combination of a key, a chord, and
a structural position. The authors manually incorporate some
musicologically motivated constraints in the transition matrix,
which allows reducing the computation time of the Viterbi
decoding step. Another example can be found in the work
(Mauch and Dixon, 2010) that presents a chord estimationmodel
consisting in a DBN where states are a combination of chords,
metric position, bass, and key. To be able to tractably infer the
most likely state sequence, the authors perform a preprocessing
step to remove the chords that appear least often among the
locally best-fitting 10 chords at every beat.

2.2.2. Multiple Time Scales
In a piece of music, the above-mentioned various interrelated
musical dimensions interact at multiple time scales. Musical
information is structured at the temporal level in a hierarchical
way. For instance, in many types of music, the chord progression
is related to the semantic structure (here semantic structure is
understood as the highest-level expression of the structure, e.g.,
segmentation into “ABA” form, verse/chorus, etc.), which itself
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is dependent on musically lower-level organization such as beats
and bars.

An important limitation of many existing models for music-
content estimation is that, up to now, analysis is typically
performed at a short time scale only, ignoring longer-term
dependencies between music events, and resulting in outputs
that are often incoherent and thus implausible. A fundamental
question that remains open is how to use the long-term
hierarchical semantic structure of musical pieces to improve
the validity, and thus usability, of computational music analyses
(Müller et al., 2016).

TheMIR community has explored some approaches to encode
longer-term structure with short-term analysis. At the feature
representation level, the use of beat-synchronous features (Ellis,
2007a), or concatenated consecutive frame-wise features into a
single feature vector (Ellis, 2007b; Gaudefroy et al., 2015) allows
encoding some of the higher level structure.

More recently, the breakthrough of deep neural networks
has made possible to incorporate some context into the feature
representation and model the latent complexity of the data. In
music, many events are not isolated but integrated into a global
musical context. We have mentioned before for instance that in
modern Western tonal music, it is necessary to take into account
the tonal context to infer a chord (Figure 4). Deep architectures
are capable to take into account some of the hierarchical
nature of music, and allow building high-level representations
from intermediate layers of non-linear transformations and
representations, incorporating context.

For instance, in the chord recognition model presented in
Humphrey and Bello (2012), a convolutional neural network
(CNN) encodes local behavior five-second tiles of constant-
Q pitch spectra in feature maps at higher levels. This fully
data-driven approach achieves state-of-the-art results compared
to traditional models using handcrafted short-time features
combined with post-filtering temporal smoothing. However, the
model is unable to classify chords sparsely represented in the
data. Data scarcity is addressed in more recent works (McFee
and Bello, 2017), where the proposed deep convolutional-
recurrentmodel for automatic chord estimation allows exploiting
structural relationships between chord classes and works with
a large chord vocabulary of 170 classes. It is found that
the structured representation facilitates modeling infrequently
observed and complex chords, but that extending the approach
to effectively support extended chords calls for the need of larger
annotated corpora.

Efforts to incorporate longer-term temporal structure with
have also been made at the statistical modeling level. In the work
of Dannenberg (2005), music structure is used to constrain a
beat tracking program based on the idea that similar segments
of music should have corresponding beats and tempo variation.
In the work of Mauch et al. (2009), the repetitive structure
of songs is used to enhance chord extraction. However, in
both piece of work, the modeling of the hierarchical structure
is not flexible and dos not reflect the actual complexity of
music. For instance, although commonplace, variations between
several occurrences of a section cannot be taken into account.
Until now, most models are limited to a short time scale

analysis and longer-term structure is possibly encoded during
post-processing step.

Recently, recurrent neural networks (RNN) have been
explored for many other music tasks as an alternative to model
longer-term temporal sequences, since they can in principle
describe arbitrarily complex long-term temporal dependencies
(see e.g., in the case of ACE Boulanger-Lewandowski et al.,
2013; Sigtia et al., 2015; Deng and Kwok, 2016). However,
they have proved to be difficult to optimize to indeed make
the model learn long-term dependencies from data as expected
(Korzeniowski and Widmer, 2017). Deep neural networks have
allowed incorporating context into the representation, compared
to handcrafted features mostly derived from short-time analysis
frames. However they do not allow explicit modeling of music
analysis at multiple time scales.

2.2.3. Capturing High-Level Information at Multiple

Levels: A Challenge
The discussion above outlines that describing music at multiple
levels of abstraction and detail remains a challenge for the MIR
field. As shown above, traditional machine learning approaches
and probabilistic graphical models for music processing are
not able to cope with the rich, highly structured, relational
structure of music. Purely data-driven deep learning approaches
suffer from data insufficiency and are difficult to optimize to
accurately describe complex long-term temporal dependencies.
Existing probabilistic graphical models are limited in taking
into account the interrelated music dimensions. Probabilistic
inference is computationally expensive and standard inference
techniques for very large probabilistic graphical models become
quickly intractable.

The unification of logic, learning and probabilities offer
several directions to overcome these shortcomings:

• Describing music at multiple levels of abstraction and

detail: Music analysis would benefit from using statistical
relational AI models that exploit the idea of leveraging
long-term event analysis to short-term event analysis, as
it has successfully been achieved in various other areas,
such as in natural language processing (Lafferty, 2001) or
bioinformatics (Liu et al., 2005). A recent chord estimation
algorithm developed in the framework of Markov logic
networks (Papadopoulos and Tzanetakis, 2013) has shown
that StarAI approaches offer some perspectives to explicitly
model multiple time scales with flexibility. Figure 5 shows
a comparison of chord progression estimated without and
with taking into account the semantic structure to obtain a
“structurally consistent” representation of music (as presented
in Papadopoulos and Tzanetakis, 2013). It can be seen that
incorporating long-term structural dependencies in the model
results in a more coherent chord transcription.

• Making abstractions that apply to individuals that share

common properties: Reasoning with music data means
dealing with regularities and symmetries (Kempf, 1996) (see
Figures 6, 7). Logic is able to jointly handle these two
important properties. Objects are put together into classes
(such as “major” or “minor”) because they share common
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FIGURE 5 | Example of chord progression estimation enhanced with semantic structure information. Extract of the Pink Floyd song Breathe. The first 4 lines (beats,

downbeats, chords, structure) correspond to the ground truth annotations. The next two lines show the results obtained with models proposed in Papadopoulos and

Tzanetakis (2017), designed to obtain a “structurally consistent” chord transcription. The 5th line shows the results obtained with a baseline chord HMM, considering

only chroma observation and transitions between successive chords. The last line shows the results obtained with a model that adds long-term chord dependencies:

it favors same chord progressions for all instances of the same segment type (see the corresponding graphical model in Figure 11 below). The ground-truth chord of

the first bar of the verse is an Em chord. The baseline chord HMM correctly estimates the second instance of this chord, but makes an error for the first instance (EM

instead of Em). This is corrected by the model that favors same chord progression in same segment types.

