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Objective: To identify the factors that predict mortality post-transfer and develop

a comprehensive mortality prediction model capable of supporting pre-transfer

decision making.

Materials and methods: Electronic health record data from the Medical

Transport Data Repository of a large health systemhospital in NortheastOhio that

consists of a main campus and 11 a�liated medical centers. We retrospectively

analyzed patient data from the referring hospital encounter prior to interhospital

transfer. All patient data including diagnoses, laboratory results, medication, and

medical and social history were analyzed to predict in-hospital mortality post-

transfer. We employed a multi-method approach including logistic regression,

gradient boosting, and multiple correspondence analysis to identify significant

predictors of mortality as well as variables that are clinically useful to inform

clinical decision support development. We identified all patients aged 21 and

older that underwent critical care transfer in the health system between 2010

and 2017.

Results: We found that age, laboratory results (albumin, INR, platelets, BUN,

leukocyte, hemoglobin, glucose), vital signs (temperature, respirations, pulse,

systolic blood pressure, pulse oximetry), and ventilator usage are the most

predictive variables of post-interhospital transfer mortality. Using structured data

from the EHR we achieved the same performance as APACHE IV within our

health system (0.85 vs. 0.85). Lastly, mode of transport alone was not a significant

predictor for the general population in any of the outcome models.

Conclusions: Our findings provide a foundation for the development of

decision support tools to guide transport referrals and identified the need

for further inquiry to discern the role of mode of transport to enable future

inclusion in decision support approaches. Further inquiry is needed to identify

factors that di�erentiate patients not triaged as time-sensitive transfers but still

require helicopter intervention tomaintain or improve post-interhospital transfer

morbidity and mortality.
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electronic health records, emergency services, emergency department, transportation

of patients, machine learning, emergency helicopter, helicopter ambulance

Frontiers inDisaster and EmergencyMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/disaster-and-emergency-medicine
https://www.frontiersin.org/journals/disaster-and-emergency-medicine#editorial-board
https://www.frontiersin.org/journals/disaster-and-emergency-medicine#editorial-board
https://www.frontiersin.org/journals/disaster-and-emergency-medicine#editorial-board
https://www.frontiersin.org/journals/disaster-and-emergency-medicine#editorial-board
https://doi.org/10.3389/femer.2023.1339798
http://crossmark.crossref.org/dialog/?doi=10.3389/femer.2023.1339798&domain=pdf&date_stamp=2024-01-08
mailto:axr62@cwru.edu
https://doi.org/10.3389/femer.2023.1339798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/femer.2023.1339798/full
https://www.frontiersin.org/journals/disaster-and-emergency-medicine
https://www.frontiersin.org


Reimer et al. 10.3389/femer.2023.1339798

1 Introduction

Rural hospital closures and health system consolidations have

led to an increased reliance on interhospital transfer (IHT) for those

patients requiring higher levels of care not present at their current

location (1, 2). Approximately 1.6 million patients undergo IHT

each year in the United States (3), with around 640,000 requiring

critical care transfer by either ground or air (4). Interhospital

transfers are generally categorized as time sensitive, and non-time

sensitive. Time sensitive transfers include patients experiencing

myocardial infarction, stroke, aortic syndromes, or trauma, and

require rapid transfer usually by helicopter to a tertiary care center.

Transfer for these patients has been shown to be a life-saving

measure, with reductions in mortality for trauma (5–11) and

myocardial infarction (12) patients, conflicting results for stroke

patients (13, 14), and evidence of overuse for minimally injured

trauma patients (15–19).

However, a large proportion (∼70%) of IHT consist of

non-time sensitive patients, often with multiple diagnoses and

comorbidities (e.g., sepsis complicated by respiratory and renal

failure), who are being transferred from one hospital to another.

