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Biologics are at the frontier of CNS disease treatment. This applies both to therapeutic
molecules such as peptides, antibodies and RNA interference agents, and to delivery
vehicles of biological origin such as viral vectors and extracellular vesicles. Unlike small
molecules, biologics are not likely to diffuse across cell membranes. To get into and across
brain capillary endothelial cells (BCEC) forming the blood–brain barrier, they normally
employ active, energy-dependent processes. They can initiate these processes non-
specifically or trigger them by interaction with various receptor or transporter molecules at
the luminal surface of BCEC. Designing biologics to use this specific engagement is more
common in smaller formats, especially peptides and antibodies, but can also apply to
targeted vehicles. This targeted design has employed a number of molecules expressed
on BCEC – the transferrin receptor being the most common example, although there has
been progress in identifying molecules that are even more specific to BCEC. In addition,
the format of biologics and a multitude of their biophysical properties affect the way they
interact with BCEC, and this diversity is even more salient between different classes of
biologics. It affects the entire span of interaction with BCEC, from the initial engagement at
the luminal surface to intracellular sorting, and eventually, entrapment or routing toward
exocytosis into the brain parenchyma. In this article, I reviewed the progress in identifying
novel targets that make the interactions between biologics and BCECmore specific, and in
our understanding of the interplay between the properties of biologics and these
interactions.
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INTRODUCTION

Brain targeting is needed for intravenously (IV) administered biologics because otherwise their brain
accumulation after an IV injection is low. The statement above is an oversimplification on several
counts. First, ‘low’ is relative: for instance, while ~0.1% of the injected dose is indicated for
monoclonal antibodies (mAbs) (Bard et al., 2000; Boado et al., 2010; Atwal et al., 2011), the
relevant question is how much of the therapeutic needs to reach brain parenchyma to achieve a
sufficient effect, and, consequently, whether the safety profile allows reaching that level. Second, the
site of entry may well be crucial: a fraction of a biologic reaching the brain across the blood–brain
barrier (BBB) may have a different distribution and, consequently, effect than the same fraction
entering the brain from the choroid plexus, owing to the high density of the capillary bed with small
(~25 µm) distance to the nearest cells such as neurons (Schlageter et al., 1999; Mabuchi et al., 2005).
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Third, unmodified large biologics serving as delivery
vehicles—e.g., adeno-associated viruses (AAVs) (Foust et al.,
2009) or extracellular vesicles (EVs) (Wiklander et al., 2015;
Banks et al., 2020)—have been shown to reach the brain;
although the extent of this accumulation varies considerably,
the percentage of the injected dose also has a different meaning in
this scenario, at least for EVs because of their large loading
capacity.

Nevertheless, targeting has been shown to increase brain
transport, and therefore is an attractive option at least for that
reason alone, and, possibly, for getting access to a greater brain
volume. Here, I focus on several aspects: 1) interactions of non-
targeted large biologics, 2) strategies for choosing targets and
optimizing interactions with them, 3) considerations relevant for
different formats of biologics, and 4) transport mechanisms
helping them cross the BBB.

NON-TARGETED LARGE BIOLOGICS

If a vehicle is not intentionally targeted to certain molecules on
brain capillary endothelial cells (BCEC), this does not necessarily
mean that its interaction with BCEC is not specific. An early
example comes from nanomedicine, where the interaction of
nanoparticles (NPs) with BCEC is thought to be at least partially
mediated by apolipoprotein E (ApoE) recruited in the
bloodstream as part of the protein corona and subsequently
interacting with the low-density lipoprotein receptor (LDLR)
on the surface of BCEC (Kreuter et al., 2002). The point here
is not so much ApoE per se but the fact that the recruitment of
proteins from the bloodstream can mediate specific interactions
with cellular receptors in hepatic or extra-hepatic delivery (Akinc
et al., 2010; Dilliard et al., 2021). It seems reasonable to expect
similar mechanisms applied to EVs, where not only biophysical
properties, but also the protein signature on the EV surface can
affect corona formation—or, indeed, itself mediate specific
interactions with BCEC (Haqqani et al., 2013; Qu et al., 2018).
Another example comes fromAAV studies where the transport of
PHP.eB capsid across the BBB was found to be mediated by
lymphocyte antigen 6 complex, locus A (Ly6a)—notably,
explaining the lack of PHP.eB transport in other species that
do not express Ly6a, and, partially, in other mouse strains which
have a reduced amount or an altered genetic variant of it
(Hordeaux et al., 2018; Huang et al., 2019; Mathiesen et al.,
2020). These observations point that non-targeted biologics,
especially in large formats, may turn out to engage specific
targets—or their combination—on the surface of BCEC, owing
to their intrinsic properties or the properties they acquire in the
bloodstream. Furthermore, the complexity of vehicles can make
them likely to engage several extracellular and cellular actors
spanning the entire range from the glycocalyx to the plasma
membrane and intracellular sorting, to exocytosis on the
abluminal side. AAV field again offers an example, with
cellular interactions of AAV9 mediated by at least three
different receptors, terminal β-galactose on glycocalyx, laminin
receptor, and adeno-associated virus receptor (Akache et al.,
2006; Shen et al., 2011; Pillay et al., 2017). This essentially