FIGURE 6 | The figure shows the so-called chord factorization in tempered space. This space is made by integers from 0 to 11 that correspond to specific pitch

classes (C = 0, C# = 1 and so on). In the left column, all the possible major and minor chords are shown, for a total of 24 chords. Factorizing by transposition (that is

removing the onset interval from the C) chords are mapped onto the cyclic space and they become 2 (C major and C minor); in other words, F major [5, 9, 0] is the

same chord than C major [0, 4, 7] but with an onset interval of 5 semitones. The last column of the figure shows one more factorization applied, this time by inversion

(that is changing sign to the pitch class and applying mod 12) that brings the chords in the dihedral space. After this process, C major and C minor appear to be the

same chord: in tempered space C major is the pitch class set [0, 4, 7], while C minor is [0, 3, 7]. After inversion, the two sets are equivalent to [0, 4, 7] (Lewin, 1987).
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FIGURE 7 | The figure shows the beginning of Mendelssohn’s Song without words Op. 19 No. 5. The excerpt contains two musical phrases (bars 1–4 and 5–7) that

have highly regular structure; indeed, bars 1 and 5 and bars 2 and 6 are the, respectively, equal while the only differences are in the ending part of bars 4 and 7. This

type of musical regularity is very common in classical and romantic music.

properties (e.g., all major chords share some common
properties as for instance they all contain a major third
above the root). Current MIR algorithms do not always
take advantage of these symmetries. For instance many
algorithms for cover song identification rely on the fact
that cover versions of a song are likely to have a similar
chord progression. However, the cover version will often
present some variations, such as key transposition. This
problem has been tackled in general by testing all possible
feature transpositions (or related approaches that attempt
to speed up this process Serrá et al., 2010), resulting in an
additional computational effort. This effort could be leveraged
taking advantage of logical representations that naturally
exploit symmetries.

• Scalability and efficient inference by reasoning about

regularities across different situations: Logic can handle the
complexity of music by describing it with commonalities and
regularities. New class of lifted inference algorithms (Poole,
2003) that take advantage of these regularities has been
motivated by the advent of statistical relational languages.
In these formalisms, first-order logic is used to define
complex interactions between random variables in large-
scale probabilistic graphical models. The model is declared
over classes and hierarchies using variables and predicates,
and these logic formulas are used as templates to construct
graphical models, instead of having to stipulate them for
each single entity separately (see Figure 8). With such a
concise description, high-level structure and symmetries in
the model can be exploited to restrict the search space for
efficient inference, such as in the case of lifted inference
(Kimmig et al., 2015).

2.3. Handling Multimodal Information
2.3.1. Increasing Amount of Various Heterogeneous

Sources of Knowledge
Annotated corpora for research purpose are only a small
part of available information and context for music signal

processing. There is an explosive growth in the amount of
available heterogeneous sources of music-related information,
complementary to the audio (e.g., video, music sheets, user
MIDI transcription, metadata such as social tags on forums,
etc.). Moreover, because of the theoretical and cultural nature
of music, there are many sources of expert knowledge that
trained musicians use as cues to analyze music, and that can
be incorporated into the models (e.g., theoretical music rules
from music theory Riemann, 1896; Schoenberg, 1969; Rameau
and Gossett, 1971). Music knowledge can also be derived from
data, as for instance chord sequences learned using probabilistic
context-free grammar model (Tsushima et al., 2018). Despite the
sustained claim for the development of multimodal approaches
for music analysis (Müller et al., 2012; Herremans and Chuan,
2017; Smith et al., 2017) for a few years, these multiple
multimodal sources of knowledge are still little exploited in
existing models for content-based retrieval.

2.3.2. Leaning-Based vs. Expert Knowledge-Based

Approaches
Besides, computational music analysis approaches generally
focus either on learning-based approaches or expert knowledge-
based approaches. In early research, with few training data
available, most parameters (such as the transition probabilities
in a HMM) and features in early ACE approaches were initially
set by hand (Bello and Pickens, 2005; Shenoy and Wang, 2005;
Papadopoulos and Peeters, 2007; Oudre et al., 2009). Such
purely expert systems have considered simplified versions of
the task and performed chord recognition considering a very
small vocabulary, typically 24 major and minor chords. The
expansion of annotated databases in the MIR community has
led to the development of purely data-driven approaches, and
has allowed addressing the question of scalability. Data-driven
approaches, in particular neural networks, are successful and
efficient at large-scale modeling, and at obtaining insight from
large data collections. They also allow discovering solutions not
previously considered when using only expert knowledge. In
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FIGURE 8 | Markov network (Bottom) obtained by applying two logical formulas (Top) (that describe knowledge about the relationship between chords and mood)

to the two constants CM chord and GM chord. The logical formulas can be viewed as a template for constructing the Markov networks: given different set of

constants, it will produce different networks; the size of the Markov network grows as the number of constants increases but the number of the formulas (or the

templates) stays the same. The grounding process is illustrated in the (Middle). For more details see Papadopoulos and Tzanetakis (2017).

particular recurrent neural networks have allowed considering
ACE systems handling large chord vocabularies (217 chords
classes in Deng and Kwok, 2017, 170 classes in McFee and Bello,
2017). A shortcoming of these approaches is that MIR neural-
network algorithms still heavily rely on supervised learning and
their efficiency is usually conditioned upon a large amount of
annotated data.

Human beings are capable of learning from very few
data examples and resolve inconsistencies, something that
machines cannot do in general. Annotated corpora are often
unbalanced and inevitably contain annotation errors, which
make computational models behave in unforeseen ways. For
instance, in the context of ACE estimation using a large chord
vocabulary, the authors in Deng and Kwok (2016) observe a drop
in the classification when training their model using multiple
datasets from different sources. They argue that the reason is that
chords inversions in different datasets are annotated differently,
which makes the classifier getting confused when trained on the
combined dataset.