The limited research into IHT outcomes indicates that these

patients experience up to 3 times higher mortality (20, 21) while

also experiencing double the length of stay and twice the cost

compared to non-transferred patients (3). Yet, many patients

undergoing IHT without a time-sensitive condition continue to be

transferred by helicopter. Helicopter transfer is expensive, costing

3–20 times more than ground transfer. Thus, discerning which IHT

patients qualify as time-sensitive and require expensive helicopter

transfer with a concomitant clinical benefit vs. those that require

critical care transfer but can be transferred via less expensive

ground critical care ambulance is necessary.

Several approaches have been developed to begin addressing

the issue of IHT and allocation of transport resources. The first

approach by a group in the Netherlands developed a tool that

retrospectively assesses the quality of interhospital transfer. An

expert panel developed a score for interhospital transport by a

Mobile Intensive Care Unit entitled the QUality of Interhospital

Transportation in the Euregion Meuse-Rhine (QUIT-EMR) score

(22). The QUIT-EMR included monitoring and supportive

treatment variables of the neurological, respiratory, and circulatory

organ systems. This study demonstrated that the QUIT-EMR score

validly identified clinical deterioration interventions’ effectiveness

during transport and thus may have the potential to identify at-risk

patients before planned transfer and objectify clinical deterioration

and the effectiveness of interventions during transfer.

A second approach was developed by a group in Canada to

optimize flight planning for non-emergent air transfers to enable

moving from an on demand model to an optimal use model (23).

Prospective implementation of the optimized model resulted in

decreased total flight hours, distance flown, and reduced total

costs, demonstrating the utility of using a planned approach to

non-urgent transfers to maximize resource use.

A third approach by a group in the United States developed

the SafeNET tool—Safe Non-elective Emergent Transfers, that

predicts expected mortality at the time of transfer based on a 14-

variablemodel that bedside clinicians can complete prior to transfer

(24). Currently, SafeNET is the only model that can be applied

prospectively to aid the decision-making process of clinicians and

families engaging in the decision to transfer.

The decision to transfer is complicated, and entails answering

the primary questions of if, how, and when. If and when a patient

should be moved can be straightforward, particularly in time-

sensitive emergencies when the necessary care is not available at

the current location. But even in time-sensitive scenarios—the if

to transfer, depending on the patient’s current health status and

desire for further care, can be complicated. In most time-sensitive

scenarios, patients are transferred via the quickest transport

mode—the how, which is most often helicopter, can be ground

ambulance in some situations if the time to destination is the same

or faster. However, most transfer decisions are not straightforward,

and many clinicians and most patients and families do not have an

adequate understanding of the potential consequences of transfer

decisions. Consequences of transferring include the potential to

incur significant financial burden due to the cost of helicopter

transfer and subsequent expenses for families who must also travel

and incur additional costs for food and housing. Further, the how

to transfer is also complicated because outside of time-sensitive

emergencies or complex critically ill patients that are resource

intensive such as extra corporal membrane oxygenation patients,

there is limited evidence of the clinical benefit that helicopter

transfer infers on improved morbidity and mortality. Therefore,

the purpose of this study was to identify the factors that predict

mortality post-transfer, including transport mode, and develop a

comprehensive mortality prediction model capable of supporting

pre-transfer decision making.

2 Materials and methods

2.1 Data sources

This is a retrospective cross-sectional study using existing

electronic health records (EHR) from the Medical Transport Data

Repository of a large health system hospital in Northeast Ohio that

serves as a regional and national referral center, consisting of a

main campus and 11 affiliated medical centers in the region. We

developed the data repository that links all medical records across

the entire encounter of care for a patient undergoing IHT. Each

patient entry in the data repository contains the referring hospital

encounter, the medical transport, and the receiving hospital

encounter EHR data. Every patient referred for transfer to or from

the health system hospitals is entered into the data repository. For

each patient, all associated EHR records are identified, extracted,

and normalized for secondary research purposes with the outcome

of interest known (i.e., labeled data). More details can be found here

on the data repository (25), associated data quality assessment (26),

and data normalization procedures (27).