redefines targeting, shifting it from the luminal membrane of
BCEC to all cellular interactions, where individual steps of
internalization, sorting, and exocytosis can be more or less
specific to BCEC. It is unclear whether this level of specificity
can be designed rationally. However, large-scale screening,
common for AAVs and, more recently, lipid NPs (whose
lessons can, to some extent, apply to EVs) (Akinc et al., 2008;
Whitehead et al., 2014; Dahlman et al., 2017) can provide insights
by generating BBB-penetrant vehicles (e.g., AAV capsids PHP.B,
PHP.eB, AAV.F, CAP-B10, CAP-B22, CAP-Mac, 9P801, etc.)
(Deverman et al., 2016; Hanlon et al., 2019; Nonnenmacher et al.,
2021; Chuapoco et al., 2022; Goertsen et al., 2022) but also by
identifying patterns promoting accumulation in different organs,
including the brain, at least within a given class. This data,
especially if available for different species, could then inform a
computational design (Ogden et al., 2019; Bryant et al., 2021).

TARGETS AND TARGETED BIOLOGICS

I will focus on optimizing biologics for targeted delivery, the
choice and characterization of targets, and the possible benefits of
combinatorial targeting, using the transferrin receptor (TfR) and
low-density lipoprotein receptor-1 (LRP-1) to illustrate the first
two aspects. A detailed account of other commonly used BCEC
targets and their use in delivery across BBB can be found in
comprehensive reviews elsewhere (Lajoie and Shusta 2015;
Terstappen et al., 2021).

Since the discovery of the TfR expression on BCEC (Jefferies
et al., 1984), and the initial attempts to use it as a molecular
Trojan horse (Friden et al., 1991; Friden et al., 1993; Huwyler
et al., 1996), TfR has remained among the most studied shuttle
targets. It has been used to enhance the transport of a broad range
of molecules and vehicles, including peptides, mAbs, EVs, or even
AAVs (Friden et al., 1993;Wu and Pardridge 1998; Yu et al., 2011;
Zhang et al., 2018; Crook et al., 2020; Kim et al., 2020). The
rationale for using TfR would be its high expression on BCEC and
specificity to BCEC compared to other endothelial cells (Jefferies
et al., 1984), although this specificity is limited as TfR is also
highly expressed on certain cells of non-endothelial origin,
including, notably, reticulocytes (Jandl and Katz 1963; Couch
et al., 2013; Sun et al., 2019). A TfR-targeted biologic is also the
only currently approved large molecule exploiting targeted
delivery across the BBB—pabinafusp alfa, approved in Japan
for the treatment of mucopolysaccharidosis type II, comprises
iduronate-2-sulfatase fused to a high-affinity, bivalent TfR mAb
(Giugliani et al., 2021). TfR-mediated delivery optimization has
taken much effort, focusing primarily on antibodies or their
fragments enabling the transport of payloads or large vehicles
across the BBB. Insights derived from this optimization are likely
relevant for other targets, although, ultimately, every biologic-
target complex may have its unique signature affecting BBB
transport.