2.3.3. Taking Into Account Human Subjectivity
Furthermore, annotations are largely prone to human
subjectivity, with experts disagreeing in the annotations
(Ni et al., 2013; Koops et al., 2017). Evaluation of the algorithms
suffers from some inherent methodological pitfalls that make
difficult to reliably evaluate and compare the behavior of ACE
algorithm (Humphrey and Bello, 2015). For instance, the
Beatles corpus, widely used for ACE evaluation contains 66
chord types, with cardinalities ranging from zero to six (Harte,
2010). Evaluation is done by mapping reference chords of the
ground truth to the classes of the chord lexicon handled by the
algorithms. Very often, the chord lexicon reduces to two chord
types (major/minor). For a 24 chords minor/major dictionary,
as in MIREX competition5, a C minor seventh chord C :min7
(C-Eb-G-Bb) will be mapped to C minor C :min (C-Eb-G).
Template-based ACE chord algorithms that do not consider

5See http://www.music-ir.org/. Note that if early MIREX competitions considered
only major/minor chords, current editions include seventh chords with inversions.
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tonal context may estimate C :min7 as a C :min as well as an
E major E :maj (Eb-G-Bb), since both chords are contained in
C :min7. However, in the evaluation, E :maj will be considered
as an error. It has been advocated that this subjectivity should
be embraced, possibly by incorporating domain knowledge
(Humphrey and Bello, 2015), but current evaluation schemes do
not allow such possibilities.

2.3.4. Some Possible Directions to Operate With

Complementary Heterogeneous Data
As more complementary heterogeneous sources of music-related
information are becoming available, an important question that
remains open is how to exploit this knowledge, how to combine
it with learning, how to deal with insufficient or inconsistent
training data and how to reconcile large-scale modeling with
human-level understanding.

Recent work in the statistical relational leaning area offer
interesting reflections on this aspect:

• Ability to flexibly incorporate prior knowledge: As discussed
in De Raedt et al. (2016), statistical relational AI aims
at developing approaches that allow incorporating domain
knowledge in the models in a flexible way: prior knowledge
could be used to overcome the lack of training data, but should
be refutable if there is enough strong evidence against it. Also,
it is needed to be able to learn from multiple heterogeneous
data sets, derived from different type of data, different contexts
or different experts, at different levels of abstraction and
possibly with overlapping or contradictory concepts (Thimm,
2016). The combination of logic and probabilities allows such
flexibility. For instance pure first-order logic does not suffer
contradictions.Markov logic that extends first-order logic with
probabilities allows handling contradictions between formulas
by weighting the evidence on both sides (Richardson and
Domingos, 2006). Another interesting aspect is that Markov
logic can be used to handle collective knowledge bases since it
allows merging several knowledge bases, even if they are partly
incompatible (Richardson, 2004).

• Using expert knowledge to leverage lack of training data:

In some situations we have little or no training data, but
instead we have access to the subjective probabilities of a
domain expert. For example, we may have little data about
certain rare chords, but we may have a subjective notion of
what percentage of a rare chord occurs among the others. The
possibility of incorporating such domain knowledge combined
with training (Pápai et al., 2012), or to use domain knowledge
for guiding the learning process (Kuzelka et al., 2016), may
help leverage music complexity.

• Incorporating knowledge to enhance purely data-driven

approaches:Data-driven MIR approaches would benefit from
extensions of deep learning based approaches that allow
integrating logical knowledge: it has been shown in other
domains that incorporating logical knowledge adds robustness
to the learning system when errors are present in the labels of
the training data (Donadello et al., 2017a).

• Interactive machine learning: Flexible and expressive
approaches, that allow an intuitive description of knowledge,

open the possibility to put the human in the loop and take into
account the users feedback to iteratively refine the developed
models and improve its performances, as done for instance
for the task of machine reading (Poon and Domingos, 2010).
As an example of interactive machine learning we cite the
software Orchidea, by the authors (Cella, 2018). Orchidea
is tool to perform static and dynamic assisted orchestration
by means of multi-objective optimization on various multi-
dimensional features. Assisted orchestration can be thought
as the process of searching for the best combinations of
orchestral sounds to match a target sound under specified
metric and constraints. Although a solution to this problem
has been a long-standing request from many composers, it
remains relatively unexplored because of its high complexity,
requiring knowledge and understanding of both mathematical
formalization and musical writing. The approach adopted
by Orchidea is by putting the composer (main type of user
of the tool) in the loop of optimization: he/she can guide
the optimization process by introduction in-step symbolic
constraints that reduce the search space of the algorithm. At
any give number of epochs of the optimization the software
presents the intermediate results to the user that can validate,
eliminate or correct solutions from high level by introducing
constraints in the cost function. We refer the reader to the
vision paper (Gurevych et al., 2018) for possible directions for
interactive machine learning.

2.4. (Dis)ability to Generalize Toy Problems
to Real Tasks
2.4.1. Getting Stuck to Toy Problems
A typical approach in MIR is to tackle simplified versions
of a problem in order to develop algorithms and techniques
to be subsequently transferred to more real problems (the
usual Future developments section in papers). More than
often, the developed techniques make very strong assumptions
about the problem itself and cannot really be transferred to
more general cases. As a consequence, some MIR research
has been devoted to solve problems that are not large
enough to be applied to real tasks and the developed
methodologies got stuck to a specific context and cannot
be reused.

While the common two-step feature extraction/classification
scheme for ACE has been useful in several contexts (for
example for pop music) it also shows inherent limitations
that make it impossible to transfer the used concepts to other
contexts. For example, using beat-synchronous features are
only meaningful in some kind of music: it makes no sense
to talk about them in the context of contemporary classical
music in which most of the language develops around different
interpretations of time. In the same way, using chroma features
makes impossible to analyze music that is based on different
tuning systems, such as Indian music. Also, the fact that
chord templates are used means that only a possible subset of
harmonic choices is considered, making impossible to analyze
contemporary jazz, that also exits normal functional rules
for harmony.
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2.4.2. Scalability at the Expense of Explainability
Deep learning approaches have allowed scalability and handling
real problems. For instance, starting from the premises that using
appropriate features is an essential aspect of chord estimation
systems (Cho and Bello, 2014), the authors in Korzeniowski
and Widmer (2016a) use deep neural networks to compute
harmonically relevant chroma features, that are robust to
irrelevant interferences (e.g., overtones, percussive instruments,
etc.), compared to handcrafted ones. To avoid temporal smooth
post-processing, they learn the deep-chroma features using some
context audio frames. They conclude that a context of 1.5 s is
adequate for local harmony estimation. They show the robustness
of the proposed deep-chroma features for chord recognition,
but acknowledge that it is difficult to understand what the
neural network learned, and on which basis they generated
their output. They also explain that they chose to derive a
data-driven approach because it is close to impossible to find
the rules or formulas that define harmonic relevance of spectral
content manually.