2.2 Study population

To ensure complete record availability, we included patients

aged 21 and older that were transferred within the health system
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between 2010 and 2017. All patients undergoing critical care IHT

by the health system critical care transport team, either by ground

or air transport were included. The study was approved by the

participating institutions IRBs (#14-1556 and #20180346).

2.3 Data analysis

The goal of this study is to develop a model that classifies

patients using EHR data available at the time of transfer. We aim

to generate a mortality risk score that will be employed within

a clinical decision support system to inform the decision-making

process during the decision to transfer between providers and

patients and their family or surrogates. Therefore, the outcome of

interest was in-hospital death categorized as a binary outcome. Due

to the unbalanced nature of the data with an overall low incidence

of death, similar to other comparable work (28), we combined those

discharged to hospice with those that died in-hospital as both of

these outcomes may represent futile IHT. All data employed in

this analysis was structured EHR data and thus considered labeled

data. Due to the high dimensionality and sparse nature of some

of the included covariates, we employed a multi-step dimension

reduction and multi-method approach to assess the influence of

IHT on patient outcome. First, we employed random forest within

each data subcategory for dimension reduction, then we employed

logistic regression, gradient boosting, and multiple correspondence

analysis to complete a comprehensive analysis of the influence of

the variables of interest.

2.3.1 Variable reduction
We employed random forest (RF) to reduce the total number

of variables across each category. The variable categories that

were reduced via RF included medications, procedures, laboratory

results and diagnosis codes. For example, the subcategory primary

diagnosis contained over 2,700 unique diagnoses codes. Through

bootstrapping, RF generates many individual classification trees

by randomly selecting input variables during each tree building,

improving overall prediction. RF then generates a list that ranks

variable importance from high to low based on the Gini index

value across all the individually developed trees (29). Employing

RF enables filtering out the most important predictors for each

sub-category. To select the final variables within each subcategory,

we examined the variable importance plot to identify the fewest

number of covariates most associated with the outcome while

retaining over 90% of the data variation. We first screen out the

variables which are collinear with other variables. If two or more

variables have a 0.8 correlation coefficient, only one is kept for

inclusion in the full model based on determination of clinical

significance. The RF model criterion included split training/testing

at 2:1 ratio, 5-fold cross validation, using grid search to find the

optimal parameters in pursuit of accuracy, and a splitting based on

Gini impurity criterion. A full description of identifying variables

for inclusion in the final model development is provided here (30).

2.3.2 Physiologic data
To account for physiologic variability, we included the last

set of vital signs prior to transfer as this represents the current

physiologic state of the patient at the time of transfer. The most

recent set of laboratory results prior to transfer were included in

each modeling stage.

2.3.3 Demographics
Demographic data included age, biological sex, race, ethnicity,

marital status, insurance type (i.e., Medicare, Medicaid, private and

other), mode of transport (i.e., ambulance, helicopter), sending unit

(i.e., emergency department, intensive care unit), and receiving unit

(floor, intensive care unit, other). Social history variables such as

smoking, and alcohol use were accounted for in the diagnosis codes

subcategory history.

2.4 Machine learning algorithms

2.4.1 Logistic regression
Logistic regression is another sensible model for modeling data

with a binary outcome. It provides model coefficients that are

indicative of effect directions and sizes, which are not shown in

some of the machine learning approaches such as the variable

importance score in RF. Hence, the logistic regression results built

on important variables from the RF are useful for large data.

The logistic regression results provided a baseline to compare

the influence of individual variables and triangulate results across

the different modeling methods. We included the same variables

contained in the gradient boosting model 4.

2.4.2 Gradient boosting
We also employed gradient boosting as an alternative model

building method. Similar to RF, gradient boosting uses individual

classification trees, but instead of averaging the results across many

trees, boosting begins with a single weak model (i.e., tree), and

combines it with other weak models until it generates a collectively

strong model (31). To control for potential confounding we

employed 3-terms matching on age, sex and transport mode

resulting in a balanced sample of 2,024 patients. In an effort to

build the most parsimonious model, we developed four nested

models in a stepwise fashion to assess the individual contribution

of each data category. Cross-validation based on a grid search is

employed for the selection of hyperparameters needed in finding

optimal model in each data category. Model accuracy and area

under the receiver operating characteristic curve (AUROC) are

used to assess model performance. Classification trees were the

booster and logistic regression was used as the binary classification

with 5-fold cross validation. Model 1 included only demographic

and diagnosis data. Model 2 added lab results to model 1. Model 3

added vital signs to model 2. Model 4 trimmed variables identified

via machine learning but deemed not clinically significant.