Early studies using TfR mAbs employed them in a bivalent
format, with the mAb fused to the therapeutic payload or
decorating larger vehicles which could themselves contain the
payload. While there is little doubt that this allowed TfR-targeted
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constructs to internalize in BCEC, one key factor in the
interpretation of these studies is whether the constructs would
leave BCEC to enter brain parenchyma. Capillary depletion
studies have shown that bivalent TfR constructs remained
largely restricted to brain endothelium (Moos and Morgan
2001). Subsequently, (Yu et al., 2011) improved brain
transport by reducing the affinity to TfR in a bispecific mAb
with one arm targeting TfR and the other β-secretase (BACE1),
while (Niewoehner et al., 2014) refined the optimization from a
different angle, improving the transport of a bivalent anti-
amyloid β mAb by fusing a Fab fragment of an anti-TfR mAb
to its heavy chain, thus enforcing monovalent binding to TfR.
Clearly, as far as TfR engagement is concerned, the approaches
taken in (Yu et al., 2011) and (Niewoehner et al., 2014) are not
entirely dissimilar since a bispecific antibody with one arm
targeting TfR is essentially a monovalent shuttle. An
interesting attempt to combine the bivalent format with the
monovalent binding mode was made in (Hultqvist et al.,
2017), where a bivalent TfR mAb was forced to engage TfR as
a monovalent binder by a linker sterically preventing bivalent
binding. Further optimization included the use of single-domain
antibodies with low (Wouters et al., 2020) or high (Stocki et al.,
2021) affinities, the use of a pH-dependent binder (Sade et al.,
2014), and a variation of the monovalent, low-affinity binding
approach with the binder engineered into the Fc domain of
therapeutic mAbs (Kariolis et al., 2020; Arguello et al., 2022).
This optimization also informed the design of NPs decorated with
TfR mAbs for brain penetration—by simply using optimized TfR
mAb fragments on the surface of NPs (Johnsen et al., 2018) but
also, in a manner distinct to large particles, fine-tuning the
density of those fragments on the particle surface, thus
modifying the particle’s avidity (Wiley et al., 2013; Johnsen
et al., 2019).

LRP-1 is another well-explored BCEC target. A family of
Kunitz domain-derived peptides named Angiopeps,
particularly Angiopep-2, has been shown to cross BCEC
(Demeule et al., 2008a) through an LRP-1–mediated
mechanism (Demeule et al., 2008b; Bertrand et al., 2010). In
(Sakamoto et al., 2017), an Angiopeps family-unrelated peptide
identified in phage display and named L57 was shown to bind
LRP-1 and accumulate in the brain after an IV injection. LRP-1
has been used to enhance NP-mediated transport of biologics
across the BBB (Ke et al., 2009; Tian et al., 2015), with one study
optimizing the LRP1-mediated transport of NPs by tuning the
avidity to the receptor (Tian et al., 2020), which parallels the
approach taken by Wiley et al. (2013) for TfR-mediated NP
transport. Additionally, ANG1005, comprising three paclitaxel
molecules covalently linked to Angiopep-2, has been used in a
clinical trial for the treatment of recurrent brain metastases from
breast cancer (Kumthekar et al., 2020).

The key question with LRP-1-mediated transport is probably
whether LRP-1 exists in in vivo BCEC in the first place. Single-cell
transcriptomics data suggest that it may not (Yang et al., 2022;
Chen et al., 2020). Proteomics data may seem more encouraging,
with several reports indicating LRP-1 presence (Uchida et al.,
2011; Al Feteisi et al., 2018; Al-Majdoub et al., 2019; Campeau
et al., 2020), although, notably Zuchero et al. (2016) did not find

LRP-1 in a proteomic characterization of BCEC after CD31+/
CD45− fluorescence-activated cell sorting. One caveat with
proteomics studies is the contamination with cells of the brain
parenchyma (Al Feteisi et al., 2018; Al-Majdoub et al., 2019). The
presence of e.g., aquaporin-4 or glial fibrillary acidic protein could
be a clear sign of this contamination, and these markers are in fact
present in untargeted proteomic studies (Al Feteisi et al., 2018;
Campeau et al., 2020). The fact that LRP-1 is highly expressed in
parenchymal cells (Zhang et al., 2014; Munji et al., 2019) further
complicates things—one would expect contamination to be less of
an issue for proteins with negligible gene expression on those
cells, but in the case of LRP-1, their contribution may well be
substantial. In addition to specific cell sorting, laser-capture
microdissection (LCM) with sufficiently small sections could
shed light here since sections with no trace of exclusive
parenchymal cell markers and with a strong presence of e.g.,
claudin-5 could be reasonably expected to include only whole
BCEC or their lumen-facing fractions, and in those sections, the
presence of LRP-1 or lack thereof would be definitive. Spatially-
resolved proteome of the brain cortex was studied using LCM
with small sections in Zhu et al. (2018). However, while the
proteome of 100 µm and especially 200 µm sections in Zhu et al.
(2018) appears sufficiently rich within the coverage limit of the
study, it also shows a strong presence of parenchymal markers,
while the proteome of the smallest sections (50 µm) does not
seem to provide a conclusive answer, especially given the small
sample size. Ultimately, the question of a target’s presence and
level on BCEC, whether for LRP-1 or in other cases where a
target’s expression on BCEC is uncertain, will likely be addressed
by single-cell proteomics, assuming sufficient coverage.