Deep learning approaches have also allowed constructing
sophisticated end-to-end data pipelines. The authors in
Korzeniowski and Widmer (2016b) develop an end-to-end
chord recognition system that employs fully convolutional
neural network for feature extraction combined with a CRF for
chord sequence decoding. The model is evaluated considering 25
chord classes. They investigate if the system extracts musically
interpretable features, looking at questions such as whether
the network learned to distinguish major and minor modes
independently of the root note. They look at feature maps that
have a high average contribution to minor and major chords
and are able to identify some kind of a zig-zag pattern that
discriminates between chords that are next to each other in the
circle of fifths, but they are not able to explain why and how the
feature maps contribute to the learning.

Ad-hoc representations (such as chroma features) created by
MIR are defined by sound mathematical models and embody
many years of research on a specific domain but fail to achieve the
expressivity of deep learning. On the other hand, deep learning
proved to be valuable in incredibly different domains and showed
that some learning techniques are indeed general and can be
transferred to different contexts, but does not always permit a
logical understanding of the problem. Deep learning techniques
can discover multiple hierarchical layers of data and generate
new feature combinations, but those intermediate layers are not
always easily interpretable.

2.4.3. Some Possible Directions Toward General,

Scalable, Modular, and Explainable Models
From what is stated above, it appears that good representations
are essential to build robust and expressive systems for musical
processing. It is not easy, anyway, to define the concept of
good representations. Among important properties for musical
representations, as seen in the previous sections, there are
milestones such as the capacity of handling multiple abstraction
levels and the capacity of acting on multiple time scales. Also, the
description of a musical signal usually targets a particular degree
of abstraction.

Low-level representations (such as waveforms) are more
generic and have very high dimensionality; mid-level
representations, such as chromas, are often related to
perceptual concepts (Ellis and Rosenthal, 1995) and have a
higher level of abstraction and a smaller dimensionality; they
allow for transformations on specific concept (variables),
usually defined on discrete domains (for example 12
equal-tempered pitch classes in 0, 1, . . . , 11 comprising the
chromatic scale) (Lostanlen and Cella, 2016). Very abstract
representations (for example compositional schemes such
as the one in Figure 9), finally, are more expressive and
have a low dimensionality; these representations deal
with almost stationary entities such as musical ideas and
unfortunately it is very difficult to know which mathematical
structure stays behind and to incorporate them into
approaches for music processing without an adequate formal
expressive language.

Oversimplified approaches generate solutions that
can never handle the complexity of real problems: in
order to cope with them, we need a new language
that combines learning, logic, and probability. Such
approaches would open perspectives to overcome the
shortcomings described above. Several points are of
particular interest to the music community, and would
help designing systems that are more general, scalable, modular,
and explainable:

• Explainability: Despite the tremendous impact of deep
learning, limited progress has been made until now toward
understanding the principles and mechanisms underlying this
language, and how to integrate or learn human interpretable
rules. This need has been a long-standing problem since the
beginning of AI. The interpretability and expressive power
of logic combined with the effectiveness of neural network
learning would open interesting perspectives toward this
demand. These last years, the question of integrating (deep)
learning and reasoning methods into a unified explainable
foundation has receivedmore andmore attention in particular
in the StarAI field (d’Avila Garcez et al., 2015; Šourek et al.,
2015; Donadello et al., 2017b;Wang and Poon, 2018). TheMIR
field would benefit from such insight .

• Structure learning: In the aim of improving systems for
musical signal processing and enlarging their perspectives, it
would be interesting to take advantage of structure learning
algorithms developed in the field of StarAI that are able to
learn the relational structure of the data (Friedman et al.,
1999; Kok and Domingos, 2005). Approaches developed
in the StarAI field combine elements of statistical and
relational learning, and the structure can be learned in a
humanly interpretable way. Of particular interest is statistical
predicate invention (Kok and Domingos, 2007) that allows
the discovery of new concepts, properties and relations in
structured data, and that generalizes hidden variable discovery
in statistical models and predicate invention in Inductive
Logic Programming.

• Deep transfer learning: Another direction of interest is deep
transfer learning. Human knowledge is modular, composable
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FIGURE 9 | The figure shows a high-level compositional representation used by the author in his piece Reflets de l’ombre (2013) for large orchestra and electronics. In

the left part of the image, there is a drawing aimed at outlining the spectral morphology of the piece, together with high-level specific information such as musical

figures and harmonies. It sketches a high-level visualization of an imaginary musical situation before the actual realization by means of notes, durations and so on.

From a composer’s perspective, such image is a static mono-dimensional entity that is related to other musical ideas during the development of the piece: for

example, this drawing represents a sound that the composer defines hollow. In the right part, there is the corresponding actual orchestral score: the actual realization

of the musical idea lies in a high-dimensional space given by the multiple entities involved: notes, durations, playing styles and so on. Each entity has a large space of

variations that interacts with other entities: each time-point of the piece can be used for any combination of notes with any duration thus having a large space of

possibilities. It is very difficult (if possible) to find a formal relation between the two representations. Even if these mental representations probably cannot be fully

captured and described even by StarAI methods, we believe that these methods can be used to approach better such kind of representations: a logic-based

language in connection with sound-related description helps in defining the connection between musical ideas and their realizations.

and declarative: as such it can be reused. This stands in
contrast with most of the approaches used today in MIR. Deep
learning and reinforcement learning made some substantial
progress in the direction of modular representations but
nonetheless this is just the beginning of the road. The MIR
field has started embracing transfer learning techniques (Pan
and Yang, 2010) for feature transfer that use knowledge
gained from learning a source task (Hamel et al., 2013), or
multiple source tasks (Kim et al., 2018), to aid learning in a
related target task performed on the same type of raw input
data. This is particularly interesting when having few training
examples for a task. The statistical relational AI field has
opened the path to deep transfer learning (Mihalkova et al.,
2007; Davis and Domingos, 2009), that generalizes transfer
learning across domains, by transferring knowledge between
relational domains where the types of objects and variables
are different. In deep transfer learning, the knowledge to be
transferred is the relationship among the data. For instance
we could use knowledge learned in the movie industry
to help solve tasks in the music domain (see Figure 10).
These directions are steps toward designing a generalized
framework for music processing that can discover its own
representations at once, as humans do, and is able to integrate
prior knowledge.

3. STARAI, A POSSIBLE DIRECTION FOR
AN INTEGRATED FRAMEWORK

The previous discussion outlines the necessity of a general
framework able to learn, reason logically, and handle
uncertainty for processing music data. Real data such as
music signals exhibit both uncertainty and rich relational
structure. Probabilistic graphical models can cope with the
uncertainty of the real world, but they cannot handle its
complexity. Logic can handle the complexity of the real
world but not its uncertainty. Prior representations such
as chroma features formally define the level of abstraction,
but cannot reach the same level of aggregate information
gathered by deep learning networks. These networks, on the
other hand, are not capable of explaining the concepts they
discover. As advocated in Cella (2017), for such reasons, it
is interesting to make a bridge between these approaches by
immersing all these aspects in a more general framework,
made by the unification of learning, logical, and probabilistic
knowledge representations.