2.4.3 Multiple correspondence analysis
Most covariates in this dataset are categorical. Therefore,

to complement the classification tree-based modeling methods

and enable assessing the underlying pattern of relationships of

the multiple categorical variables, we also employed multiple

correspondence analysis (MCA) (32). The primary goal of

Frontiers inDisaster and EmergencyMedicine 03 frontiersin.org

https://doi.org/10.3389/femer.2023.1339798
https://www.frontiersin.org/journals/disaster-and-emergency-medicine
https://www.frontiersin.org


Reimer et al. 10.3389/femer.2023.1339798

TABLE 1 Study sample characteristics.

Patient demographics n = 11,497 Alive n = 7,709 Dead n = 3,788

Age mean (+std dev) 63.3 (15.9) 60.7 (15.9) 68.5 (14.6) P < 0.001

Range 21–90† 21–90 21–90

Sex n (%)

Male 6,043 (53) 4,076 (67) 1,967 (33) P = 0.34

Female 5,452 (47) 3,631 (67) 1,821 (33)

Race n (%)

White 8,529 (73) 5,626 (66) 2,902 (34) P < 0.001

Black 2,509 (22) 1,750 (70) 758 (30)

Other 456 (4) 333 (72) 128 (28)

Payer type n (%)

Medicare 7,143 (62.1) 4,506 (63) 2,637 (37) P < 0.001

Medicaid 1,525 (13.3) 1,207 (79) 318 (21)

Private 1,761 (15.3) 1,287 (73) 474 (27)

Other 444 (3.8) 381 (86) 63 (14)

Unknown 625 (5.4) 328 (52) 296 (48)

Sending unit n (%)

Emergency department 5,416 (47) 3,870 (71) 1,546 (29) P < 0.001

Intensive care unit 1,713 (15) 994 (58) 719 (42)

Other 4,368 (38) 2,845 (65) 1,523 (35)

Mode of transport

Helicopter 2,990 (26) 2,041 (68) 949 (32) P = 0.14

Ambulance 7,768 (68) 5,206 (67) 2,593 (33)

Other 687 (6) 462 (67) 225 (33)

Receiving unit

ED 626 (6) 468 (75) 158 (25) P < 0.001

ICU 7,496 (65) 4,746 (63) 2,750 (37)

Other 1,374 (12) 1,139 (83) 238 (17)

Unknown 2,001 (17) 1,356 (68) 642 (32)

Std dev, standard deviation; †Age limited to 90 for those aged 90 or greater due to deidentification.

employing MCA was to identify the influence of mode of transport

on outcome, and particularly if mode of transport (i.e., helicopter,

ambulance) was associated with the binary outcome of in-hospital

death. All variables that were not categorical such as laboratory

results and vital signs were recategorized as high/low/normal

for inclusion in this analysis. Interpretation of MCA is based

on proximity between points and is accomplished via a low-

dimension map, with the proximity of different nominal variables

identifying variables that appear together in the observations (32).

We accomplished this via analyzing a visualization with concentric

circles drawn around each mode of transport to indicate proximity

and examining the distance between mode of transport and the

clinical outcome of death or other.

2.5 Missingness

Due to the format of the data types for analysis, we included

missing variables in the analysis as separate factors and dummy

coded as “other” categorical indicator variables. For example, if we

are unable to obtain a patient’s medical history such as diabetes or

hypertension, then each variable was coded as a separate dummy

indicator as unknown and used in the analysis. This approach is

useful as it enables including unknown factors in the modeling

approaches, more closely aligning with clinical practice where

unknown factors are common.