Combinatorial targeting can, in principle, increase the
probability of circulating biologics’ interaction with BCEC.
This approach is likely easier to implement for larger vehicles
such as NPs and EVs, than for mAbs and especially for peptides.
Dual and even triple targeting to BCEC has been shown to
increase the transport of liposomes and niosomes across the
BBB (Markoutsa et al., 2014; Mészáros et al., 2018; Veszelka et al.,
2021). One relevant aspect here could be the purpose of the
second—or subsequent—moieties. If all shuttle moieties are
present simply to increase the specificity of interaction with
BCEC or, alternatively, if all are optimized for transporting the
vehicle across BCEC, this may be moot. However, if all but one of
them are present to increase the retention on the surface of BCEC,
increasing the probability that the primary, optimized moiety will
interact with its intended target, then, conceivably, this approach
could benefit from targeting molecules in close proximity to each
other. As an example, solute carrier family 7 member 5 (SLC7A5)
forms a heterodimer with the CD98 heavy chain (CD98hc) (Lee
et al., 2019); this and similar combinations of spatially close
targets could potentially be exploited for a greater efficiency of
interaction with BCEC.

Overall, the progress in single-cell studies and the availability
of proteomics data have fostered the discovery of new potential
targets at BCEC (Shusta 2005; Mäger et al., 2017). In a recent
study, Cegarra et al. (2022) explored integral membrane protein
2A (ITM2A) as a potential shuttle target at the BBB identified by
the Collaboration on the Optimization of Macromolecular
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Pharmaceutical Access to Cellular Targets consortium; while the
study results are not encouraging for the use of ITM2A, it is likely
that large-scale omics-based characterization efforts such as those
undertaken by the Human Cell Atlas (Regev et al., 2017; Eraslan
et al., 2022) will be used to explore new targets allowing improved
transport across the BBB.

Formats
There are several considerations affecting biologics, some more
relevant to certain classes. The transport of naked
oligonucleotides across the BBB is negligible, disfavored not
only by a poor half-life but also by electrostatic repulsion by
the negatively charged BCEC glycocalyx abundant in sialic acid
residues (Vorbrodt 1989). mAbs benefit from neonatal Fc
receptor-mediated recycling, increasing their circulation time
in comparison to other types of biologics (Ghetie et al., 1996).
While pharmacokinetic considerations are out of the paper’s
scope, one key factor linking them to cellular interactions is
whether the reduced affinity to BCEC targets, which potentially
increases dissociation from the target and transport into brain
parenchyma, is of greatest benefit to mAbs precisely because of
the longer half-life giving them more time to interact with BCEC
specifically, thus compensating for the reduced binding to BCEC
targets. This would clearly affect e.g., peptides and nanocarriers
decorated with targeted ligands. However, a study of gold NPs
decorated with low-affinity or monovalent TfR-targeted mAbs
indicates that this benefit extends to NPs as well, despite their
shorter half-life (Johnsen et al., 2018). Furthermore, the larger
size of nanocarriers may adversely affect the extent to which they
get across the BBB, penetrate the narrow-spaced barrier formed
by astrocytic endfeet beyond the BBB (Kucharz et al., 2021), and
distribute in the brain parenchyma with the extracellular space
pore size estimated at ~40–65 nm (Thorne and Nicholson 2006).
This can be offset by the substantial loading capacity of
nanocarriers, allowing the release of many payload molecules
for a single transcytosis event. The density of the targeting ligands
on the surface of nanocarriers further allows transport
optimization (Wiley et al., 2013; Johnsen et al., 2019). Protein
corona formation is another factor specific to nanocarriers: in
addition to modifying the intrinsic properties of nanocarriers in
the bloodstream, it can also mask targeting ligands, thus
precluding their specific interaction with BCEC (Salvati et al.,
2013; Xiao et al., 2021). A way to address this limitation by
employing a defined, pre-formed corona has been proposed in
Kaleta et al. (2020).