As stated at the beginning of this article, and illustrated
through our analysis of existing content-based MIR approaches,
logic and probability have been generally treated separately.
Probability being the classic way to represent uncertainty in
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FIGURE 10 | Although the data are of different natures, images in films and audio samples in music signals share common semantic relations. For instance the

phenomenon of fade-out/fade-in in a film, where images are superimposed during the transition [see the example of D. W. Griffith’s Abraham Lincoln film (Top)] finds a

correspondence in music when one subphrase finishes while another begins [see the extract of Schubert D.960 sonata (Bottom)]. Transfer of knowledge of

transitions in movies could help finding transitions in audio signals. Source of the images: screenshots of the movie. No permission is required for their use: the film

entered the public domain in 1958 when the initial copyright expired. See Paolo Cherchi Usai (2008), The Griffith Project: Essays on D.W. Griffith, British Film Institute.

p. 208. Retrieved January 16, 2016.

knowledge, while logical representation being the classic way to
represent knowledge and complex relational information. Both
practice converged to the same idea: that the world is both
uncertain and it is made of structured relational objects in it,
and that logic and probability should be unified to deal with it.
This path has already been embraced by a number of other area
emerging from both traditions, evolving to the field of Statistical
Relational Artificial Intelligence (StarAI). The recent tremendous
resurgence of neural networks and deep learning approaches
have joined the same agreement. Approaches developed in the
StarAI field are able to handle concurrently time large-scale,
structured and uncertain domains.

We advocate that it is time that the MIR community considers
the perspectives offered by this promising research field . Music
is by nature complex, relational and ambiguous, it would thus
benefit from approaches that allow representing, reasoning and
learning under uncertainty, complex relational structure, rich
temporal context and large existing knowledge. Most models
currently used in MIR are special cases of StarAI approaches and
can find powerful extensions that combine logic and probability.

In this section, we present some mainstream approaches
developed in the fields of StarAI (section 3.1). We summarize
the potential benefits to embrace approaches that unify logic,
learning and probability (section 3.2), and we present a case
study chord recognition model using StarAI approach (section
3.3). We then point out some obstacles and challenges that
remain to be addressed (section 3.4). We conclude with the

perspectives offered by the use of integrated approach for the
MIR field (section 3.5).

3.1. Toward Unification With StarAI
With the growing field of StarAI, many representations in
which learning, statistical, and relational knowledge are unified
within a single representation formalism have been proposed.
The abundance of these approaches illustrates the richness and
maturity of the field. As reviewed in De Raedt et al. (2016), early
approaches in the 1990’s consisted in pairwise combinations of
the three key ingredients of AI (logic, probability, and learning)
resulting in probabilistic learning (see Koller and Friedman, 2009;
Murphy, 2012 for a review), logic learning such as inductive
logic learning and relational learning (see De Raedt, 2008
for an overview), or probabilistic logic (see Nilsson, 1986).
More recent approaches such as probabilistic relational models
(Getoor, 2001), Bayesian logic programs (Kersting and Raedt,
2001), or Markov logic networks (Richardson and Domingos,
2006) combine the three ingredients. StarAI approaches have
been successfully applied to a multitude of problems in various
structured, uncertain domains.We refer the reader to Getoor and
Taskar (2007), Raedt and Kersting (2008), Domingos and Lowd
(2009), Blockeel (2013), Kimmig et al. (2015), De Raedt et al.
(2016), and Besold and Lamb (2017) for surveys of StarAI.

We present here three relational probabilistic model
formalisms that are probably the most prominent of the main
streams in StarAI, and that illustrate how each tradition has
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converged to the idea of unifying all aspects together: Markov
logic networks that extend a probabilistic graphical model with
logic, ProbLog that extends logic programming language with
probabilities, and logic tensor networks (LTNs) (Donadello et al.,
2017b) that integrates symbolic knowledge with deep networks.

3.1.1. Markov Logic Networks (MLNs)
Markov logic networks (MLNs), introduced by Richardson and
Domingos (2006), combine first-order logic and probabilistic
graphical models (Markov networks). They have received
considerable attention in recent years. AMLN is a set of weighted
first-order logic formulas, that can be viewed as a template for the
construction of probabilistic graphical models.

A first-order knowledge base (KB) is a set of formulas in first-
order logic, constructed from predicates using logical connectives
and quantifiers. A first-order KB can be seen as a set of hard
constraints on the data. In a real world scheme, logic formulas are
generally true, but not always true. The basic idea inMarkov logic
is to soften these constraints to handle uncertainty by adding
weights to formulas. The weight associated with each formula
reflects how strong a constraint is.

MLNs and their extensions [e.g., Slice Normalized Dynamic
Markov Logic Networks (Papai et al., 2012) or Bayesian Logic
Networks (Jain et al., 2011)] encompass in an elegant and
compact way the probabilistic models that are used in the MIR
literature (HMM,CRF, DBN, etc.), while allowingmodelingmore
flexible and complex relational structures. MLNs are intuitive
representations of real-world scenarios: weighted first-order logic
formulas are first used to express knowledge (weight express
the belief in the truth of the corresponding formula); a Markov
network is then constructed from the instantiation of these FOL
formulas; finally inference is performed on the Markov network.

Instead of using standard learning and inference algorithms
for probabilistic graphical models, far more scalable techniques
that exploit logical structures and symmetries that are encoded in
the MLN representation have been developed (Venugopal, 2015;
Sarkhel et al., 2017; Al Farabi et al., 2018), which enables solving
very large and complex real-world MLNs.

First-order logic is the special case of MLNs obtained when
all weights are equal and tend to infinity. From a probabilistic
point of view, Markov logic allows very complex models to be
represented very compactly. It also facilitates the incorporation
of rich domain knowledge that can be combined with purely
empirical learning, and allows reasoning with incomplete data
(Papai et al., 2012; Snidaro et al., 2015).

Open-source implementations, as well as further materials on
how to use MLNs, are available, for example the Alchemy6 and
ProbCog7 software packages.