3 Results

3.1 Baseline characteristics

A total of 11,497 patients were included in the study

sample. Total sample and subgroup demographics are

presented in Table 1. Overall, in-hospital mortality or

discharge to hospice for those undergoing critical care

transfer was 32.9%. Patients who died were older, white,

on Medicare, and more likely to be transferred from an

emergency department.
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TABLE 2 Logistic regression odds ratios and random forest variable importance.

Logistic regression Gradient boosted

Variable Odds ratio 95% CI Relative variable
performance

Age 0.95∗∗∗ 0.94–0.97 100

Albumin 1.86∗∗∗ 1.44–2.47 88.25

Ventilator 0.29∗∗∗ 0.19–0.45 67.94

Temperature 1.22∗∗ 1.07–1.39 46.03

Respirations 0.96∗∗ 0.94–0.99 42.06

Oxygen: liters per minute 0.99 0.98–1.00 39.92

Pulse 0.98∗∗∗ 0.98–0.99 39.68

Systolic blood pressure 0.99 0.99–1.01 37.22

International normalized ratio 0.85∗ 0.73–0.98 35.24

Platelets 1.003∗∗∗ 1.001–1.004 35.00

BUN 1.00 0.99–1.00 33.81

Leukocytes 0.98 0.95–1.00 30.32

Hemoglobin 1.09 0.96–1.25 27.06

Erythrocytes 0.90 0.61–1.31 21.11

PL Acute respiratory failure 0.72 0.46–1.13 20.48

Glucose 1.00 1.00–1.00 18.81

Pulse oximetry 1.01 0.98–1.05 18.25

DX Encounter for other specified counseling 0.17∗∗ 0.02–0.57 10.71

Race: other 0.92 0.62–1.65 8.02

Medicare 1.63∗ 1.03–2.58 5.95

DX Encounter due to tobacco use 1.15 0.73–1.82 5.08

PDX Cerebral hemorrhage 0.37∗ 0.17–0.79 4.76

CM Essential hypertension 1.71∗∗ 1.24–2.36 4.44

DDX DNR-do not resuscitate 0.00 0.00–0.00 4.05

Sending unit-emergency department 1.54∗ 1.02–2.34 4.05

PL Constipation 1.73 0.74–4.03 3.73

DX Kidney failure, acute 0.74 0.35–1.61 2.70

CM Acidosis 0.77 0.51–1.14 2.62

PL Atelectasis 1.24 0.70–2.16 2.30

CM Anemia 0.93 0.60–1.43 2.22

CM Congestive heart failure 0.79 0.52–1.19 2.22

DDX Cardiac arrest, cause unspecified 0.00 0.00–0.00 2.06

Helicopter transport 1.14 0.80–1.63 2.06

PL Dyspnea 0.51∗∗ 0.32–0.80 1.90

Receiving unit-not specified 1.17 0.78–1.75 1.83

PDX Pneumonia, organism unspecified 0.64 0.21–1.67 1.75

PL Chest pain 0.97 0.58–1.63 1.67

DX Encounter due to postsurgical aortocoronary bypass 1.34 0.62–2.90 1.67

CM Chronic kidney diseases 1.09 0.65–1.82 1.59

DX Long-term (current) use of other medications 0.74 0.46–1.17 1.59

(Continued)
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TABLE 2 (Continued)