TRANSPORT MECHANISMS

With TfR targeting, one attractive rationale has been that targeted
biologics would simply follow the presumed route taken by the
native ligand (Bien-Ly et al., 2014; Niewoehner et al., 2014). In
this scenario, a biologic-target complex would proceed from the
luminal to the abluminal side of BEC to release the payload—as,
presumably, would Tf with TfR. This reasoning could work for
TfR and several other receptors such as LDLR, known or thought
to carry native ligands across the BBB. It is less clear for other

targets. For instance, Zuchero et al. (2016) identified and explored
basigin, glucose transporter 1 (GLUT1), and CD98hc as
promising targets for mAb transport, demonstrating brain
accumulation and the therapeutic effect of a CD98hc/
BACE1 bispecific. Leaving basigin with its receptor and
chaperone functions aside (for its further exploration as a
BCEC target see (Christensen et al., 2021)), one cannot but
wonder what would be the mechanism of trans-BBB transport
in the case of mAbs or other biologics targeting CD98hc and
GLUT1 (SLC3A2 and SLC2A1, respectively). The native
transport mechanism invoked by solute carriers (SLCs) is
facilitated diffusion, i.e., they engage no endocytic machinery
behind the luminal surface of BCEC as far as their postulated
function is concerned. Additionally, the size of most, if not all
biologics is beyond that of molecules natively transported by
SLCs. As a result, it may not seem likely that biologics engage the
native transport mechanism of SLCs. However, if one excludes
this native mechanism, it is conceivable that biologics’
engagement with CD98hc and GLUT1 itself induces
endocytosis after the binding event or simply exploits the
constitutive recycling process of SLCs, in which case protein
turnover becomes highly relevant. Then, the question would be
how the biologic would get to the abluminal side. One possible
explanation is that the complex, or only the biologic that is part of
it, is artificially redirected toward exocytosis, owing to the
biologic’s properties that would enable such redirection.

Notably, in the case of TfR targeting, it has been postulated
that a suboptimal format can fully or partially re-route a biologic
toward lysosomal degradation in contrast to Tf and TfR that
presumably reach the abluminal side natively (Pardridge et al.,
1991; Bien-Ly et al., 2014; Niewoehner et al., 2014). One then has
to wonder: why, conversely, would an optimal format not be able
to re-route a biologic, with or without the target, to the abluminal
side, even if the native ligand and/or target molecule do not
normally reach it? Taking that reasoning further and applying it
to the TfR-mediated transport, the fundamental question would
be: does TfR get across the BCEC at all, in any scenario? This
discussion would have two distinctly separate components: the
fate of the native TfR–Tf complex, and the fate of TfR in a
complex with a biologic that crosses the BBB. Both components
are out of scope for this paper; for an overview of the former,
focusing on the insights from the iron metabolism field, see
(Skjørringe T et al., 2015; Duck and Connor 2016).

All these considerations may be more fundamental than
practical in nature; after all, targets thought to be expressed
on and, better yet, specific to BCEC have been exploited for
brain delivery regardless of the tentative underlying
mechanism. However, they may inform the strategy behind
choosing targets and optimizing interactions with them. In
this scenario, the early endosome likely becomes the nexus
defining the fate of a biologic inside BCEC, and the desired
outcome, in most cases, would be to route the biologic from
that nexus toward the abluminal side. Ultimately, one key
factor governing this (re)direction is likely the entirety of the
properties characterizing the target–biologic complex or the
biologic alone, depending on what is destined for exocytosis.
Intuitively, key properties can include conformation and size,
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the latter being far easier to optimize than the former. In
addition to size, optimization could also be focused on the
probability of the biologic’s dissociation from the target. For
instance, one could argue that the efforts to optimize TfR-
mediated transport, described above, converge on two
themes: the size of the biologic–TfR complex and the
probability of the biologic’s dissociation from TfR along
the endocytic pathway or on the abluminal side of BCEC.
The monovalent binding mode presumably improves the
transport by eliminating crosslinking of TfR by two arms
of the mAb (Niewoehner et al., 2014; Hultqvist et al., 2017).
The actual observation is that the cross-linked complex is
prone to lysosomal routing and eventual degradation. The
question, however, is why; and one possible explanation is
that the cross-linked complex is too large for any other
intracellular fate, whether recycling to the luminal
membrane or routing to the abluminal side. The same
considerations are clearly applicable to bispecific mAbs. In
a different vein, changing antibody affinity and making its
interaction with TfR sensitive to the local environment (such
as low pH in the endosomal compartment) would increase the
chances of the biologic’s dissociation from TfR—thus, in
another way, reducing the size of the entity routed for

exocytosis—although it can also decrease the probability of
bivalent binding by reducing the chance that both arms of the
mAb would bind TfR at the same time. All these
considerations could be amended for other formats of
biologics, but also for targets. For instance, would reduced
affinity be relevant for brain-targeted peptides whose binding
mode is intrinsically monovalent? Could crosslinking
avoidance be less relevant for proteins with lower densities
on the plasma membrane? While modeling can probably help
with these or other similar questions, in the end, they can only
be answered experimentally.
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