3.1.2. ProbLog
ProbLog (De Raedt et al., 2007) is a probabilistic extension of
the logic programming language Prolog (Flach, 1994). ProbLog
is arguably the simplest probabilistic extension of Prolog one
can design. ProbLog is essentially Prolog where all clauses are

6http://alchemy.cs.washington.edu
7http://ias.cs.tum.edu/research/probcog

labeled with the probability that they are true, these probabilities
being mutually independent. Compared to Prolog, ProbLog
allows intuitively building programs that not only encode
complex interactions between large sets of heterogeneous data,
but also handles uncertainties of the real world. Prolog allows
determining whether a query succeeds or fails, whereas ProbLog
allows computing the probability that it succeeds. This allows
modeling and reasoning in a real world scheme, and deal with
the degree of belief about relational objects.

Open-source implementations of ProbLog can be found
at https://dtai.cs.kuleuven.be/problog/. ProbLog and related
formalisms have a number of important features and have been
used for a variety of applications (De Raedt and Kimmig, 2015),
especially in the field of bioinformatics.

3.1.3. Logic Tensor Networks
Finally, Logic Tensor Networks (LTNs) (Serafini and d’Avila
Garcez, 2016; Donadello et al., 2017a,b) provide a model
that combines first-order logic and neural network-based
approaches. Learning, based on tensor networks (Socher
et al., 2013), is integrated with reasoning using first-order
many-valued logic (Bergmann, 2008). Data (logical constants)
are described as feature vectors of real numbers. Using
relational symbolic knowledge (specified compactly using
first-order logic), they are then translated into soft and
hard constraints on the subsymbolic level (implemented
as a tensor network). The network learns from numerical
data and logical constraints to approximate a solution to
the constraint-optimization problem called best satisfiability
when faced with new data. LTNs thus enable relational
knowledge infusion into deep networks and approximate
reasoning on unseen data to predict new facts. Compared
to purely neural-network based approaches, where if no
examples exist in the training data, the network generally
fails to represent the corresponding concept, LTNs can
also handle exceptions (Donadello et al., 2017b). There
are strong connections between LTNs and neural-symbolic
paradigms that address the problem of combining symbolic
and connectionist approaches for knowledge representation,
learning, and reasoning (Besold and Lamb, 2017).

In deep learning, the possibility of creating abstract
representations from raw data is a major need; nonetheless
this possibility is not fully understood (Mallat, 2016). In
a recent Dagstuhl seminar (d’Avila Garcez et al., 2015),
major general opportunities for neural-symbolic learning
have been outlined, that are obviously valid for music
processing: the mechanisms for structure learning remain
to be understood; the learning of the generalization of symbolic
rules is an essential process and is still not well understood;
retrieval of knowledge from large-scale networks remains a
challenge. Logic Tensor Networks and related approaches
(see Besold and Lamb, 2017 for an overview) can indeed
be useful toward this goal. Methodologically, they create
bridges between gaps through changes of representation
and configure as a promising path to answer questions
about knowledge representation, reasoning, and learning
(d’Avila Garcez et al., 2015).
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3.2. On the Benefits of an Integrated
Framework Over Traditional Formalisms
In this article, we have critically reviewed standard approaches
to content-based MIR and we have pointed out four limitations
that call for a general framework able to integrate different
approaches for the representation of music signals into a
common perspective:

• Designing expressiveness and flexibility are obtained to the
expense of robustness and vice versa;

• Current architectures are unable to cope with the complex
relational structure of music at multiple abstraction levels and
multiple time scales;

• Available heterogeneous multimodal sources of information
and users feedback are little exploited;

• Simplified versions of MIR problems cannot be generalized to
real problems, scalability is often obtained to the detriment
of explainability.

Standard approaches for content-based MIR are not able to
cope both with its inherent uncertainty and complex relational
structure, nor to cope with its rich temporal context and large
existing knowledge. The benefits of using approaches that unify
logic, learning and probability are manifold.

It is to be noted that, in general, the unified approaches
proposed in the statistical relational AI area are extensions of
existing probabilistic or logic-based approaches. For instance
Markov logic networks (Richardson and Domingos, 2006),
represented as sets of weighted first-order rules, generalize first-
order logic and encompass probabilistic graphical models. In the
same way, feed-forward neural network can be seen as a special
case of Lifted Relational Neural Networks (Šourek et al., 2015),
that are also represented as sets of weighted first-order rules.
Probabilistic context-free grammars (PCFG), that have been used
in MIR (see e.g., Kameoka et al., 2012; Tsushima et al., 2018), can
be represented as Bayesian logic programs that unify Bayesian
networks with logic programming (Kersting and de Raedt, 2007).
It is thus generally easy, from a conceptual point of view, to move
from traditional approaches to starAI approaches.

We have identified several advantages for the MIR field to
develop algorithm in an integrated framework able to learn,
reason logically, and handle uncertainty. The main ideas are
recalled below:

• Aunification of logic and probabilistic graphicalmodels allows
combining the strength of these two synergistic formalisms:
the representational richness and expressivity of logics and the
ability of reasoning with uncertainty of probability theory;

• It allows a compact, expressive and intuitive description
of music, and a modeling of music at multiple levels of
abstraction and detail;

• The distinction is not only relevant at the representational
level: it allows improving the learning of the parameters
and the structure of the models by combining principles
of both statistical and logical learning. It also allows
improving scalability and efficient inference by reasoning
about symmetries and regularities across different situations,
e.g., using lifted inference.

• It allows the flexible incorporation of prior knowledge, from
multiple heterogeneous data sets, derived from different
types of data, different contexts, from different experts, at
different levels of abstraction and possibly with overlapping
or contradictory concepts, to leverage lack of training data
or enhance data-driven approaches by improving the quality
of learning;

• It opens perspectives to design models that are more
general and explainable (e.g., design neural network that are
interpretable through the inception of first-order logic for the
specification of their latent relational structures);

• It allows the discovery of new concepts, properties and
relations in structured data with structure learning.
StarAI algorithms should be able to discover their
own representations;

• It allows making use of user feedback (e.g., following the work
in interactive machine learning), to accumulate new knowledge
and refine existing knowledge to converge on a solution;

• It allows developing models that are modular and reusing
knowledge, e.g., by using deep transfer learning that generalizes
transfer learning across domains.

3.3. A Case Study for MIR
Among all StarAI approaches, Markov logic networks (MLNs),
that we briefly presented in section 3.1.1 have received
considerable attention in recent years and found applications
in a wide variety of fields. The potential of this powerful
framework for music processing has been investigated in a
recent article (Papadopoulos and Tzanetakis, 2017). We detail
here this system for chord estimation as a proof-of-concept
case study to demonstrate the potential of StarAI methods for
music processing.

3.3.1. Formal Definition of MLNs
Syntactically MLNs extend first-order logic by adding weights
to logical formulas. Semantically, they induce a probability
distribution over the set of all possible worlds, where a world is
an assignment of truth values to every grounded predicate.