Logistic regression Gradient boosted

Variable Odds ratio 95% CI Relative variable
performance

CM Chronic atrial fibrillation 1.12 0.44–2.82 1.51

DX Other chest pain 2.08 0.93–4.67 1.35

PDX Acute subendocardial myocardial infarction 3.49 0.96–12.68 1.19

PL Hypotension 0.77 0.48–1.23 1.11

HX Atherosclerotic heart disease 0.61 0.30–1.23 1.03

CM Altered mental status, unspecified 0.74 0.42–1.29 0.95

Marital status-other 1.11 0.69–1.79 0.87

Sending unit-other 0.85 0.39–1.85 0.87

Problem list: kidney failure, acute 1.06 0.70–1.61 0.87

Male 0.80 0.58–1.09 0.79

PDX Cardiac arrest 1.09 0.33–3.55 0.79

Sending unit: not specified 0.79 0.50–1.23 0.79

Private health insurance 1.13 0.66–2.03 0.56

DX Abnormal electrocardiogram 1.08 0.65–1.80 0.40

Marital status: unmarried 0.94 0.63–1.41 0.16

PL Atrial fibrillation 0.84 0.53–1.32 0.08

Marital status: widow 0.79 0.49–1.29 0.08

∗∗∗P < 0.0010, ∗∗P < 0.01, ∗P < 0.05.

DX, unassigned diagnosis; PL, problem list, PDX, admitting diagnosis; CM, comorbidity; DDX, discharge diagnosis.

3.2 Logistic regression results

The odds ratios and 95% confidence intervals are presented

in Table 2. Of the 57 variables, 14 were statistically significant.

Significant variables indicating lower odds of survival included:

age (OR 0.95; 95% CI 0.94–0.97), being on a ventilator (OR 0.29;

95% CI 0.19–0.45), admission for cerebral hemorrhage (OR 0.37;

95% CI 0.17–0.79), problem list identification of dyspnea (OR 0.51;

95% CI 0.32–0.80), or encounter resulting in palliative care/end-

of-life counseling (OR 0.17; 0.02–0.57). Alternatively, those being

transferred from an emergency department (OR 1.54; 95% CI

1.02–2.34), on Medicare (OR 1.63; 95% CI 1.03–2.58), or with

comorbid hypertension (OR 1.71; 95% CI 1.24–2.36) experienced

increased odds of survival. The remaining significant indicators

included vital signs: respirations, heart rate, systolic blood pressure,

and laboratory values: albumin, international normalized ratio and

platelets. Interestingly, mode of transport—or being transported by

helicopter, was not associated with a significant increase in survival.

Overall, the logistic regression model yielded an accuracy of 78.21.

3.3 Gradient boosting results

The predictive performance results of each of the four gradient

boosted models are shown in Table 3. Model 1 which only

included demographic variables and diagnosis codes had moderate

discrimination (AUC = 0.76). Model 2 which also included

TABLE 3 Gradient boosting model performance results.

Model Training
accuracy

Testing
accuracy

AUROC

Model 1: demographics and

diagnoses

0.82 0.68 0.76

Model 2: model 1+

laboratory results

0.94 0.72 0.79

Model 3: model 2+ vital

signs

0.94 0.79 0.87

Model 4: model 3 minus

trimmed features

0.95 0.78 0.85

laboratory values improved accuracy and the AUC (AUC = 0.79).

Model 3 performed the best (AUC= 0.87). Model 4 removed some

variables deemed not to be clinically meaningful by experts and had

only a slight drop in accuracy (78 vs. 79%) and AUC (0.85 vs. 0.87)

compared to Model 3. Model 4 was therefore chosen as the final

predictive model.

The variable importance from the gradient boosted Model 4 is

presented alongside the logistic regression results in Table 2. The

variables are presented in descending order of relative importance

with 8 of the first 10 variables corresponding to statistically

significant indicators in the logistic regression model. All of the

statistically significant variables in logistic regression appear in the

first 34 of 58 most important variables in the gradient boosted
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model. The gradient boosted model favored continuous variables

more than logistic regression. Alternatively, gradient boosting

identified several dichotomous indicators including problem list

acute respiratory failure, encounter due to tobacco use and race

categorized as other as more important whereas logistic regression

yielded non-statistically significant results.