Definition 1. A Markov network, is a model for the joint
distribution of a set of variables V = (V1,V2, . . . ,Vn) ∈ V (Pearl,
1988), often represented as a log-linear model:

p(V = v) =
1

Z
exp

(

∑

j

wjfj(v)
)

(1)

where Z is a normalization factor, and fj(v) are features of the state
v. A feature may be any real-valued function of the state, but in
our case, and in most literature of Markov logic, we focus on binary
features, fj(v) ∈ {0, 1}.

Definition 2. Formally, a Markov logic network L (Richardson
and Domingos, 2006) is defined as a set of pairs (Fi,wi), where Fi
is a formula in first-order logic and wi is a real number associated
with the formula. Applied to a finite set of constants C (to which
the predicates appearing in the formulas can be applied), it defines
a ground Markov network ML,C as follows:
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FIGURE 11 | Markov logic network for tonal harmony analysis of music. The model combines harmony-related information (chords, local key, and semantic structure)

that interact at various time scales (analysis frame, phrase and global structure) in a single unified formalism. Relational structure is expressed in terms of logical

formulas that are used as a template to build a probabilistic graphical model. The first two formulas compactly encode the relational structure that can be modeled

with a HMM.

1. ML,C contains one binary node for each possible grounding of
each predicate (i.e., each atom) appearing in L . The value of the
node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature fj for each possible grounding of each
formula Fi in L. The feature value is 1 if the ground formula is
true, and 0 otherwise. The weight wj of the feature is the weight
wi associated with the formula Fi in L.

A MLN can be viewed as a template for constructing Markov
networks: given different set of constants, it will produce different
networks. Each of these networks is called a ground Markov
network. A ground Markov network ML,C specifies a joint
probability distribution over the set V of possible worlds, i.e.,
the set of possible assignments of truth values to each of the
ground atoms in V8. From Def. (2) and Equation (1), the joint
distribution of a possible world V given byML,C is:

p(V = v) =
1

Z
exp

(

∑

i

wini(v)
)

(2)

8The ground Markov network consists of one binary node for each possible
grounding of each predicate. A world V ∈ V is a particular assignment of truth
value (0 or 1) to each of these ground predicates. If |V| is the number of nodes in
the network, there are 2|V| possible worlds.

where the sum is over indices of MLN formulas and ni(v) is the
number of true groundings of formula Fi in v [i.e., ni(v) is the
number of times the ith formula is satisfied by possible world V],

and Z =
∑

v′∈V

exp
(

∑

i

wini(v
′)
)

.

3.3.2. Chord Estimation Markov Logic Network
The model proposed for automatic chord estimation in
Papadopoulos and Tzanetakis (2017) is depicted in Figure 11.
It combines different types of harmony-related (chords, local
key, global key) information at various time scales (analysis
frame, phrase and global structure) in a single unified formalism,
resulting in a more elegant and flexible model compared to
existing more ad-hoc approaches.

The structure of the domain is represented by a set of
weighted logical formulas (described by the sentences F1, . . . , F5
in Figure 11). The constants of the domain are the 24 major
and minor triads, and the 24 major and minor keys. The logical
formulas applied to these constants produce a Markov network
illustrated in Figure 11. In addition to this set of rules, a set of
evidence literals represents the observations (chroma vectors)
and prior information (the temporal structure). Given this set
of rules with attached weights and the set of evidence literals,
MaximumA Posteriori (MAP) inference is used to infer the most
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likely state of the world. For a detailed description of the model,
we refer the reader to Papadopoulos and Tzanetakis (2017).

3.3.3. Potential of the Method
This model, although exploiting only a small part of the
possibilities offered by the framework of MLNs, already
demonstrates how combining learning, logic and probabilities
would help overcome some of the shortcomings of current
approaches for music processing outlined in section 2.

3.3.3.1. Robustness, flexibility, compactness
In this article, we have discussed the necessity of being able
to handle both uncertainty and complex relational structure,
stressing the complementarity between probabilistic graphical
models and logic, and the current inability to have models that
are both robust, flexible and expressive (see section 2.1.1). MLNs
allow handling these aspects together. Complex graphical models
can be specified compactly in Markov logic. For instance, in
Figure 11, formulas F1 and F2 compactly encode the relational
structure of a HMM. This model can then easily be extended to
combine various kind of harmony-related information at various
time-scales in a single unified formalism, by adding logical
formulas and corresponding weights.

Compared to pure logic, weighted logic allows dealing
directly with the uncertainty of audio, without the need of
an intermediate transcription step. Also, it is not necessary to
have absolute correctness and completeness of logical formulas,
which makes writing large knowledge base that reflects real
world data often an impossible procedure in pure logic. MLNs
can handle inconsistencies, incompleteness and contradictions
between formulas.

3.3.3.2. Expressiveness
We have also previously underlined the benefit of being able to
model music rules in an intuitive and human-readable way, so
that developers, researchers and end-users can easily incorporate
complex knowledge from diverse sources. MLNs allow such
possibility. For instance, it is possible to annotate manually only a
few chords, say 10%: cA0 , c

A
9 , c

A
19, · · · , and add this evidence to the

model given by F1 and F2, by adding evidence predicates of the
form: State(cA0 , 0), State(c

A
9 , 9), State(c

A
19, 19), · · · . This scenario

tested on the model described by formulas F1 and F2 on the
Fall out boy song This ain’t a scene its an arms race results in
an increase in the chord estimation results from 60.5 to 76.2%,
showing how additional evidence can easily be added and have a
significant impact.

3.3.3.3. Multiple abstraction levels, multiple time scales
We have also emphasized the need to be able to reason jointly at
multiple abstraction levels and multiple time scales (see section
2.2). The model depicted in Figure 11 combines various kinds
of harmony-related information (chords, global and local keys).
Also, it has been possible to incorporate dependencies between
music events at various time-scales (beat-synchronous analysis
frame, phrase and global structure).

The combination of all the previously described rules
results in a single unified formalism for chord estimation
at multiple temporal and semantic levels. It is found in

Papadopoulos and Tzanetakis (2017) that such multi-faceted
and multi time-scale analysis allows significantly improving
the results of the various attributes (chords, key, local key)
compared to existing more ad-hoc approaches. This work is
a new step toward a unified multi-scale description of audio,
and toward the modeling of complex tasks such as music
functional analysis.

3.3.3.4. Other perspectives
Although not yet explored, such amodel offersmany perspectives
for music processing, that include:

• Context information (metrical structure, instrumentation,
chord patterns, etc.) could be compactly and flexibly
embedded in the model (adding additional weighted logical
rules) moving toward a unified analysis of music content.

• It can be extended to handle rich domain knowledge that can
be combined with purely empirical learning (Pápai et al., 2012)
to help leveraging music complexity.

• It would allow dealing with very large networks since inference
and learning can be performed on graphical models with
millions of variables and billions of features with highly
efficient algorithms that combine probabilistic methods with
ideas from logical inference, such as lazy inference methods
(Poon et al., 2008) (that takes advantage of the sparseness
of relational domain by only grounding atoms that are
needed, since only a small fraction of all possible relations
are actually true), or lifted inference (Van Haaren et al., 2016)
(where queries are answered without materializing all the
objects in the domain by grouping random variables that are
symmetrical give the first-order structure, and then sampling
over the high-level representation).

• It creates the possibility to find useful features and relational
structure, and discover new concepts from the data through
statistical predicate invention.

• It gives the prospect to use experience in other domains to
learn faster in the domain of music processing through deep
transfer learning.

3.4. Challenges of StarAI for the MIR
Community
The authors hope that the previously outlined work developed in
the statistical relational AI area may inspire the MIR community
to embrace this path. However there are a few difficulties thatmay
prevent at first glance the MIR researchers to take the plunge in
this direction.

First, since StarAI is built on ideas developed within many
different fields, it is quite demanding for beginners to acquire
the required background. It is necessary to have a combination of
competencies from various fields (including for instancemachine
learning, knowledge representation and logic or probability
theory), that often use different views to tackle a given problem,
and use different vocabulary and concepts.

Secondly, the newcomers may feel lost face to the plethora of
proposed formalisms for statistical relational AI that attempt to
unify logic, probability and learning. This (still growing) mass of
approaches is often referred to as the alphabet soup of statistical
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relational AI and it is difficult to understand how they are related
or differ from another, and which formalism is more suitable for
a given task. There has been some work toward this goal, but
a framework for comparing the various existing formalisms is
still missing.

Thirdly, although offering many exciting perspectives
compared to traditional formalisms, and although having
already provided interesting results for many different tasks,
it may not be easy to make statistical relational AI approaches
work for a given problem, since there are often many subtleties
to understand. For instance, even if the principle of Markov logic
networks is very simple (expressing knowledge with weighted
first-order logical formulas), using the formalism without any
understanding of its semantics may result in unexpected results
in practice. Indeed, weights do not have a direct correspondence
with probabilities, except in some very special cases. However,
with the increasing number of people attracted by starAI
approaches, knowledge engineering guidelines have been
developed (Jain, 2011).

Finally what is maybe lacking now is a generalized symbolic
language: low-level features are usually described as numeric
values while logic laws are defined with more formal operators.
Despite the huge amount of work done in StarAI to permit
expressive kind of descriptions, the underlying language and
related symbolic machinery are still an open problem. A
generalized symbolic language that can be used by users and
researchers still needs to be found.

3.5. Potential Perspectives for MIR
The MIR field needs to reason under uncertainty and learning in
the presence of data and rich knowledge. Using approaches that
combine learning, logic, and probabilities would help leveraging
with the complexity of music. In particular it would allow
pursuing the five challenges that were stated almost one decade
ago (Downie et al., 2010), when reviewing the first 10 years of
ISMIR conferences, and in which the MIR community has still
not fully engaged yet:

• Dig deeper into the music itself by incorporating multiple
features, but in a way that these combinations can be
understood in musical terms. StartAI approaches aim at
representing complex relational structure at multiple levels
of representation.

• Interact with potentials users of MIR technology (e.g.,
musicologists, sound archivists, performing musicians) and
get advantage from the multi-disciplinary knowledge they
would bring. Putting together several sources of knowledge
such as psychoacoustics, cognitive musicology, computational
neurobiology, signal processing and machine learning is
a key for future development for intelligent machines
listening (Cella, 2017). StarAI algorithms are directed toward
incorporating such knowledge.

• Expand musical horizons by conducting research on various
types of music. Progress toward this goal have already been
made by exploring non-Western music traditions such as
Indian (Srinivasamurthy et al., 2017) or Chinese (Repetto
and Serrá, 2014) music, but other facets of music, such

as contemporary classical music remain unexplored, and,
as stated above, existing computational models cannot be
applied to them. Taking advantage of relational structure
learning algorithms, that would allow finding explainable
representation from the data, would be of particular interest.

• Boost engagement with data other than audio, such
as symbolic data and metadata. We need structured
representations that would permit to deal with many
different types of knowledge, and use the available large-scale
music data that combine multiple data modalities (MIDI,
scores, lyrics, user tags etc.).

• Not only focus on subcomponents of MIR systems, but
develop full-featured, multifaceted, robust, and scalable real-
world-useable systems. We need to develop an end-to-end
approach to complexity.

4. CONCLUSIONS

In this article, we have critically looked at the problem of
automatic chord estimation from audio recordings as a
case study to better understand the current standpoint of
content-based MIR research. We have pointed out several
deficiencies in current approaches for music processing:
the inability to handle simultaneously uncertainty and rich
relational structure; the incapacity to handle multiple abstraction
levels and the incapability to act on multiple time scales;
the unemployment of available multimodal information;
and the ineptitude to generalize simplified problems to
complex tasks.

In a general sense, music processing algorithms must
be able to learn, reason logically with complex relational
structure, and handle uncertainty. Existing approaches fail to
capture these aspects simultaneously. Probabilistic graphical
models can handle uncertainty but cannot deal with complex
relational structure. Logic can handle the complexity of
music but not its uncertainty. Deep architectures are well
suited to characterize the hierarchical nature of music, but
they cannot explain the concepts they discover. There have
been recently attempts of integrating all these aspects into a
common framework.

Unifying logic learning and probability has been a long-
standing goal for Artificial Intelligence. This allows “classical
AI,” based predominantly on first-order logic, to deal with
uncertainty and learn from real data, while “modern AI,”
based mostly on probability theory, can acquire enough
expressive power to handle complex relational domains and
incorporate prior knowledge (Russell, 2014). Today, the field
of StarAI has opened several promising directions toward this
goal. We believe that the combination of logic, probability,
and learning will allow deploying end-to-end systems for
music processing that are expressive enough to represent
and learn in a human-readable way complex relational
knowledge, and to discover explainable representations. These
representations should be able to incorporate rich prior
knowledge of various types and interact with heterogeneous
data. Moreover they should handle uncertainty and cope
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with various forms of noise, imprecision and incomplete
information. These approaches would allow efficient and
scalable inference, and learning, including learning from other
domain. We encourage the MIR community to consider
this path.
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