3.4 Multiple correspondence analysis
results

Consistent with the other models, a majority of the variables

clustered around the 0 point of each axis, indicating little to no

correspondence with either outcome (Figure 1). The variables that

most corresponded with survival include normal albumin, normal

BUN, normal INR high, systolic blood pressure, subendocardial

myocardial infarction, no oxygen administration, hypertension,

normal respirations, and low pulse. Alternatively, the variables that

correlated with death included being on a ventilator, high pulse

rate, high or low respiratory rate, low systolic blood pressure, heart

failure, low hemoglobin, low red blood cells, high BUN, high INR,

and low albumin. Neither helicopter nor ground transport highly

corresponded with either outcome. Straight line analysis reveals

that helicopter is closer to the clinical outcome other and farther

away from death, while ground is slightly closer to death than other

clinical outcome.

4 Discussion

The purpose of this study was to identify the factors that predict

mortality post-transfer and develop a comprehensive mortality

prediction model capable of supporting pre-transfer decision

making. We employed a multi-method approach and identified

across all modeling approaches the most important variables for

inclusion in prognostic modeling for post-IHT mortality. Our

models’ performance matches or surpasses the performance of

APACHE IV (33) within our health system (0.85 vs. 0.85). A

significant advantage of our approach was using only structured

data in our models that are readily available at the time the

decision to transfer is being made. This is important for ease of

use and facilitates the ability to automate the model in future

clinical decision support applications that can be embedded within

the EHR. The final list of most important variables provides a

starting point for our team, as well as others, to begin developing

data driven prognostic models. A majority of the variables added

minimal value and can be removed from consideration in future

model building efforts.

The variables with highest importance in our model align

closely with the those included in the final SafeNet model.

Specifically, age, BUN, albumin, blood glucose, mechanical

ventilation, temperature, platelets, systolic blood pressure,

and heart rate (24). In combination, these results provide

evidence of generalizability of using these variables in

other settings.

Another significant finding is the insignificance of the mode of

transport across all models.Mode of transport was not significant in

the logistic regression model, appeared in the final variables before

cutoff in the general random forest model, and not included in

the final XGBoost model. MCA analysis also revealed that mode

of transport did not significantly correspond to outcome post-

transfer. This finding is replicated in other studies that reported an

absence of an association between mortality and mode of transport,

timing or priority of transport, and total time spent in transport

(34–36). Further, when controlling for transport expertise, despite

having faster transport times, air medical transport (AMT) offered

no overall mortality benefit in the general population (37).

Considering that a majority of interfacility transfers are not

time sensitive (38), further work is necessary to identify which

interfacility transfers require helicopter transfer. The level of critical

care experience and practice capability of critical care transport

teams has evolved to a high level of care, yet the process for IHT

and knowledge of the capability and level of care provided during

transport have lagged current practice. Potential benefits of AMT

not yet investigated include assessing the impact of the arrival of an

advanced care team with critical care experience particularly in low

resource settings such as critical access hospitals or free-standing

emergency departments in rural settings. Another potential is the

transport and delivery of treatments not available in the current

setting such as surfactant or Tenecteplase, bringing equipment such

as high flow nasal cannula, or proficiency at managing devices that

may be low volume use in certain settings such as Impella? or

intra-aortic balloon pumps.

Our results provide further evidence of the role of timely

transfer in outcomes, with higher odds of survival identified for

those being transferred from an emergency department. This

survival benefit can be due to several factors, the primary being

those patients experiencing a time-sensitive emergency such as

heart attack or stroke that benefit from rapid transfer and

intervention at the tertiary care center. Another study identified

that length of stay at the referring hospital before transfer is an

independent predictor of increased ICU and hospital mortality

post-transfer (39). In combination, these findings support the

need to identify patients that require transfer and transfer those

patients earlier in their healthcare encounter. For example, patients

presenting to their local community hospital may not be severely ill

upon initial presentation and meet criteria for admission to their

ICU. However, when applying this or another prognostic model

such as SafeNet, because the patient has conditions x, y, and/or

z, they are identified as a transfer candidate that will benefit from

earlier transfer to higher level care from the emergency department.

Another potential benefit of early identification and transfer is the

ability to transfer the patient by ground instead of air because the

patient is not in a time-sensitive or critical physiologic state, thus

reducing transfer burden on AMT and maintaining the resource

for time-sensitive illness or injuries.

There were several limitations to this work. First, we used

data from only one health system that may yield a selection bias

in how the health system selects and then transfers patients that

can be different from other health system transfer protocols and

processes. Second, our health system critical care transport team

transfers a larger proportion of patients by ground, whereas other

health systems transport the same number or more patients by

air. Further, a natural randomization of assignment to mode of

transport exists when weather, location of the referring hospital—

proximity to the receiving hospital necessitating faster transport
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FIGURE 1

Multiple correspondence analysis 2-dimensional visualization.

times via ground, the lack of a helipad precluding helicopter

transfer, current congestion or poor road conditions, or lack of

ground transport resources, results in patients not being transferred

by the initially triaged mode of transport. Therefore, a potential

explanation of the non-significant impact of mode of transport

on mortality could be due to this natural randomization that

warrants further investigation of which we have planned. Lastly,

we only controlled for a small number of demographics via 3-

terms matching, thus there is potential for some unmeasured

confounding. However, we did match patients by mode of

transport, thus accounting for a known significant contributor to

differences in outcome.

The results of this study provide several implications to guide

future work. First, further work is needed to discern the intersection

between the level of care provided and mode of transport.

Currently, AMT is considered to deliver the highest level of care

to the patient in the shortest period of time. However, it is not clear

whether the quick arrival of high-level care and/or faster transfer to

higher level care influences post-transfer outcome. Further, when

considering time, there is a need to discern the unit of time that

applies to non-time-sensitive conditions to identify which patients

need to be transferred within x minutes or y hours. In addition,

there is also a need to control for level of care provided prior to and

during transfer, and the subsequent influence on patient outcomes

post-transfer. Investigating level of care provide to the patient

prior to and during transfer will require multi-site, multi-program

studies that include differing team configurations to untangle

the influence of time, and level of care that includes controlling

for team configuration (e.g., physician, nurse practitioner, nurse,

paramedic). Second, there is a need to develop new phenotypes

or categories of patients requiring transfer that move beyond the

time-sensitive, not time-sensitive considerations most commonly

applied in current research efforts. New categories should identify

both the time sensitivity, and level of care required to maintain

or improve patients’ clinical trajectory. Often, when a critically

ill patient who requires the highest level of care is identified for

transfer, they are defaulted to AMT, when in fact that transfer

could be accomplished with the critical care team by ground, as the

level of care during transfer is the main influence on post-transfer

outcome, not how quickly the transfer is conducted. Lastly, future

prognostic modeling efforts should focus on identifying patients

early in the healthcare encounter that are at risk of becoming

seriously ill at their current location of care. Identifying those

patients for early transfer to higher levels of care can enable

using lower levels of transport such as ambulances staffed with

a paramedic, potentially avoiding a future transfer via AMT and

critical care team, saving financial and transport resources for those

patients requiring them.

We employed machine learning to identify which variables

predict post-transfer mortality that resulted in prognostic models

that performed the same or better than industry benchmarks.

We found that age, laboratory results (albumin, INR, platelets,

BUN, leukocyte, hemoglobin, glucose), vital signs (temperature,

respirations, pulse, systolic blood pressure, pulse oximetry),

and ventilator usage are the most predictive variables of post-

interhospital transfer mortality. The benefit of our approach is

that the aforementioned variables included in the final model are

readily available in most EHRs and because we only used structured

data, can be easily abstracted and automated into clinical decision

support that does not require manual involvement. Additionally,

our work sheds important insight on the lack of influence of

mode of transport on patient outcomes post-IHT, highlighting

the need for further investigation to identify the factors that

differentiate patients not triaged as time-sensitive transfers but still

require helicopter intervention to maintain or improve post-IHT

morbidity and mortality. In combination, these findings provide a

foundation for the development of decision support tools to guide

transport referrals and identified the need for further inquiry to

discern the role of mode of transport to enable future inclusion in

decision support approaches.
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